
Part
Appendixes

APPENDIX A
Details of System Calls with Parameters

APPENDIX B
What's on the CD-ROM



Appendix A

Details of System Calls

with Parameters

THE DOCUMENTATION OF MOST of the system services provided by Windows NT
follows. Most of these system services are undocumented. Each entry includes a
prototype of the system service, its parameters and descriptions of them, return
codes, and in some cases, comments.

This documentation is useful for many reasons, among them:

+ To put a hook into a system service, you must know the parameters it
expects so you can write a new hook service with the same prototype.

+ Few services have no corresponding Win32 API. These are truly
undocumented services. To use these services, one must know the
parameters they expect.

+ Although it seems to be Microsoft's position to keep these system services
undocumented because they might change in future versions, we have
observed that most of these system services are core and largely
unchanged in versions of Windows NT to date. New system services are
being added to this list with each new version of Windows NT.

NtLoadDriver
NTSTATUS

NtLoadDn ver(
IN PUNICODE_STRING DriverRegistryEntry

):

NtLoadDriver loads the device driver specified by the Registry key under
HKLM\System\CurrentControlSet\Device. For example, the device driver named
xxx has a Registry key "xxx" under HKLM\System\CurrentControlSet\Device.

PARAMETERS

DriverRegistryEntry Points to the Unicode string containing the name of the
Registry key for the driver where the configuration
information for the driver is kept. The parameter is of
the form HKLM\System\CurrentControlSet\Device\xxx,
where xxx stands for device driver named xxx. 253 I



254 Appendix A: Details of System Calls with Parameters

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Only users who have the privilege to load/unload device drivers can use this API.

EQUIVALENT WIN 3 2 API
Service Control Manager APIs such as CreateService, StartService, and so on.

NtllnloadDriver
NTSTATUS ;

NtUnloadDriver(
IN PUNICODE_STRING D M v e r R e g n s t r y E n t r y

);

NtUnLoadDriver unloads the device driver specified by the Registry key under
HKLM\System\CurrentControlSet\Device. For example, the device driver named
xxx has a Registry key "xxx" under HKLM\System\CurrentControlSet\Device.

PARAMETERS

DriverRegistryEntry Points to the Unicode string containing the name of the
Registry key for the driver where the configuration
information for the driver is kept. The parameter is of
the form HKLM\System\CurrentControlSet\Device\xxx,
where xxx stands for the device driver named xxx.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Only users who have the privilege to load/unload device drivers can use this API.

EQUIVALENT WIN 3 2 API
Service Control Manager APIs such as StopService, DeleteService, and so on.

NtClose
NTSTATUS

NtCloseC
- IN HANDLE Hand le

):

NtClose closes the open handle to the executive object. This could be any handle,
such as a handle to the mutex, semaphore, and so on.



Appendix A: Details of System Calls with Parameters 255

PARAMETERS

Handle Handle to the object.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropnate error code on failure.

COMMENTS
Every object has a handle count and a reference count associated with it. The han-
dle count represents number of open handles to the object. The reference count rep-
resents the number of pointer references to the object. The object is removed from
memory only when the object handle count and reference count reaches zero.

EQUIVALENT WIN32 API
CloseHandle

hSourceProcessHandle

hSourceHandle

hTargetProcessHandle

TargetHandle

AccessMask

Handle to the process in which the handle to be
duplicated resides.

Handle to the object to be duplicated.

Handle to the process in which the handle is
duplicated.

Pointer to the variable where the duplicated handle is
received.

Access requested for the new handle.

NtDuplicateObject creates a new handle to the given object in arbitrary process's
context.

PARAMETERS



256 Appendix A: Details of System Calls with Parameters

blnheritHandle

dwOptions

Boolean value describing whether the handle is
inherited by child processes spawned by the process
and represented by TargetProcessHandle.

Flags that affect the behavior of the system service. If
DUPLICATE_SAME_ACCESS is specified, then the
AccessMask parameter is ignored. If
DUPLICATE_CLOSE_SOURCE is specified, then the
source handle is closed after duplication.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Console handles cannot be duplicated using this system service.

EQUIVALENT WIN 32 API
DuplicateHandle

NtCreateDi rectoryObject
NTSTATUS

NtCreateDirectoryObjectC
OUT PHANDLE hDi rec to ry ,
IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT^ATTRIBUTES ObjectAttr ibutes

);

NtCreateDirectoryObject creates a new directory object.

PARAMETERS

hDirectory

AccessMask

ObjectAttributes

Pointer to the variable that receives a handle to the
directory object.

Type of access requested to the directory object. This can be
a combination of any of the following flags:
DIRECTORY_QUERY, DIRECTORY_TRAVERSE,
DIRECTORY_CREATE_OBJECT,
DIRECTORY_CREATE_SUBDIRECTORY, and
DIRECTORY_ALL_ACCESS.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the directory object to be created, such as
name, parent directory, objectflags, and so on.



