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Introduction connectivity in many cases, if only because the idea of com-
The past three decades have withessed a host of pietely central control seems inconceivable. Most efforts to
pressive findings concerning the functional architecture of thiesow that self-organization can occur in structures resembling
brain. One trend that much recent research suggests is tti@abrain thus make use of Hebbian learning.
there is a high degree of specialization within the brain: differ- Vision research has been among the most fruitful ar-
ent parts of the brain do different, highly specific tasks. Fwgas of neuroscience, and the basic structure of the early levels
thermore, most estimates place the number of cortical neurohthe mammalian visual system are for the most part estab-
alone at 160, with roughly 184 total synapses connectinglished. The research that | will be discussing concerns the vi-
them. Given this enormous number of neurons, and consideral system up to and including the primary visual cortex (V1).
ing the extreme structural complexity embodied by a healtfifie visual pathway begins at the retina, where there are sev-
and fully-developed mammalian brain, the project of elucidagral layers of cells which project via the optic nerve to the lat-
ing this structure in some ways pales in comparison to thaeodl geniculate nucleus (LGN) in the thalamus, which in turn
explaining how it came to be. It is clear that the mammaligmjects to layer 4C of V1. Cells in the inner layers of the
genome “cannot, in any naive sense, contain the full infornratina and in the LGN are characterized by spatial-opponent
tion necessary to describe the brain” (von der Malsburg, 199@keptive fields: Stimuli placed in a central, circular region of
Yet somehow, in the process of development, the brain acquihesreceptive field of a cell in these regions tend to excite the
its structure. The compelling nature of this quandary makedl, while stimuli placed outside the excitatory region tend to
the notion of self-organization very appealing. inhibit the cell. In addition, the retina and LGN are topographic:
The term “self-organization” is generally used to dehe spatial layout of their cells' receptive fields is topologically
scribe the evolution of complex behavior in systems that caimilar to the physical layout of the cells themselves. V1 cells
sist solely of many very simple parts. The brain is an excellgiiffer from those in the LGN or retina in that many of them
example of such a system, for while neurons are by no mehasge orientation selective receptive fields; a cell in V1 will
simple, many of their prin- tend to respond strongest to
ciple functional characterig Cerapral hemisphere a line of a particular orien-
tics are believed to be relg tation placed in its receptive
tively easy to approximat field. Furthermore, as the
and model. In this review Nobel Prize-winning re-
will focus on research tha search of David Hubel and
suggests that the early stag Visual area w2 Torsten Wiesel revealed,
of the mammalian visug orientation selective cells
system can be implementg Primary are laid out in an orderly
solely through the self-orgg visual fashion. In addition to be-
nizing properties of neurs cortex, ing retinotopically orga-
networks. areaRvil nized, a group of cells
Central to all such Lateral Higher visual whose receptive fields cor-
research is the assumpti Optic  geniculate cortical areas respond to a certain pointin
that synaptic modificatior] merve . wcidug, space will be arranged in a

) LGN ; ! o
OCCUItS via So_me form o Figure 1. Schematic of the visual system. (Taken from Rose, D. A portrait of the braime InII.ne such that their orienta-
Hebbian learning, whereb)| Artful Eye(1995), Gregory, Harris, Heard, and Rose, Eds.) tion preferences vary con-
the strength of a synapse be- tinuously along that dimen-

tween two neurons is increased if the activities of the neurai@n in cortex. Many have speculated that this layout has the
are correlated in time, that is, if one tends to be active at theorable characteristic that each small portion of V1 has all
same time that the other is. This learning rule was first sulge machinery necessary to perform the first steps in extract-
gested by Hebb in 1949 without an accompanying brain medhg-information from the portion of the visual field which it
nism or body of evidence for its existence. Since then, ttepresents. The research reviewed here is exciting because it
discovery ofong-term potentiatiodLTP) in the hippocampus suggests that many of the characteristics | have just described
has provided evidence that a form of Hebbian learning dazs be accomplished through usupervised self-organization.
occur in the brain, although how it is accomplished is still not A host of experiments have shown the influence of
clear. While skepticism about LTP remains, it is generalilge environment on the development of the nervous system.
agreed that some form of local learning is bound to contflthough many results in this literature are controversial, it is
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generally agreed that kittens raised in visually-altered enwiill be the focus of this article.

