Appendix A: Details of System Calls with Parameters

IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttnbutes

NtOpenSymbolicLinkObject opens an existing symbolic link object.

PARAMETERS

hSymbolicLink Pointer to the variable that receives handle to the
SymbolicLink object.

AccessMask Type of access requested to the symbolic link object. This

can be a combination of any of the following flags:
SYMBOLIC LINK_QUERY or - -

SYMBOLIC_LINK_ALL_ACCESS

ObjectAttributes Pointsto the OBJECT ATTRIBUTES structure containing
information about the symbolic link object to be opened,
such as name, parent directory, objectflags, and so on.

g o

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtQuerySymbolicLInkObject
NTSTATUS
NtQuerySymbolicLinkObject(
IN HANDLE hSymbolicLink,
IN OUT PUNICODE_STRING ObjectName,
OUT PULONG BytesReturned

NtQuerySymbolicLinkObject returns the object referred to by a given symbolic
link object. . -

PARAMETERS

hSymbolicLink Handle to the symbolic link object returned using
NtOpenSymbolicLinkObject or NtCreateSymbolicLinkObject.

261

262

Appendix A: Details of Sysem Calls with Parameters

ObjectName Pointer to the initialized Unicode string. The object name
referred to by the given symbolic link is returned. The buffer
for the Unicode string must already be allocated.

BytesReturned Pointer to the variable that returns the number of bytes
copied into the buffer pointed to by ObjectName.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS

The user-mode API call QueryDosDevice enables the query symbolic link object
only under the object directory named "\??", whereas this system service enables
you to query any symbolic link in the object name space provided you have
permission.

EQUIVALENT WIN32 AF
QueryDosDevice (limited support)

NtQueryObject
NTSTATUS
NtQueryObject(
IN HANDLE hObject,
IN OBJECT_INFORMATION_CLASS InfoClass,
OUT PVOID Buffer,
IN ULONG BufferSize,
OUT PULONG BytesRetumed

NtQueryObject returns different kinds of information about the object based on
the InfoClass.

PARAMETERS

hObject Handle to the object.

InfoClass Type of information to be retrieved. This can take values from
Oto 4.

Buffer Pointer to the buffer that receives information about the
object.

BufferSize Size of the buffer in bytes pointed to by Buffer.

BytesReturned Pointer to the variable that receives the number of bytes
copied into the Buffer.

Appendix A: Details of System Calls with Parameters 263

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
Different information is returned based upon the InfoClass parameter. Here is the
layout of Buffer based on the InfoClass:

InfoClass=0

typedef struct ObjectBasiclnfo_t {
char Unknownl[B];
ULONG HandleCount;
ULONG ReferenceCount;
ULONG PagedQuota;
ULONG NonPagedQuota;
char Unknown2[32];
} OBJECT_BASIC_INFO, *POBJECT_BASIC_INFO:

InfoClass=l Variable length structure based on the actual length of the object name.

typedef struct ObjectNamelnfo_t (
UNICODE_STRING ObjectName;
WCHAR ObjectNameBuffer[l];

} OBJECT_NAME_INFO, *POBJECT_NAME_INFO;

InfoClass=2 Variable length structure based on the actual length of the object type.

typedef struct ObjectTypelnfo_t {
UNICODE_STRING ObjectTypeName;
char Unknown[0x58];
WCHAR DbjectTypeNameBuffer[1];

1 OBJECT_TYPE_INFO, *POBJECT_TYPE_INFO;

InfoClass=3 Variable length structure based on the number of object types and
actual length of each object type.

typedef struct ObjectAllTypelnfo_t {
ULONG NumberOfObjectTypes;
OBJECT_TYPE_INFO ObjectsTypelnfo[l];

} OBJECT_ALL_TYPES_INFO, *POBJECT_ALL_TYPES_INFO;

InfoClass=4

typedef struct ObjectProtectioninfo_t {
BOOLEAN blnhent;

Appendix A: Details of Sysem Calls with Parameters

BOOLEAN bProtectHandle;
} OBJECT_PROTECTION_INFO, *POBJECT_PROTECTION_INFO;

