
Appendix A: Details of System Calls with Parameters 291

NtAddAtom adds the character string to the global atom table and returns an
atom value.

PARAMETERS

pString

pStringLength

pAtom

Pointer to the wide character string to be added to the global
atom table.

Length of the string pointed to by pString.

Pointer to the variable that receives the atom value
corresponding to the string.

r-

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The memory for the atom table is allocated by WIN32K.SYS. The system service
gets the pointer to this memory using a callout established by WIN32K.SYS. This
callout is established by WIN32K.SYS using the PspEstablishWin32Callouts func-
tion from NTOSKRNL. The system service uses this callout to get the pointer to the
global atom table and then manipulates the atom table using its internal functions,
such as RtlAddAtomToAtomTable. These internal functions also reside in user-
mode DLL NTDLL.DLL. These NTDLL routines are used to support local atom tables
(per process). It seems that these internal functions in NTOSKRNL and NTDLL are
shared at the source code level because their binary equivalents are identical. The
user-mode API call GlobalAddAtom uses this system service. The AddAtom func-
tion does not call this system service; instead, it manipulates the local atom table
using internal functions in NTDLL.

The second parameter (pStringLength) is introduced starting from Windows 2000.
Previous versions of Windows NT take only two parameters pString and pAtom.

EQUIVALENT WIN32 API
GlobalAddAtom

NtQuerylnformationAtom
NTSTATUS

NtQuerylnformationAtonH
IN ATOM Atom,
IN ATOM_INFO_CLASS AtomlnfoClass,
OUT PVOID AtomlnfoBuffer,
IN ULONG AtomlnfoBufferLength,
OUT PULONG BytesCopied

);

292 Appendix A: Details of System Calls with Parameters

NtQuerylnformationAtom returns information about specific/all atom objects in
the global atom table.

PARAMETERS

Atom

AtomlnfoClass

AtomlnfoBuffer

AtomlnfoBufferLength

BytesCopied

The atom ID returned by NtAddAtom, NtFindAtom,
and so on.

The type of information requested. This value can be
Oor 1.
Pointer to the buffer that receives the information
about the atoms.

Size of the buffer in bytes pointed to by
AtomlnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into AtomlnfoBuffer. However, this
variable is not set by the system service.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
If the AtomlnfoClass is 1, then the Atom field is ignored and the system service re-
turns information about all the objects in the global atom table. If the AtomlnfoClass
is 0, then the system service returns the information about the atom specified by the
Atom parameter.

For AtomlnfoClass 0, the data in AtomlnfoBuffer is laid out as follows:

typedef struct A tomln foS ing le {
W O R D Re fe renceCount ;
WORD Unknown;
WORD A tomSt r ingLeng th ;
W C H A R AtomStnng[l] ;
) A T O M I N F O S I N G L E , *P ATOMINFOSINGLE;

The size of data returned varies based on the size of the atom string.
For AtomlnfoClass 1, the data in AtomlnfoBuffer is laid out as follows:

typedef struct A tom ln foA l1 (
DWORD T o t a l N u m b e r O f E n t n e s I n G l o b a l A t o m T a b l e ;
ATOM A t o m V a l u e s [l] ;
} ATOMINFOALL , * P A T O M I N F O A L L ;

Appendix A: Details of System Calls with Parameters 293

The size of data returned varies based on the number of entries in the global
atom table.

The user-mode API call can get the atom string corresponding to the atom ID.
Other information is available only through this system service.

EQUIVALENT WIN32 API
GlobalGetAtomName

NtFindAtom
NTSTATUS

NtFindAtomC
IN PWCHAR pString,
IN ULONG pStr ingLength,
OUT PATOM pAtom

);

NtFindAtom retrieves the atom corresponding to the specified string in the
global atom table.

PARAMETERS

pString

pStringLength

pAtom

Pointer to the wide character string to be searched in the
global atom table.

Length of the string pointed to by pString.
Pointer to the variable that receives the atom value
corresponding to the string.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The second parameter (pStringLength) is introduced starting from Windows 2000.
Previous versions of Windows NT take only two parameters, pString and pAtom.

EQUIVALENT WIN32 API
GlobalFindAtom

NtDeleteAtom
NTSTATUS

NtDeleteAtom(
IN ATOM Atomld.

);

294 Appendix A: Details of System Calls with Parameters

NtDeleteAtom decrements the reference count for the specified atom. If the ref-
erence count reaches zero, it deletes the atom from the global atom table.

PARAMETERS

Atomld Atom to be deleted.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
GlobalDeleteAtom

I
NtCreateKey
NTSTATUS

NtCrea teKey (
OUT PHANDLE phKey,
IN ACCESS_MASK D e s i r e d A c c e s s ,
IN POBJECT_ATTRIBUTES Ob jec tA t t r ibu tes ,
IN ULONG T i t le lndex.
IN PUNICODE_STRING C l a s s ,
IN ULONG Crea teOp t i ons ,
OUT PULONG pD ispos i t i on

):

NtCreateKey creates a new Registry key or opens the Registry key if it is already
present.

PARAMETERS

phKey

AccessMask

Pointer to the variable that receives handle to the Registry
key object.

Type of access requested to the Registry key object. This
could be KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUBKEYS, KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY, or KEY_CREATE_LINK, or set of standard
rights such as KEY_READ, KEY_WRiTE, KEY_EXECUTE, or
KEY_ALL_ACCESS.

Appendix A: Details of System Calls with Parameters 295

ObjectAttributes

Titlelndex

Class

CreateOptions

pDisposition

Points to the OBJECTATTRIBUTES structure containing the
information about the key to be created, such as name,
parent directory, objectflags, and so on.
This parameter should be set to 0.

