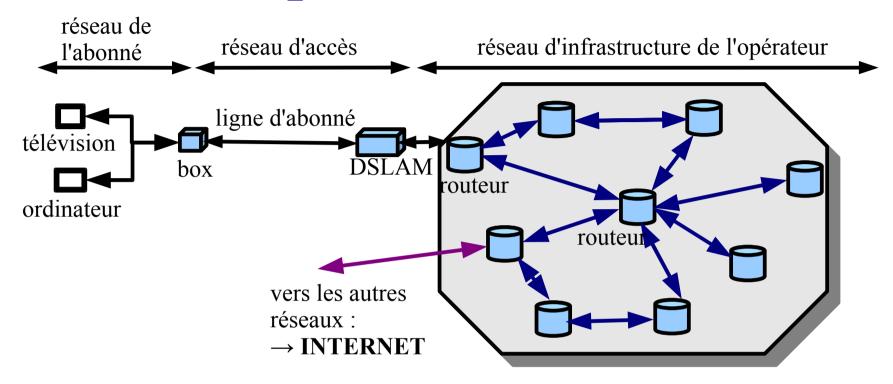
Module ASR4 ASR40 Réseaux informatiques

Contenu

- 1. Introduction
- 2. Réseaux locaux Ethernet et IEEE 802.3
- 3. Architecture TCP/IP: Protocole IP
- 4. Architecture TCP/IP: Protocole TCP
- 5. Réseaux locaux virtuels (VLANs)

Volume : 7,5 h Cours, 10 h TD, 10 h TP Coefficients : contrôle continu = 10, contrôle partiel = 16

Module ASR-4 Réseaux informatiques Chapitre 1


Introduction

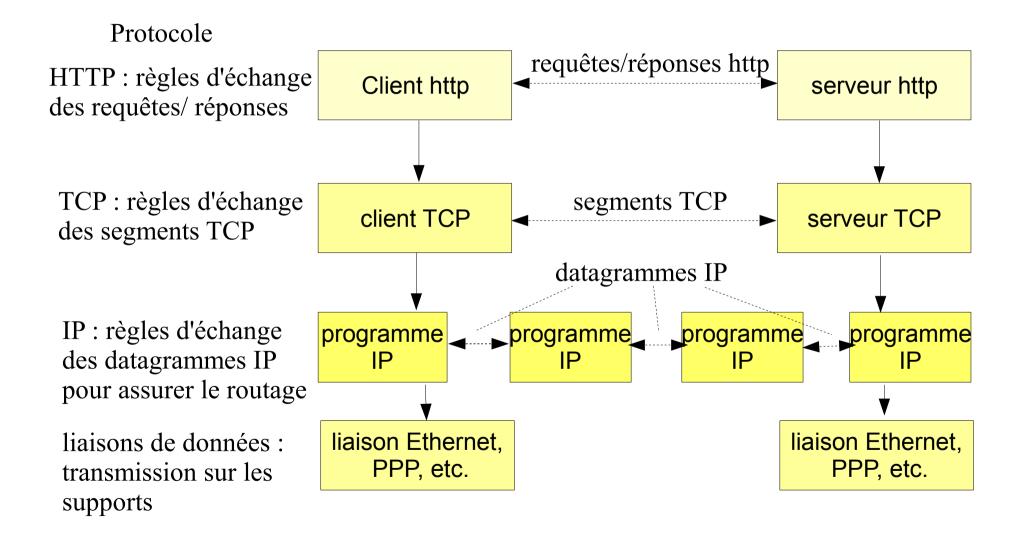
Notions générales

1. Introduction

- 1.1. Notions fondamentales
 - Réseau, station, nœud, lien, topologie
 - Protocole, service, adressage, format d'échange, flux
- 1.2. Normalisation, architectures normalisées
 - OSI, TCP/IP
- 1.3. Réseaux locaux : Ethernet, WiFi, Bluetooth
- 1.4. Réseaux étendus
 - Réseaux de transport et réseau d'accès, Internet
- 1.5. Définitions

1. Composants d'un réseau

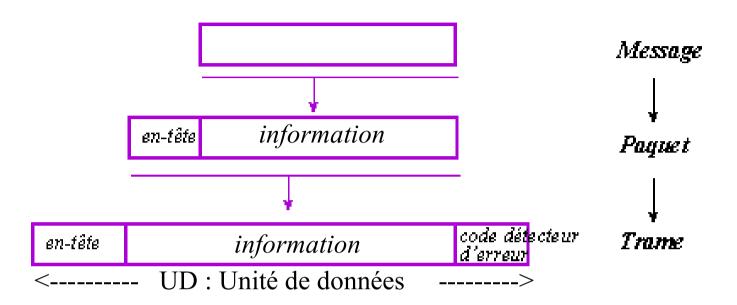
- station : équipement utilisateur d'un réseau : ordinateur, télévision, téléphone, etc.
- nœud : équipement d'interconnexion : commutateur, routeur, « box », DSLAM, etc.
- lien : support de transmission : paire téléphonique, onde radio, câble optique, etc.