EQUIVALENT WIN32AP
GetHandlelnformation (limited support)

NtSetinformationObject
NTSTATUS
NtSetinformationObject(
IN HANDLE hObject,
IN OBJECT_INFORMATION_CLASS InfoClass,
IN PVOID Buffer,
IN ULONG BufferSize

NtSetInformationObject changes the attributes of the object based on the InfoClass.
PARAMETERS

hObject Handle to the object.
InfoClass Type of information to be set. This should be 4.
Buffer Pointer to the buffer that contains the information about the

object. Buffer should be in the OBJECT_PROTECTION_INFO
structure format.

BufferSize Size of the buffer in bytes pointed to by Buffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

Nt Cr eat eEvent
NTSTATUS
Nt Cr eat eEvent (
OUT PHANDLE hEvent,
N ACCESS_MASK AccessMask,
I N POBJECT _ATTRI BUTES ObjectAttributes,

Appendix A: Details of System Calls with Parameters

IN EVENT_TYPE EventType.
IN BOOLEAN bInitialState

NtCreateEvent creates a new event object.

PARAMETERS

hEvent

AccessMask

ObjectAttributes

EventType

blnitia State

RETURN VALUE

Pointer to the variable that recaeives handle to the event
object.

Type of access requested to the event object. This can be a
combination of any of the following flags:
EVENT_QUERY_STATE, EVENT MODIFY_STATE, and
EVENT ALL_ACCESS.

Pointsto the OBJECT_ATTRIBUTES structure containing the
information about the event object to be created, such as
name, parent directory, objectflags, and so on.

Type of the event. This can be either of NotificationEvent,
SynchronizationEvent. EventType is enumerated data type
defined in NTDEF.H file in DDK. ,

Specifies whether the initial state of the event will be
signaled (TRUE) or not signaed (FALSE).

Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

When the EventType is NotificationEvent and the event is signaled, al the threads
waiting on the event are released. The state of the event remains signaled unless

someone explicitly calls NtResetEvent or NtClearEvent.

When the EventType is SynchronizationEvent and the event is signaled, only
one thread waiting on the event is released. All other threads continue to wait and

the state of the event is again reset back to nonsignaled.

EQUIVALENT WIN32 API -

CreateEvent

Nt OpenEvent
NTSTATUS
Nt OpenEvent (

265

266

Appendix A: Details of System Calls with Parameters

OUT PHANDLE hEvent,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes

NtOpenEvent opens a handle to the existing named event object.

PARAMETERS

hEvent Pointer to the variable that receives handle to the event
object.

DesiredAccess Type of access requested to the event object. This can be a

combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS.

ObjectAttributes Pointsto the OBJECT_ATrRIBUTES structure containing the
information about the event object to be opened, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS t
None.

EQUIVALENT WIN32 AM
OpenEvent

Nt Cl ear Event
NTSTATUS
Nt Cl ear Event (
I N HANDLE hEvent

NtClearEvent sets the state of the event object to nonsignaled.
PARAMETERS

hEvent Handle to the event object returned using the NtCreateEvent or
NtOpenEvent system service.

Appendix A: Details of Sysem Cals with Parameters

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtPulseEvent
NTSTATUS
NtPulseEvent(
IN HANDLE hEvent
OUT OPTIONAL PULONG PreviousState);

NtPulseEvent sets the state of the event object to signaled, releases one or more
threads waiting on the event, and sets the event back to nonsignaled.

PARAMETERS

hEvent Handle to the event object returned using the NtCreateEvent i
NtOpenEvent system service.

PreviousState Pointer to the variable that receives the previous state of the
event.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

If the event referred to by hEvent is a NoficationEvent, then al the threads waiting
on the event are released. If the event is of the type SynchronizationEvent, then
only one thread waiting on the event is released.

