Appendix A: Details of System Calls with Parameters

NtAddAtom adds the character string to the global atom table and returns an
atom vaue.

PARAMETERS

pString Pointer to the wide character string to be added to the globd
atom table.

pStringLength Length of the string pointed to by pString.

pAtom Pointer to the variable that receives the atom value

corresponding to the string.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The memory for the atom table is alocated by WIN32K.SYS. The system service
gets the pointer to this memory using a callout established by WIN32K.SYS. This
calout is established by WIN32K.SY S using the PspEstablishwin32Cadlouts func-
tion from NTOSKRNL. The system service uses this callout to get the pointer to the
global atom table and then manipulates the atom table using its internal functions,
such as RtlAddAtomToAtomTable. These internal functions dso reside in user-
modeDLL NTDLL.DLL. TheseNTDLL routines are used to support local atom tables
(per process). It seems that these internal functions in NTOSKRNL and NTDLL are
shared at the source code level because their binary equivalents are identical. The
user-mode AP cdl Globa AddAtom uses this system sarvice. The AddAtom func-
tion does not cdl this system service; instead, it manipulates the local atom table
using internal functionsin NTDLL.

The second parameter (pStringLength) isintroduced starting from Windows 2000.
Previous versions of Windows NT take only two parameters pString and pAtom.

EQUIVALENT WIN32 API
GlobalAddAtom

Nt Queryl nf or mat i onAt om
NTSTATUS
Nt Queryl nfor mati onAt onH

[N ATOM Atom
N ATOM I NFO_CLASS Atom nfoCl ass,
QUT PVOID Atonl nfoBuffer,
N ULONG At om nfoBufferLength,
QUT PULONG Byt esCopi ed

291

292

Appendix A: Details of System Calls with Parameters

NtQuerylnformationAtom returns information about specific/all atom objectsin
the global atom table.

PARAMETERS

Atom The atom ID returned by NtAddAtom, NtFindAtom,
and so on.

AtomlnfoClass The type of information requested. This value can be
Oor 1.

AtomlInfoBuffer Pointer to the buffer that receives the information
about the atoms.

AtominfoBufferL ength Size of the buffer in bytes pointed to by
AtomiInfoBuffer.

BytesCopied Pointer to the variable that receives the number of
bytes copied into AtomInfoBuffer. However, this
variable is not sat by the system service.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
If the AtominfoClass is 1, then the Atom field is ignored and the system service re-
turns information about all the objects in the globa atom table. If the AtominfoClass
is 0, then the system service returns the information about the atom specified by the
Atom parameter.

For AtominfoClass 0O, the data in AtominfoBuffer is laid out as follows:

typedef struct AtomlnfoSingle {
WORD ReferenceCount;

WORD Unknown;

WORD AtomStringLength;

WCHAR AtomStnng[l];

) ATOMINFOSINGLE, *P ATOMINFOSINGLE;

The size of data returned varies based on the size of the atom string.
For AtomInfoClass 1, the data in AtomInfoBuffer is laid out as follows:

typedef struct AtomInfoAll (

DWORD TotalNumberOfEntriesInGlobalAtomTable:
ATOM AtomValues]l];

} ATOMINFOALL, *PATOMINFOALL;

Appendix A: Details of System Calls with Parameters

The dze of data returned varies based on the number of entries in the globa
atom table.

The user-mode API call can get the atom string corresponding to the atom ID.

Other information is available only through this system service.

EQUIVALENT WIN32 APl
Globa GetAtomName

NtFindAtom
NTSTATUS
NtFindAtom(
IN PWCHAR pString,
IN ULONG pStringLength,
OUT PATOM pAtom

NtFindAtom retrieves the atom corresponding to the specified string in the
global atom table.

PARAMETERS

pString Pointer to the wide character string to be searched in the
globd atom table.

pStringLength Length of the string pointed to by pString.

pAtom Pointer to the variable that receives the atom value

corresponding to the string.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
The second parameter (pStringLength) is introduced starting from Windows 2000.
Previous versions of Windows NT take only two parameters, pString and pAtom.

EQUIVALENT WIN32 A
Globa FindAtom

Nt Del et eAt om
NTSTATUS
Nt Del et eAt om(
[N ATOM At om d.

293

294

Appendix A: Details of Sysem Calls with Parameters

NtDeleteAtom decrements the reference count for the specified atom. If the ref-
erence count reaches zero, it deletes the atom from the globa atom table.

PARAMETERS

Atomld Atom to be deleted.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
Global DeleteAtom

NtCreateKey
NTSTATUS
NtCreateKey(
OUT PHANDLE phKey,
IN ACCESS_MASK DesiredAccess ,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG Titlelndex,
IN PUNICODE_STRING Class,
IN ULONG CreateOptions,
OUT PULONG pBispositiaon

NtCreateKey creates a new Registry key or opens the Registry key if it is aready
present.

PARAMETERS

phKey Pointer to the variable that receives handle to the Registry
key object.

AccessMask Type of access reguested to the Registry key object. This

could beKEY_QUERY_VALUE, KEY_SET VALUE,
KEY_CREATE_SUBKEYS, KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY, or KEY_CREATE_LINK, or s&t of standard
rights such asKEY_READ, KEY WRITE, KEY_EXECUTE, or
KEY_ALL_ACCESS.

Appendix A: Details of System Calls with Parameters

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the key to be created, such as name,
parent directory, objectflags, and so on.

Titlelndex This parameter should be set to 0.

Class Points to the object class of the key. This parameter is
ignored if the key already exists.

CreateOptions Specifies the options to be applied while creating the key.