ronments developed abnormal patterns of orientation selective Linsker's network is a crude approximation of the
cells in V1 ( see Blakemore and Cooper, 1970, Hirsh amdual system, with a two-dimensional input layer feeding to
Spinelli, 1970 for the first such experiments, and Movshon asutcessive two-dimensional layers that can be interpreted as
Van Sluyters, 1981 for a review). Such results suggestecctoresponding to different levels in the visual pathway. Each
some that orientation selectivity was the result of learning ptayer is composed of linear units and receives input from the
cesses in the visual system during postnatal development. Pphésious layer. The inputs for a unit come from a Gaussian
sparked several papers that described the development ofdisitribution over a local region of the previous layer. In the
entation selectivity with Hebbian learning in neural networksmulations he published, Linsker allowed the weights on con-
that were exposed to structured “visual” input (see von degctions from a given unit to take both positive and negative
Malsberg, 1970, for one early attempt). However, with a fewalues. While this is biologically unrealistic, in that neurons
exceptions, animals in most of the classic visual plasticity stade believed to be either excitatory or inhibitory, Linsker has
ies do seem to develgpmesort of orientation selectivity re- reported that his results hold when the units are divided into
gardless of the visual environment (see Hirsh and Spinelli tdasses which are constrained to have either only positive or
a controversial exception). The environment seems only todmdy negative weights on their outgoing connections. Weights
able to skew the distribution of orientation selectivity, rath@rere also constrained to remain within certain positive and
than completely determine it, suggesting that the visual syggative limits, which, based on physiological limitations, is
tem is intrinsically biased towards developing cells with thisiologically reasonable.

property. Furthermore, Hubel and Wiesel originally found that Linsker uses a version of the Hebbian learning rule:
some degree of orientation selectivity exists in kitten primaj3/] Awji =b + c(a-d)(g - €)

visual cortex immediately after birth, before exposure to amhere : is'the strength of the connection from neuron j to
structured visual input (Hubel and Wiesel, 1963; Movshareuron i, gand:g are the outputs of neurons i and j, respec-
and Van Sluyters, 1981). More recently it has been found ttia¢ly, and b, ¢, d, and e are constants. The importance of this
orientation selectivity is fully developed at birth in monkeysquation is that the weight change is proportional to the prod-
and sheep (Wiesel and Hubel, 1974; Ramachandran, Cladat,of g and a Thus the weight change is most positive if a
and Whitteridge, 1977). Based on this it was generally aad gare correlated over time, and is most negative if they are

cepted that although the environment anticorrelated. In order to prevent his
may be capable of affecting the proper simulations from being prohibitively

ties of cells in the early levels of the vi- long, Linsker averaged Equ. 1 over a
sual system, it is not their source. Thi: number of presentations to the input

layer, resulting in an equation for the
time-rate-of-change of a given synaptic
weight which could be solved for the
mature weight values of a particular layer.
His averaged equation can be understood
as follows:Aw;; is directly related to the
correlation be{ween the activities of the
postsynaptic (labeled i) and the presyn-
aptic (labeled j) neurons, and the activity
of the postsynaptic neuron is a linear
function of all its inputs. Thus the time-
rate-of-change of wis proportional to
the degree to which the activity of neu-
ron j is correlated with the other neurons

left the problem of how the visual sys-
tem achieved orientation selectivity up-
solved.

Self Organizing Neural Nets: Ralph
Linsker's Work

A series of three papers &
Ralph Linsker and the work by sever
others that followed them provide a pd
sible explanation for the existence of p
natal orientation selectivity. Inthese p
pers Linsker demonstrated that spatic
opponency and orientation selectivi
could arise in an unsupervised feed-f

ward network trained with Hebbian leam: that give input to neuron i. Explicitly,

ing on completely unstructured input. [2] awij/at =p o+ My Wikt 3k
Linsker further showed that with the agd: (ijWik)

dition of lateral excitatory connections where p and m are constants, k indexes
within the layer that developed orienta: External Inpu! neurons that provide input to neuron i,
tion selective cells, the cells would de- and Qy is proportional to the correlation
velop their orientation preferences in a function of the activities at neurons j and

smoothly varying fashion in orientatiorFigure 2. A feedforward neural network. The converging., This function is well-defined because
P : L.arrows from layer to layer represent the circular Gaugsi : .

columns IS|.m|Iar to th.os_e in V1. The.>§stribution of input connections that each unit receives ro%:ach layer of cglls receives input only

are surprisingly sophisticated properti@sils in the previous layer. (Taken from Hertz, Krogh, prifrom the preceding layer, and the layers

for such a simple system to develop E\t’;‘i'g;)er(lgg””‘“’duc“"” tothe Theory of Neural Compu-gre developed one at a time. Formulat-