EQUIVALENT WIN32 API
PulseEvent

Nt Quer yEvent
NTSTATUS
Nt Quer yEvenU
IN HANDLE hEvent,
N EVENT_I NFO_CLASS I nfoCl ass,
QUT PVOI D Event ! nfoBuffer,

267

268 Appendix A: Details of System Calls with Parameters

IN ULONG EventinfoBufferSize,
OUT PULONG BytesCopied

NtQueryEvent gets the information about the event object.

PARAMETERS

hEvent Handle to the event object returned using the
NtCreateEvent or NtOpenEvent system service.

InfoClass Information class requested for the event object. This
should be 0.

EventinfoBuffer Pointer to the buffer that receives information about the
event object.

EventInfoBufferSize Size of the buffer (in bytes) pointed to by
EventinfoBuffer.

BytesCopied Pointer to the variable that receives the number of bytes
copied into EventInfoBuffer.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

The buffer pointed to by EventInfoBufferSize must be at least 8 bytes. The informa-
tion in the buffer is organized as follows:

typedef struct Eventinfo_t {
EVENT_TYPE EventType.
LONG EventState,

} EVENTINFO, *PEVENTINFO;

EQUIVALENT WIN32 API
None.

Nt Reset Event
NTSTATUS
Nt Reset Event (
N HANDLE hEvent,
OUT OPTI ONAL PULONG PreviousState

Appendix A: Details of Sysem Calls with Parameters

269

NtResetEvent sets the state of the event object to nonsignaled and returns the
previous state of the event in Previoustate.

PARAMETERS

hEvent Handle to the event object returned using the NtCreateEvent or
NtOpenEvent system service.

PreviousState Pointer to the variable that receives the previous gate of the
event.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32API
ResetEvent (does not return the previous gate of the event)

NtSetEvent
NTSTATUS
NtSetEvent(
IN HANDLE hEvent,
OUT OPTIONAL PULONG PreviousState,

NtSetEvent sets the state of the event abject to signaled and returns the previous
state of the event in PreviousState.

PARAMETERS

hEvent Handle to the event object returned using the NtCreateEvent i
NtOpenEvent system sarvice.

PreviousState Pointer to the variable that receives the previous state of the
event.

RETURN VALUE
Returns STATUS SUCCESS on success and an agppropriate error code on failure.

270

Appendix A: Details of System Calls with Parameters

COMMENTS
None.

EQUIVALENT WIN32 API
SetEvent (does not return the previous state of the event)

NtCreateEventPair .
NTSTATUS
NtCreateEventPair(
OUT PHANDLE hEventPair.
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttn butes

);
NtCreateEventPair creates a new event-pair object.
PARAMETERS
hEventPair Pointer to the variable that receives handle to the event-pair
object.
AccessMask Type of access requested to the event-pair object. This can be

a combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and

EVENT ALL_ACCESS.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the event-pair object to be created, such as
name, parent directory, objectflags, and so on.

RETURN VALUE

Returns STATUS SUCCESS on successand anappropriateerror codeonfailure.

COMMENTS

The event-pair object consists of two SynchronizationEvent type event objects. The
event-pair objects are used by Windows NT 3.51 to implement Quick LPC. The first
event is called the low event of the event-pair, and the second event is called the

high event of the event pair.

EQUIVALENTWIN32 AP
None.

Nt OpenEvent Pai r
NTSTATUS

Appendix A: Details of System Calls with Parameters

NtOpenEventPai r(
OUT PHANDLE hEventPair,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttnbutes

NtOpenEventPair opens a handle to an existing named event-pair object.

PARAMETERS

hEventPair Pointer to the variable that receives handle to the event-pair
object.

DesiredAccess Type of access requested to the event-pair object. This can be

a combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the event-pair object to be opened, such
as name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENTWIN32 API
None.

NtSetHighEventPair
NTSTATUS
NtSetHighEventPair(
IN HANDLE hEventPair
NtSetHighEventPair sets the high event of the event-pair to signaled state.
PARAMETERS

hEventPair Handle to the event-pair.