This could be REG_OPTIONAL_VOLATILE,
REG_OPTION_NON_VOLATILE,
REG_OPTION_CREATE_LINK, or
REG_OPTION_BACKUP_RESTORE.

pDisposition Pointer to the variable that receives whether the new key is
created (REG_CREATED_NEW_KEY) ortheexisting key is
opened (REG_OPENED_EXISTING_KEY).

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 32 API
RegCreateK ey, RegCreateK eyEx

Nt Openkey
NTSTATUS
Nt OpenkKey(
OUT PHANDLE phkey,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttnbutes

NtOpenKey opens an existing Registry key.
PARAMETERS

phKey Pointer to the variable that receives handle to the Registry
key object.

295

296

Appendix A: Details of Sysem Calls with Parameters

AccessMask Type of access requested to the Registry key object. This
could be KEY_QUERY _VALUE, KEY_SET_VALUE,
KEY_CREATE_SUBKEYS, KEY_ENUMERATE_SUB KEYS,
KEY_NOTIFY, or KEY_CREATE LINK, or sa of standard
rightssuchasKEY_READ, KEY_WRITE, KEY_EXECUTE, or
KEY_ALL_ACCESS.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the key to be opened, such as name,
parent directory, objectflags, and so on.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
RegQpenkey, RegQpenKeyEx

NtDeleteKey
NTSTATUS
Nt Del et eKey(
N HANDLE hKey

NtDeleteKey deletes the Registry key specified by hKey.
PARAMETERS

hKey Handle to the open Registry key.

\

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
RegDeleteKey

Nt Del et eVal uekey
NTSTATUS

Appendix A: Details of System Calls with Parameters

297

NtDeleteValueKey(
IN HANDLE hKey,
IN PUNICODE_STRING pValueName

NtDeleteVaueKey deletes the value specified by pValueName under the Registry
key specified by hKey.

PARAMETERS

hKey Handle to the open Registry key.

PVaueName Pointer to the Unicode string containing the name of the value
to be deleted. If this parameter is an empty string, the system
service deletes the default unnamed value under the Registry key.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

None.

EQUIVALENT WIN32 API
RegDeleteVaue

NtEnumerateKey
NTSTATUS
NtEnumerateKey(
IN HANDLE hKey,
IN ULONG Index,
INKEY_INFORMATION_CLASS KeylInfoClass,
OUT PVOID KeylnfoBuffer,
IN ULONG KeyInfoBufferlLength,
OUT PULONG BytesCopied

NtEnumerateK ey retrieves information about subkeys of an existing open key.

PARAMETERS

hKey Handle to the open Registry key.

Index Zero-based index of the subkey for which the
information is to be retrieved.

298

Appendix A: Details of Sysem Calls with Parameters

KeylnfoClass The information class requested for the subkey. This can
be KeyBasiclnformation, KeyNodelnformation, or
KeyFullInformation.

KeyInfoBuffer Pointer to the buffer that receives the information
about the subkey.

KeylInfoBufferLength Size of the buffer in bytes pointed to by KeylnfoBuffer.

BytesCopied Pointer to the variable that receives the number of

bytes copied into KeylnfoBuffer.

RETURN VALUE
Returns STATUS SUCCESS on success, STATUS NO_MORE_ENTRIES when al the
entries are over, and an appropriate error code on failure.

COMMENTS

The layout of the buffer returned is based on the information class, that is, if the
KeylnfoClass is KeyBasiclnformation, the information in the KeylnfoBuffer is ac-
cording to the structure definition KEY_BASIC_INFORMATION. If the KeyInfoClass
is KeyNodelnformation, the KeylnfoBuffer is according to the structure definition

of KEY_NODE_INFORMATION. And if the KeylnfoClass is KeyFullInformation, the
KeylInfoBuffer is according to the structure definition of KEY_FULL_INFORMA-

TION. If the passed KeylInfoBuffer is not enough to hold the requested information,

the system service returns the number of bytes required to hold the information in

the BytesCopied variable.

EQUIVALENT WIN32 AP
RegEnunkey, RegEnunkKeyEx

Nt Enumer at eVal ueKey
NTSTATUS
NtEnumerateValueKey(

IN HANDLE hKey,
IN ULONG Index,
IN KEY_VALUE_INFORMATION_CLASS KeyValuelnfoClass,
OUT PVOID KeyValuelnfoBuffer,
IN ULONG KeyValuelnfoBufferlength,
OUT PULONG BytesCopied

NtEnumerateV alueK ey retrieves information about the value entries of an exist-
ing open key.

Appendix A: Details of Sysem Calls with Parameters

PARAMETERS

hKey Handle to the open Registry key.

Index Zero-based index of the valuename for which the
information is to be retrieved.

KeyValuelnfoClass The information class requested for the valuename.

This can be KeyVa ueBasiclnformation,
KeyValueFullInformation, or
KeyVauePartialnformation.

KeyValuelnfoBuffer Pointer to the buffer that receives the information
about the valuename.

KeyVauelnfoBufferLength Size of the buffer in bytes pointed to by
KeyVauelnfoBuffer.

BytesCopied Pointer to the variable that receives the number of
bytes copied into KeyValuelnfoBuffer.

RETURN VALUE
Returns STATUS_SUCCESS on success, STATUS NO_MORE_ENTRIES when all the
entries are over, and an appropriate error code on failure.

