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Introduction
The past three decades have witnessed a host of im-

pressive findings concerning the functional architecture of the
brain.  One trend that much recent research suggests is that
there is a high degree of specialization within the brain: differ-
ent parts of the brain do different, highly specific tasks.  Fur-
thermore, most estimates place the number of cortical neurons
alone at 1010, with roughly  1014 total synapses connecting
them.  Given this enormous number of neurons, and consider-
ing the extreme structural complexity embodied by a healthy
and fully-developed mammalian brain, the project of elucidat-
ing this structure in some ways pales in comparison to that of
explaining how it came to be.  It is clear that the mammalian
genome “cannot, in any naive sense, contain the full informa-
tion necessary to describe the brain” (von der Malsburg, 1990).
Yet somehow, in the process of development, the brain acquires
its structure.  The compelling nature of this quandary makes
the notion of self-organization very appealing.

The term “self-organization” is generally used to de-
scribe the evolution of complex behavior in systems that con-
sist solely of many very simple parts.  The brain is an excellent
example of such a system, for while neurons are by no means
simple, many of their prin-
ciple functional characteris-
tics are believed to be rela-
tively easy to approximate
and model.  In this review I
will focus on research that
suggests that the early stages
of the mammalian visual
system can be implemented
solely through the self-orga-
nizing properties of neural
networks.

Central to all such
research is the assumption
that synaptic modification
occurs via some form of
Hebbian learning, whereby
the strength of a synapse be-
tween two neurons is increased if the activities of the neurons
are correlated in time, that is, if one tends to be active at the
same time that the other is.  This learning rule was first sug-
gested by Hebb in 1949 without an accompanying brain mecha-
nism or body of evidence for its existence.  Since then, the
discovery of long-term potentiation (LTP) in the hippocampus
has provided evidence that a form of Hebbian learning does
occur in the brain, although how it is accomplished is still not
clear.  While skepticism about LTP remains, it is generally
agreed that some form of local learning is bound to control

connectivity in many cases, if only because the idea of com-
pletely central control seems inconceivable.  Most efforts to
show that self-organization can occur in structures resembling
the brain thus make use of Hebbian learning.

Vision research has been among the most fruitful ar-
eas of neuroscience, and the basic structure of the early levels
of the mammalian visual system are for the most part estab-
lished.  The research that I will be discussing concerns the vi-
sual system up to and including the primary visual cortex (V1).
The visual pathway begins at the retina, where there are sev-
eral layers of cells which project via the optic nerve to the lat-
eral geniculate nucleus (LGN) in the thalamus, which in turn
projects to layer 4C of V1.  Cells in the inner layers of the
retina and in the LGN are characterized by spatial-opponent
receptive fields:  Stimuli placed in a central, circular region of
the receptive field of a cell in these regions tend to excite the
cell, while stimuli placed outside the excitatory region tend to
inhibit the cell.  In addition, the retina and LGN are topographic:
the spatial layout of their cells' receptive fields is topologically
similar to the physical layout of the cells themselves.  V1 cells
differ from those in the LGN or retina in that many of them
have orientation selective receptive fields; a cell in V1 will

tend to respond strongest to
a line of a particular orien-
tation placed in its receptive
field.  Furthermore, as the
Nobel Prize-winning re-
search of David Hubel and
Torsten Wiesel revealed,
orientation selective cells
are laid out in an orderly
fashion.  In addition to be-
ing retinotopically orga-
nized, a group of cells
whose receptive fields cor-
respond to a certain point in
space will be arranged in a
line such that their orienta-
tion preferences vary con-
tinuously along that dimen-

sion in cortex.  Many have speculated that this layout has the
favorable characteristic that each small portion of V1 has all
the machinery necessary to perform the first steps in extract-
ing information from the portion of the visual field which it
represents.  The research reviewed here is exciting because it
suggests that many of the characteristics I have just described
can be accomplished through usupervised self-organization.