the absence of structured input, and they ing the weight change this way allowed
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Linsker to run his simulations more efficiently. Importantlyhibitory connections surrounded by a ring of excitatory con-
though, it explicitly reveals what turns out to be a crucial conections, and v) spatially divided inputs such that approximately
sequence of Hebbian learning in feedforward neural networkge side of the receptive field was composed of excitatory and
change of the weights into units of a given layer is determinth@ other half of inhibitory connections. | will focus on case
by the form of the correlation in the activities of the units dfi), where layer C develops center-surround receptive fields
the previous layer. strikingly similar to those found in the retina and lateral
The weights to layer B are developed based on theniculate nucleus, the two stages in the visual pathway that
activity in the input layer A, and once the weights in layer Bad to primary visual cortex.
reach stable values, the activity in layer B, propagated from The spatial opponent receptive fields develop because
layer A, is used to develop the weights in layer C, and so ofithe presence of the Gaussian correlation function of layer B
in Equation 2. For negative m and positive p, the following
occurs during the maturation process: positive p values cause
. . all weights to initially increase such that thg, wontribution
Given this enormous number of to dw;;; 5t is positive. Then, since the sum in Equation 2 is
neurons, and considering the extreme over the synapses to the postsynaptic neuron i in layer C, which

structural complexity embodied by a have a Gaussian distribution in Iayerdwij/at has a greater

health d fullv-d | q i contribution from the correlations that the activity of neuron |
ealthy and tully-aeveloped mammallan s with neurons in the central region of neuron i's receptive

brain, the project of elucidating this field, and a smaller contribution from the correlations that it
structure in some ways pales in compari- hhas with peripherarllneuronls, simpf)ly becauQse therg are fewefr of
- : them. But since the correlation function Q is a Gaussian for
son to that of EXplammg how it layer B, a given layer B neuron is most correlated to neurons
came to be. nearby, and less with neurons farther away. Thus if neuron j is
in the central region of neuron i's receptive field, its connec-
Because the network is developed in this manner, each laygos to neuron i will be increased more than will a peripheral
weights are a function only of the pattern of activity in theeuron’s. Although the correlation function between a given
previous layer. Also important is the property of Equationrizuron and the neurons surrounding it are identical for all neu-
that either all or all but one of the inputs to any given cell witbns, the Gaussian distribution of afferent inputs to postsynap-
saturate to their limiting values. This property falls directlic cells causes the high portion of a peripheral neuron’s corre-

out of the equation; see Linsker 1986a for the proof. lation function to be sampled less frequently than is the high
Spatial Opponency portion of a central neuron.
When the activity in layer A is uncorrelated, the cor- As a comparison, consider what would happen if Q

relation function is close to zero for most pairs of neuronsere a constant function. Then each neuron in layer B would
Thusow;i 5 is close to constant for each connection from laylee equally correlated with all the other neurons in layer B. Were
Atoacellin layer B. For appropriately chosen constants, thigs the case, the Gaussian distribution of afferent inputs to the
results in the saturation of all the weights from layer A to layseuron i in layer C would not have the effect that it does, since
B at the upper positive limit. Because each cell in layertBe Q contribution to the sum in Equation 2 would be indepen-
receives input from a Gaussian distribution of cells in layer dent of where it was sampled.
a given cell in layer B will, at maturity, function to compute a Thus dw;;, 5 is larger for neurons in the center of
spatial average of a local region of activity in layer A. Andeuron j's input distribution than for neurons in the periphery.
because the receptive fields of nearby cells in layer B overlgpythermore, the absolute magnltud@uv[ /ot can be shifted
cells that are close together will include many of the same lalggrvarying the constant m. For suff|C|entIy large negative m,
A neurons in their average, and will thus have correlated éWu/at is negative for peripheral neurons, and positive for cen-
tivities. Linsker shows that this correlation function is &al'ones. Since Equation 2 causes all of the weights to a given
Gaussian (whose peak is at the cell in question - obviously, tieeiron to saturate, this causes the connections from layer B
highest correlation is between a cell and itself - and falls ofurons in the central region of a layer C neuron’s receptive
for cells whose receptive fields are far away). field to mature to the maximum excitatory value, while those
Once the connections from layer A to layer B welia the periphery saturate to the inhibitory limit.
mature, Linsker developed layer C using the Gaussian correla- To summarize, layer B computes the local spatial av-
tion function of layer B. He found that the morphology adrage of the random activity in layer A, because of the Gaussian
layer C cells fell into a series of regimes depending of the vdistribution of inputs. This makes the correlation function for
ues of p and m. Cells developed to have either i) all excitattayer B Gaussian, and combined with the Gaussian synaptic
inputs, i) all inhibitory inputs, iii) “ON-center” circularly sym- distribution, for appropriate values of the constants in Equa-
metric opponent connections: a core of excitatory connectidits 2, spatial opponency results. Thus there are two crucial
surrounded by a ring of inhibitory connections, iv) “OFF-cemependencies: the proper values of p and m, and the Gaussian
ter” circularly symmetric opponent connections: a core of isynaptic distribution. These will be discussed later.
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Orientation Selectivity
Development of orientation selecti

