
Appendix A: Details of System Calls with Parameters 261

IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT_ATTRIBUTES ObjectAt tnbutes

);

NtOpenSymbolicLinkObject opens an existing symbolic link object.

PARAMETERS

hSymbolicLink

AccessMask

ObjectAttributes

Pointer to the variable that receives handle to the
SymbolicLink object.

Type of access requested to the symbolic link object. This
can be a combination of any of the following flags:
SYMBOLIC_LINK_QUERY or - - - -.,... .,
SYMBOLIC_LINK_ALL_ACCESS

Points to the OBJECT_ATTRIBUTES structure containing
information about the symbolic link object to be opened,
such as name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtQuerySymbolicLlnkObject ,
NTSTATUS

NtQuerySymbo l i cL inkOb jec t (
IN HANDLE hSymbol icL ink , ..-. ..., , -_._ ,
IN OUT PUNICODE_STRING Ob jec tName ,
OUT PULONG BytesReturned

):

NtQuerySymbolicLinkObject returns the object referred to by a given symbolic
link object. . . -

PARAMETERS

hSymbolicLink Handle to the symbolic link object returned using
NtOpenSymbolicLinkObject or NtCreateSymbolicLinkObject.

262 Appendix A: Details of System Calls with Parameters

ObjectName

BytesReturned

Pointer to the initialized Unicode string. The object name
referred to by the given symbolic link is returned. The buffer
for the Unicode string must already be allocated.
Pointer to the variable that returns the number of bytes
copied into the buffer pointed to by ObjectName.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The user-mode API call QueryDosDevice enables the query symbolic link object
only under the object directory named "\??", whereas this system service enables
you to query any symbolic link in the object name space provided you have
permission.

EQUIVALENT WIN 3 2 API
QueryDosDevice (limited support)

NtQueryObject
NTSTATUS

N t Q u e r y O b j e c t (
IN HANDLE hOb jec t ,
IN OBJECT_INFORMATION_CLASS In foC lass ,
OUT P V O I D Buf fer ,
IN ULONG Bu f fe rS i ze ,
OUT PULONG BytesRetumed

);

NtQueryObject returns different kinds of information about the object based on
the InfoClass.

PARAMETERS

hObject

InfoClass

Buffer

BufferSize

BytesReturned

Handle to the object.

Type of information to be retrieved. This can take values from
Oto 4.

Pointer to the buffer that receives information about the
object.

Size of the buffer in bytes pointed to by Buffer.

Pointer to the variable that receives the number of bytes
copied into the Buffer.

Appendix A: Details of System Calls with Parameters 263

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Different information is returned based upon the InfoClass parameter. Here is the
layout of Buffer based on the InfoClass:

InfoClass=0

typedef struct Objec tBas ic ln fo_t {
char Unknownl [8] ;
ULONG HandleCount ;
ULONG ReferenceCount ;
ULONG PagedQuota ;
ULONG NonPagedQuo ta ;
char Unknown2 [32] ;

} OBJECT_BASIC_INFO, *POBJECT_BASIC_INFO:

InfoClass=l Variable length structure based on the actual length of the object name.

typedef struct ObjectNameInfo_t (
UNICODE_STRING ObjectName;
WCHAR Ob jec tNameBuf fe r [l] ;

} OBJECT_NAME_INFO, *POBJECT_NAME_INFO;

InfoClass=2 Variable length structure based on the actual length of the object type.

typedef struct ObjectTypeInfo_t {
UNICODE_STRING Ob jec tTypeName;
char Unknown[0x58] ;
W C H A R Ob jec tTypeNameBuf fe rE l] ;

1 OBJECT_TYPE_ INFO, *POBJECT_TYPE_INFO;

InfoClass=3 Variable length structure based on the number of object types and
actual length of each object type.

typedef struct ObjectAl !TypeInfo_t {
ULONG NumberOfObjec tTypes;
OBJECT_TYPE_INFO ObjectsTypelnfo[l] ;

} OBJECT_ALL_TYPES_INFO, *POBJECT_ALL_TYPES_INFO;

InfoClass=4

typedef struct ObjectProtect ionInfo_t {
BOOLEAN blnhent;