COMMENTS - - -

The layout of the buffer returned is based on the information class; that is if the
KeyVduenfoClass is KeyVdueBascinformation, the information in the
KeyVauelnfoBuffer is according to the structure definition of KEY_VALUE_BASIC_IN-
FORMATION. If the KeylnfoClass is KeyVaueFulllnformation, the KeyVauelnfoBuffer
is according to the structure definition of KEY_VALUE_FULL_INFORMATION. And if
the KeyVauelnfoClass is KeyPartiallnformation, the KeyVauelnfoBuffer is according
to the dructure definition of KEY VALUE_PARTIAL_INFORMATION. If the passed
KeyValuelnfoBuffer is not enough to hold the requested information, the system ser-
vice returns the number of bytes required to hold the information in the BytesCopied
variable.

EQUIVALENT WIN32 AF
RegEnumValue

NtFlushKey
NTSTATUS
NtFlushKey(
IN HANDLE hKey

299

300 Appendix A: Details of System Calls with Parameters

NtFlushKey syncs (commits) the data under the specified Registry key to disk. -
PARAMETERS

hKey Handle to the open Registry key.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

This function is very costly because it synchronously flushes the changes made to
the Registry. This system service should be used only when it is absolutely neces-
sary to do s0. The system automatically flushes the Registry periodically.

EQUIVALENT WIN32 AP
RegFlushKey

NtinitializeRegistry
NTSTATUS
NtInitializeRegistry(
IN DWORD UnknownParam

NtlnitializeRegistry initializes the Registry.
PARAMETERS

UnknownParam This parameter does not seem to be used.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

This function is called by SMSS.EXE during the early boot sequence. The single pa-
rameter passed to it does not seem to be used. SMSS passes 0 for this parameter.
This function does the work only the first time it is called. NTOSKRNL sets its inter-
nal variable CMFirstTimeto O oncethefirst cal to this service is made. NTOSKRNL
does the registry initialization only if CMFirstTime is set to 1

EQUIVALENT WIN32 AP
None.

Appendix A: Details of System Calls with Parameters

NtNotifyChangeKey
NTSTATUS
NtNotifyChangeKey(

IN HANDLE hKey,
IN HANDLE hEvent,
IN PIO_APC_ROUTINE ApcRoutine,
IN PVOID ApcRoutineContext,
IN ULONG NotifyFilter,
IN BOOLEAN bWatchSubtree.
OUT PVOID RegChangesDataBuffer,
IN ULONG RegChangesDataBufferLength,
IN BOOL bAynchronous

NtNotifyChangeKey monitors the Registry changes under the specified Registry
key and optionally cals an APC routine when the changes occur.

PARAMETERS

hKey Handle to the Registry key to monitor.
Changes under this Registry key are
monitored.

hEvent Handle to the event object. This parameter is

ignored if bAsynchronous is FALSE. If
bAsynchronous is TRUE, this event object is
signaled when the changes occur under the
specified Registry key.

ApcRoutine Pointer to the function that gets called when
the Registry changes occur.

ApcRoutineContext Parameter to be passed to the ApcRoutine.

NotifyFilter Set of flags specifying what changes to

monitor. This could be al or any combination
of the following:
REG_NOITFY_CHANGE_NAME,

REG _NOTIFY_CHANGE_ATrRIBUTES,

REG NOTIFY_CHANGE LAST SET, and

REG NOTIFY_CHANGE_SECURITY.

bwWatchSubtree Flag specifying whether to monitor all
subkeys under the specifed hKey aso.
RegChangesDataBuffer Pointer to the buffer that recaives the changes

made to the Registry.

301

302

Appendix A: Details of System Calls with Parameters

RegChangesDataBufferL ength Size of the buffer pointed to by
RegChangesDataBuffer.

bAsynchronous Flag specifying whether the monitoring should
be done synchronously or asynchronously.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS

This function is similar to NtNotifyChangeDirectoryFile. It monitors the Registry
tree instead of the file system tree. Presently, the RegChangesDataBuffer and
RegChangesDataBufferLength parameters are ignored. Hence, the notification is
given only when the Registry changes occur. The function does not return in
RegChangeDataBuffer the actual changes made in the Registry. This is different
from NtNotifyChangeDirectoryFile, which returns actual changes dso. We fedl that
the functionality to provide the actua list of changes to the Registry will be added
in future versions of Windows NT. For now, this system service does not provide
any more information than its Equivalent Win32 APl RegNotifyChangeKeyVaue
except for the fact that you can specify a callback function that gets called when
the changes occur in the Registry.

EQUIVALENT WIN 32 API
RegNotifyChangeKeyValue

NtQueryKey
NTSTATUS
NtQueryKey(
IN HANDLE hKey,
IN KEY_INFORMATION_CLASS KeylInfoClass.
OUT PVOID KeylnfoBuffer,
IN ULONG KeylInfoBufferlLength,
OUT PULONG BytesCopied

):

NtQueryKey retrieves information about the specified key.
PARAMETERS
hKey Handle to the key for which the information is

requested.

Appendix A: Details of Sysem Calls with Parameters 303

KeylnfoClass The information class requested for the key. This can
be KeyBasicInformation, KeyNodelnformation, or
KeyFullInformation.

KeylnfoBuffer Pointer to the buffer that receives the information
about the key.

KeylnfoBufferLength Size of the buffer (in bytes) pointed to by
KeylnfoBuffer.

BytesCopied Pointer to the variable that receives the number of
bytes copied into KeylnfoBuffer.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
Look at the Comments section for the NtEnumerateKey function.

EQUIVALENT WIN32 APl
RegQueryKey

NtQueryMulti pieValueKey
NTSTATUS
NtQueryMultipleValueKey!
IN HANDLE hKey,
IN OUT PKEY_VALUE__ENTRY ValueNameArray,
IN DWORD nElementsValueNameArray, t
OUT PVOID ValueDataBuffer,
IN OUT PULONG ValueDataBufferSize.
OUT PULONG SizeRequired

NtQueryMultipleVaueKey retrieves the data and the type of information about
the specified values.