cells proceeds in similar fashion. Parameters|:
chosen such that layer C develops into “ON-ce
ter” cells. Then the correlation function is cofr
puted for layer C. Since layer C is, up to sm:
deviations, uniform, the correlation functig
(which in general form is a function of two va
ables, corresponding to any two cells in a laye
effectively a function of one variable. That

because of the layers uniformity, the correlati

of a given cell Z with another cell Y depends o

on the distance between cell Z and cell Y, and|not

on the actual position of the two cells in the lay Elrgure 3. A*mexican-hat” function. For the correlation functions discussed in this article, the
Linsker thus idealizes the correlation function Q.axis represents the distance between one unit and another, and the y-axis reprefents the
to the function Q(s), where s is the distance [laerelation between the activities of the two units. (Taken from Hertz, Krogh, and Ralmer
tween two cells. (1991)Introduction to the Theory of Neural Computajion
For a layer of spatial-opponent cells, Q(s)
has a “Mexican-hat form”: Q is positive for small s, when cel@orrelated values decreases. But this happens for center-sur-
are close to one another and their excitatory center cores oteynd cells only if the center excitatory cores shrinks and the
lap, negative for intermediate s, when the inhibitory surroufithibitory surrounds grows. Furthermore, layers of cells with
of one cell overlaps the excitatory core of another, and zero¢gfe and surround that are of approximately the same thick-
large s, when the cells are far apart and completely uncorrelat€gs will, logically, produce the deepest minima for their cor-
This correlation function is then used to develop layer [elation function, because the core and surround can then com-
Linsker reported that there were a range of morphological @etely overlap, causing the greatest anticorrelation. Since layer
tions for layer D, including the formation of orientation seleé cells have excitatory cores that are large compared to their
tive cells, but that the regime of orientation selectivity was rgirrounds, increasing the size of the inhibitory region in suc-
very stable. One of the other regimes for layer D was spafi@fsive layers moves the two regions towards being of equal
opponency, with the cells in layer D differing from those ifiz€, and acts to increase the maximum anticorrelation. Thus
layer C in that the “Mexican-hat” correlation function,@) although Linsker doesn't actually discuss why the minima of
for layer D had deeper minima than dié(@)- Linsker showed the Mexican-hat function deepen with successive layers, it
that “Mexican-hat” correlation functions with deeper minimgeems likely that the minima depth increases because the in-
produced in the following layer a more stable regime of oriefibitory surround of the cells’ receptive fields grows in size.
tation selectivity. He thus set the parameters of layer D such Why do the inhibitory surrounds increase in area for
that it developed spatial opponent cells. He did this for lay@#®gressive layers of cells? Again, Linsker doesn't discuss
D through F, with each successive layer having a Mexican-Hzs, but the answer can be found by considering how the for-
correlation function with deeper minima than the previougation of center-surround cells from a Mexican-hat correla-
layer’s function. tion function differs from the formation from the Gaussian
Linsker simply presents the results of his simulation@Qrrelation function of layer B. The main difference between
and does not discuss why the correlation functions devel§g two functions is that the Mexican-hat has a smaller average
deeper minima. However, some of the data he presents $t@pe than does a Gaussian. Recall from my discussion of the
gests that this deepening occurs because the cells develoggater-surround cell formation process that the inhibitory re-
ceptive fields with larger inhibitory surrounds. Linsker givegions form because the sjip (ijWik) is smaller for periph-
the minimal values and the location of the zero-crossing f8fal connections than it is for central ones, and thus at some
the Mexican-hat correlation functions of layers, and in adgjoint in a cell's receptive field%ij/at 9roPs below zero, which
tion to minimal values decreasing with successive layers, g®ds W to the inhibitory limit. If the average value of Q
zero-crossing appears to decrease. He also mentions thad@tgeasesy  (Qy w;, ) will decrease for all connectiongw
minimal values of the correlation function vary inversely witBnd the threshold dividing excitatory and inhibitory connec-
the average suifi,w;; of all the weights on the afferent conlions will decrease, creating cells with smaller excitatory cores
nections to a unit i. " In other words, there is a direct relaticdd larger inhibitory surrounds. Thus because layer C has a
ship between the relative proportion of inhibitory connectiodexican-hat correlation function, the cells in layer D develop
and the depth of the Mexican-hat minima. This is consist&fgaller excitatory cores and larger inhibitory surrounds. But
with my observation that the zero-crossing decreases asahdliscussed in the previous paragraph, increasing the size of
minima depth decreases, for as the zero-crossing decredb&sinhibitory surround in layer D causep, @ have deeper
the distance that two cells can be apart and still have positivéiiima than @. This in turn causes layer E to have larger