264 Appendix A: Details of System Calls with Parameters

BOOLEAN bPro tec tHand le ;
} OBJECT_PROTECTION_INFO, *POBJECT_PROTECTION_INFO;

EQUIVALENT WIN32 API
GetHandlelnformation (limited support)

NtSetlnformationObject
NTSTATUS

NtSe t In fo rmat ionOb jec t (
IN HANDLE hObject ,
IN OBJECT_INFORMATION_CLASS InfoClass,
IN P V O I D Buf fer ,
IN ULONG Buf ferSize

);

NtSetlnformationObject changes the attributes of the object based on the InfoClass.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtCreateEvent
NTSTATUS

NtCreateEvent(
OUT PHANDLE hEvent,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttnbutes.

hObject
InfoClass

Buffer

BufferS ize

Handle to the object.
Type of information to be set. This should be 4.

Pointer to the buffer that contains the information about the
object. Buffer should be in the OBJECT_PROTECTION_INFO
structure format.
Size of the buffer in bytes pointed to by Buffer.

Appendix A: Details of System Calls with Parameters 265

IN EVENT_TYPE EventType.
IN BOOLEAN b lmt ia lS ta te

);

NtCreateEvent creates a new event object.

PARAMETERS IT?

hEvent

AccessMask

ObjectAttributes

EventType

blnitialState

Pointer to the variable that receives handle to the event
object.

Type of access requested to the event object. This can be a
combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the event object to be created, such as
name, parent directory, objectflags, and so on.

Type of the event. This can be either of NotificationEvent,
SynchronizationEvent. EventType is enumerated data type
defined in NTDEF.H file in DDK. _ . , ,,-

Specifies whether the initial state of the event will be
signaled (TRUE) or not signaled (FALSE).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
When the EventType is NotificationEvent and the event is signaled, all the threads
waiting on the event are released. The state of the event remains signaled unless
someone explicitly calls NtResetEvent or NtClearEvent.

When the EventType is SynchronizationEvent and the event is signaled, only
one thread waiting on the event is released. All other threads continue to wait and
the state of the event is again reset back to nonsignaled.

EQUIVALENT WIN32 API - :
CreateEvent

NtOpenEvent
NTSTATUS

NtOpenEvent(

266 Appendix A: Details of System Calls with Parameters

OUT PHANDLE hEvent ,
IN ACCESS_MASK D e s i r e d A c c e s s ,
IN POBJECT_ATTRIBUTES Objec tAt t r ibu tes

);

NtOpenEvent opens a handle to the existing named event object.

PARAMETERS ~VH

hEvent

DesiredAccess

ObjectAttributes

Pointer to the variable that receives handle to the event
object.

Type of access requested to the event object. This can be a
combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS.

Points to the OBJECT_ATrRIBUTES structure containing the
information about the event object to be opened, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS t
None.

EQUIVALENT WIN32 API
OpenEvent

NtClearEvent
NTSTATUS

NtClearEvent(
IN HANDLE hEvent

); -

NtClearEvent sets the state of the event object to nonsignaled.

PARAMETERS

hEvent Handle to the event object returned using the NtCreateEvent or
NtOpenEvent system service.

Appendix A: Details of System Calls with Parameters 267

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtPulseEvent
NTSTATUS

N t P u l s e E v e n t (
IN HANDLE hEvent
OUT OPTIONAL PULONG P r e v i o u s S t a t e) ;

NtPulseEvent sets the state of the event object to signaled, releases one or more
threads waiting on the event, and sets the event back to nonsignaled.

PARAMETERS

hEvent

PreviousState

Handle to the event object returned using the NtCreateEvent i
NtOpenEvent system service.

Pointer to the variable that receives the previous state of the
event.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
If the event referred to by hEvent is a NoficationEvent, then all the threads waiting
on the event are released. If the event is of the type SynchronizationEvent, then
only one thread waiting on the event is released.