Points to the object class of the key. This parameter is
ignored if the key already exists. ^ ___
Specifies the options to be applied while creating the key.
This could be REG_OPTIONAL_VOLATILE,
REG_OPTION_NON_VOLATILE,
REG_OPTION_CREATE_LINK, or
REG_OPTION_BACKUP_RESTORE.

Pointer to the variable that receives whether the new key is
created (REG_CREATED_NEW_KEY) or the existing key is
opened (REG_OPENED_EXISTING_KEY).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
RegCreateKey, RegCreateKeyEx

NtOpenKey
NTSTATUS

NtOpenKey(
OUT PHANDLE phKey,
IN ACCESS_MASK Desi redAccess.
IN POBJECT_ATTRIBUTES Objec tAt tnbutes

); j

NtOpenKey opens an existing Registry key.

PARAMETERS

phKey Pointer to the variable that receives handle to the Registry
key object.

296 Appendix A: Details of System Calls with Parameters

AccessMask

ObjectAttributes

Type of access requested to the Registry key object. This
could be KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUBKEYS, KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY, or KEY_CREATE_LINK, or set of standard
rights such as KEY_READ, KEY_WRITE, KEY_EXECUTE, or
KEY_ALL_ACCESS.

Points to the OBJECTATTRIBUTES structure containing the
information about the key to be opened, such as name,
parent directory, objectflags, and so on.

T

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
RegOpenKey, RegOpenKeyEx
NtDeleteKey
NTSTATUS

NtDeleteKey(
IN HANDLE hKey

);
NtDeleteKey deletes the Registry key specified by hKey.

PARAMETERS

hKey Handle to the open Registry key.
\

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
RegDeleteKey

NtDeleteValueKey
NTSTATUS

____________Appendix A: Details of System Calls with Parameters___297

N t D e l e t e V a l u e K e y (
IN HANDLE hKey,
IN PUNICODE_STRING pVa lueName

);

NtDeleteValueKey deletes the value specified by pValueName under the Registry
key specified by hKey.

PARAMETERS

hKey Handle to the open Registry key.

PValueName Pointer to the Unicode string containing the name of the value
to be deleted. If this parameter is an empty string, the system
service deletes the default unnamed value under the Registry key.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
RegDeleteValue

NtEnumerateKey
NTSTATUS

NtEnumerateKey(
IN HANDLE hKey,
IN ULONG Index,
IN KEY_INFORMATION_CLASS KeyIn foClass ,
OUT PVOID KeylnfoBuffer,
IN ULONG KeylnfoBuf ferLength,
OUT PULONG BytesCopied

);

NtEnumerateKey retrieves information about subkeys of an existing open key.

PARAMETERS

hKey

Index

Handle to the open Registry key.

Zero-based index of the subkey for which the
information is to be retrieved.

298 Appendix A: Details of System Calls with Parameters

KeylnfoClass

KeylnfoBuffer

KeylnfoBufferLength

BytesCopied

The information class requested for the subkey. This can
be KeyBasicInformation, KeyNodelnformation, or
KeyFullInformation.

Pointer to the buffer that receives the information
about the subkey.

Size of the buffer in bytes pointed to by KeylnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into KeylnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success, STATUS_NO_MORE_ENTRIES when all the
entries are over, and an appropriate error code on failure.

COMMENTS
The layout of the buffer returned is based on the information class; that is, if the
KeylnfoClass is KeyBasicInformation, the information in the KeylnfoBuffer is ac-
cording to the structure definition KEY_BASIC_INFORMATION. If the KeylnfoClass
is KeyNodelnformation, the KeylnfoBuffer is according to the structure definition
of KEY_NODE_INFORMATION. And if the KeylnfoClass is KeyFullInformation, the
KeylnfoBuffer is according to the structure definition of KEY_FULL_INFORMA-
TION. If the passed KeylnfoBuffer is not enough to hold the requested information,
the system service returns the number of bytes required to hold the information in
the BytesCopied variable.

EQUIVALENT WIN 3 2 API
RegEnumKey, RegEnumKeyEx

NtEnumerateVal ueKey
NTSTATUS

N t E n u m e r a t e V a l u e K e y (
IN HANDLE hKey,
IN ULONG Index,
IN K E Y _ V A L U E _ I N F O R M A T I O N _ C L A S S K e y V a l u e l n f o C l a s s ,
OUT P V O I D K e y V a l u e l n f o B u f f e r ,
IN ULONG KeyVa lue ln foBu f fe rLeng th ,
OUT PULONG BytesCop ied

);

NtEnumerateValueKey retrieves information about the value entries of an exist-
ing open key.

Appendix A: Details of System Calls with Parameters 299

PARAMETERS

hKey

Index

KeyValuelnfoClass

KeyValuelnfoBuffer

KeyValuelnfoBufferLength

BytesCopied

Handle to the open Registry key.

Zero-based index of the valuename for which the
information is to be retrieved.

The information class requested for the valuename.
This can be KeyValueBasicInformation,
KeyValueFullInformation, or
KeyValuePartiallnformation.

Pointer to the buffer that receives the information
about the valuename.

Size of the buffer in bytes pointed to by
KeyValuelnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into KeyValuelnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success, STATUS_NO_MORE_ENTRIES when all the
entries are over, and an appropriate error code on failure.