A host of experiments have shown the influence of
the environment on the development of the nervous system.
Although many results in this literature are controversial, it is
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Figure 1.  Schematic of the visual system. (Taken from Rose, D. A portrait of the brain.  In The
Artful Eye (1995), Gregory, Harris, Heard, and Rose, Eds.)



generally agreed that kittens raised in visually-altered envi-
ronments developed abnormal patterns of orientation selective
cells in V1 ( see Blakemore and Cooper, 1970, Hirsh and
Spinelli, 1970 for the first such experiments, and Movshon and
Van Sluyters, 1981 for a review).  Such results suggested to
some that orientation selectivity was the result of learning pro-
cesses in the visual system during postnatal development.  This
sparked several papers that described the development of ori-
entation selectivity with Hebbian learning in neural networks
that were exposed to structured “visual” input (see von der
Malsberg, 1970, for one early attempt).  However, with a few
exceptions, animals in most of the classic visual plasticity stud-
ies do seem to develop some sort of orientation selectivity re-
gardless of the visual environment  (see Hirsh and Spinelli for
a controversial exception).  The environment seems only to be
able to skew the distribution of orientation selectivity, rather
than completely determine it, suggesting that the visual sys-
tem is intrinsically biased towards developing cells with this
property.  Furthermore, Hubel and Wiesel originally found that
some degree of orientation selectivity exists in kitten primary
visual cortex immediately after birth, before exposure to any
structured visual input (Hubel and Wiesel, 1963;  Movshon
and Van Sluyters, 1981).  More recently it has been found that
orientation selectivity is fully developed at birth in monkeys
and sheep  (Wiesel and Hubel, 1974; Ramachandran, Clarke,
and Whitteridge, 1977).  Based on this it was generally ac-
cepted that although the environment
may be capable of affecting the proper-
ties of cells in the early levels of the vi-
sual system, it is not their source.  This
left the problem of how the visual sys-
tem achieved orientation selectivity un-
solved.

Self Organizing Neural Nets: Ralph
Linsker’s Work

A series of three papers by
Ralph Linsker and the work by several
others that followed them provide a pos-
sible explanation for the existence of pre-
natal orientation selectivity.  In these pa-
pers Linsker demonstrated that spatial
opponency and orientation selectivity
could arise in an unsupervised feed-for-
ward network trained with Hebbian learn-
ing on completely unstructured input.
Linsker further showed that with the ad-
dition of lateral excitatory connections
within the layer that developed orienta-
tion selective cells, the cells would de-
velop their orientation preferences in a
smoothly varying fashion in orientation
columns similar to those in V1.  These
are surprisingly sophisticated properties
for such a simple system to develop in
the absence of structured input, and they

will be the focus of this article.
Linsker’s network is a crude approximation of the

visual system, with a two-dimensional input layer feeding to
successive two-dimensional layers that can be interpreted as
corresponding to different levels in the visual pathway.  Each
layer is composed of linear units and receives input from the
previous layer.  The inputs for a unit come from a Gaussian
distribution over a local region of the previous layer.  In the
simulations he published, Linsker allowed the weights on con-
nections from a given unit to take both positive and negative
values.  While this is biologically unrealistic, in that neurons
are believed to be either excitatory or inhibitory, Linsker has
reported that his results hold when the units are divided into
classes which are constrained to have either only positive or
only negative weights on their outgoing connections.  Weights
were also constrained to remain within certain positive and
negative limits, which, based on physiological limitations, is
biologically reasonable.

Linsker uses a version of the Hebbian learning rule:
[1] ∆wij = b + c(ai - d)(aj - e)
where wij  is the strength of the connection from neuron j to
neuron i, ai and aj are the outputs of neurons i and j, respec-
tively, and b, c, d, and e are constants.  The importance of this
equation is that the weight change is proportional to the prod-
uct of ai and aj.  Thus the weight change is most positive if ai
and aj are correlated over time, and is most negative if they are

anticorrelated.  In order to prevent his
simulations from being prohibitively
long, Linsker averaged Equ. 1 over a
number of presentations to the input
layer, resulting in an equation for the
time-rate-of-change of a given  synaptic
weight which could be solved for the
mature weight values of a particular layer.
His averaged equation can be understood
as follows: ∆wij  is directly related to the
correlation between the activities of the
postsynaptic (labeled i) and the presyn-
aptic (labeled j) neurons, and the activity
of the postsynaptic neuron is a linear
function of all its inputs.  Thus the time-
rate-of-change of wij  is proportional to
the degree to which the activity of neu-
ron j is correlated with the other neurons
that give input to neuron i.  Explicitly,
[2] ∂wij/ ∂t ≈ p + m∑k wik+ ∑k
(Qjkwik)
where p and m are constants, k indexes
neurons that provide input to neuron i,
and Qjk is proportional to the correlation
function of the activities at neurons j and
k.  This function is well-defined because
each layer of cells receives input only
from the preceding layer, and the layers
are developed one at a time.  Formulat-
ing the weight change this way allowed
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Figure 2.  A feedforward neural network.  The converging
arrows from layer to layer represent the circular Gaussian
distribution of input connections that each unit receives from
cells in the previous layer.  (Taken from Hertz, Krogh, and
Palmer (1991) Introduction to the Theory of Neural Compu-
tation)



Linsker to run his simulations more efficiently.  Importantly,
though, it explicitly reveals what turns out to be a crucial con-
sequence of Hebbian learning in feedforward neural networks:
change of the weights into units of a given layer is determined
by the form of the correlation in the activities of the units of
the previous layer.