EQUIVALENT WIN32 API
PulseEvent

NtQueryEvent
NTSTATUS

NtQueryEvenU
IN HANDLE hEvent,
IN EVENT_INFO_CLASS InfoClass,
OUT PVOID EventlnfoBuffer,

268 Appendix A: Details of System Calls with Parameters

IN ULONG Even t ln foBuf fe rS ize ,
OUT PULONG BytesCopied

);

NtQueryEvent gets the information about the event object.

PARAMETERS

hEvent

InfoClass

EventlnfoBuffer

EventlnfoBufferSize

BytesCopied

Handle to the event object returned using the
NtCreateEvent or NtOpenEvent system service.
Information class requested for the event object. This
should be 0.

Pointer to the buffer that receives information about the
event object.

Size of the buffer (in bytes) pointed to by
EventlnfoBuffer.

Pointer to the variable that receives the number of bytes
copied into EventlnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by EventlnfoBufferSize must be at least 8 bytes. The informa-
tion in the buffer is organized as follows:

typedef st ruct Event lnfo_t {
EVENT_TYPE Even tType .
LONG EventState,

} E V E N T I N F O , * P E V E N T I N F O ;

EQUIVALENT WIN32 API
None.

NtResetEvent
NTSTATUS

NtResetEvent(
IN HANDLE hEvent,
OUT OPTIONAL PULONG PreviousState

);

___________Appendix A: Details of System Calls with Parameters___269

NtResetEvent sets the state of the event object to nonsignaled and returns the
previous state of the event in PreviousState.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
ResetEvent (does not return the previous state of the event)

NtSetEvent
NTSTATUS

NtSetEvent (
IN HANDLE hEvent,
OUT OPT IONAL PULONG Prev iousSta te ,

NtSetEvent sets the state of the event object to signaled and returns the previous
state of the event in PreviousState.

PARAMETERS

hEvent

PreviousState

Handle to the event object returned using the NtCreateEvent i
NtOpenEvent system service.

Pointer to the variable that receives the previous state of the
event.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

hEvent

PreviousState

Handle to the event object returned using the NtCreateEvent or
NtOpenEvent system service.
Pointer to the variable that receives the previous state of the
event.

270 Appendix A: Details of System Calls with Parameters

COMMENTS
None.

EQUIVALENT WIN32 API
SetEvent (does not return the previous state of the event)

NtCreateEventPair • '
NTSTATUS

NtCrea teEven tPa i r (
OUT PHANDLE hEven tPa i r .
IN ACCESS_MASK AccessMask ,
IN POBJECT_ATTRIBUTES ObjectAttn butes

);

NtCreateEventPair creates a new event-pair object.

PARAMETERS

hEventPair

AccessMask

ObjectAttributes

Pointer to the variable that receives handle to the event-pair
object.

Type of access requested to the event-pair object. This can be
a combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the event-pair object to be created, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The event-pair object consists of two SynchronizationEvent type event objects. The
event-pair objects are used by Windows NT 3.51 to implement Quick LPC. The first
event is called the low event of the event-pair, and the second event is called the
high event of the event pair.

EQUIVALENT WIN32 API
None.

NtOpenEventPair
NTSTATUS

Appendix A: Details of System Calls with Parameters 271

NtOpenEventPai r(
OUT PHANDLE hEven tPa i r ,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES Ob jec tA t tnbu tes

);

NtOpenEventPair opens a handle to an existing named event-pair object.

PARAMETERS

hEventPair

DesiredAccess

ObjectAttributes

Pointer to the variable that receives handle to the event-pair
object.

Type of access requested to the event-pair object. This can be
a combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS

Points to the OBJECT_ATTRIBUTES structure containing the
information about the event-pair object to be opened, such
as name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

c

EQUIVALENT WIN32 API
None.

NtSetHighEventPair
NTSTATUS

NtSetHighEventPair(
IN HANDLE hEven tPa i r

);

NtSetHighEventPair sets the high event of the event-pair to signaled state.

PARAMETERS

hEventPair Handle to the event-pair.

272____Appendix A: Details of System Calls with Parameters_____________

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtSetHi ghWai tLowEventPair
NTSTATUS

N t S e t H i g h W a i t L o w E v e n t P a i r C
IN HANDLE hEven tPa i r

);

NtSetHighWaitLowEventPair sets the high event of the event-pair to signaled
state and waits for the low event of the event pair to get signaled.