COMMENTS - - - '
The layout of the buffer returned is based on the information class; that is, if the
KeyValuelnfoClass is KeyValueBasicInformation, the information in the
KeyValuelnfoBuffer is according to the structure definition of KEY_VALUE_BASIC_IN-
FORMATION. If the KeylnfoClass is KeyValueFullInformation, the KeyValuelnfoBuffer
is according to the structure definition of KEY_VALUE_FULL_INFORMATION. And if
the KeyValuelnfoClass is KeyPartiallnformation, the KeyValuelnfoBuffer is according
to the structure definition of KEY_VALUE_PARTIALJNFORMATION. If the passed
KeyValuelnfoBuffer is not enough to hold the requested information, the system ser-
vice returns the number of bytes required to hold the information in the BytesCopied
variable.

EQUIVALENT WIN32 API
RegEnumValue

NtFlushKey
NTSTATUS

N t F l u s h K e y (
IN HANDLE hKey

) ;

300____Appendix A: Details of System Calls with Parameters_____________

NtFlushKey syncs (commits) the data under the specified Registry key to disk. -

PARAMETERS

hKey Handle to the open Registry key.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
This function is very costly because it synchronously flushes the changes made to
the Registry. This system service should be used only when it is absolutely neces-
sary to do so. The system automatically flushes the Registry periodically.

EQUIVALENT WIN32 API
RegFlushKey

NtlnitializeRegistry
NTSTATUS

NtIn i t ia lnzeRegistry(
IN DWORD UnknownParam

);

NtlnitializeRegistry initializes the Registry.

PARAMETERS

UnknownParam This parameter does not seem to be used.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
This function is called by SMSS.EXE during the early boot sequence. The single pa-
rameter passed to it does not seem to be used. SMSS passes 0 for this parameter.
This function does the work only the first time it is called. NTOSKRNL sets its inter-
nal variable CMFirstTime to 0 once the first call to this service is made. NTOSKRNL
does the registry initialization only if CMFirstTime is set to 1.

EQUIVALENT WIN32 API
None.

Appendix A: Details of System Calls with Parameters 301

NtNotifyChangeKey
NTSTATUS

NtNot i fyChangeKeyC
IN HANDLE hKey,
IN HANDLE hEvent,
IN PIO_APC_ROUTINE ApcRout ine,
IN PVOID ApcRoutineContext,
IN ULONG Not i fyFi l ter ,
IN BOOLEAN bWatchSubt ree .
OUT P V O I D RegChangesDa taBu f fe r ,
IN ULONG RegChangesDataBu f fe rLeng th ,
IN BOOL bAynchronous

);

NtNotifyChangeKey monitors the Registry changes under the specified Registry
key and optionally calls an APC routine when the changes occur.

PARAMETERS

hKey

hEvent

ApcRoutine

ApcRoutineContext
NotifyFilter

bWatchSubtree

RegChangesDataBuffer

Handle to the Registry key to monitor.
Changes under this Registry key are
monitored.
Handle to the event object. This parameter is
ignored if bAsynchronous is FALSE. If
bAsynchronous is TRUE, this event object is
signaled when the changes occur under the
specified Registry key.

Pointer to the function that gets called when
the Registry changes occur.

Parameter to be passed to the ApcRoutine.

Set of flags specifying what changes to
monitor. This could be all or any combination
of the following:
REG_N01TFY_CHANGE_NAME,
REG_NOTIFY_CHANGE_ATrRIBUTES,
REG_NOTIFY_CHANGE_LAST_SET, and
REG_NOTIFY_CHANGE_SECURlTY.

Flag specifying whether to monitor all
subkeys under the specifed hKey also.

Pointer to the buffer that receives the changes
made to the Registry.

302 Appendix A: Details of System Calls with Parameters

RegChangesDataBufferLength

bAsynchronous

Size of the buffer pointed to by
RegChangesDataBuffer.

Flag specifying whether the monitoring should
be done synchronously or asynchronously.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
This function is similar to NtNotifyChangeDirectoryFile. It monitors the Registry
tree instead of the file system tree. Presently, the RegChangesDataBuffer and
RegChangesDataBufferLength parameters are ignored. Hence, the notification is
given only when the Registry changes occur. The function does not return in
RegChangeDataBuffer the actual changes made in the Registry. This is different
from NtNotifyChangeDirectoryFile, which returns actual changes also. We feel that
the functionality to provide the actual list of changes to the Registry will be added
in future versions of Windows NT. For now, this system service does not provide
any more information than its Equivalent Win32 API RegNotifyChangeKeyValue
except for the fact that you can specify a callback function that gets called when
the changes occur in the Registry.

EQUIVALENT WIN 3 2 API
RegNotifyChangeKeyValue

NtQueryKey
NTSTATUS

NtQueryKey(
IN HANDLE hKey,
IN KEY_INFORMATION_CLASS Key In foC lass .
OUT PVOID Key ln foBuf fer ,
IN ULONG KeylnfoBuf ferLength,
OUT PULONG BytesCopied

):

NtQueryKey retrieves information about the specified key.

PARAMETERS

hKey Handle to the key for which the information is
requested.

Appendix A: Details of System Calls with Parameters 303

KeylnfoClass
*

KeylnfoBuffer

KeylnfoBufferLength

BytesCopied

The information class requested for the key. This can
be KeyBasicInformation, KeyNodelnformation, or
KeyFullInformation.

Pointer to the buffer that receives the information
about the key.

Size of the buffer (in bytes) pointed to by
KeylnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into KeylnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Look at the Comments section for the NtEnumerateKey function.

EQUIVALENT WIN32 API
RegQueryKey

NtQueryMulti pieValueKey
NTSTATUS

NtQueryMult ip!eValueKeyC
IN HANDLE hKey,
IN OUT PKEY_VALUE__ENTRY ValueNameArray,
IN DWORD nElementsValueNameArray, t
OUT PVOID V a l u e D a t a B u f f e r ,
IN OUT PULONG Va lueDataBuf ferS ize .
OUT PULONG SizeRequ i red

);

NtQueryMultipleValueKey retrieves the data and the type of information about
the specified values.