The weights to layer B are developed based on the
activity in the input layer A, and once the weights in layer B
reach stable values, the activity in layer B, propagated from
layer A, is used to develop the weights in layer C, and so on.

Because the network is developed in this manner, each layer’s
weights are a function only of the pattern of activity in the
previous layer.  Also important is the property of Equation 2
that either all or all but one of the inputs to any given cell will
saturate to their limiting values.  This property falls directly
out of the equation; see Linsker 1986a for the proof.
Spatial Opponency

When the activity in layer A is uncorrelated, the cor-
relation function is close to zero for most pairs of neurons.
Thus ∂wij/∂t is close to constant for each connection from layer
A to a cell in layer B.  For appropriately chosen constants, this
results in the saturation of all the weights from layer A to layer
B at the upper positive limit.  Because each cell in layer B
receives input from a Gaussian distribution of cells in layer A,
a given cell in layer B will, at maturity, function to compute a
spatial average of a local region of activity in layer A.  And
because the receptive fields of nearby cells in layer B overlap,
cells that are close together will include many of the same layer
A neurons in their average, and will thus have correlated ac-
tivities.  Linsker shows that this correlation function is a
Gaussian (whose peak is at the cell in question - obviously, the
highest correlation is between a cell and itself - and falls off
for cells whose receptive fields are far away).

Once the connections from layer A to layer B  were
mature, Linsker developed layer C using the Gaussian correla-
tion function of layer B.  He found that the morphology of
layer C cells fell into a series of regimes depending of the val-
ues of p and m.  Cells developed to have either i) all excitatory
inputs, ii) all inhibitory inputs, iii) “ON-center” circularly sym-
metric opponent connections: a core of excitatory connections
surrounded by a ring of inhibitory connections, iv) “OFF-cen-
ter” circularly symmetric opponent connections: a core of in-

hibitory connections surrounded by a ring of excitatory con-
nections, and v) spatially divided inputs such that approximately
one side of the receptive field was composed of excitatory and
the other half of inhibitory connections.  I will focus on case
(iii), where layer C develops center-surround receptive fields
strikingly similar to those found in the retina and lateral
geniculate nucleus, the two stages in the visual pathway that
lead to primary visual cortex.

The spatial opponent receptive fields develop because
of the presence of the Gaussian correlation function of layer B
in Equation 2.  For negative m and positive p, the following
occurs during the maturation process:  positive p values cause
all weights to initially increase such that the wik contribution
to ∂wij/∂t is positive.  Then, since the sum in Equation 2 is
over the synapses to the postsynaptic neuron i in layer C, which
have a Gaussian distribution in layer B, ∂wij/∂t has a greater
contribution from the correlations that the activity of neuron j
has with neurons in the central region of neuron i’s receptive
field, and a smaller contribution from the correlations that it
has with peripheral neurons, simply because there are fewer of
them.  But since the correlation function Q is a Gaussian for
layer B, a given layer B neuron is most correlated to neurons
nearby, and less with neurons farther away.  Thus if neuron j is
in the central region of neuron i’s receptive field, its connec-
tion to neuron i will be increased more than will a peripheral
neuron’s.  Although the correlation function between a given
neuron and the neurons surrounding it are identical for all neu-
rons, the Gaussian distribution of afferent inputs to postsynap-
tic cells causes the high portion of a peripheral neuron’s corre-
lation function to be sampled less frequently than is the high
portion of a central neuron.

As a comparison, consider what would happen if Q
were a constant function.  Then each neuron in layer B would
be equally correlated with all the other neurons in layer B.  Were
this the case, the Gaussian distribution of afferent inputs to the
neuron i in layer C would not have the effect that it does, since
the Q contribution to the sum in Equation 2 would be indepen-
dent of where it was sampled.

Thus  ∂wij/∂t is larger for neurons in the center of
neuron j’s input distribution than for neurons in the periphery.
Furthermore, the absolute magnitude of ∂wij/∂t can be shifted
by varying the constant m.  For sufficiently large negative m,
∂wij/∂t is negative for peripheral neurons, and positive for cen-
tral ones.  Since Equation 2 causes all of the weights to a given
neuron to saturate, this causes the connections from layer B
neurons in the central region of a layer C neuron’s receptive
field to mature to the maximum excitatory value, while those
in the periphery saturate to the inhibitory limit.