PARAMETERS

hEventPair Handle to the event-pair.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtSetLowEventPair
NTSTATUS

NtSetLowEventPa i r(
IN HANDLE hEven tPa i r

);

NtSetLowEventPair sets the low event of the event-pair to signaled state.

PARAMETERS

hEventPair Handle to the event-pair.

____________Appendix A: Details of System Calls with Parameters____273

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API -
None.

NtSetLowWaitHighEventPair
NTSTATUS

N t S e t L o w W a i t H i g h E v e n t P a i r C
IN HANDLE hEventPa i r

);

NtSetLowWaitHighEventPair sets the low event of the event-pair to signaled '
state and waits for the high event of the event pair to get signaled.

PARAMETERS

hEventPair Handle to the event-pair.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN3 2 API
None.

NtCreateMutant
NTSTATUS

NtCreateMutant (
OUT PHANDLE hMutex,
IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT_ATTRIBUTES Ob jec tAt t r ibu tes ,
IN BOOLEAN b ln i t ia lState

) ;

NtCreateMutant creates a new mutex object.

-f

274 Appendix A: Details of System Calls with Parameters

PARAMETERS

hMutex

AccessMask

ObjectAttributes

blnitialState

Pointer to the variable that receives handle to the mutex
object.
Type of access requested to the mutex object.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the mutex object to be created, such as
name, parent directory, objectflags, and so on.
Initial state of the mutex: signaled (TRUE), not signaled
(FALSE).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
CreateMutex

NtOpenMutant
NTSTATUS

NtOpenMutant(
OUT PHANDLE hMutex,
IN ACCESS_MASK Des i r edAccess ,
IN POBJECT_ATTRIBUTES Ob jec tAt tnbutes

);

NtOpenMutant opens handle to an existing named mutex object.

PARAMETERS

hMutex

DesiredAccess
ObjectAttributes

Pointer to the variable that receives handle to the mutex
object.
Type of access requested to the mutex object.
Points to the OBJECT_ATTRIBUTES structure containing the
information about the mutex object to be opened, such as
name, parent directory, objectflags, and so on.

Appendix A: Details of System Calls with Parameters 275

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
OpenMutex

NtQueryMutant
NTSTATUS

N t Q u e r y M u t a n t (
IN HANDLE hMutex,
IN MUTEX_INFO_CLASS InfoClass,
OUT PVOID MutexInfoBuffer,
IN ULONG MutexInfoBufferSize,
OUT PULONG BytesCopied

NtQueryMutant queries the state information about the mutex object.

PARAMETERS

hMutex

InfoClass

MutexInfoBuffer

MutexInfoBufferSize

BytesCopied

Handle to the mutex object returned using the
NtCreateMutant or NtOpenMutant system service.
Information class requested for the mutex object. This
should be 0.

Pointer to the buffer that receives information about
the mutex object.

Size of the buffer (in bytes) pointed to by
MutexInfoBuffer.

Pointer to the variable that receives the number of
bytes copied into MutexInfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by MutexInfoBufferSize must be at least 8 bytes. The infor-
mation in the buffer is organized as follows: , •* -

276 Appendix A: Details of System Calls with Parameters

typedef struct Mutexlnfo_t (
LONG MutexState;
BOOLEAN bOwnedByCa l l i ngTh read ;
BOOLEAN bAbandoned;
USHORT Unused:

] MUTEXINFO, *PMUTEXINFO;

If the calling thread of this system service owns the mutex, then
bOwnedByCallingThread will be TRUE. MutexState is TRUE if the mutex object is
signaled; otherwise, it is FALSE. bAbandoned is TRUE if the thread owning the mu-
tex died without releasing the mutex.

EQUIVALENT WIN 3 2 API
None.

NtReleaseMutant
NTSTATUS

NtRe leaseMu tan t (
IN HANDLE hMutex,
OUT OPTIONAL PULONG bS igna l l ed , -

):

NtReleaseMutant releases an owned mutex object.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
A mutex can be owned by only one thread at a time. However, the same thread can
acquire the same mutex multiple times. If the thread acquires the same mutex mul-
tiple times, then it has to call NtReleaseMutant that many times to set the mutex to
signaled. The bSignalled variable receives whether the mutex was set to signaled.