PARAMETERS

hKey

ValueNameArray

Handle to the key to which the values belong.

Pointer to the array of KEY_VALUE_ENTRY
structures. The first member of this should be
filled in with a pointer to the Unicode string
representation of the valuename whose
information is to be retrieved. The other
members of this structure are returned upon the
successful execution of the service.

304 Appendix A: Details of System Calls with Parameters

nElementsValueNameArray

ValueDataBuffer

ValueDataBufferSize

*

SizeRequired

The number of KEY_VALUE_ENTRY type entries
in the array pointed to by ValueNameArray.
Pointer to the buffer that receives the data
associated with the values specified in
ValueNameArray. The DataOffset field in
KEY_VALUE_ENTRY points to offsets in this
buffer upon successful execution of the service.

Pointer to the variable that contains the size of
the buffer pointed to by ValueDataBuffer. This
variable receives the number of bytes actually
copied to the ValueDataBuffer upon successful
execution of the service.

Pointer to the variable that receives the size of
the buffer required to fulfill the query request.
This member can be used to allocate appropriate
space if the function fails with
STATUS BUFFER OVERFLOW.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
RegQueryMultipleValues

NtQueryValueKey
NTSTATUS

NtQue ryVa lueKey (
IN HANDLE hKey,
IN PUNICODE_STRING uVa lueName ,
IN KEY_VALUE_INFORMATION_CLASS K e y V a l u e l n f o C l a s s ,
OUT PVOID KeyValue ln foBuf fer ,
IN ULONG KeyValue ln foBuf ferLength ,
OUT PULONG BytesCopied

);

NtQueryValueKey retrieves information about the specified value.

Appendix A: Details of System Calls with Parameters 305

PARAMETERS

hKey

uValueName

KeyValuelnfoClass
n

KeyValuelnfoBuffer

KeyValuelnfoBufferLength

BytesCopied

Handle to the key to which the valuename
belongs.

Pointer to the Unicode string representation of the
valuename.
The information class requested for the Registry
value. This can be KeyValueBasicInformation,
KeyValueFullInformation, or
KeyValuePartiallnformation.

Pointer to the buffer that receives the information
about the Registry value.

Size of the buffer (in bytes) pointed to by
KeyValuelnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into KeyValuelnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Look at the Comments section for the NtEnumerateValueKey function.

EQUIVALENT WIN32 API /
RegQueryValueEx

NtReplaceKey
NTSTATUS

NtRep laceKey(
IN POBJECT_ATTRIBUTES NewHiveFi le,
IN HANDLE hKey,
IN POBJECT_ATTRIBUTES BackupHiveFi le

):

NtReplaceKey replaces the hive file backing up the existing key with a new
hive file.

PARAMETERS

NewHiveFile Pointer to the object attribute structure describing the new
hive file.

306 Appendix A: Details of System Calls with Parameters

hKey
BackupHiveFile

Handle to root key of the hive.

Pointer to the object attribute structure describing the backup
hive file that receives the copy of the existing Registry hive.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
RegReplaceKey

NtSaveKey
NTSTATUS

NtSaveKey(
IN HANDLE hKey,
IN HANDLE hF i le

);

NtSaveKey backs up the Registry contents under the specified Registry key into
a file.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
RegSaveKey

NtRestoreKey
NTSTATUS

NtRestoreKey(

hKey

hFile

Handle to the key to backup.

Handle to the file in which the contents of the Registry are to be
saved.

Appendix A: Details of System Calls with Parameters 307

IN HANDLE hKey,
IN HANDLE hFile,
IN ULONG F lags

) ;

NtRestoreKey restores the Registry contents under the specified Registry key
from the specified file. . . M_

PARAMETERS

hKey Handle to the key to restore.

hFile Handle to the file containing the Registry data.

Flags This parameter can be REG_WHOLE_HTVE_VOLATILE.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API . ,
RegRestoreKey

NtSetlnformationKey
NTSTATUS

NtSetInformat ionKey(
IN HANDLE hKey.
IN KEY_SET_INFORMATION_CLASS KeySet In foClass ,
IN PKEY_WRITE_TIME_INFORMATION p ln foBuf fer .
IN ULONG plnfoBufferLength

) ;

NtSetlnformationKey sets the last write time of the specified key.

PARAMETERS

hKey

KeySetlnfoClass
plnfoBuffer

plnfoBufferLength

Handle to the Registry key.
This parameter should be KeyWriteTimelnformation.

Pointer to the structure of type
KEY_WRITE_TIME_INFORMATION. The structure contains
only one large integer field called LastWriteTime.

Size of the buffer pointed to by plnfoBuffer.

308 Appendix A: Details of System Calls with Parameters

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtSetValueKey
NTSTATUS

N t S e t V a l u e K e y (
IN HANDLE hKey,
IN PUNICODE_STRING uVa lueName,
IN ULONG T i t le lndex,
IN ULONG V a l u e T y p e ,
IN PVOID p V a l u e D a t a ,
IN ULONG p V a l u e D a t a L e n g t h

);

NtSetValueKey sets/creates a value entry under the specified Registry key.

PARAMETERS

hKey

uValueName

Titlelndex

ValueType

pValueData

pValueDataLength

Handle to the Registry key to which the value is associated
with.

Pointer to the Unicode string containing the valuename.
This parameter should be 0.

Data type for the value. This could be REG_BINARY,
REG_DWORD, and so on. For all types, refer to the
documentation of the RegSetValueEx call.