_|_
_|_
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inhibitory surrounds (assuming that the parameters for layea [process of gradient descent, and this sheds some light on the

are set such that it develops center-surround cells), which caosesitation formation. In order to avoid introducing new equa-

layer E's Mexican-hat correlation function to be deeper théinns and variables, and in the interest of explaining the phe-

that of layer D, and so on. nomenon in as biologically-grounded terms as is possible, |
Linsker reported that with a sufficiently deep correlawill attempt an explanation based on the weight-change equa-

tion function for a layer of cells, the succeeding layer will déion instead of referring to Linsker’s energy function. Recall

velop orientation selective cells that are stable with respecthe time-rate-of-change of a weight that was described by Equa-

random changes in the initial weights. In the network he d&n 2:

scribes, he developed four layers of center-surround celld2b Wi/ gt = P+ My y Wi+ 2 1 (QieWig).

obtain a suitably deep functidn.He describes the results obThe first two terms on the right hand Side of Equation 2 are the

tained by varying two parameters: the average Wy, which same for all connections. The tefip (Q; w;) is not, how-

we will call g, and R;, where R; is the radius of the Gaussiarever. It will be similar for connections from cells that are nearby

distribution of afferent connec; in layer F, because the correla-

tions to a cellin layer G. Vary- . . tion function will tend to mul-

ing g is equivalent to varying Itis cleqr that the_ mammalian gen_ome tiply each weight by a similar

the ratio of m and p, the two  Cannot in any naive sense, contain the number. For connections from

constants in Equation 2. fyl| information necessary to describe the cells that are further apart in

Linsker foun_d that g and R brain." Yet somehow, in the process of layer F.’Ek (ijwik)wnl tend
were the main parameters gov- to be different, because the cor-

emning the development of ori-  d€velopment, the brain acquires its Struc- rejation function for one con-
entation. ture. The compelling nature of this quan- nection will have a positive

There were several dary makes the notion of self-organization"a'“e when the correlation
broad classes of development function of a second connection

characteristics, each corre- appealmg. has a negative value. Thus
sponding to a range offwith there is an overall pressure
respect to $;,, the location of the minimum value of the corwithin the development process for the connection from a cell
relation function for layer F. 1 will discuss two of these classé@slayer F to have a value equal to that of the connections from
First, for R; much less than,,, layer G expressed morphol-nearby cells, and different from those of connections from cells
ogy that was quite similar to that of layer C, which was dithat are further away. However, from topological consider-
cussed earlief. Though Linsker does not discuss this, thiations this obviously cannot be realized in full. What happens
class probably exists because when the radius inside whidhstead is that contiguous regions of excitation or inhibition
cell draws its input is much smaller than the minimum of tta#e formed which satisfy the pressure imposed by the correla-
Mexican-hat function, the cell can only “see” the central pdion function as best as can be done. The stripes that produce
tion of the function. Equation 2, which is where the influena@ientation selectivity are one possible arrangement, and, as
of the correlation function comes into play, sums over the cainsker comments, they probably minimize the number of pairs
relation function only for s-values within the radius of thef nearby cells which have different weight values, although
Gaussian input distribution, simply because the sum is over proof of this is given.
the cell'sinputs. So if the radius of the Gaussian is much smaller Admittedly, this explanation of how orientation se-
than §,;,, Equation 2 includes values of the correlation funtectivity emerges is far from rigorous. However, Linsker's
tion for small s only, and over that restricted range, the Meriginal papers sparked a great deal of interest, and several
can-hat function resembles the Gaussian correlation functmapers have been written that analyze his results. Linsker’s
of layer C. results are nicely formalized by MacKay and Miller, who show
For Rg close to g,i,,, decreasing g results in a morehat if the correlation function Q is turned into a matrix (a mi-
interesting range of morphologies. For high g, the cells arer change in definition), the principle eigenvectors of this
obviously all-excitatory. As g is lowered, isolated regions ofiatrix resemble the weight ensembles in the various regimes
inhibitory connections appear. As g is decreased further, thef@ell morphology that Linsker observed (MacKay and Miller,
cells become hilobed: they have a central strip of excitatdr990) . The weight-change equation (Equation 2) can be viewed
connections, with parallel inhibitory bands of connections @s multiplying a vector consisting of the weights of the con-
either side. Such cells, clearly, are orientation selective. Tections to a cell by the correlation matrix of the preceding
orientation that a cell develops is random. As g is furthlawer. The eigenvectors of a matrix M are the elements that are
decreased, the inhibitory side bands extend to enclose ¢hanged only by scalar multiplication when multiplied by M,
excitatory region, thus forming a center-surround cell. and the principle eigenvector is the eigenvector that grows in
What causes orientation selectivity? Linsker answeremgth the most under multiplication by M. Thus it makes sense
this by referring to an energy function he created which has that the final weight configurations are the eigenvectors of the
property (common to other energy functions) of decreasing wéthrrelation matrix, because such configurations are the only
every weight change. The weight development process is thnes that will maintain their form over development. MacKay
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and Miller find that the principle eigenvectors of Gaussian clhas been pursued by other researchers, who have confirmed
variance matrices tend to be of center-surround form, and ttetir robustness (Miller, 1992) . Furthermore, others have
Mexican hat covariance matrices can have principle eigenvekewn that another primary feature of V1, ocular dominance
tors that are either center-surround or bilobed (having a pagitumns, can also arise from self-organization as a result of
tive stripe next to a negative stripe - i.e., morphologically simiwmpetition between the activity patterns of the two eyes
to orientation selective receptive fields). Although MacKaiMiller, Keller, and Stryker, 1989). These results suggests that
and Miller do not state this explicitly, Miller's comments irthe principal features of V1 could result from very simple self-
another article (Miller 1990) indicate that the bilobed morphaltganization.