271

272 Appendix A: Details of System Calls with Parameters

RETURNVALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtSetHi ghWai tLowEventPair
NTSTATUS
NtSetHighWaitLowEventPair(
IN HANDLE hEventPair

NtSetHighWaitL owEventPair sets the high event of the event-pair to signaed
state and waits for the low event of the event pair to get signaled.

PARAMETERS

hEventPair Handle to the event-pair.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
None.

NtSetLowEventPair
NTSTATUS
NtSetLowEventPair(
IN HANDLE hEventPair
NtSetL owEventPair sets the low event of the event-pair to signaled state.
PARAMETERS

hEventPair Handle to the event-pair.

Appendix A: Details of Sysem Cdls with Parameters 273

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
None.

NtSetLowWaitHighEventPair
NTSTATUS
NtSetLowWaitHighEventPainr(
IN HANDLE hEventPair

NtSetLowWaitHighEventPair sets the low event of the event-pair to signaled '
state and waits for the high event of the event pair to get signaled.
PARAMETERS

hEventPair Handle to the event-pair.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP

None.
NtCreateMutant
NTSTATUS
NtCreateMutant(
OUT PHANDLE hMutex,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN blnitialState
);

NtCreateMutant creates a new mutex object.

274

Appendix A: Details of Sysem Calls with Parameters

PARAMETERS

hMutex Pointer to the variable that receives handle to the mutex
object.

AccessMask Type of access requested to the mutex object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the mutex object to be created, such as
name, parent directory, objectflags, and so on.

bInitial State Initial state of the mutex: signaled (TRUE), not signaled
(FALSE).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENTWIN32 AP
CreateM utex

NtOpenMutant
NTSTATUS
NtOpenMutant(
OUT PHANDLE hMutex,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes

NtOpenMutant opens handle to an existing named mutex object.

PARAMETERS

hMutex Pointer to the variable that receives handle to the mutex
object.

DesiredAccess Type of access requested to the mutex object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the mutex object to be opened, such as
name, parent directory, objectflags, and so on.

Appendix A: Details of Syssem Calls with Parameters

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AM
OpenMutex

NtQueryMutant
NTSTATUS
NtQueryMutant(

IN HANDLE hMutex,
IN MUTEX_INFO_CLASS InfoClass,
OUT PVOID MutexInfoBuffer,
IN ULONG MutexInfoBufferSize,
OUT PULONG BytesCopied

NtQueryMutant queries the state information about the mutex object.

PARAMETERS

hMutex Handle to the mutex object returned using the
NtCreateMutant or NtOpenMutant system service.

InfoClass Information class requested for the mutex object. This
should be 0.

MutexInfoBuffer Pointer to the buffer that receives information about

the mutex object.

MutexInfoBufferSize Size of the buffer (in bytes) pointed to by
MutexInfoBuffer.

BytesCopied Pointer to the variable that receives the number of
bytes copied into MutexInfoBuffer.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by MutexInfoBufferSize must be at least 8 bytes. The infor-
mation in the buffer is organized as follows: , -

275

276

Appendix A: Details of Sysem Calls with Parameters

typedef struct MutexInfo_t (
LONG MutexState;
BOOLEAN bOwnedByCallingThread;
BOOLEAN bAbandoned;
USHORT Unused:
] MUTEXINFO, *PMUTEXINFO;

If the calling thread of this system service owns the mutex, then
bOwnedByCallingThread will be TRUE. MutexState is TRUE if the mutex object is
signaled; otherwise, it is FALSE. bAbandoned is TRUE if the thread owning the mu-
tex died without releasing the mutex.

EQUIVALENT WIN32 API
None.

NtReleaseMutant
NTSTATUS
NtReleaseMutant(
IN HANDLE hMutex,
OUT OPTIONAL PULONG bSignalled

NtReleaseM utant releases an owned mutex object.
PARAMETERS

hMutex Handle to the mutex object returned using the NtCreateMutant or
NtOpenMutant system service.

bSingalled Pointer to the variable that receives whether the mutex was st to
signaled state as a result of system service. The returned value is
0 if the mutex is set to signaled state.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

A mutex can be owned by only one thread at a time. However, the same thread can
acquire the same mutex multiple times. If the thread acquires the same mutex mul-
tiple times, then it has to call NtReleaseMutant that many times to set the mutex to
signded. The bSignalled variabl e receives whether the mutex was st to signaled.