Appendix A: Details of System Calls with Parameters 257

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT W1M32 API -~ '
None.

NtCreateSymbolicLinkObject
NTSTATUS

N t C r e a t e S y m b o l i c L i n k O b j e c t C
OUT PHANDLE hSymbol icL ink ,
IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT_ATTRIBUTES ObjectAttr ibutes ,
IN PUNICODE_STRING S y m b o l i c L i n k V a l u e

);

NtCreateSymbolicLinkObject creates a new symbolic link.

PARAMETERS

hSymbolicLink

AccessMask -

ObjectAttributes

SymbolicLinkValue

Pointer to the variable that receives handle to the
SymbolicLink object.

Type of access requested to the symbolic link object. This
can be a combination of any of the following flags:
SYMBOLIC_LINK_QUERY or
SYMBOLIC_LINK_ALL_ACCESS.

Points to the OBJECT_ATTRIBUTES structure containing
the information about the symbolic link object to be
created, such as name, parent directory, objectflags, and
so on.

Points to a Unicode string containing the object name
this symbolic link refers to.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The user-mode API call DefineDosDevice enables you to create a symbolic link ob-
ject only under the object directory named "\??", whereas this system service en-
ables you to create a symbolic link object anywhere in the object name space



258 Appendix A: Details of System Calls with Parameters

provided you have permission. There is a symbolic link named "\DosDevices" which
points to "\??" object directory.

EQUIVALENT WIN32 API
DefmeDosDevice (limited support)

NtMakeTemporaryObject ^
NTSTATUS

NtMakeTemporaryOb jec tC
IN HANDLE hObject

);

NtMakeTemporaryObject converts the permanent object into a temporary object.

PARAMETERS

hObject A Handle to the permanent object.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The objects created with the OBJ_PERMANENT attribute in ObjectAttributes's
Attributes member can be converted into a temporary object using this function.
Permanent objects with names are not deleted from the Object Manager name space
even when the handle count reaches zero. This function can be used to delete per-
manent named objects with handle count zero from the Object Manager name space.

-v & j
EQUIVALENT WIN32 API
None.

NtOpenDi rectoryObject
NTSTATUS

NtOpenDi rec to ryOb jec tC
OUT PHANDLE hDi rec to ry ,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAt tnbutes

):

NtOpenDirectoryObject opens an existing directory object in the Object Manager
name space.



Appendix A: Details of System Calls with Parameters 259

PARAMETERS

hDirectory

AccessMask

ObjectAttributes

Pointer to the variable that receives a handle to the
directory object.
Type of access requested to the directory object. This can be
a combination of any of the following flags:
DIRECTORY_QUERY, DIRECTORYJTRAVERSE, "*~
DIRECTORY_CREATE_OBJECT,
DIRECTORY_CREATE_SUBDIRECTORY, and
DIRECTORY_ALL_ACCESS.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the directory object to be opened, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtQueryDi rectoryObject
NTSTATUS

NtQueryDi rectoryObjectC
IN HANDLE hD i rec to ry ,
OUT PVOID DirectoryEntryBuffer,
IN ULONG D i rec to ryEn t ryBu f fe rS ize ,
IN BOOLEAN bOnlyFirs tEntry,
IN BOOLEAN bF i rs tEnt ry ,
OUT PULONG BytesReturned,
OUT PULONG Entrylndex

);

NtQueryDirectoryObject returns individual object names in the given object di-
rectory along with the type of these objects.

PARAMETERS

hDirectory Handle to a directory opened using
NtOpenDirectory.



260 Appendix A: Details of System Calls with Parameters

DirectoryEntryBuffer

DirectoryEntryBufferSize

bAllEntries

bFirstEntry

BytesReturned

Entrylndex

Pointer to the buffer that receives the object
names and object types in the given object
directory.

Size of the buffer pointed to by
DirectoryEntryBuffer.

Flag indicating whether you are interested in all
the entries in the given object directory.

Flag indicating that the search should start from
the first entry in the directory.

Pointer to the variable that receives the number
of bytes copied into the buffer pointed to by
DirectoryEntryBuffer.

Pointer to the variable that returns the index
corresponding to the object entry returned.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
To enumerate all the objects in a given object directory, you need to first call this
function with bFirstEntry set to TRUE, and then call this function with bFirstEntry set
to FALSE. The function returns STATUS_NO_MORE_ENTRIES when all the entries in
a given object directory are over. bAllEntries should be set to TRUE in this case.

Data in DirectoryEntryBuffer is of variable length based on the object names and
object types. The fixed portion of this data is as follows:

typedef struct Di rectoryEntryBuf fer_t {
UNICODE_STRING ObjectName,
UNICODE_STRING ObjectType

} DIRECTORY_ENTRY_BUFFER

This is followed by ObjectName and ObjectType in wide character format.

EQUIVALENT WIN32 API
None.

NtOpenSymboli cLi nkObject
NTSTATUS

NtOpenSymbolicLinkObjectC
OUT PHANDLE hSymbolicLnnk,