ogy (which would produce orientation selectivity) is the prin-

ciple eigenvector when the Mexican hat covariance matrix Haiscussion

a narrow positive center (lower zero-crossings). This is in ac- There are several issues pertaining to Linsker’s simu-
cord with Linsker’s results, in that Linsker found that orientddtions that deserve mention. First, consider the assumptions
bilobed cells were stable only in the higher levels of his simimplicit in Linsker’s network. His model depends crucially on
lations, when, as discussed above, the Mexican hat covariaheeafferent connections to each cell in a layer of his network
function is of just this form. having a Gaussian distribution about a point in the previous

The work of MacKay and Miller is additionally im- layer. The retinotopy of the early levels of the visual system is
portant because it reveals that cell morphologies in a layer @fell established; the important question with regard to Linsker’s
feed-forward Hebbian networks are determined by the cormedel is whether retinotopy precedes the development of cell
lation matrix of activities in the previous layer. This providgsroperties. When and how retinotopy arises in biological sys-
an avenue for exploring self-organization, because once thes is not yet known, but there are several methods of devel-
activity patterns of a layer of cells is known, the eigenvectarping retinotopy with unsupervised neural networks (see von
of the correlation matrix can be computed, and compareddi&r Malsburg 1990, and Hertz, Krogh, and Palmer 1991 for
the receptive fields of cells in the next layer. If simple selfeviews). In any case, this assumption is by far the most rea-
organization occurs, one might expect sonable of those implicit in Linsker’s
some match between the computed model.
eigen\éectors and the measured receptiviRegardless of whether orien- A second element of the model that
fields. tation Selectivity arises in the 'S Iess biologically reasonable is the uni-

. . formity of the cells - each cell can have
Orientation Columns brain through mechanisms  poth excitatory and inhibitory connec-

In the network described in the analogous to those describedtions. In particular, each connection is
previous section, orientation preferenceshere’ one of the most impor- treated identically by the development
arose randomly from cell to cell, with no . equations. Any given connection can
correlation between neighboring cells. It tant 'nSlghtS to come out of assume the full range of excitatory and
is a well-known feature of mammalian the self-organization models inhibitory values. Since it is usually
primary visual cortex that the orientation g the importance of the agreed that neurons are either
preference of cells varies in a continu- . . . . glutamatergic (excitatory) or GABAergic
ous fashion over the cortical surfaceco_\/a”ance function of activi- (inhibitory), this feature of the model is
while remaining constant over displace- ti€S across a layer of cells  troubling. Linsker did this simply to
ments perpendicular to the surfacayhenever any type of Hebbiarspeed the simulations. Since the devel-
(Hubel and Wiesel, 1963, 1974). The ; ; opment equation sends all the connec-
regularity of orientation distribution Ieammg OCCUrs in a system. tions in an inhibitory region to the inhibi-
prompted Hubel and Wiesel to suggest tory limit and all the connections in an
that the basic unit of organization in V1 is the “hypercolumngXcitatory region to the excitatory limit, were there an even
a group of columns of cells whose receptive fields represéigtribution of excitatory and inhibitory connections through-
the same point in visual space, with each column of cells hawt a cell's transfer function the excitatory connections that
ing a different orientation and ocularity preference, thus preaded up lying in the inhibitory region would be sent to zero,
viding the neural machinery to analyze a single point of the would the inhibitory connections lying in the excitatory re-
visual field (Mason and Kandel, 1991). gion. This basically wastes half the connections, which is why