EQUIVALENT WIN32 API
ReleaseM utex

Appendix A: Details of System Calls with Parameters

Nt Cr eat eSenmaphor e
NTSTATUS
Nt Cr eat eSemaphor e(

OUT PHANDLE hSemaphore,
I N ACCESS_MASK AccessMask,
| N POBJECT_ATTRI BUTES Obj ect At t nbut es,
IN ULONG InitialCount,
N ULONG MaxCount

NtCreateSemaphore creates a new semaphore object.

PARAMETERS

hSemaphore Pointer to the variable that receives handle to the
semaphore object.

AccessMask Type of access requested to the semaphore object.

ObjectAttributes Pointsto the OBJECT _ATTRIBUTES structure containing the
information about the semaphore object to be created, such
as name, parent directory, objectflags, and so on.

Initial Count Initial count of the semaphore.

MaxCount Maximum count of the semaphore

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 32 API
CreateSemaphore

NtOpenSemaphore
NTSTATUS
NtOpenSemaphore(
OUT PHANDLE hSemaphore,
IN ACCESS_MASK [DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttnbutes

NtOpenSemaphore opens handle to an existing named semaphore object.

277

278

Appendix A: Details of System Calls with Parameters

PARAMETERS

hSemaphore Pointer to the variable that receives handle to the
semaphore object.

DesiredAccess Type of access requested to the semaphore object.

ObjectAttributes Pointsto the OBJECT_ATTRIBUTES structure containing the
information about the semaphore object to be opened, such
as name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
OpenSemaphore

NtQuerySemaphore
NTSTATUS
NtQuerySemaphore(

IN HANDLE hSemaphore,
INSEMAPHORE_INFO_CLASSInfollass,
OUT PVOID SemaphorelnfoBuffer,
IN ULONG SemaphoreinfoBufferSize,
OUT PULONG BytesCopied

NtQuerySemaphore queries the information about the Semaphore object.
PARAMETERS

hSemaphore Handle to the semaphore object returned using the
NtCreateSemaphore or NtOpenSemaphore system
sarvice.

InfoClass Information class requested for the semaphore
object. This should be 0.

SemaphorelnfoBuffer Pointer to the buffer that receives information

about the semaphore object.

SemaphorelnfoBufferSize Size of the buffer (in bytes) pointed to by
SemaphorelnfoBuffer.

Appendix A: Details of System Calls with Parameters

279

BytesCopied Pointer to the variable that receives the number of
bytes copied into SemaphorelnfoBuffer.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by SemaphorelnfoBufferSize must be at least 8 bytes. The in-
formation in the buffer is organized as follows:

typedef struct Semaphorelnfo t (
ULONG CurrentCount;
ULONG MaxCount;

) SEMAPHORE_INFO, *PSEMAPHORE_INFO

EQUIVALENT WIN32 API
None.

NtReleaseSemaphore
NTSTATUS
Nt Rel easeSemaphor e(
N HANDLE hSemaphore,
IN ULONG Rel easeCount,
QUT PULONG PreviousCount ,

):
NtRel easeSemaphore releases semaphore object ReleaseCount times.

PARAMETERS

hSemaphore Handle to the semaphore object returned using the
NtCreateSemaphore or NtOpenSemaphore system service.

ReleaseCount Number of times to release semaphore.

PreviousCount Pointer to the variable that receives the previous count of the
semaphore.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

280

Appendix A: Details of System Calls with Parameters

COMMENTS
None.

EQUIVALENT WIN32 API
ReleaseSemaphore

NtSignalAndWaitForSirigleObject(
NTSTATUS
NtSignalAndWaitForSinglelObject(
IN HANDLE hSignalObject,
IN HANDLE hWaitObject,
IN BOOLEAN bAlertable,
IN PLARGE_INTEGER Timeout

NtSignal AndWaitForSingleObject releases the object specified by hSigna Object
and waits on the object specified by hWaitObject.