EQUIVALENT WIN 3 2 API
ReleaseMutex

hMutex

bSingalled

Handle to the mutex object returned using the NtCreateMutant or
NtOpenMutant system service.

Pointer to the variable that receives whether the mutex was set to
signaled state as a result of system service. The returned value is
0 if the mutex is set to signaled state.

1
Appendix A: Details of System Calls with Parameters 277

NtCreateSemaphore
NTSTATUS

NtCreateSemaphore(
OUT PHANDLE hSemaphore,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttnbutes ,
IN ULONG ImtialCount,
IN ULONG MaxCount

);

NtCreateSemaphore creates a new semaphore object.

PARAMETERS

hSemaphore

AccessMask

ObjectAttributes

InitialCount

MaxCount

Pointer to the variable that receives handle to the
semaphore object.

Type of access requested to the semaphore object.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the semaphore object to be created, such
as name, parent directory, objectflags, and so on.

Initial count of the semaphore.

Maximum count of the semaphore

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
CreateSemaphore

NtOpenSemaphore
NTSTATUS

NtOpenSemaphore(
OUT PHANDLE hSemaphore ,
IN A C C E S S _ M A S K D e s i r e d A c c e s s ,
IN POBJECT_ATTRIBUTES ObjectAt tnbutes

);

NtOpenSemaphore opens handle to an existing named semaphore object.

278 Appendix A: Details of System Calls with Parameters

PARAMETERS

hSemaphore

DesiredAccess

ObjectAttributes

Pointer to the variable that receives handle to the
semaphore object.

Type of access requested to the semaphore object.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the semaphore object to be opened, such
as name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
OpenSemaphore

NtQuerySemaphore
NTSTATUS

NtQuerySemaphoreC
IN HANDLE hSemaphore,
IN SEMAPHORE_INFO_CLASS In foC lass ,
OUT P V O I D Semaphore ln foBuf fe r ,
IN ULONG Semapho re ln foBu f f e rSnze ,
OUT PULONG BytesCopied

):

NtQuerySemaphore queries the information about the Semaphore object.

PARAMETERS

hSemaphore

InfoClass

SemaphorelnfoBuffer

SemaphorelnfoBufferSize

Handle to the semaphore object returned using the
NtCreateSemaphore or NtOpenSemaphore system
service.
Information class requested for the semaphore
object. This should be 0.
Pointer to the buffer that receives information
about the semaphore object.
Size of the buffer (in bytes) pointed to by
SemaphorelnfoBuffer.

____________Appendix A: Details of System Calls with Parameters____279

BytesCopied Pointer to the variable that receives the number of
bytes copied into SemaphorelnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by SemaphorelnfoBufferSize must be at least 8 bytes. The in-
formation in the buffer is organized as follows:

typedef struct Semaphorelnfo_t (
ULONG CurrentCount ;
ULONG MaxCoun t ;

) SEMAPHORE_INFO, *PSEMAPHORE_INFO;

EQUIVALENT WIN32 API
None.

NtReleaseSemaphore
NTSTATUS

NtRel easeSemaphore(
IN HANDLE hSemaphore,
IN ULONG ReleaseCount,
OUT PULONG PreviousCount , ,
):

NtReleaseSemaphore releases semaphore object ReleaseCount times.

PARAMETERS

hSemaphore

ReleaseCount

PreviousCount

Handle to the semaphore object returned using the
NtCreateSemaphore or NtOpenSemaphore system service.

Number of times to release semaphore.
Pointer to the variable that receives the previous count of the
semaphore.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

280 Appendix A: Details of System Calls with Parameters

COMMENTS
None.

EQUIVALENT WIN32 API
ReleaseSemaphore

NtSignalAndWaitForSirigleObject(
NTSTATUS

N t S i g n a l A n d W a i t F o r S i n g l e O b j e c t (
IN HANDLE hS igna lOb jec t ,
IN HANDLE h W a i t O b j e c t ,
IN BOOLEAN bA le r tab le ,
IN PLARGE_INTEGER Timeout

);

NtSignalAndWaitForSingleObject releases the object specified by hSignalObject
and waits on the object specified by hWaitObject.