PARAMETERS
hKey Handle to the key to which the values belong.
VaueNameArray Pointer tothearray of KEY_VALUE _ENTRY

structures. The first member of this should be
filled in with a pointer to the Unicode string
representation of the valuename whose
information is to be retrieved. The other
members of this structure are returned upon the
successful execution of the service.

304

Appendix A: Details of System Calls with Parameters

nElementsVaueNameArray Thenumber of KEY_VALUE_ENTRY typeentries
in the array pointed to by VaueNameArray.

ValueDataBuffer Pointer to the buffer that receives the data
associated with the values specified in
VaueNameArray. The DataOffset field in
KEY_VALUE_ENTRY pointsto offsetsinthis
buffer upon successful execution of the service.

VaueDataBufferSize Pointer to the variable that contains the size of
the buffer pointed to by ValueDataBuffer. This
variable receives the number of bytes actually
copied to the ValueDataBuffer upon successful
execution of the service.

SizeRequired Pointer to the variable that receives the size of
the buffer required to fulfill the query request.
This member can be used to allocate appropriate
space if the function fails with
STATUS BUFFER OVERFLOW.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENTWIN32 API
RegQueryMultipleVaues

NtQueryValueKey
NTSTATUS
NtQueryValueKey(
IN HANDLE hKey,
IN PUNICODE_STRING uValueName,
IN KEY_VALUE_INFORMATION_CLASS KeyValuelnfoClass,
OUT PVOID KeyValueInfoBuffer,
IN ULONG KeyValuelnfoBufferLength,
OUT PULONG BytesCopied

);
NtQueryValueKey retrieves information about the specified value.

Appendix A: Details of System Calls with Parameters

PARAMETERS

hKey Handle to the key to which the valuename
belongs.

uVaueName Pointer to the Unicode string representation of the
valuename.

KeyVduelnfoClass The information class requested for the Registry
value. This can be KeyValueBasiclnformation,
KeyVaueFulllnformation, or
KeyVauePartiallnformation.

KeyValuelnfoBuffer Pointer to the buffer that receives the information
about the Registry value.

KeyVauelnfoBufferLength Size of the buffer (in bytes) pointed to by
KeyValuelnfoBuffer.

BytesCopied Pointer to the variable that receives the number of

bytes copied into KeyValuelnfoBuffer.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
Look at the Comments section for the NtEnumerateValueKey function.

EQUIVALENT WIN32 AP /
RegQueryVa ueEx

NtReplaceKey
NTSTATUS
NtReplaceKey(
IN POBJECT_ATTRIBUTES NewHiveFile,
IN HANDLE hKey,
IN POBJECT_ATTRIBUTES BackupHiveFile

NtReplaceKey replaces the hive file backing up the exigting key with a new
hive file.

PARAMETERS

NewHiveFile Pointer to the object attribute structure describing the new
hive file.

305

Appendix A: Details of Syssem Calls with Parameters

hKey Handle to root key of the hive.

BackupHiveFile Pointer to the object attribute structure describing the backup
hive file that receives the copy of the existing Registry hive.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 32 AP
RegReplaceK ey

Nt Savekey
NTSTATUS
Nt SaveKey(
IN HANDLE hKey,
IN HANDLE hFile

NtSaveKey backs up the Registry contents under the specified Registry key into
a file.

PARAMETERS

hKey Handle to the key to backup.

hFile Handle to the file in which the contents of the Registry are to be
saved.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
RegSavekey

Nt Rest or eKey
NTSTATUS
Nt Rest or eKey(

Appendix A: Details of System Calls with Parameters

IN HANDLE hKey,
IN HANDLE hFile,
IN ULONG Flags

NtRestoreKey restores the Registry contents under the specified Registry key
from the specified file. M

PARAMETERS

hKey Handle to the key to restore.
hFile Handle to the file containing the Registry data.
Flags This parameter can be REG_WHOLE_HIVE_VOLATILE.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
RegRestoreK ey

NtSetinformationKey
NTSTATUS
NtSetinformationKey(
IN HANDLE hKey.
INKEY_SET_INFORMATION_CLASS KeySetInfollass,
IN PKEY_WRITE_TIME_INFORMATION plnfoBuffer.
IN ULONG plInfoBufferLength

NtSetInformationKey sets the last write time of the specified key.
PARAMETERS

hKey Handle to the Registry key.
KeySetinfoClass This parameter should be KeyWriteTimelnformation.
pInfoBuffer Pointer to the structure of type

KEY_WRITE_TIME_INFORMATION. The structure contains
only one large integer field caled LastWriteTime.

pinfoBufferLength Size of the buffer pointed to by pinfoBuffer.

307

308

Appendix A: Details of System Calls with Parameters

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP
None.

NtSetValueKey
NTSTATUS
NtSetValueKey(

IN HANDLE hKey,
IN PUNICODE_STRING uValueName,
IN ULONG Titlelndex.
IN ULONG ValueType,
IN PVOID pValueData,
IN ULONG pValueDatalLength

);
NtSetValueKey sets/creates a value entry under the specified Registry key.
PARAMETERS

hKey Handle to the Registry key to which the value is associated
with.

uValueName Pointer to the Unicode string containing the valuename.

Titlelndex This parameter should be 0.