To summarize, layer B computes the local spatial av-
erage of the random activity in layer A, because of the Gaussian
distribution of inputs.  This makes the correlation function for
layer B Gaussian, and combined with the Gaussian synaptic
distribution, for appropriate values of the constants in Equa-
tion 2, spatial opponency results.  Thus there are two crucial
dependencies: the proper values of p and m, and the Gaussian
synaptic distribution.  These will be discussed later.
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Orientation Selectivity
Development of orientation selective

cells proceeds in similar fashion.  Parameters are
chosen such that layer C develops into “ON-cen-
ter” cells.  Then the correlation function is com-
puted for layer C.  Since layer C is, up to small
deviations, uniform, the correlation function
(which in general form is a function of two vari-
ables, corresponding to any two cells in a layer) is
effectively a function of one variable.  That is,
because of the layers uniformity, the correlations
of a given cell Z with another cell Y depends only
on the distance between cell Z and cell Y, and not
on the actual position of the two cells in the layer.
Linsker thus idealizes the correlation function Qij
to the function Q(s), where s is the distance be-
tween two cells.

For a layer of spatial-opponent cells, Q(s)
has a “Mexican-hat form”: Q is positive for small s, when cells
are close to one another and their excitatory center cores over-
lap, negative for intermediate s, when the inhibitory surround
of one cell overlaps the excitatory core of another, and zero for
large s, when the cells are far apart and completely uncorrelated.
This correlation function is then used to develop layer D.
Linsker reported that there were a range of morphological op-
tions for layer D, including the formation of orientation selec-
tive cells, but that the regime of orientation selectivity was not
very stable.  One of the other regimes for layer D was spatial
opponency, with the cells in layer D differing from those in
layer C in that the “Mexican-hat” correlation function QD(s)
for layer D had deeper minima than did QC(s).  Linsker showed
that “Mexican-hat” correlation functions with deeper minima
produced in the following layer a more stable regime of orien-
tation selectivity.  He thus set the parameters of layer D such
that it developed spatial opponent cells.  He did this for layers
D through F, with each successive layer having a Mexican-hat
correlation function with deeper minima than the previous
layer’s function.

Linsker simply presents the results of his simulations,
and does not discuss why the correlation functions develop
deeper minima.  However, some of the data he presents sug-
gests that this deepening occurs because the cells develop re-
ceptive fields with larger inhibitory surrounds.  Linsker gives
the minimal values and the location of the zero-crossing for
the Mexican-hat correlation functions of layers, and in addi-
tion to minimal values decreasing with successive layers, the
zero-crossing appears to decrease.  He also mentions that the
minimal values of the correlation function vary inversely with
the average sum ∑jwij  of all the weights on the afferent con-
nections to a unit i.  In other words, there is a direct relation-
ship between the relative proportion of inhibitory connections
and the depth of the Mexican-hat minima.  This is consistent
with my observation that the zero-crossing decreases as the
minima depth decreases, for as the zero-crossing decreases,
the distance that two cells can be apart and still have positively
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correlated values decreases.  But this happens for center-sur-
round cells only if the center excitatory cores shrinks and the
inhibitory surrounds grows.  Furthermore, layers of cells with
core and surround that are of approximately the same thick-
ness will, logically, produce the deepest minima for their cor-
relation function, because the core and surround can then com-
pletely overlap, causing the greatest anticorrelation.  Since layer
C cells have excitatory cores that are large compared to their
surrounds, increasing the size of the inhibitory region in suc-
cessive layers moves the two regions towards being of equal
size, and acts to increase the maximum anticorrelation.  Thus
although Linsker doesn’t actually discuss why the minima of
the Mexican-hat function deepen with successive layers, it
seems likely that the minima depth increases because the in-
hibitory surround of the cells’ receptive fields grows in size.