PARAMETERS

hSignalObject

hWaitObject

bAlertable

Timeout

Handle to the object to be released. This should be a handle to
a mutex or event, or a semaphore object.

Handle to the object to be acquired (wait on). This should be
handle to a mutex or event, or a semaphore object.

Flag specifying whether the wait is alertable.

Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtWai tForMulti pieObjects(
NTSTATUS

NtWaitForMultipleObjects(
IN ULONG nObjects,
IN HANDLE *ObjectHandleArray.
IN WAIT_TYPE WaitType,

Appendix A: Details of System Calls with Parameters 281

IN BOOLEAN bAler tab le ,
IN PLARGE_INTEGER Timeout

);

NtWaitForMultipleObjects waits on multiple objects to be released (set to signaled).

PARAMETERS

nObjects

ObjectHandleArray

WaitType
bAlertable

Timeout

Number of object handles in the array pointed to by
ObjectHandleArray.

Pointer to the array that contains handle to the objects
to wait on.

Type of wait. This could be WaitAll or WaitAny.
Flag specifying whether the wait is alertable.

Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
When WaitAll is specified, the function returns only when all the objects referred
by handles in ObjectHandleArray are in signaled state, whereas when WaitAny is
specified, the function returns when any one of the objects referred by handles in
ObjectHandleArray is in signaled state. The wait is abandoned when Timeout oc-
curs, irrespective of WaitType.

EQUIVALENT WIN 3 2 API
WaitForMultipIeObjects

NtWaitForSingleObjectC
NTSTATUS

NtWaitForSingleObject(
IN HANDLE hObject,
IN BOOLEAN bAlertable,
IN PLARGE_INTEGER Timeout

):

NtWaitForSingleObject waits on the object to be released (set to signaled).

282 Appendix A: Details of System Calls with Parameters

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
WaitForSingleObject

NtCancelTimerC
NTSTATUS

N t C a n c e l T i m e r (
IN HANDLE hTimer,
OUT PBOOLEAN pbState

);

NtCancelTimer cancels the timer and removes it from the system timer queue.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API function does not return the state of the timer object,
whereas the system service does return the state.

EQUIVALENT WIN 3 2 API
CancelTimer

PARAMETERS

hObject
bAlertable

Timeout

Handle to the object to wait on.

Flag specifying whether the wait is alertable.

Pointer to the variable that contains the timeout for wait.

hTimer

pbState

Handle to the timer object.

Pointer to the variable that receives the state of the timer at the
time of cancellation. Receives TRUE if the timer is signaled and
FALSE if the timer is not signaled.

Appendix A: Details of System Calls with Parameters 285

TimerlnfoBuffer

TimerlnfoBufferSize

BytesCopied

Pointer to the buffer that receives information about the
timer object.

Size of the buffer (in bytes) pointed to by
TimerlnfoBuffer.

Pointer to the variable that receives the number of bytes
copied into TimerlnfoBuffer. , •?. ̂ j

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The buffer pointed to by TimerlnfoBuffer must be exactly 16 bytes. The information
in the buffer is organized as follows:

typedef struct Timerlnfo_t {
LARGE_INTEGER DueTime;
ULONG T imerSta te ;
ULONG Unused;

) T I M E R I N F O , *PT IMERINFO;

TimerState member is 0 if the timer is in not signaled state and 1 if the timer is
in signaled state. DueTime is the time remaining for the timer to expire.

EQUIVALENT WIN32 API
None.

NtQueryTimerResolution
NTSTATUS

NtQueryT imerReso lu t ion(
OUT PULONG MaxResolut ion,
OUT PULONG M i n R e s o l u t i o n .
OUT PULONG SystemResolu t ion

NtQueryTimerResolution gets the information about the granularity of the clock
interrupt.

PARAMETERS

MaxResolution Pointer to the variable that receives the maximum
resolution (in nanoseconds) supported on the processor.

282____Appendix A: Details of System Calls with Parameters_____________

PARAMETERS

hObject Handle to the object to wait on.

bAlertable Flag specifying whether the wait is alertable.