PARAMETERS

hSignal Object Handle to the object to be released. This should be a handle to
amutex or event, or a semaphore object.

hWaitObject Handle to the object to be acquired (wait on). This should be
handle to a mutex or event, or a semaphore object.

bAlertable Flag specifying whether the wait is aertable.
Timeout Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

Nt Wai t For Mul ti pieChjects(
NTSTATUS
Nt Wai t For Mul ti pl eObj ect s(
[N ULONG nObjects,
IN HANDLE *0bjectHandleArray,
IN WAI T_TYPE i t Type,

Appendix A: Details of Sysem Calls with Parameters

IN BOOLEAN bAlertable,
IN PLARGE_INTEGER Timeout

NtWaitForMultipleObjects waits on multiple objects to be released (set to signaled).
PARAMETERS

nObjects Number of object handles in the array pointed to by
ObjectHandleArray.

ObjectHandleArray Pointer to the array that contains handle to the objects
to wait on.

WaitType Type of wait. This could be WaitAll or WaitAny.

bAlertable Flag specifying whether the wait is dertable.

Timeout Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS SUCCESS on success and an gppropriate error code on failure.

COMMENTS

When WaitAll is specified, the function returns only when all the objects referred
by handles in ObjectHandleArray are in signaled state, whereas when WaitAny is
specified, the function returns when any one of the objects referred by handles in
ObjectHandleArray is in signaled state. The wait is abandoned when Timeout oc-
curs, irrespective of WaitType.

EQUIVALENT WIN32 AP
WaitForMultipleObjects

NtWaitForSingleObject(
NTSTATUS
Nt Wi t For Si ngl eObj ect (
IN HANDLE hobject,
N BOOLEAN bAl ertabl e,
IN PLARGE_I NTEGER Ti meout

NtWaitForSingleObject waits on the object to be released (set to signaled).

281

282

Appendix A: Details of System Callswith Parameters

PARAMETERS

hObject Handle to the object to wait on.

bAlertable Flag specifying whether the wait is aertable.

Timeout Pointer to the variable that contai nsthe timeout for wait.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
WaitForSingleObject

NtCancelTimer(
NTSTATUS
NtCancelTimer(
IN HANDLE hTimer,
OUT PBOOLEAN pbState

NtCancel Timer cancels the timer and removes it from the system timer queue.
PARAMETERS

hTimer Handle to the timer object.

pbState Pointer to the variable that receives the state of the timer at the
time of cancellation. Receives TRUE if the timer is signaled and
FALSE if the timer is not signaled.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

The Equivalent Win32 APl function does not return the state of the timer object,
whereas the system service does return the state.

EQUIVALENT WIN32 AP
Cancel Timer

Appendix A: Details of Sysem Calls with Parameters

TimerInfoBuffer Pointer to the buffer that receives information about the
timer object.

TimerInfoBufferSize Size of the buffer (in bytes) pointed to by
TimerInfoBuffer.

BytesCopied Pointer to the variable that receives the number of bytes
copied into TimerInfoBuffer. ,

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by TimerInfoBuffer must be exactly 16 bytes. The information
in the buffer is organized as follows:

typedef struct Timerinfo_t {
LARGE_INTEGER DueTime;
ULONG TimerState;
ULONG Unused;

)y TIMERINFO, *PTIMERINFO;

TimerState member is O if the timer is in not Sgnded state and 1 if the timer is
in signaled state. DueTime is the time remaining for the timer to expire.

EQUIVALENT WIN32 API
None.

NtQueryTimerResolution
NTSTATUS
NtQueryTimerResolution(
OUT PULONG MaxResolution,
OUT PULONG MinResolution.
OUT PULONG SystemResolution

NtQueryTimerResolution gets the information about the granularity of the clock
interrupt.

PARAMETERS

MaxResolution Pointer to the variable that receives the maximum
resolution (in nanoseconds) supported on the processor.