Why do the inhibitory surrounds increase in area for
progressive layers of cells?  Again, Linsker doesn’t discuss
this, but the answer can be found by considering how the for-
mation of center-surround cells from a Mexican-hat correla-
tion function differs from the formation from the Gaussian
correlation function of layer B.  The main difference between
the two functions is that the Mexican-hat has a smaller average
value than does a Gaussian.  Recall from my discussion of the
center-surround cell formation process that the inhibitory re-
gions form because the sum ∑k (Qjkwik) is smaller for periph-
eral connections than it is for central ones, and thus at some
point in a cell’s receptive field, ∂wij/∂t drops below zero, which
sends wij  to the inhibitory limit.  If the average value of Q
decreases, ∑k (Qjkwik) will decrease for all connections wik,
and the threshold dividing excitatory and inhibitory connec-
tions will decrease, creating cells with smaller excitatory cores
and larger inhibitory surrounds.  Thus because layer C has a
Mexican-hat correlation function, the cells in layer D develop
smaller excitatory cores and larger inhibitory surrounds.  But
as discussed in the previous paragraph, increasing the size of
the inhibitory surround in layer D causes QD to have deeper
minima than QC.  This in turn causes layer E to have larger

Figure 3.  A “mexican-hat” function.  For the correlation functions discussed in this article, the
x-axis represents the distance between one unit and another, and the y-axis represents the
correlation between the activities of the two units.  (Taken from Hertz, Krogh, and Palmer
(1991) Introduction to the Theory of Neural Computation)



inhibitory surrounds (assuming that the parameters for layer E
are set such that it develops center-surround cells), which causes
layer E’s Mexican-hat correlation function to be deeper than
that of layer D, and so on.

Linsker reported that with a sufficiently deep correla-
tion function for a layer of cells, the succeeding layer will de-
velop orientation selective cells that are stable with respect to
random changes in the initial weights.  In the network he de-
scribes, he developed four layers of center-surround cells to
obtain a suitably deep function.1   He describes the results ob-
tained by varying two parameters: the average sum ∑jwij , which
we will call g, and RG, where RG is the radius of the Gaussian
distribution of afferent connec-
tions to a cell in layer G.  Vary-
ing g is equivalent to varying
the ratio of m and p, the two
constants in Equation 2.
Linsker found that g and RG
were the main parameters gov-
erning the development of ori-
entation.

There were several
broad classes of development
characteristics, each corre-
sponding to a range of RG with
respect to smin, the location of the minimum value of the cor-
relation function for layer F.  I will discuss two of these classes.
First, for RG much less than smin, layer G expressed morphol-
ogy that was quite similar to that of layer C, which was dis-
cussed earlier.2   Though Linsker does not discuss this, this
class probably exists because when the radius inside which a
cell draws its input is much smaller than the minimum of the
Mexican-hat function, the cell can only “see” the central por-
tion of the function.  Equation 2, which is where the influence
of the correlation function comes into play, sums over the cor-
relation function only for s-values within the radius of the
Gaussian input distribution, simply because the sum is over
the cell’s inputs.  So if the radius of the Gaussian is much smaller
than smin, Equation 2 includes values of the correlation func-
tion for small s only, and over that restricted range, the Mexi-
can-hat function resembles the Gaussian correlation function
of layer C.

For RG close to smin, decreasing g results in a more
interesting range of morphologies.  For high g, the cells are
obviously all-excitatory.  As g is lowered, isolated regions of
inhibitory connections appear.  As g is decreased further, the G
cells become bilobed:  they have a central strip of excitatory
connections, with parallel inhibitory bands of connections on
either side.  Such cells, clearly, are orientation selective.  The
orientation that a cell develops is random.   As g is further
decreased, the inhibitory side bands extend to enclose the
excitatory region, thus forming a center-surround cell.

What causes orientation selectivity?  Linsker answered
this by referring to an energy function he created which has the
property (common to other energy functions) of decreasing with
every weight change.  The weight development process is thus

a process of gradient descent, and this sheds some light on the
orientation formation.  In order to avoid introducing new equa-
tions and variables, and in the interest of explaining the phe-
nomenon in as biologically-grounded terms as is possible, I
will attempt an explanation based on the weight-change equa-
tion instead of referring to Linsker’s energy function.  Recall
the time-rate-of-change of a weight that was described by Equa-
tion 2:
[2] ∂wij/∂t ≈ p + m∑k wik+ ∑k (Qjkwik).
The first two terms on the right hand side of Equation 2 are the
same for all connections.  The term ∑k (Qjkwik) is not, how-
ever.  It will be similar for connections from cells that are nearby

in layer F, because the correla-
tion function will tend to mul-
tiply each weight by a similar
number.  For connections from
cells that are further apart in
layer F, ∑k (Qjkwik)will tend
to be different, because the cor-
relation function for one con-
nection will have a positive
value when the correlation
function of a second connection
has a negative value.  Thus
there is an overall pressure

within the development process for the connection from a cell
in layer F to have a value equal to that of the connections from
nearby cells, and different from those of connections from cells
that are further away.  However, from topological consider-
ations this obviously cannot be realized in full.  What happens
instead is that contiguous regions of excitation or inhibition
are formed which satisfy the pressure imposed by the correla-
tion function as best as can be done.  The stripes that produce
orientation selectivity are one possible arrangement, and, as
Linsker comments, they probably minimize the number of pairs
of nearby cells which have different weight values, although
no proof of this is given.