Timeout Pointer to the variable that contains the timeout for wait.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
WaitForSingleObject

NtCancelTimeK
NTSTATUS

NtCance lT imer (
IN HANDLE hTimer ,
OUT PBOOLEAN pbState

NtCancelTimer cancels the timer and removes it from the system timer queue.

PARAMETERS

hTimer Handle to the timer object.

pbState Pointer to the variable that receives the state of the timer at the
time of cancellation. Receives TRUE if the timer is signaled and
FALSE if the timer is not signaled.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API function does not return the state of the timer object,
whereas the system service does return the state.

EQUIVALENT WIN 32 API
CancelTimer

hTimer

pb State

Handle to the timer object.

Pointer to the variable that receives the state of the timer at the
time of cancellation. Receives TRUE if the timer is signaled and
FALSE if the timer is not signaled.

Appendix A: Details of System Calls with Parameters 283

NtCreateTimer
NTSTATUS

NtCreateTimer(
OUT PHANDLE phTimer,
IN ACCESS_MASK A c c e s s M a s k .
IN POBJECT_ATTRIBUTES Ob jec tA t t r i bu tes ,
IN TIMER_TYPE TimerType

);

NtCreateTimer creates a new timer object.

PARAMETERS

phTimer

AccessMask

ObjectAttributes

TimerType

Pointer to the variable that receives handle to the timer
object.

Type of access requested to the timer object.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the timer object to be created, such as
name, parent directory, objectflags, and so on.

Type of the timer. It can be either NotificationTimer or
SynchronizationTimer. -0 , _, , ,

H

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
When a timer of type NotificationTimer is signaled, all threads waiting on the timer
object are released and the timer remains in signaled state. When a timer of type
SynchronizationTimer is signaled, only one thread waiting on the timer object is
released. All other threads waiting for the same timer object continue to wait, and
the timer object is again set back to not signaled. The Equivalent Win32 API of this
system service enables you to create timers of SynchronizationTimer type only,
whereas the system service enables you to create both types of timers.

EQUIVALENT WIN32 API , ._-
CreateWaitableTimer

NtOpenTimer
NTSTATUS r,

NtOpenTimer(
OUT PHANDLE phTimer,
IN ACCESS_MASK AccessMask,

284 Appendix A: Details of System Calls with Parameters

IN POBJECT_ATTRIBUTES Ob jec tA t t r i bu tes
);

NtOpenTimer opens handle to an existing named timer object.

PARAMETERS

phTimer

AccessMask

ObjectAttributes

Pointer to the variable that receives handle to the timer
object.

Type of access requested to the timer object.

Points to the OBJECT_ATTRIBUTES structure containing the
information about the timer object to be opened, such as
name, parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
OpenWaitableTimer

NtQueryTimer
NTSTATUS

NtQueryT imer (
IN HANDLE hTimer,
IN TIMER_INFO_CLASS In foClass .
OUT PVOID T imer ln foBuf fe r ,
IN ULONG T i m e r l n f o B u f f e r S n z e ,
OUT PULONG BytesCop ied

);

NtQueryTimer queries the state information about the timer object.

PARAMETERS

hTimer

InfoClass

Handle to the timer object.

Information class requested for the timer object. This
should be 0.

286 Appendix A: Details of System Calls with Parameters

MinResolution

SystemResolution

Pointer to the variable that receives the minimum
resolution (in nanoseconds) supported on the processor.

Pointer to the variable that receives resolution (in
nanoseconds) currently used by the system.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtSetTimer
NTSTATUS

NtSetTimer(
IN HANDLE hTimer,
IN PLARGE_INTEGER pDueTime,
IN PTIMERAPCROUTINE pfnCompletionRoutine OPTIONAL,
IN DWORD pfnCompletionRoutineArg OPTIONAL,
IN BOOLEAN bResume,
IN LONG Period.
OUT PBOOLEAN bTimerState

NtSetTimer activates the timer specified by hTimer.
PARAMETERS
hTimer

DueTime

pfnCompletionRoutine

Handle to the timer object.