Pointer to the buffer containing the data to be associated
with the valuename.

Size of the data buffer pointed to by pValueData.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

Appendix A: Details of System Calls with Parameters 309

EQUIVALENT WIN32 API
RegSetValueEx

NtLoadKey
NTSTATUS

NtLoadKey(
IN POBJECT_ATTRIBUTES KeyNameAttnbutes ,
IN POBJECT_ATTRIBUTES HiveFi1eNameAttnbutes

);

NtLoadKey loads the specified Registry hive on top of the existing Registry key.

PARAMETERS

KeyNameAttributes

HiveFileNameAttributes

Pointer to the object attributes structure describing
the key on which the hive is to be loaded.
Pointer to the object attributes structure describing
the hive filename.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Refer to the documentation of the NtLoadKey2 system service. NtLoadKey inter-
nally calls NtLoadKey2 by specifying the third parameter flags as 0.

EQUIVALENT WIN32 API
RegLoadKey

NtLoadKey2
NTSTATUS

N t L o a d K e y 2 (
IN POBJECT_ATTRIBUTES KeyNameAt t r ibu tes ,
IN POBJECT_ATTRIBUTES H iveF i1eNameAt t r i bu tes ,
IN ULONG F lags

) ;

NtLoadKey2 loads the specified Registry hive on top of the existing Registry key
and applies the specified flags for the loaded hive.

4

310 Appendix A: Details of System Calls with Parameters

PARAMETERS

KeyNameAttributes

HiveFileNameAttributes

Flags

Pointer to the object attributes structure describing
the key on which the hive is to be loaded.

Pointer to the object attributes structure describing
the hive filename.

The only flag value allowed is 0x00000004.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The hive loaded with NtLoadKey is periodically synched by the system worker
thread. With NtLoadKey2, you can specify a flag 0x00000004 that turns off this pe-
riodic synching. Hence, if this flag is specified, the hive is not synched periodically
by the system worker thread. Internally, the system maintains a linked list of loaded
hives data structures. One member of this data structure contains the information
about the flags passed while loading the hive. The system worker thread periodi-
cally walks the list of loaded hives and, based on this member, decides whether to
synch the hive or not.

EQUIVALENT WIN32 API
None.

NtUnloadKey
NTSTATUS

NtUn loadKeyC
IN POBJECT_ATTRIBUTES KeyNameAt t r ibutes

): . -

NtUnloadKey unloads the hive loaded on top of the existing key (using
NtLoadKey2/NtLoadKey).

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

KeyNameAttributes Pointer to the object attributes structure describing the
key from which the hive is to be unloaded.

Appendix A: Details of System Calls with Parameters 311

COMMENTS
None.

EQUIVALENT WIN32 API
RegUnloadKey

NtAlertResumeThread ' «-_-
NTSTATUS

N t A l e r t R e s u m e T h r e a d (
IN HANDLE hThread,
OUT PBOOLEAN pbResumed

);

NtAlertResumeThread resumes the thread or alerts the thread that is in alertable
wait state.

PARAMETERS

hThread

pbResumed

Handle to the thread.

Pointer to the variable that receives whether the thread was
actually resumed or it was already running (TRUE if the thread
was in the suspended state at the time of function call, otherwise
FALSE).

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
If the thread is in alertable wait state, then this function takes the thread out of the
wait state with the status of STATUS_ALERTED. However, the user mode alertable
wait calls such as WaitForSingleObject and SleepEx put the thread again back in
alertable wait state if they return with the status of STATUS_ALERTED.

EQU1VALEMT WIN32 API
None.

NtAlertThread
NTSTATUS

NtA le r tTh read (
IN HANDLE hThread

);

NtAlertThread alerts the thread that is in alertable wait state.

312 Appendix A: Details of System Calls with Parameters

PARAMETERS

hThread Handle to the thread.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
See the Comments section for NtAlertResumeThread.

EQUIVALENT WIN 3 2 API
None.

NtTestAlert
NTSTATUS

NtTes tA le r t (
);

NtTestAlert checks whether the current thread has any pending alerts.

PARAMETERS
None.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
None.

NtCreateProcess
NTSTATUS

NtCreateProcess(
OUT PHANDLE phProcess,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN HANDLE hParentProcess,
IN BOOLEAN blnheritHandles ,
IN HANDLE hSection,
IN HANDLE hDebugPort,
IN HANDLE hExceptnonPort

);

NtCreateProcess creates a new process object.

Appendix A: Details of System Calls with Parameters 313

PARAMETERS

phProcess

AccessMask

ObjectAttributes

hParentProcess

blnheritHandles

hSection

hDebugPort
hExceptionPort

Pointer to the variable that receives handle to the process
object.
Type of access requested to the process object.

Points to the OBJECTATTRIBUTES structure containing
the information about the process object to be created,
such as name, parent directory, objectflags, and so on.

Handle to the process object that this process will be a
child of.

The flag specifying whether the handles from the parent
process described by hParentProcess are to be inherited by
this process.

Handle to the section object created for the executable file.

Handle to the debug port for the process.

Handle to the exception port for the process.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The system service enables you to specify a different parent process for the process
to be created, whereas in case of the user-mode CreateProcess call, the caller of the
function becomes the parent of the process being created. The reason for this is that
CreateProcess, by default, passes OxFFFFFFFF as the parent process handle. We feel
that the provision to specify a different process handle than that of the caller is re-
quired in the POSIX subsystem where the fork call is actually implemented by the
subsystem. Also note that unlike all other synchronization objects, such as mutex
and semaphore, the CreateProcess call does not enable you to name the process ob-
ject, whereas the system service enables you to specify the name of the process ob-
ject in the ObjectAttributes structure. This way, you can open the process using its
name instead of the process ID that is required for the OpenProcess call. Further, the
system service enables you to specify specific port handles for DebugPort and
ExceptionPort, whereas the CreateProcess call does not allow you to do so. The
CreateProcess call, by default, passes NULL handles to these two parameters. When
NULL handles are passed, the NtCreateProcess call uses the CSRSS's port objects for
debug port and exception port.