ValueType Datatype for the value. This could be REG_BINARY,

REG_DWORD, and o on. For al types, refer to the
documentation of the RegSetValueEx cdll.

pVaueData Pointer to the buffer containing the data to be associated
with the valuename.

pVaueDatal ength Size of the data buffer pointed to by pValueData

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

Appendix A: Details of Sysem Calls with Parameters

EQUIVALENT WIN32 AP
RegSet Val ueEx

Nt LoadKey
NTSTATUS
Nt LoadKey(
IN POBJECT_ATTRIBUTES KeyNameAttnbutes,
IN POBJECT_ATTRIBUTES HiveFileNameAttnbutes

NtLoadK ey loads the specified Registry hive on top of the existing Registry key.
PARAMETERS

KeyNameAttributes Pointer to the object attributes structure describing
the key on which the hive isto be loaded.

HiveFileNameAttributes Pointer to the object attributes structure describing
the hive filename,

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
Refer to the documentation of the NtLoadKey2 system service. NtLoadKey inter-
naly calls NtLoadKey2 by specifying the third parameter flags as 0.

EQUIVALENTWIN32 API
ReglLoadK ey

NtLoadKey2
NTSTATUS
NtLoadKey2(
IN POBJECT_ATTRIBUTES KeyNameAttributes,
IN POBJECT_ATTRIBUTES HiveFileNameAttributes,
IN ULONG Flags

NtLoadK ey2 loads the specified Registry hive on top of the existing Registry key
and applies the specified flags for the loaded hive.

310

Appendix A: Details of Syssem Calls with Parameters

PARAMETERS

KeyNameAdttributes Pointer to the object attributes structure describing
the key on which the hive is to be |oaded.

HiveFileNameAttributes Pointer to the object attributes structure describing
the hive filename.

Flags The only flag vaue allowed is 0x00000004.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS

The hive loaded with NtLoadKey is periodicaly synched by the sysem worker
thread. With NtLoadKey2, you can specify a flag 0x00000004 that turns off this pe-
riodic synching. Hence, if this flag is specified, the hive is not synched periodically
by the system worker thread. Internally, the system maintains a linked list of loaded
hives data structures. One member of this data structure contains the information
about the flags passed while loading the hive. The system worker thread periodi-
caly walks the list of loaded hives and, based on this member, decides whether to
synch the hive or not.

EQUIVALENT WIN32 APl
None.

NtUnloadKey
NTSTATUS
NEUnloadKey(
IN POBJECT_ATTRIBUTES KeyNameAttributes
): .-
NtUnloadKey unloads the hive loaded on top of the existing key (using
NtLoadK ey2/NtL oadK ey).

PARAMETERS

KeyNameAttributes Pointer to the object attributes structure describing the
key from which the hive is to be unloaded.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

Appendix A: Details of System Calls with Parameters

COMMENTS
None.

EQUIVALENT WIN32 AM

RegUnloadK ey
NtAlertResumeThread ' «_-
NTSTATUS
NtAlertResumeThread(
IN HANDLE hThread,

OUT PBOOLEAN pbResumed

NtAlertResumeThread resumes the thread or aderts the thread that is in alertable
wait state.

PARAMETERS

hThread Handle to the thread.

pbResumed Pointer to the variable that receives whether the thread was
actually resumed or it was aready running (TRUE if the thread
was in the suspended stete at the time of function call, otherwise

FALSE).

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

If the thread is in alertable wait state, then this function takes the thread out of the
wait state with the status of STATUS ALERTED. However, the user mode alertable
wait calls such as WaitForSingleObject and SleepEx put the thread again back in
alertable wait state if they return with the status of STATUS ALERTED.

EQUIVALEMT WIN32 API
None.

NtAlertThread
NTSTATUS
NtAlertThread(
IN HANDLE hThread

NtAlertThread alerts the thread that is in alertable wait state.

311

312

Appendix A: Details of Syssem Calls with Parameters

PARAMETERS

hThread Handle to the thread.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
See the Comments section for NtAlertResumeThread.

EQUIVALENT WIN 32 AP
None.

NtTestAlert
NTSTATUS
NtTestAlert (

);
NtTestAlert checks whether the current thread has any pending alerts.

PARAMETERS
None.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 APl
None.

Nt Cr eat eProcess
NTSTATUS
Nt Creat eProcess(

OQUT PHANDLE phProcess,
I N ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttributes,
I N HANDLE hParentProcess,
N BOOLEAN bl nheritHandl es,
IN HANDLE hSection.
IN HANDLE hpebugPort,
IN HANDLE hExceptionPort

N Qreat eProcess creates a new process obj ect.

Appendix A: Details of System Calls with Parameters

PARAMETERS

phProcess Pointer to the variable that receives handle to the process
object.

AccessMask Type of access requested to the process object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing
the information about the process object to be created,
such as name, parent directory, objectflags, and so on.

hParentProcess Handle to the process object that this process will be a
child of.

bInheritHandles The flag specifying whether the handles from the parent
process described by hParentProcess are to be inherited by
this process.

hSection Handle to the section object created for the executable file.

hDebugPort Handle to the debug port for the process.

hExceptionPort Handle to the exception port for the process.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

The system service enables you to specify a different parent process for the process
to be created, whereas in case of the user-mode CreateProcess call, the caler of the
function becomes the parent of the process being crested. The reason for this isthat
CreateProcess, by default, passes OxFFFFFFFF as the parent process handle. We feel
that the provision to specify a different process handle than that of the caller is re-
quired in the POSIX subsystem where the fork call is actually implemented by the
subsystem. Also note that unlike al other synchronization objects, such as mutex
and semaphore, the CreateProcess cdl does not enable you to name the process ob-
ject, whereas the system service enables you to specify the name of the process ob-
ject in the ObjectAttributes structure. This way, you can open the process using its
name instead of the process ID that is required for the OpenProcess call. Further, the
sysem service enables you to specify specific port handles for DebugPort and
ExceptionPort, whereas the CreateProcess call does not alow you to do so. The
CreateProcess call, by default, passes NULL handles to these two parameters. When
NULL handles are passed, the NtCreateProcess cdl uses the CSRSS's port objects for
debug port and exception port.

