
Is Exploitation Over? Bypassing
Memory Protections in Windows 7

Alexander Sotirov
alex@sotirov.net

About me

•  Exploit development since 1999

•  Published research into reliable
exploitation techniques:
○  Heap manipulation in JavaScript

○  Bypassing browser memory protections on
Windows Vista (with Mark Dowd)

Exploitation is getting harder

finding 
vulnerabili.es 

reliable exploita.on 

year 

difficulty 

200? 2004 

Overview of this talk

•  The evolution of exploit mitigations

○  GS, SafeSEH, DEP, ASLR, SEHOP

•  State of the art in exploitation

○  Windows XP through Windows 7

•  Windows 7 challenges and directions for
future research

The evolution of exploit
mitigations

Part I

OS evolution

Exploit mitigations

Detect memory corruption:

•  GS stack cookies
•  SEH chain validation (SEHOP)
•  Heap corruption detection

Stop common exploitation patterns:

•  GS variable reordering
•  SafeSEH
•  DEP
•  ASLR

GS stack cookies

cookie buffer 

buffer overflow 

retaddr

saved
cookie

Breaking GS

cookie pointer var  retaddr

saved
cookie

pointer arg

buffer overflow 

buffer 

shellcode

GS variable reordering

cookie buffer 

buffer overflow 

retaddr

saved
cookie

non-buffer
variables

copes of
arguments

arguments
(unused)

pointer arguments are copied 
before the other variables 

Breaking GS, round 2

Some function still use overwritten stack
data before the cookie is checked:
callee saved registers

copy of pointer and string buffer arguments

local variables

string buffers o

gs cookie v

exception handler record e

saved frame pointer r

return address f

arguments l

 o

stack frame of the caller w

SafeSEH

•  Validates that each SEH handler is found
in the SafeSEH table of the DLL

•  Prevents the exploitation of overwritten
SEH records

Breaking SafeSEH

•  Requires that all DLLs in the process are
compiled with the new /SafeSEH option

•  A single non-compatible DLL is enough to
bypass the protection

•  Control flow modification is still possible

SEH chain validation (SEHOP)

•  Puts a cookie at the end of the SEH chain

•  The exception dispatcher walks the chain
and verifies that it ends with a cookie

•  If an SEH record is overwritten, the SEH
chain will break and will not end with the
cookie

•  No known bypass techniques

Data Execution Prevention

•  Executing data allocated without the
PAGE_EXECUTABLE flag raises an access
violation exception

•  Stack and heap protected by default
•  Prevents us from jumping to shellcode

Breaking DEP

•  Off by default for compatibility reasons

•  Compatibility problems with plugins:
Internet Explorer 8 finally turned on DEP

•  Sun JVM allocated its heap memory
RWX, allowing us to write shellcode there

•  Return oriented shellcode (ret2libc)
○  DEP without ASLR is completely useless

ASLR

•  Executables and DLLs loaded at random
addresses

•  Randomization of the heap and stack
base addresses

•  Prevents us from jumping to existing
code

Breaking ASLR

•  Enabled only for binaries compiled with a
special flag (for compatibility reasons)

•  Many browser plugins still don’t have it

•  Heap spraying still works
○  ASLR without DEP is completely useless

Breaking ASLR

•  Heap spraying defeats ASLR
•  64KB-aligned allocations allow us to put

arbitrary data at an arbitrary address
○  Allocate multiple 1MB strings, repeat a 64KB

pattern

64KB

64KB

State of the art in exploitation
Part II

Windows pre-XP SP2

•  Exploitation is trivial
•  Tools can automate the process of

analyzing a stack overflow crash and
generating an exploit

•  Nobody cares about these old systems

Windows XP SP2

•  The most widely targeted system in mass
exploitation for botnets and keyloggers

•  Attack surface reduction has reduced the
number of vulnerabilities in services, but
client software is almost completely
unprotected

•  Reliable exploitation techniques exist for
almost all types of vulnerabilities

 Windows Vista

•  Limited deployment, not a target for
mass exploitation yet

•  More attack surface reduction in services,
but client software still an easy target

•  ASLR and DEP are very effective in
theory, but backwards compatibility
limitations severely weaken them

Windows 7

•  No major exploit mitigation changes
since Vista, but still much better than XP

•  Wide deployment expected

•  Improved support for DEP and ASLR from
Microsoft and third party vendors:
○  .NET framework 3.5 SP1
○  Internet Explorer 8
○  Adobe Reader 9
○  Flash 10
○  QuickTime 7.6

The future of exploitation
Part III

Is exploitation over?

What if all software used these protections
to the fullest extent possible?

Assume a Windows 7 system with the latest
versions of all common browser plugins and
complete DEP and ASLR protection.

Protection dependency graph

ASLR 

DEP 

SafeSEH 

SEHOP 

GS 

Partial overwrites

•  Windows binaries are 64KB aligned

•  ASLR only affects the top 16 bits

•  Overwriting the low 16 bits of a pointer
will shift it by up to 64KB to a known
location inside the same DLL

•  Exploitation is vulnerability specific

Memory disclosure

•  If we can read memory from the process,
we can bypass ASLR

•  Even a single return address from the
stack is enough to get the base of a DLL

•  DEP can be bypassed with return
oriented shellcode

ASLR entropy attacks

•  ASLR on Windows provides only about 8
bits of entropy

•  If we can try an exploit 256 times, we
can bypass ASLR by guessing the base
address of a DLL

•  DEP can be bypassed with return
oriented shellcode

Virtual shellcode

•  We can write our shellcode as a Java
applet and use memory corruption to
disable the Java bytecode verification

•  No need to worry about DEP at all!
•  Can be achieved by overwriting a single

byte in the JVM

•  ASLR makes it harder to find the JVM,
but other attacks of this kind might be
possible

Corrupting application data

•  We can change the behavior of a
program by corrupting its data without
modifying the control flow

•  Stack and heap overflows can corrupt
data

•  How do we find the right data to
overwrite?

Directions for future research

1.  Are there new classes of C or C++
vulnerabilities that lead to memory
disclosure?

Are there more general ways to get
memory disclosure from the currently
known vulnerability classes?

Directions for future research

2.  Can we automate the of the manual
analysis work required to exploit data
corruption vulnerabilities?

○  How do we find data in memory that is used
by an authentication function?

○  How do we track the data in memory and
reverse engineer the code that uses it?

Directions for future research

3.  Can we use static or dynamic binary
analysis to improve our control over the
memory layout of a process?

○  How do we ensure a heap block containing
such data is allocated next to a heap block I
can overflow?

○  How do we get control over the value of an
stack or heap variable that is used before
initialization?

Conclusion
Part IV

Conclusion

•  Windows 7 exploitation is hard, but not
impossible

•  Static and dynamic reverse engineering
techniques will get even more important

•  If all else fails, web vulnerabilities will
always be there!

Questions?

alex@sotirov.net