Architecture réseaux et protocole

- Organisation des fonctions réalisées dans un réseau sous forme d'une architecture en niveaux
- Chaque niveau est défini par :
 - Les **entités** logicielles ou matérielles qui implantent les fonctions.
 - Les **protocoles** qui fixent la structure des données et les règles d'échange entre les entités.
- Architecture (simplifiée) définie en trois niveaux de base :
 - niveau application : message
 - niveau acheminement : paquet
 - niveau transmission: trame

Architecture en 3 niveaux

niveau	fonction	unité de données
application	Réalisation des échanges entre les composants de l'application. ex: serveur web et client navigateur	message (ex : mail, requête /réponse HTTP)
acheminement	Transport de bout en bout des données des applications avec la qualité de service requise (fiabilité, sécurité, synchronisation). Acheminement à travers le réseau. ex : routage IP, transport TCP.	paquet (ex : datagramme IP, segment TCP)
transmission	Transmission sur chaque lien. Détection des erreurs, gestion du partage et de l'accès aux liens. ex: Ethernet, Wifi, WDM	trame (ex : trame Ethernet, cellule ATM, trame PPP)


Niveaux de protocole Exemple des protocoles HTPP/TCP/IP

Adressage dans les réseaux

- adresse « réseau » : identification des équipements par une adresse IP : indépendante de la localisation, définie hiérarchiquement à partir d'une adresse réseau et de l'adresse de la machine dans ce réseau :
 - IPv4 (sur 32 bits): 194.62.123.43
 - IPv6 (sur 128 bits): 1fff:0000:0a88:85a3:0000:0000:ac1f:8001
- adresse « **physique** » (des stations, des routeurs, etc.) : adresses MAC sur 48 bits : 00:C0:4F:26:E1:CF
- adresse interne au réseau : (ex. circuit virtuel ATM)
- adresse de niveau application :
 - numéro de port (niveau transport) ex: port 80 (HTTP)
 - identifiants utilisés dans les applications : adresse mail, uri, nom dns, etc.

Encapsulation des données

- UD : **Unités de Données** de chaque niveau (trame, paquet = datagramme ou segment, message).
- Le champ « information » ou « payload » contient l'Unité de Données du niveau supérieur.
- L'en-tête de chaque UD contient les données supplémentaires nécessaires à la réalisation du protocole : adresses, numéros, commandes, etc.

Fonctions générales d'un réseau

- Définition du mode de communication : avec/sans connexion
- Encapsulation et fragmentation des UD à transmettre
- Contrôle d'erreur :
 - détection d'erreur physique ou logique (UD manquante)
 - correction d'erreur : automatique ou par **retransmission**.
- Contrôle de flux : adaptation de l'émission aux capacités de réception.
- Contrôle de congestion : gestion au mieux des ressources internes du réseau pour assurer la transmission des flux de façon fluide et selon la qualité de service requise.
- Partage du/des liens : gestion des accès en fonction des demandes et/ou multiplexage des flux.