Linsker found that by adding excitatory lateral conkinsker simplified the model by making each connection non-
nections between the cells in layer G before the connectiepgcific.
from layer F were developed, the orientation that a cell devel- More significant is the fact that retino-geniculate and
oped was no longer random, but that cells of a similar orienggeniculate-cortical projections are believed to be purely
tion organize into band-like regions. Due to computationakcitatory, a fact not taken into account by Linsker’s model.
constraints, he did not explore the full parameter space to blegvever, Ken Miller has conducted simulations with a far more
how closely the bands could come to resembling the pattebitdogically plausible model, where the layer corresponding
that are found in various species. Fortunately, his initial resiaithe LGN consists of two populations of center-surround cells,
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ON and OFF, each of which make only excitatory connectiooenducted by Sillito, who showed that orientation selectivity
to cells in the layer representing V1 (Miller 1989). Millewas abolished if inhibition is blocked with the GABA antago-

achieves results strikingly similar to those of Linsker. Millersist bicuculline, suggesting that orientation selective cells re-
model achieves orientation selectivity via a mechanism inspicasive both excitatory and inhibitory inputs, both of which are
by his models of ocular dominance formation (Miller, 1992important for their function (Sillito, 1979). Because LGN cells
Experiments depriving animals of the input from one eye suare known to make only excitatory synapses with cells in V1,

gest that in addition to there this was interpreted as
being a Hebbian compo- showing that orientation
nent to synapse formation selectivity is solely a prod-

uct of cortical interactions.
However, an alternative in-
terpretation is that the ap-
plication of bicuculline to

an area of cortex leaves
only excitatory connections
between cortical cells.
(thanks are due to Ken

there are also competitive
influences: given twa
groups of correlated input$
the strongest activatep
group may “win out” and
develop connections of the
greatest strength (Guillery,
1972). Making this ast
sumption, Miller shows Miller for pointing this out

that when there are separa to me) This could account
populations of ON- ang for Sillito’s result, in that

OFF-center cells, and eagh the cells excited by lines of

cell in the next |ayer (rep_ Figure 4. Idealized examples of weight structures for units in one of Linsker’s networks| Ea@ertain orientation would
plus or minus-sign represents the sign of the weight of the connextimmunit in questiofrom

resenting Vl) initia"y gets the unit in the preceding layer which occupies the position that the plus or minus-sign dogs mﬁ@ excite other nearby
input from the same locgldiagram. A)A center surround weight structure. B) A bilobed, orientation-selective weightstggrtical cells, causing them