Admittedly, this explanation of how orientation se-
lectivity emerges is far from rigorous.  However, Linsker’s
original papers sparked a great deal of interest, and several
papers have been written that analyze his results.  Linsker’s
results are nicely formalized by MacKay and Miller, who show
that if the correlation function Q is turned into a matrix (a mi-
nor change in definition), the principle eigenvectors of this
matrix resemble the weight ensembles in the various regimes
of cell morphology that Linsker observed  (MacKay and Miller,
1990) . The weight-change equation (Equation 2) can be viewed
as multiplying a vector consisting of the weights of the con-
nections to a cell by the correlation matrix of the preceding
layer.  The eigenvectors of a matrix M are the elements that are
changed only by scalar multiplication when multiplied by M,
and the principle eigenvector is the eigenvector that grows in
length the most under multiplication by M. Thus it makes sense
that the final weight configurations are the eigenvectors of the
correlation matrix, because such configurations are the only
ones that will maintain their form over development.  MacKay
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and Miller find that the principle eigenvectors of Gaussian co-
variance matrices tend to be of center-surround form, and that
Mexican hat covariance matrices can have principle eigenvec-
tors that are either center-surround or bilobed (having a posi-
tive stripe next to a negative stripe - i.e., morphologically similar
to orientation selective receptive fields).  Although MacKay
and Miller do not state this explicitly, Miller’s comments in
another article (Miller 1990) indicate that the bilobed morphol-
ogy (which would produce orientation selectivity) is the prin-
ciple eigenvector when the Mexican hat covariance matrix has
a narrow positive center (lower zero-crossings).  This is in ac-
cord with Linsker’s results, in that Linsker found that oriented
bilobed cells were stable only in the higher levels of his simu-
lations, when, as discussed above, the Mexican hat covariance
function is of just this form.

The work of MacKay and Miller is additionally im-
portant because it reveals that cell morphologies in a layer of a
feed-forward Hebbian networks are determined by the corre-
lation matrix of activities in the previous layer.  This provides
an avenue for exploring self-organization, because once the
activity patterns of a layer of cells is known, the eigenvectors
of the correlation matrix can be computed, and compared to
the receptive fields of cells in the next layer.  If simple self-
organization occurs, one might expect
some match between the computed
eigenvectors and the measured receptive
fields.3

Orientation Columns
In the network described in the

previous section, orientation preferences
arose randomly from cell to cell, with no
correlation between neighboring cells.  It
is a well-known feature of mammalian
primary visual cortex that the orientation
preference of cells varies in a continu-
ous fashion over the cortical surface
while remaining constant over displace-
ments perpendicular to the surface
(Hubel and Wiesel, 1963, 1974).  The
regularity of orientation distribution
prompted Hubel and Wiesel to suggest
that the basic unit of organization in V1 is the “hypercolumn,”
a group of columns of cells whose receptive fields represent
the same point in visual space, with each column of cells hav-
ing a different orientation and ocularity preference, thus pro-
viding the neural machinery to analyze a single point of the
visual field (Mason and Kandel, 1991).

Linsker found that by adding excitatory lateral con-
nections between the cells in layer G before the connections
from layer F were developed, the orientation that a cell devel-
oped was no longer random, but that cells of a similar orienta-
tion organize into band-like regions.  Due to computational
constraints, he did not explore the full parameter space to see
how closely the bands could come to resembling the patterns
that are found in various species.  Fortunately, his initial result

has been pursued by other researchers, who have confirmed
their robustness  (Miller, 1992) . Furthermore, others have
shown that another primary feature of V1, ocular dominance
columns, can also arise from self-organization as a result of
competition between the activity patterns of the two eyes
(Miller, Keller, and Stryker, 1989).  These results suggests that
the principal features of V1 could result from very simple self-
organization.

Discussion
There are several issues pertaining to Linsker’s simu-

lations that deserve mention.  First, consider the assumptions
implicit in Linsker’s network.  His model depends crucially on
the afferent connections to each cell in a layer of his network
having a Gaussian distribution about a point in the previous
layer.  The retinotopy of the early levels of the visual system is
well established; the important question with regard to Linsker’s
model is whether retinotopy precedes the development of cell
properties.  When and how retinotopy arises in biological sys-
tems is not yet known, but there are several methods of devel-
oping retinotopy with unsupervised neural networks (see von
der Malsburg 1990, and Hertz, Krogh, and Palmer 1991 for
reviews).  In any case, this assumption is by far the most rea-

sonable of those implicit in Linsker’s
model.