EQUIVALENT WIN 3 2 API
CreateProcess

314___Appendix A: Details of System Calls with Parameters

NtCreateThread
NTSTATUS

NtCreateThread(
OUT PHANDLE phThread, « ,.
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN HANDLE hProcess,
OUT PCLIENT_ID pClientld,
IN PCONTEXT pContext,
OUT PSTACKINFO pStacklnfo,
IN BOOLEAN bSuspended

):
NtCreateThread creates a new thread object.

PARAMETERS
phThread

AccessMask
ObjectAttributes

hProcess
pClientld

pContext

PStacklnfo

bSuspended

Pointer to the variable that receives handle to the thread
object.
Type of access requested to the thread object.

Points to the OBJECTATTRIBUTES structure containing the
information about the thread object to be created, such as
name, parent directory, objectflags, and so on.

Handle to the process object that this thread will belong to.
Pointer to the structure that will receive the thread ID and
the process ID for this thread.
Pointer to the CONTEXT structure containing the state of
various processor registers when the thread begins
executing.

Pointer to the variable that receives the information about
the stack of the thread.

Flag indicating whether the thread should be in suspended
mode.

RETURM VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Note that unlike all other synchronization objects, such as mutex and semaphore,
the Equivalent Win32 API CreateThread call does not enable you to name the

'

Appendix A: Details of System Calls with Parameters 315

thread object, whereas the system service enables you to specify the name of the
thread object in the ObjectAttributes structure. This way, you can open the thread
using its name instead of the thread ID.

The structure PSTACKINFO is defined as follows:

typedef struct S tack ln fo_ t {
LONG Unknownl ;
LONG Unknown?;
LONG TopOfS tack ;
LONG O n e P a g e B e l o w T o p O f S t a c k ;
LONG Bo t tomOfStack ;

} S T A C K I N F O , * P S T A C K I N F O ;

EQUIVALENT WIN 3 2 API
CreateThread

NtDelayExecution
NTSTATUS

NtDe layExecu t i on (
IN BOOLEAN bA le r tab le ,
IN PLARGE^INTEGER pDurat ion

) ;

NtDelayExecution puts the calling thread in alertable/nonalertable sleep state for
the specified duration.

PARAMETERS

bAlertable

pDuration

Flag specifying whether the sleep is alertable/nonalertable.

Pointer to the LARGEJNTEGER structure containing the duration
for sleep. Negative values represent relative time, whereas
positive values represent absolute time.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
SleepEx

316 Appendix A: Details of System Calls with Parameters

NtGetContextThread
NTSTATUS

NtGetContex tThread(
IN HANDLE hThread.
IN OUT PCONTEXT pContext

):

NtGetContextThread returns the context structure for the specified thread.

PARAMETERS

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
GetThreadContext

NtSetContextThread
NTSTATUS

NtSetContextThread(
IN HANDLE hThread,
IN PCONTEXT pContext

);

NtSetContextThread sets the context structure for the specified thread.

PARAMETERS

hThread Handle to the thread object.

hThread
pContext

Handle to the thread object.

Pointer to the structure that contains new context structure for the
thread. The ContextFlags field in this structure must be filled with
any combination of CONTEXT_CONTROL, CONTEXTJNTEGER,
CONTEXT_SEGMENTS, CONTEXT_FLOATING_POINT,
CONTEXT_DEBUG_REGISTERS, CONTEXT_EXTENDED_
REGISTERS, and CONTEXT_FULL based on the type of context
information filled before invoking this system service.

Appendix A: Details of System Calls with Parameters 317

pContext Pointer to the structure that receives the context structure for the
thread. The ContextFlags field in this structure must be filled with
any combination of CONTEXT_CONTROL, CONTEXTJNTEGER,
CONTEXT_SEGMENTS, CONTEXT_FLOATING_POINT,
CONTEXT_DEBUG_REGISTERS, CONTEXT_EXTENDED_
REGISTERS, and CONTEXT_FULL before invoking this system
service. "- -

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
SetThreadContext

NtOpenProcess
NTSTATUS

NtOpenProcess(
OUT PHANDLE phProcess ,
IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT_ATTRIBUTES ObjectAttnbutes,
IN PCLIENT_ID pClientld

):

NtOpenProcess opens a handle to the existing process object.

PARAMETERS

phProcess

AccessMask

ObjectAttributes

pClientld

Pointer to the variable that receives handle to the process
object.
Type of access requested to the process object.
Points to the OBJECTATTRIBUTES structure containing
the information about the process object to be opened,
such as name, parent directory, objectflags, and so on.

Pointer to the CLIENTJD structure. The process ID member
of this structure must be filled by the caller before
invoking this system service.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

318 Appendix A: Details of System Calls with Parameters

COMMENTS
Only one of the parameters ObjectAttributes and pClientld may be specified. If the
process object is named, then the ObjectAttribute structure must be filled with the
details; otherwise, the process ID field must be filled in the pClientld structure.

EQUIVALENT WIN 3 2 API
OpenProcess

NtOpenThread
NTSTATUS v ?