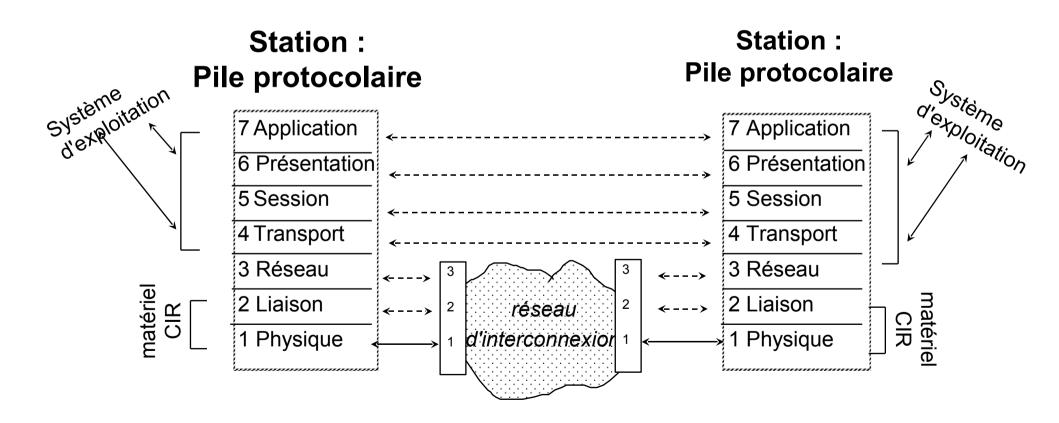
2. Organismes de normalisation

- Importance: pour communiquer, il faut s'entendre...
- Complexité technologique et convergence de métiers différents : informatique, télécommunication, téléphonie, télévision, audio...
- Principales organisations de normalisation :
 - **ISO**: International Standardisation Organisation (http://www.iso.ch)
 - ITU: International Telecommunication Union (http://www.itu.ch)
 - **IEEE**: Institute of Electrical and Electronics Engineers (http://www.ieee.org)
 - **IETF**: Internet Engineering Task Force (http://www.ietf.org)

Autres structures de standardisation

- Associations professionnelles :
 - Le consortium **W3C** (http://www.w3.org) : normes relatives au web.
 - Le forum **WiMAX** (http://www.wimaxforum.org)
 - Le forum **DSL** (http://www.adsl.com) : lignes d'accès haut débit.
- Agences de réglementation :
 - **ARCEP**: (http://www.arcep.fr) Agence de Régulation des Communications Électroniques et de la Poste, ex- ART
 - CNIL : (http://www.cnil.fr) Commission Nationale Informatique et Libertés

Architecture OSI


- Open Systems Interconnexion
- Objectif : architecture de référence

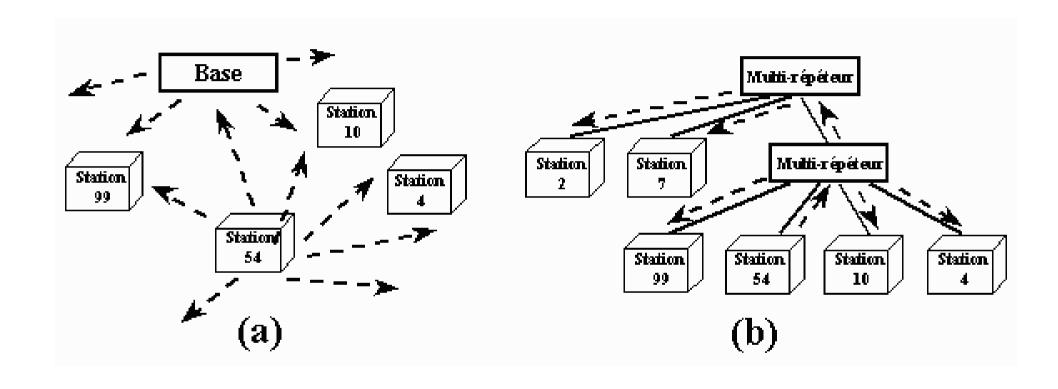
	7 Application	
Application	6 Présentation	
	5 Session	
Acheminement	4 Transport	
71CHCMHCMCM	3 Réseau	
Transmission	2 Liaison	
Trunsmission	1 Physique	

Année 2007-2008

Interconnexion OSI

• Seuls les 3 premiers niveaux sont mis en œuvre dans les nœuds d'interconnexion (commutateurs, routeurs, ponts, etc.)