retinotopic area within eacrﬁ::ieo.n)(Taken from Hertz, Krogh, and Palmer (198frpduction to the Theory of Neural Compu—to be active in spite of hav-
population, bilobed recep-= ing orientation-tuned inputs
tive fields develop. This happens in his model because at sfinath the LGN. The results of Nelson et al. support this view.
retinotopic distances, cells of the same type (ON or OFF) diteey observed that orientation selectivity remains fully present
correlated, while at larger distance, cells of opposite type amecat V1 cells when only the neuron being recorded from has
correlated. Combined with realistic interactions among hts inhibitory inputs intracellularly blocked (Nelson et al. 1994).
“cortical” cells, Miller finds that this model develops orientaThis suggests that excitatory inputs (which could presumably
tion selective cells whose arrangement within the layer is quie coming from the LGN in agreement with the self-organiz-
similar to cortical orientation maps. While this model seenmgy models) are sufficient to generate orientation selectivity,
vastly different from Linsker, the importance of correlatioand that intracortical inhibitory inputs mediate, if anything, an
functions remains the crucial factor, and Miller’s work thuimdirect effect through other neurons. David Ferster’s research
suggests that in spite of the implausibility of Linsker's modedrovides additional evidence that patterns of activity in LGN
his results may reflect a property of neural networks that coaliflerents do indeed play the crucial role in orientation selectiv-
also occur in the brain. ity that was originally proposed by Hubel and Wiesel. Ferster
Of key importance, then, to the biological relevanaecorded intracellularly from cells in V1 while flashing ori-
of these models, is the covariance functions of layer activityented stimuli within a cell’'s receptive field, and by hyperpolar-
the brain. Limited work has been done on this, but thereizsg the cortical cell he was recording from to the IPSP rever-
some indication that the appropriate correlations are presergahpotential (done by injecting current through the recording
the visual system (Miller, 1991) electrode), Ferster enhanced the cell's EPSPs while suppress-
A final feature of the model that is not explicitlying its IPSPs. He found that the EPSPs of cortical cells are
grounded in biology is the layer-by-layer development prorientation tuned, in that rotating the stimulus away from the
cess. Not enough is known about how multilayer neuroradtimal orientation produced a decrease in the cell's EPSP
systems develop in the brain to evaluate this facet of the mo¢fedrster, 1986). While this demonstrates that excitatory con-
Furthermore, similar weight patterns may result even if all lagections are sufficient to produce orientation selectivity, the
ers are developed simultaneously excitation could conceivably be cortical in origin, since there
Ever since the discovery of orientation selectivity imas no way for Ferster to determine its source. However, given
V1, much research has been devoted to uncovering the metihasubstantial excitatory input that V1 receives from the LGN,
nisms which underlie it. While there is not complete agreié-seems likely that Ferster was observing LGN produced
ment as to these mechanisms, a host of studies are relevaBP®SPs, in which case the self-organizing models would be
evaluating the extent to which Linsker’s results actually egntirely consistent. While excitation is thus sulfficient for ori-
plain orientation selectivity in V1. Here | briefly describe antation-selectivity, a role for inhibition is suggested by Hata
few of them. Some of the most well-known studies have bestral, who find through a cross-correlation analysis evidence
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for inhibitory interactions between two simultaneously recorded Afinal point that should be mentioned is that Linsker’s
neurons with slightly different orientation preferences, perhdpwork suggests that mammalian visual systems may have
implicating inhibitory interneurons in the formation of orien€volved several stages of center-surround cells in order to
tation columns or in the fine-tuning of responses. (lea&., deepen the minima of the correlation functions of the layer
1988). In summary, while there is evidence that both inhiiteceding V1 such that it could develop orientation selective
tory and excitatory inputs to cortex play a role in orientatidi®lls. The presence of center-surround cells in the LGN when
selectivity, the existing evidence for the mechanisms of oridfere are spatial opponent cells in the retina does not currently
tation selectivity is consistent with the assumptions that ab@ve an explanation. Although the four layers of the network
broadly speaking, made by the self-organizing models. in his paper were contrived to be directly analogous to the lev-
els of the early visual system, Linsker’s analysis gives a rea-
Implications of the Self-Organization Research son why the redundant morphology may actually serve a func-
Linsker's work is intriguing because cells with spational role.
tial opponency and orientation selectivity, properties that have In conclusion, there are a variety of reasons to think
been thought to be of tremendous computational significanéat self-organization is one way that the brain’s structure is
seem to arise completely automatically in a situation whetehieved. We have considered the phenomenon of orientation
their functional utility has no bearing on their developmerftelectivity in mammalian visual cortex. Linsker’s self-orga-
Given this observation, several points immediately comet#ing neural network develops orientation selective cells au-
mind. First, Linsker's work seems to suggest that orientatitstinatically and without any environmental cues. Although
selective cells could arise in any network that has sufficientijere are some inconsistencies with his results and experimen-
deep correlation functions in a layer of spatial-opponent cefidl work on the brain, that his network develops a
Because he trained his network on completely unstructufg@mputationally useful property completely on its own is re-
input, there is nothing inherently “visual” about his resulfmarkable. More biologically realistic models that achieve simi-
Based on his results, one might expect to find cells with of@r results, such as those by Ken Miller, make a strong case for
ented receptive-fields in all sensory systems, because senf#ypresence of similar principles of organization in the brain,
systems have roughly similar initial structure to the networR&d there is reason to believe that these principles may be be-
Linsker used: they have a topographic input layer, project/t®d other properties of neurons in the visual system. Regard-
the thalamus, and then project to a primary sensory area. legs of whether orientation selectivity arises in the brain through
terestingly, orientation selective neurons analogous to thos&¥@chanisms analogous to those described here, one of the most
V1 have been reported in the somatosensory cortex, Supdmportant insights to come out of the self-organization models
ing this (Hyvarinen and Poranen, 1978, cited in Sur,GarragI'*ﬁ)F,hG importance of the covariance function of activities across
and Roe, 1988). a layer of cells whenever any type of Hebbian learning occurs
Relevant to this is a remarkable study by Suif a system. This principle alone has great potential for help-
Garraghty, and Roe that “rerouted” the retinal projections igp to unearth the origins of organizaiton in the brain. Indeed,
ferret visual systems at birth to the ferrets’ medial geniculdteself-organization is a viable means of development, as it
nucleus, the auditory portion of the thalamus (Sur,GarragHtgems to be, then it is probably used with frequency in the
and Roe, 1988). This was accomplished by ablating V1, \prain, and self-organizing models will be of great use in iden-
and the superior colliculus of the ferrets’ visual systems as vé¥ing this.
as the inferior colliculus (the area that the MGN gets most of
its projections from). Doing this causes the retina to project¥6FERENCES _
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