NtOpenThread(
OUT PHANDLE phThread,
IN ACCESS_MASK A c c e s s M a s k ,
IN POBJECT_ATTRIBUTES ObjectAt t r ibutes ,
IN PCLIENT_ID pCl ient ld

): -

NtOpenThread opens handle to the existing thread object.

PARAMETERS

phThread

AccessMask
ObjectAttributes

pClientld

Pointer to the variable that receives handle to the thread
object.

Type of access requested to the thread object.
Points to the OBJECTATTRIBUTES structure containing the
information about the thread object to be opened, such as
name, parent directory, objectflags, and so on.
Pointer to the CLIENTJD structure. The thread ID member
of this structure must be filled by the caller before invoking
this system service.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Only one of the parameters ObjectAttributes and pClientld may be specified. If the
thread object has a name, then the ObjectAttribute structure must be filled with the
details; otherwise, the thread ID field must be filled in the pClientld structure.

EQUIVALENT WIN 3 2 API
None.

Appendix A: Details of System Calls with Parameters 319

NtQuerylnformationProcess
NTSTATUS

NtQuery In fo rma t i onProcess (
IN HANDLE h P r o c e s s ,
IN P R O C E S S I N F O C L A S S P r o c e s s I n f o C l a s s ,
OUT PVOID P rocess In foBu f fe r ,
IN ULONG Process In foBu f fe rLeng th ,
OPTIONAL OUT PULONG BytesCopied.

):

NtQuerylnformationProcess returns information about the specified process object.

PARAMETERS

hProcess
ProcessInfoClass

ProcessInfoBuffer

ProcessInfoBufferLength

BytesCopied

Handle to the process object.
Type of information requested.

Pointer to the buffer that receives the information
about the process object.

Size of the buffer (in bytes) pointed to by
ProcessInfoBuffer.

Pointer to the variable that receives the number of
bytes copied into ProcessInfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Different information is returned based upon the ProcessInfoClass parameter. Here
is the layout of ProcessInfoBuffer based on the ProcessInfoClass:

ProcessBasicInformation(O)
ProcessQuotaLimits(1)

ProcessIoCounters(2)

ProcessVmCounters(3)

ProcessTimes(4)

ProcessDebugPort(7)

ProcessLdtlnformationf 10)

PROCESS_BASIC_INFORMATION.
QUOTA_LIMITS.
IO_COUNTERS.
VIVLCOUNTERS.
KERNEL_USER_TIMES.
ULONG containing the pointer to debug
port object.

PROCESS LOT INFORMATION.

320 Appendix A: Details of System Calls with Parameters

Most of the structures defined previously are documented in the NTDDK.H file
from the Windows NT DDK. Other structures can be found in UNDOCNT.H on the
accompanying CD-ROM.

Some of this information is available from Equivalent Win32 API calls.
However, not all of them are available from Win32 API calls.

EQUIVALENT W1M 3 2 API
GetProcessTimes, GetProcessPriorityBoost, GetProcessAffinityMask,
GetProcessShutdownParameters, GetPriorityClass, GetProcessWorkingSetSize,
GetProcessVersion

NtQueryInformati onThread
NTSTATUS

NtQuery In format ionThread(
IN HANDLE hThread ,
IN T H R E A D I N F O C L A S S Th read ln foC lass ,
OUT PVOID Thread ln foBuf fe r ,
IN ULONG ThreadlnfoBuf ferLength,
OPTIONAL OUT PULONG BytesCop ied,

);

NtQuerylnformationThread returns information about the specified thread object.

PARAMETERS

hThread Handle to the thread object.

ProcessDefaultHardErrorMode(1 2)

ProcessPooledUsageAndLimits(1 4)

Process WorkingSetWatch(1 5)

Process Wx86Information(1 9)

ProcessHandleCount(20)

ProcessPriorityBoost{22)

ULONG containing the default error mode
for the process. This could be any
combination of
SEM_FAlLCRLTICALERRORS,
SEM_NOALIGNMENTFAULTEXCEPT,
SEM_NOGPFAULTERRORBOX, and
SEM_NOOPENFILEERRORBOX.

POOLED_USAGE_AND_LIMITS.

PROCESS_WS_WATCH_INFORMATION.

ULONG. Always returns 0.

ULONG containing the number of open
handles.

BOOLEAN containing the priority boost
control state. TRUE means that dynamic
boosting is disabled.

Appendix A: Details of System Calls with Parameters 321

ThreadlnfoClass
ThreadlnfoBuffer

ThreadlnfoBufferLength

BytesCopied

Type of information requested.

Pointer to the buffer that receives the information
about the thread object.
Size of the buffer (in bytes) pointed to by
ThreadlnfoBuffer.

Pointer to the variable that receives the number of
bytes copied into ThreadlnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Different information is returned based upon the ThreadlnfoClass parameter. Here
is the layout of ThreadlnfoBuffer based on the ThreadlnfoClass:

ThreadBasicInformation(O)
ThreadTimes(l)

ThreadDescriptorTableEntry (6)

ThreadQuerySetWin32StartAddress (9)

ThreadPerformanceCount (11)
ThreadAmILastThread(1 2)

ThreadPriorityBoost (14)

THREAD_BASIC_INFORMATION.

KERNEL_USER_TTMES.

DESCRIPTOR_TABLE_ENTRY.

Pointer to ULONG containing the start
address of the thread.
Pointer to an array of two ULONGs.

Pointer to ULONG that receives
whether the calling thread is the last
thread of the process (hThread
parameter is ignored in this case).

Pointer to ULONG that receives
whether dynamic priority boosting is
enabled or disabled for the thread.

Some of the structures defined previously are documented in the NTDDK.H file
from the Windows NT DDK. Other structures can be found in UNDOCNT.H on the
accompanying CD-ROM.