EQUIVALENT WIN32 AP
CreateProcess

313

314 Appendix A: Details of System Calls with Parameters

Nt Cr eat eThr ead
NTSTATUS
Nt Creat eThread(
QUT PHANDLE phThread, «
N ACCESS_MASK AccessMask,
N POBJECT_ATTRI BUTES Obj ectAttributes,
IN HANDLE hProcess,
OUT PCLIENT_ID pClientld,
N PCONTEXT pContext,
OUT PSTACKI NFO pStackl nfo,
I'N BOOLEAN bSuspended

N CeateThread creates a new thread object.

PARAMETERS

phThread Pointer to the variable that receives handle to the thread
object.

AccessMask Type of access requested to the thread object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the
information about the thread object to be created, such as
name, parent directory, objectflags, and so on.

hProcess Handle to the process object that this thread will belong to.

pClientld Pointer to the structure that will receive the thread ID and
the process ID for thisthread.

pContext Pointer to the CONTEXT structure containing the state of
various processor registers when the thread begins
executing.

PStackinfo Pointer to the variable that receives the information about
the stack of the thread.

bSuspended Flag indicating whether the thread should be in suspended
mode.

RETURM VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
Note that unlike al other synchronization objects, such as mutex and semaphore,
the Equivalent Win32 APl CreateThread call does not enable you to name the

Appendix A: Details of System Calls with Parameters

thread object, whereas the system service enables you to specify the name of the
thread object in the ObjectAttributes structure. This way, you can open the thread
using its name instead of the thread ID.

The structure PSTACKINFO is defined as follows:

typedef struct StackIinfo_t {
LONG Unknownl;
LONG Unknown2:
LONG TopOfStack;
LONG OnePageBelowTopOfStack;
LONG BottomOfStack;

} STACKINFO. *PSTACKINFO;

EQUIVALENT WIN32 API
CreateThread

NtDelayExecution
NTSTATUS
NtDelayExecution(
IN BOOLEAN bAlertable,
IN PLARGE INTEGER pDuration

NtDelayExecution puts the calling thread in alertable/nonal ertable deep state for
the specified duration.

PARAMETERS

bAlertable Flag specifying whether the deep is aertable/nonalertable.

pDuration Pointer to the LARGEINTEGER structure containing the duration
for deep. Negative values represent relative time, whereas
positive vaues represent absolute time.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 32 API
SleepEx

315

316

Appendix A: Details of System Calls with Parameters

NtGetContextThread
NTSTATUS
NtGetContextThread(
IN HANDLE hThread.
IN OUT PCONTEXT pContext

NtGetContextThread returns the context structure for the specified thread.
PARAMETERS

hThread Handle to the thread object.

pContext Pointer to the structure that contains new context structure for the
thread. The ContextFlags field in this structure must be filled with
any combination of CONTEXT_CONTROL, CONTEXTINTEGER,
CONTEXT_SEGMENTS, CONTEXT_FLOATING_POINT,
CONTEXT_DEBUG_REGISTERS, CONTEXT_EXTENDED _
REGISTERS, and CONTEXT_FULL based on the type of context
information filled before invoking this system service.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AFH
GetThreadContext

NtSetContextThread
NTSTATUS
NtSetContextThread(
IN HANDLE hThread,
IN PCONTEXT pContext

NtSetContextThread sets the context structure for the specified thread.
PARAMETERS

hThread Handle to the thread object.

Appendix A: Details of Sysem Calls with Parameters

pContext Pointer to the structure that receives the context structure for the
thread. The ContextFlags field in this structure must be filled with
any combination of CONTEXT_CONTROL, CONTEXTINTEGER,
CONTEXT_SEGMENTS, CONTEXT_FLOATING_POINT,
CONTEXT_DEBUG_REGISTERS, CONTEXT_EXTENDED _
REGISTERS, and CONTEXT_FULL beforeinvoking this sysem
service. -

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS

None.

EQUIVALENT WIN32 AP
SetThreadContext

NtOpenProcess
NTSTATUS
NtOpenProcess(
OUT PHANDLE phProcess,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttnbutes,
IN PCLIENT_ID pClientId

NtOpenProcess opens a handle to the existing process object.

PARAMETERS

phProcess Pointer to the variable that receives handle to the process
object.

AccessMask Type of access requested to the process object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing

the information about the process object to be opened,
such as name, parent directory, objectflags, and so on.

pClientld Pointer to the CLIENTJD structure. The process ID member
of this structure must be filled by the caller before
invoking this system service.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

317

318

Appendix A: Details of Sysem Calls with Parameters

COMMENTS

Only one of the parameters ObjectAttributes and pClientld may be specified. If the
process object is named, then the ObjectAttribute structure must be filled with the
details; otherwise, the process ID field must be filled in the pClientld structure.

EQUIVALENT WIN 32 API
OpenProcess

NtOpenThread
NTSTATUS !
NtOpenThread(
OUT PHANDLE phThread,
IN ACCESS_MASK AccessMask,
IN POBJECT_ATTRIBUTES ObjectAttributes,
INPCLIENT_ID pClientId
): -

NtOpenThread opens handle to the existing thread object.