A second element of the model that
is less biologically reasonable is the uni-
formity of the cells - each cell can have
both excitatory and inhibitory connec-
tions.  In particular, each connection is
treated identically by the development
equations.  Any given connection can
assume the full range of excitatory and
inhibitory values.  Since it is usually
agreed that neurons are either
glutamatergic (excitatory) or GABAergic
(inhibitory), this feature of the model is
troubling.  Linsker did this simply to
speed the simulations.  Since the devel-
opment equation sends all the connec-
tions in an inhibitory region to the inhibi-
tory limit and all the connections in an

excitatory region to the excitatory limit, were there an even
distribution of excitatory and inhibitory connections through-
out a cell’s transfer function the excitatory connections that
ended up lying in the inhibitory region would be sent to zero,
as would the inhibitory connections lying in the excitatory re-
gion.  This basically wastes half the connections, which is why
Linsker simplified the model by making each connection non-
specific.

More significant is the fact that retino-geniculate and
geniculate-cortical projections are believed to be purely
excitatory, a fact not taken into account by Linsker’s model.
However, Ken Miller has conducted simulations with a far more
biologically plausible model, where the layer corresponding
to the LGN consists of two populations of center-surround cells,
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Regardless of whether orien-
tation selectivity arises in the
brain through mechanisms

analogous to those described
here, one of the most impor-
tant insights to come out of
the self-organization models

is the importance of the
covariance function of activi-

ties across a layer of cells
whenever any type of Hebbian
learning occurs in a system.



ON and OFF, each of which make only excitatory connections
to cells in the layer representing V1  (Miller 1989).  Miller
achieves results strikingly similar to those of Linsker.  Miller’s
model achieves orientation selectivity via a mechanism inspired
by his models of ocular dominance formation (Miller, 1992).
Experiments depriving animals of the input from one eye sug-
gest that in addition to there
being a Hebbian compo-
nent to synapse formation,
there are also competitive
influences: given two
groups of correlated inputs,
the strongest activated
group may “win out” and
develop connections of the
greatest strength (Guillery,
1972).  Making this as-
sumption, Miller shows
that when there are separate
populations of ON- and
OFF-center cells, and each
cell in the next layer (rep-
resenting V1) initially gets
input from the same local
retinotopic area within each
population, bilobed recep-
tive fields develop.  This happens in his model because at small
retinotopic distances, cells of the same type (ON or OFF) are
correlated, while at larger distance, cells of opposite type are
correlated.  Combined with realistic interactions among his
“cortical” cells, Miller finds that this model develops orienta-
tion selective cells whose arrangement within the layer is quite
similar to cortical orientation maps.  While this model seems
vastly different from Linsker, the importance of correlation
functions remains the crucial factor, and Miller’s work thus
suggests that in spite of the implausibility of Linsker’s model,
his results may reflect a property of neural networks that could
also occur in the brain.

Of key importance, then, to the biological relevance
of these models, is the covariance functions of layer activity in
the brain.  Limited work has been done on this, but there is
some indication that the appropriate correlations are present in
the visual system  (Miller, 1991)

A final feature of the model that is not explicitly
grounded in biology is the layer-by-layer development pro-
cess.  Not enough is known about how multilayer neuronal
systems develop in the brain to evaluate this facet of the model.
Furthermore, similar weight patterns may result even if all lay-
ers are developed simultaneously

Ever since the discovery of orientation selectivity in
V1, much research has been devoted to uncovering the mecha-
nisms which underlie it.  While there is not complete agree-
ment as to these mechanisms, a host of studies are relevant to
evaluating the extent to which Linsker’s results actually ex-
plain orientation selectivity in V1.  Here I briefly describe a
few of them.  Some of the most well-known studies have been

conducted by Sillito, who showed that orientation selectivity
was abolished if inhibition is blocked with the GABA antago-
nist bicuculline, suggesting that orientation selective cells re-
ceive both excitatory and inhibitory inputs, both of which are
important for their function (Sillito, 1979).  Because LGN cells
are known to make only excitatory synapses with cells in V1,

this was interpreted as
showing that orientation
selectivity is solely a prod-
uct of cortical interactions.
However, an alternative in-
terpretation is that the ap-
plication of bicuculline to
an area of cortex leaves
only excitatory connections
between cortical cells.
(thanks are due to Ken
Miller for pointing this out
to me)  This could account
for Sillito’s result, in that
the cells excited by lines of
a certain orientation would
then excite other nearby
cortical cells, causing them
to be active in spite of hav-
ing orientation-tuned inputs