285

282 Appendix A: Details of Sysem Calls with Parameters

PARAMETERS

hObject Handle to the object to wait on.
bAlertable Flag specifying whether the wait is alertable.
Timeout Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
WaitForSingleObject

NtCancelTimeK
NTSTATUS
NtCancelTimer(
IN HANDLE hTimer,
OUT PBOOLEAN pbState

NtCancel Timer cancels the timer and removes it from the system timer queue.

PARAMETERS
hTimer Handle to the timer object.
pbState Pointer to the variable that receives the state of the timer at the

time of cancellation. Receives TRUE if the timer is signaled and
FALSE if the timer is not signaed.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API function does not return the state of the timer object,
whereas the system service does return the state.

EQUIVALENT WIN 32 API
Cance Timer

Appendix A: Details of System Calls with Parameters

NtCreateTimer
NTSTATUS
NtCreateTimer(
OUT PHANDLE phTimer,
IN ACCESS_MASK AccessMask.
IN POBJECT_ATTRIBUTES DbjectAttributes,
IN TIMER_TYPE TimerType

NtCresteTimer creates a new timer object.

PARAMETERS

phTimer Pointer to the variable that receives handle to the timer
object.

AccessMask Type of access requested to the timer object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the timer object to be created, such as
name, parent directory, objectflags, and so on.

TimerType Type of the timer. It can be ether NotificationTimer or
SynchronizationTimer. 0 .,

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

When atimer of type NotificationTimer is signaled, al threads waiting on the timer
object are reeased and the timer remains in signaed state. When a timer of type
SynchronizationTimer is signaled, only one thread waiting on the timer object is
released. All other threads waiting for the same timer object continue to wait, and
the timer object is again st back to not signaled. The Equivalent Win32 API of this
system service enables you to create timers of SynchronizationTimer type only,
whereas the system service enables you to create both types of timers.

EQUIVALENT WIN32 API ,
CreateWaitableTimer

Nt GpenTi mer
NTSTATUS r,
Nt OpenTi mer (
OUT PHANDLE phTi mer,
I N ACCESS MASK AccessMask,

283

284

Appendix A: Details of System Calls with Parameters

IN POBJECT_ATTRIBUTES ObjectAttributes

);
NtOpenTimer opens handle to an existing named timer object.
PARAMETERS
phTimer Pointer to the variable that receives handle to the timer
object.
AccessMask Type of access requested to the timer object.
ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the

information about the timer object to be opened, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
OpenWaitableTimer

NtQueryTimer
NTSTATUS
NtQueryTimer(

IN HANDLE hTimer,
IN TIMER_INFO_CLASS InfoClass.
OUT PVOID TimerInfoBuffer,
IN ULONG TimerInfoBufferSize,
OUT PULONG BytesCopied

);
NtQueryTimer queries the state information about the timer object.
PARAMETERS
hTimer Handle to the timer object.
InfoClass Information class requested for the timer object. This

should be O.

286

Appendix A: Details of System Calls with Parameters

MinResolution

SystemResolution

RETURN VALUE

Pointer to the variable that receives the minimum
resolution (in nanoseconds) supported on the processor.

Pointer to the variable that receives resolution (in
nanoseconds) currently used by the system.

Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API

None.

Nt Set Ti ner
NTSTATUS

NtSetTimer(

IN HANDLE hTi mer,

IN PLARGE_I NTEGER pDueTi me,

N PTI MERAPCROUTI NE pfnCompl etionRoutine OPTI ONAL,
N DWORD pfnCompl etionRoutineArg OPTI ONAL,

IN BOOLEAN bResume,

IN LONG Period.

OUT PBOOLEAN bTimerState

N Set Ti mer activates the timer specified by hTiner.

PARAMETERS

hTimer

DueTime

pfnCompletionRoutine

VoI D

Handle to the timer object.

Time at which the timer will be set to signaled.
Positive values indicate absolute time. Negative values
represent time relative to the current system time. The
due time is specified in terms of 100ns units.