PARAMETERS

phThread Pointer to the variable that receives handle to the thread
object.

AccessMask Type of access requested to the thread object.

ObjectAttributes Points to the OBJECT_ATTRIBUTES structure containing the

information about the thread object to be opened, such as
name, parent directory, objectflags, and so on.

pClientld Pointer to the CLIENTJD structure. The thread ID member
of this structure must be filled by the caller before invoking
this system service.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

Only one of the parameters ObjectAttributes and pClientld may be specified. If the
thread object has a name, then the ObjectAttribute structure must be filled with the
details; otherwise, the thread 1D field must be filled in the pClientld structure.

EQUIVALENT WIN32 AP
None.

Appendix A: Details of System Calls with Parameters 319

NtQueryInformationProcess
NTSTATUS
NtQueryInformationProcess(
IN HANDLE hProcess,
IN PROCESSINFOCLASS ProcessinfoClass,
OUT PVOID ProcessInfoBuffer,
IN ULONG PracessInfoBufferlLength,
OPTIONAL OUT PULONG BytesCopied.

):
NtQuerylnformationProcess returns information about the specified process object.

PARAMETERS

hProcess Handle to the process object.

ProcessinfoClass Type of information requested.

Processl nfoBuffer Pointer to the buffer that receives the information
about the process object.

ProcesslnfoBufferL ength Size of the buffer (in bytes) pointed to by
ProcessinfoBuffer.

BytesCopied Pointer to the variable that receives the number of
bytes copied into ProcessinfoBuffer.

RETURN VALUE

Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Different information is returned based upon the ProcessinfoClass parameter. Here
is the layout of ProcessinfoBuffer based on the ProcessinfoClass:

ProcessBasi ¢l nformation(O) PROCESS BASIC INFORMATION,

ProcessQuotaLimits(1) QUOTA_LIMITS,

ProcessloCounters(2) |0 COUNTERS

ProcessVmCounters(3) VIVLCOUNTERS.

ProcessTimes(4] KERN EL_USER_T| MES.

ProcessDebugPort(7) ULONG containing the pointer to debug
port object.

ProcessLdtInformation(10) PROCESS LOT INFORMATION.

320

Appendix A: Details of System Calls with Parameters

ProcessDefaultHardErrorM ode(12) ULONG containing the default error mode
for the process. This could be any
combination of
SEM_FAILCRLTICALERRORS,
SEM_NOALIGNMENTFAULTEXCEPT,
SEM_NOGPFAULTERRORBOX, and
SEM_NOOPENFILEERRORBOX.

ProcessPooledUsageAndLimits(1 4) POOLED_USAGE_AND_LIMITS.

ProcessWorkingSetWatch(15) PROCESS WS WATCH_INFORMATION.

ProcessWx86Information(19) ULONG. Always returns 0.

ProcessHandleCount(20) ULONG containing the number of open
handles.

ProcessPriorityBoost{ 22) BOOLEAN containing the priority boost

control state. TRUE means that dynamic
boosting is disabled.

Most of the structures defined previously are documented in the NTDDK.H file
from the Windows NT DDK. Other structures can be found in UNDOCNT.H on the
accompanying CD-ROM.

Some of this information is available from Equivalent Win32 APl cdls.
However, not al of them are available from Win32 API cdls.

EQUIVALENT WIM 32 AP

GetProcessTimes, GetProcessPriorityBoost, GetProcessAffinityMask,
GetProcessShutdownParameters, GetPriorityClass, GetProcessWorkingSetSize,
GetProcessVersion

NtQueryInformati onThread
NTSTATUS
NtQuerylnformationThread(

IN HANDLE hThread,
INTHREADINFOCLASS ThreadInfolClass,
OUT PVOID ThreadInfoBuffer,
IN ULONG ThreadInfoBufferlLength,
OPTIONAL OUT PULONG BytesCopied,

NtQuerylnformationThread returns information about the specified thread object.
PARAMETERS

hThread Handle to the thread object.

Appendix A: Details of System Calls with Parameters

ThreadinfoClass
ThreadinfoBuffer

Type of information requested.
Pointer to the buffer that receives the information

about the thread object.

ThreadInfoBufferLength

Size of the buffer (in bytes) pointed to by

ThreadInfoBuffer.

BytesCopied

Pointer to the variable that receives the number of

bytes copied into ThreadInfoBuffer.

RETURN VALUE

Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

Different information is returned based upon the ThreadinfoClass parameter. Here
is the layout of ThreadlnfoBuffer based on the ThreadlnfoClass:

ThreadBasiclnformation(O)
ThreadTimes(l)
ThreadDescriptorTableEntry (6)
ThreadQuerySetWin32StartAddress (9)

ThreadPerformanceCount (11)
ThreadAmlLastThread(12)

ThreadPriorityBoost (14)

THREAD_BASIC_INFORMATION.
KERNEL_USER_TIMES.
DESCRIPTOR_TABLE_ENTRY.

Pointer to ULONG containing the start
address of the thread.

Pointer to an array of two ULONGsS.

Pointer to ULONG that receives
whether the calling thread is the last
thread of the process (hThread
parameter is ignored in this case).

Pointer to ULONG that receives
whether dynamic priority boosting is
enabled or disabled for the thread.

Some of the structures defined previoudy are documented in the NTDDK.H file
from the Windows NT DDK. Other structures can be found in UNDOCNT.H on the

accompanying CD-ROM.