Here are the definitions for the structures that are not documented in NTDDK.H:

typedef struct _THREAD_BASIC_INFORMATION (
NTSTATUS ExitStatus;
PVOID TebBaseAddress ;
ULONG UniqueProcessId;
ULONG UniqueThreadld;

322 Appendix A: Details of System Calls with Parameters

KAFF IN ITY A f f i n i t y M a s k ;
K P R I O R I T Y BasePnonty ;
ULONG D i f fP rocessPnor i t y ;
} THREAD_BASIC_ INFORMATION, *PTHREAD_BASIC_INFORMATION;

Some of this information is available from Equivalent Win32 API calls.
However, not all of them [[[AU: "not all of them" OK?]]]are available from Win32
API calls.

EQUIVALENT WIN 3 2 API
GetThreadPriorityBoost, GetThreadTimes, GetThreadPriority

NtQueueApcThread
NTSTATUS

NtQueueApcThreadC
IN HANDLE hThread,
IN PKNORMAL_ROUTINE ApcRout ine ,
IN P V O I D Norma lCon tex t .
IN PVOID SystemArgument l ,
IN PVOID SystemArgument2,

);

NtQueueApcThread queues an entry to the thread's APC Queue.

PARAMETERS

hThread

ApcRoutine

NormalContext

SystemArgument 1

SystemArgument2

Handle to the thread object. - ,

The function that gets called when the APC is scheduled
for execution.

Points to the context associated with the APC.

Points to the first argument to be passed to the APC
function.

Points to the second argument to be passed to the APC
function.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Win32 API call corresponding to this system service is prototyped as

Appendix A: Details of System Calls with Parameters 323

WINBASEAPI
DWORD
WINAPI
QueueUserAPC(

PAPCFUNC pfnAPC,
HANDLE hThread,
DWORD dwData
);

The QueueUserAPC function passes pfnAPC for the NormalContext parameter
and passes dwData for the SystemArgumentl parameter. It also passes the address
of the internal KERNEL32 routine called BaseDipatchAPC as the ApcRoutine para-
meter. TheBaseDispatchRoutine extracts the pfnAPC and dwData parameters from
the parameters passed to it and calls pfnAPC.

EQUIVALENT WIN32 API
QueueUserAPC

NtResumeThread
NTSTATUS

NtResumeThread(
IN HANDLE hThread,
OUT PULONG pSuspendCount

);

NtResumeThread decrements the suspend count for the thread and resumes the
thread if the suspend count reaches 0.

PARAMETERS

hThread

pSuspendCount
Handle to the thread object.

Pointer to the variable that receives the suspend count of the
thread at the time this system service is invoked.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API call does not return the suspend count of the thread,
whereas the system service does return this information.

EQUIVALENT WIN32 API
ResumeThread

324___Appendix A: Details of System Calls with Parameters_____________

NtSetLowWaitHighThread
NTSTATUS

N t S e t L o w W a i t H i g h T h r e a d (
);

NtSetLowWaitHighThread sets the low event of the event pair associated with
the calling thread and waits on the high event of the event pair to be signaled.

PARAMETERS
None.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Chapter 8 provides more information.

EQUIVALENT WIN 32 API
None.

NtSetHighWaitLowThread
NTSTATUS

N t S e t H i g h W a i t L o w T h r e a d (
);

NtSetHighWaitLowThread sets the high event of the event pair associated with
the calling thread and waits on the low event of the event pair to be signaled.

PARAMETERS
None.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Chapter 8 provides more information.

EQUIVALENT WIN32 API
None.

NtSuspendThread
NTSTATUS

NtSuspendThread(
IN HANDLE hThread,
OUT PULONG pSuspendCount

);

Appendix A: Details of System Calls with Parameters 325

NtSuspendThread suspends the thread and increments the suspend count for the
thread.

PARAMETERS

hThread

pSuspendCount

Handle to the thread object.

Pointer to the variable that receives the suspend count of the
thread at the time this system service is invoked.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API call does not return the suspend count of the thread,
whereas the system service does return this information.

EQUIVALENT WIN 3 2 API
SuspendThread

NtTermi nateProcess
NTSTATUS

N t T e r m i n a t e P r o c e s s (' - •
IN HANDLE hP rocess ,
IN ULONG ExitCode

);

NtTerminateProcess terminates the specified process.

PARAMETERS

hProcess Handle to the process object.
ExitCode Exit code for the process.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

1

EQUIVALENT WIN32 API
ExitProcess, TerminateProcess

326___Appendix A: Details of System Calls with Parameters

NtTerminateThread
NTSTATUS

NtTerminateThread(
IN HANDLE hThread,
IN ULONG ExitCode

):
NtTerminateThread terminates the specified thread.

PARAMETERS

hThread Handle to the thread object.

ExitCode Exit code for the thread.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API
ExitThread, TerminateThread

NtYieldExecution
NTSTATUS

NtY ie ldExecu t ion (
) ;

NtYieldExecution relinquishes the processor from the calling thread.

PARAMETERS
None.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 3 2 API L

SwitchToThread.

Appendix B

What's on the CD-ROM
The CD-ROM that accompanies this book contains the source code and binaries for
all the sample applications that we've discussed in this book. Each sample is kept in
a separate directory.

To try out each sample, open the accompanying README.TXT file. Each con-
tains step-by-step instructions for installing and trying out the sample.

In each README.TXT file, we have also identified which system (or systems) we
used to test the sample - Windows NT 3.51, Windows NT 4, and/or Windows 2000
beta 1 and beta 2.

The samples are compiled using MSVC 4.2 compiler and Windows NT 4.0 DDK.

327