from the LGN.  The results of Nelson et al. support this view.
They observed that orientation selectivity remains fully present
in cat V1 cells when only the neuron being recorded from has
its inhibitory inputs intracellularly blocked  (Nelson et al. 1994).
This suggests that excitatory inputs (which could presumably
be coming from the LGN in agreement with the self-organiz-
ing models) are sufficient to generate orientation selectivity,
and that intracortical inhibitory inputs mediate, if anything, an
indirect effect through other neurons.  David Ferster’s research
provides additional evidence that patterns of activity in LGN
afferents do indeed play the crucial role in orientation selectiv-
ity that was originally proposed by Hubel and Wiesel.  Ferster
recorded intracellularly from cells in V1 while flashing ori-
ented stimuli within a cell’s receptive field, and by hyperpolar-
izing the cortical cell he was recording from to the IPSP rever-
sal potential (done by injecting current through the recording
electrode), Ferster enhanced the cell’s EPSPs while suppress-
ing its IPSPs.  He found that the EPSPs of cortical cells are
orientation tuned, in that rotating the stimulus away from the
optimal orientation produced a decrease in the cell’s EPSP
(Ferster, 1986).  While this demonstrates that excitatory con-
nections are sufficient to produce orientation selectivity, the
excitation could conceivably be cortical in origin, since there
was no way for Ferster to determine its source.  However, given
the substantial excitatory input that V1 receives from the LGN,
it seems likely that Ferster was observing LGN produced
EPSPs, in which case the self-organizing models would be
entirely consistent.  While excitation is thus sufficient for ori-
entation-selectivity, a role for inhibition is suggested by Hata
et al., who find through a cross-correlation analysis evidence
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Figure 4.  Idealized examples of weight structures for units in one of Linsker’s networks.  Each
plus or minus-sign represents the sign of the weight of the connection to the unit in question from
the unit in the preceding layer which occupies the position that the plus or minus-sign does in the
diagram.  A) A center surround weight structure.  B) A bilobed, orientation-selective weight struc-
ture.  (Taken from Hertz, Krogh, and Palmer (1991) Introduction to the Theory of Neural Compu-
tation)



A final point that should be mentioned is that Linsker’s
network suggests that mammalian visual systems may have
evolved several stages of center-surround cells in order to
deepen the minima of the correlation functions of the layer
preceding V1 such that it could develop orientation selective
cells.  The presence of center-surround cells in the LGN when
there are spatial opponent cells in the retina does not currently
have an explanation.  Although the four layers of the network
in his paper were contrived to be directly analogous to the lev-
els of the early visual system, Linsker’s analysis gives a rea-
son why the redundant morphology may actually serve a func-
tional role.

In conclusion, there are a variety of reasons to think
that self-organization is one way that the brain’s structure is
achieved.  We have considered the phenomenon of orientation
selectivity in mammalian visual cortex.  Linsker’s self-orga-
nizing neural network develops orientation selective cells au-
tomatically and without any environmental cues.  Although
there are some inconsistencies with his results and experimen-
tal work on the brain, that his network develops a
computationally useful property completely on its own is re-
markable.  More biologically realistic models that achieve simi-
lar results, such as those by Ken Miller, make a strong case for
the presence of similar principles of organization in the brain,
and there is reason to believe that these principles may be be-
hind other properties of neurons in the visual system.  Regard-
less of whether orientation selectivity arises in the brain through
mechanisms analogous to those described here, one of the most
important insights to come out of the self-organization models
is the importance of the covariance function of activities across
a layer of cells whenever any type of Hebbian learning occurs
in a system.  This principle alone has great potential for help-
ing to unearth the origins of organizaiton in the brain.  Indeed,
if self-organization is a viable means of development, as it
seems to be, then it is probably used with frequency in the
brain, and self-organizing models will be of great use in iden-
tifying this.
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1  As I have mentioned and explained, Linsker notes that the Mexi-
can-hat minima depth can also be increased by lowering the average
sum ∑jwij  of all the weights of the afferent connections to a unit i.
2  Recall that the development of layer C depended primarily on the
constants m and p.  These are contained in the parameter g which was
varied in these simulations.
3  Clearly, strict feedforward networks do not exist in the brain.  (In-
deed, only 10 percent of the inputs to the LGN come from the retina!)
Linsker’s work suggests, however, that many of the receptive field
properties of cells may arise from feedforward interactions.
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