Here are the definitions for the structures that are not documented in NTDDK.H:

typedef struct _THREAD_BASIC_INFORMATION (

NTSTATUS ExitStatus;

PVOID TebBaseAddress;
ULONG UniqueProcessld;
ULONG UniqueThreadld;

321

322 Appendix A: Details of System Calls with Parameters

KAFFINITY AffinityMask;

KPRIORITY BasePnonty;

ULONG DiffProcessPriority:

} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;

Some of this information is available from Equivalent Win32 APl calls.
However, not dl of them [[[AU: "not al of them" OK?|]]are available from Win32
APl calls.

EQUIVALENT WIN32 AP
GetThreadPriorityBoost, GetThreadTimes, GetThreadPriority

NtQueueApcThread
NTSTATUS
NtQueueApcThread(

IN HANDLE hThread,
IN PKNORMAL_ROUTINE ApcRoutine,
IN PVOID NormalContext.
IN PVOID SystemArgumentl,
IN PVOID SystemArgument2,

NtQueueApcThread queues an entry to the thread's APC Queue.

PARAMETERS

hThread Handle to the thread object. -,

ApcRoutine The function that gets called when the APC is scheduled
for execution.

Normal Context Points to the context associated with the APC.

SystemArgument1 Points to the first argument to be passed to the APC
function.

SystemArgument2 Points to the second argument to be passed to the APC
function.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Win32 API call corresponding to this system service is prototyped as

Appendix A: Detals of Sysem Calls with Parameters

W NBASEAPI

DWORD

W NAPI

QueueUser APC(
PAPCFUNC pf nAPC,
HANDLE hThr ead,
DWORD dwDat a

);

The QueueUserAPC function passes pfnAPC for the Normal Context parameter
and passes dwData for the SystemArgumentl parameter. It also passes the address
of the internal KERNEL 32 routine called BaseDipatchAPC as the ApcRoutine para-
meter. TheBaseDispatchRoutine extracts the pfnAPC and dwData parameters from
the parameters passed to it and calls pfnAPC.

EQUIVALENTWIN32 API
QueueUserAPC

NtResumeThread
NTSTATUS
NtResumeThread(
IN HANDLE hThread,
OUT PULONG pSuspendCount

NtResumeThread decrements the suspend count for the thread and resumes the
thread if the suspend count reaches 0.

PARAMETERS

hThread Handle to the thread object.

pSuspendCount Pointer to the variable that receives the suspend count of the
thread at the time this system service is invoked.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
The Equivalent Win32 API cal does not return the suspend count of the thread,
whereas the system service does return this information.

EQUIVALENTWIN32 API
ResumeT hread

323

324 Appendix A: Details of System Calls with Parameters

NtSetLowWaitHighThread
NTSTATUS
NtSetlLowWaitHighThread(

);

NtSetL owWaitHighThread sets the low event of the event pair associated with
the calling thread and waits on the high event of the event pair to be signaed.

PARAMETERS
None.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
Chapter 8 provides more information.

EQUIVALENT WIN 32 API
None.

NtSetHighWaitLowThread
NTSTATUS
NtSetHighWaitLowThread(

);

NtSetHighWaitLowThread sets the high event of the event pair associated with
the calling thread and waits on the low event of the event pair to be signaled.

PARAMETERS
None.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
Chapter 8 provides more information.

EQUIVALENT WIN32 API
None.

Nt SuspendThr ead
NTSTATUS
Nt SuspendThread(
IN HANDLE hThread,
OUT PULONG pSuspendCount

Appendix A: Details of Sysem Calls with Parameters

NtSuspendThread suspends the thread and increments the suspend count for the
thread.

PARAMETERS

hThread Handle to the thread object.

pSuspendCount Pointer to the variable that receives the suspend count of the
thread at the time this system service is invoked.

RETURN VALUE
Returns STATUS SUCCESS on success and an appropriate error code on failure.

COMMENTS

The Equivalent Win32 API call does not return the suspend count of the thread,
whereas the system service does return this information.

EQUIVALENT WIN 32 API
SuspendThread

NtTerminateProcess
NTSTATUS
NtTerminateProcess(
IN HANDLE hProcess,
IN ULONG ExitCode

NtTerminateProcess terminates the specified process.
PARAMETERS

hProcess Handle to the process object.
ExitCode Exit code for the process.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 API
ExitProcess, TerminateProcess

325

326 Appendix A: Details of Sysem Calls with Parameters

Nt Ter mi nat eThr ead
NTSTATUS
NtTerminateThread(
N HANDLE hThread,
N ULONG Exit Code

NtTerminateThread terminates the specified thread.
PARAMETERS

hThread Handle to the thread object.
ExitCode Exit code for the thread.

RETURN VALUE
Returns STATUS_SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN 32 AP
ExitThread, TerminateThread

NtYieldExecution
NTSTATUS
NtYieldExecution!

E
NtYieldExecution relinquishes the processor from the calling thread.

PARAMETERS
None.

RETURN VALUE
Returns STATUS _SUCCESS on success and an appropriate error code on failure.

COMMENTS
None.

EQUIVALENT WIN32 AP L
SwitchToThread.

Appendix B

What's on the CD-ROM

The CD-ROM that accompanies this book contains the source code and binaries for
all the sample applications that we've discussed in this book. Each sample is kept in
a separate directory.

To try out each sample, open the accompanying README.TXT file. Each con-
tains step-by-step instructions for installing and trying out the sample.

In each README.TXT file, we have aso identified which system (or systems) we
used to test the sample - Windows NT 3.51, Windows NT 4, and/or Windows 2000
beta 1 and beta 2.

The samples are compiled using MSVC 4.2 compiler and Windows NT 4.0 DDK.

327