Time at which the timer will be set to signaled.
Positive values indicate absolute time. Negative values
represent time relative to the current system time. The
due time is specified in terms of 100ns units.

Pointer to the function that will be called when the
timer expires. The completion routine should be
defined according to following prototype. This
parameter is optional and can be NULL.

VOID

Appendix A: Details of System Calls with Parameters 287

(APIENTRY *PTIMERAPCROUTINE)(
LPVOID IpArgToCompletionRoutine,
DWORD dwTimerLowValue,
DWORD dwTimerHighValue

);

pfnCompletionRoutineArg

bResume

Period

bTimerState

Optional argument that will be passed to
pfnCompletionRoutine. This parameter can be
NULL.

Flag specifying whether to set the system in
suspended power conservation mode when the
timer expires. This parameter is ignored if the
platform does not support this feature.

Specifies the time in milliseconds by which the
timer will be reactivated once the timer elapses. If
this parameter is 0, the timer is signaled only
once.

Pointer to the variable that receives the present
state of the timer (TRUE for signaled and FALSE
for not signaled).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API of the call does not return the present state of the timer,
whereas the system service does return this information.

EQUIVALENT WIN32 API
SetWaitableTimer

NtSetTimerResolution
NTSTATUS

NtSetTimerResolution(
IN ULONG NewResolution,
IN BOOLEAN bSet,
OUT PULONG pResolutionSet

)f

NtSetTimerResolution changes the timer resolution for the clock interrupt.

288 Appendix A: Details of System Calls with Parameters

PARAMETERS

NewResolution

bSet

pResolutionSet

Newly requested resolution for the timer in units of 100ns.
The acceptable values for X86 platforms are between 1 and
10 milliseconds.

Flag specifying whether to set new resolution (TRUE) or to
restore previously set resolution (FALSE). The NewResolution
parameter is ignored if this parameter is FALSE.

Pointer to the variable that receives the timer resolution set
by the system.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
None.

NtQueryPerformanceCounter
NTSTATUS

NtQueryPerformanceCounter(
OUT PLARGE_INTEGER pPer fo rmanceCount .
OUT PLARGE_INTEGER pFrequency v -

):

NtQueryPerformanceCounter retrieves the current value and frequency of the
high-resolution performance counter if it exists.

PARAMETERS

pPerformanceCount

pFrequency

Pointer to the variable that receives the current
performance counter value. If the hardware does not
support a high-resolution performance counter, the
value will be set to 0.

Pointer to the variable that receives the frequency of
the high-resolution performance counter per second. If
the hardware does not support a high-resolution
performance counter, the value will be set to 0.

____________Appendix A: Details of System Calls with Parameters____289

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
QueryPerformanceCounter, QueryPerformanceFrequency

NtQuerySytemTime
NTSTATUS

NtQuerySystemTirne(
OUT PLARGE_INTEGER pSystemTime

);

NtQuerySystemTime retrieves the number of 100 nanosecond intervals elapsed
since January 1, 1601.

PARAMETERS

pSystemTime Pointer to the variable that receives the number of 100
nanosecond intervals elapsed since January 1, 1601. The time
is expressed as GMT.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
GetSystemTime

NtSetSytemTime
NTSTATUS

NtSetSystemTime(
IN PLARGE_INTEGER pNewSystemTime,
OUT PLARGE^INTEGER pOldsystemTime OPTIONAL

);

NtSetSystemTime sets the system time.

290 Appendix A: Details of System Calls with Parameters

PARAMETERS

pNewSystemTime

pOldSystemTime

Pointer to the variable that contains the system time
expressed in GMT.

Pointer to the variable that receives the present system
time in GMT. This parameter is optional.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
SetSystemTime

NtGetTickCount
ULONG

NtGetT ickCount (
);

NtGetTickCount returns the number of milliseconds that have elapsed since
Windows started.

PARAMETERS
None.

RETURN VALUE
Returns the milliseconds elapsed.

COMMENTS
None.

EQUIVALENT WIN32 API
GetTickCount

NtAddAtom
NTSTATUS

NtAddAtom(
IN PWCHAR pStnng,
IN ULONG pStringLength,
OUT PATOM pAtom

):