Pointer to the function that will be called when the
timer expires. The completion routine should be
defined according to following prototype. This
parameter is optional and can be NULL.

Appendix A: Details of System Calls with Parameters

(AP ENTRY *PTI MERAPCROUTI NE) (
LPVOID | pArgToCompl etionRoutine,
DWORD dwTimerLowValue,

DWORD dwTimerHighValue

);

pfnCompletionRoutineArg Optional argument that will be passed to
pfnCompletionRoutine. This parameter can be
NULL.

bResume Flag specifying whether to set the system in
suspended power conservation mode when the
timer expires. This parameter is ignored if the
platform does not support this feature.

Period Specifies the time in milliseconds by which the
timer will be reactivated once the timer eapses. If
this parameter is 0, the timer is signaled only
once.

bTimerState Pointer to the variable that receives the present
state of the timer (TRUE for signaled and FALSE
for not signaled).

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivaent Win32 API of the cal does not return the present state of the timer,
whereas the system service does return this information.

EQUIVALENT WIN32 APl
SetWaitableTimer

Nt Set Ti mer Resol uti on
NTSTATUS
NtSetTimerResolution(
IN ULONG NewResol uti on,
I N BOOLEAN bSet,
OUT PULONG pResol utionSet

)f

NtSetTimerResolution changes the timer resolution for the clock interrupt.

287

288

Appendix A: Details of Sysem Calls with Parameters

PARAMETERS

NewResolution Newly requested resolution for the timer in units of 100ns.
The acceptable values for X86 platforms are between 1 and
10 milliseconds.

bSet Flag specifying whether to set new resolution (TRUE) or to
restore previoudy st resolution (FALSE). The NewResolution
parameter is ignored if this parameter is FALSE.

pResol utionSet Pointer to the variable that receives the timer resolution set

by the system.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
None.

NtQueryPerformanceCounter
NTSTATUS
NtQueryPerformanceCounter(
OUT PLARGE_INTEGER pPerformanceCount.
OUTPLARGE_INTEGERpFrequency v

NtQueryPerformanceCounter retrieves the current value and frequency of the
high-resolution performance counter if it exists.

PARAMETERS

pPerformanceCount Pointer to the variable that receives the current
performance counter value. If the hardware does not
support a high-resolution performance counter, the
value will be st to 0.

pFrequency Pointer to the variable that receives the frequency of

the high-resolution performance counter per second. If
the hardware does not support a high-resolution
performance counter, the value will be set to 0.

Appendix A: Details of Sysem Cdls with Parameters

289

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
QueryPerformanceCounter, QueryPerformanceFreguency

Nt Quer ySyt enfi me
NTSTATUS
NtQuerySystemTime(
OUT PLARGE_INTEGER pSystemTime

NtQuerySystemTime retrieves the number of 100 nanosecond intervas elgpsed
since January 1, 1601.

PARAMETERS

pSystemTime Pointer to the variable that receives the number of 100
nanosecond intervals elgpsed since January 1, 1601 Thetime
isexpressed as GMT.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
GetSystemTime

NtSetSytemTime
NTSTATUS
NtSetSystemTime(
IN PLARGE_INTEGER pNewSystemTime,
OUT PLARGE_INTEGER pOldsystemTime OPTIONAL

);
NtSetSystemTime sets the system time.

290 Appendix A: Details of System Calls with Parameters

PARAMETERS

pNewSystemTime Pointer to the variable that contains the system time
expressed in GMT.

pOldSystemTime Pointer to the variable that receives the present system

time in GMT. This parameter is optional.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENTWIN32 AP
SetSystemTime

NtGetTickCount

ULONG
NtGetTickCount(

);

NtGetTickCount returns the number of milliseconds that have elapsed since
Windows started.

PARAMETERS
None.

RETURN VALUE
Returns the milliseconds el apsed.

COMMENTS
None.

EQUIVALENT WIN32 AP
GetTickCount

Nt AddAt om
NTSTATUS
Nt AddAt om(
I N PWCHAR pSt nng,
N ULONG pStringLength,
OUT PATOM pAtom