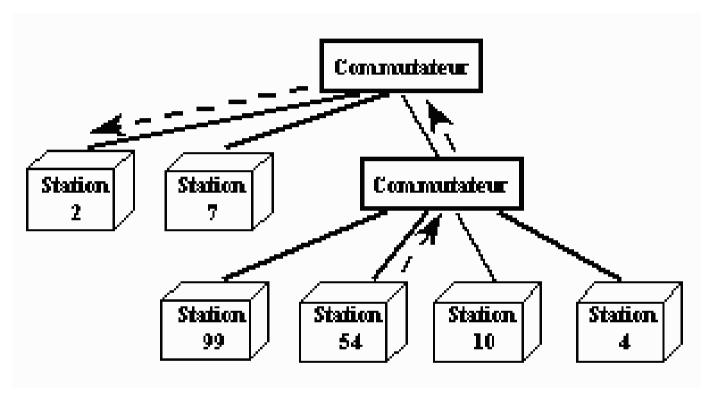
Architecture TCP/IP


	Niveau	Niveau	Unité de	Principaux services et protocoles
	OSI	TCP/IP	données	Finicipaux services et protocoles
Application	7	Application	Message	Messagerie (SMTP,POP,IMAP), transfert de fichiers (FTP, SSH/SFTP), connexion à distance (TELNET,SSH), Web (HTTP) Bases d'Informations (LDAP,Postgres, MySQL)
Acheminement 3	4	Transport	Paquet de transport (segment)	Acheminement de processus à processus communications port à port (TCP,UDP)
	3	Réseau	Paquet de réseau (datagramme)	Acheminement de station à station: routage IP
Transmission	-	Interface	Trame	Ethernet, WiFi, ATM, etc.

Année 2007-2008 15

3. Réseaux locaux

- caractéristiques : localisation, accès privé
- technologies principales : Ethernet, WiFi
- topologie : arborescente ou étoile
- mode de transmission des signaux : diffusion, commutation
- mode de partage du support : par compétition (avec risque de collision) ou de façon contrôlée (centralisée)
- standardisation par l'IEEE:
 - couche LLC « Logical Link Control » pour assurer les fonctions communes comme le contrôle de flux (norme 802.2)
 - couche MAC « Medium Access Control » qui définit le format des trames, et la méthode d'accès au médium : normes 802.3 (Ethernet), 802.11 (WiFi),


Réseaux locaux par diffusion de signal

- (a) diffusion dans un réseau WiFi
- (b) diffusion dans un réseau Ethernet

Année 2007-2008

Réseaux locaux par commutation

- réseau local Ethernet avec commutateurs
- le commutateur décode la trame pour la rediriger uniquement vers le port du destinataire
- topologie en arbre

4. Réseaux étendus

- caractéristiques : zone de répartition des stations, accès privé ou public, interconnexion (Internet)
- structure : réseau d'accès et réseau de transport (réseau d'infrastructure)
- technologies:
 - d'accès : « boucle locale » (RTC, ADSL)
 - d'infrastructure : multiplexage WDM sur fibres optiques
- structure d'Internet :
 - réseaux privés
 - réseaux des FAI « Fournisseurs d'Accès à Internet »
 (services + accès Internet)
 - réseaux de transit « backbones »

5. Notions indispensables

- Rappels sur les unités et les codages
- Notions sur la transmission
 - support
 - temps de transmission et débit
- Notions de liaison
 - types de liaison
 - fonctions
 - caractéristiques temporelles

Année 2007-2008 20

Rappel sur les unités

- Unités de temps : seconde : s
 - milliseconde : $ms (0,001 s) : 10^{-3} s$
 - microseconde : μ s (0,000 001 s) : 10-6 s
 - nanoseconde : **ns** $(0,000\ 000\ 001\ s) : 10^{-9}\ s$
- Volume de données (émises, reçues) : bit : b, ou octet : o.
 bit (bit en anglais) et octet (Byte en anglais) : 1 octet = 8 bits
 - Kilobit **Kb** ou KiloByte **KB** (1 000) : 10³
 - Méga **Mb** ou MegaByte **MB** (1 000 000) : 10⁶
 - Giga **Gb** (1 000 000 000) : 10⁹
 - Tera **Tb** (1 000 000 000 000): 10¹²
- !! Débits : niveau transmission en b/s, niveau application en B/s

Rappel sur les codages

- Codage binaire:
 - $^{-}$ puissances de 2 ($2^4 = 16$, $2^8 = 256$, $2^{10} = 1024$)
 - conversions décimal <-> base deux (pour adresses IP)
- Codage des caractères : ASCII, ISOLatin1, Unicode...
- Codage hexadécimal:

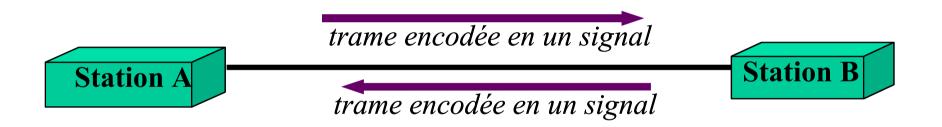
chiffre hexa	valeur binaire	valeur décimale
0	0000	0
9	1001	9
Α	1010	10
В	1011	11
С	1100	12
D	1101	13
Е	1110	14
F	1111	15

Notion de support de transmission

- Propriétés attendues :
 - Débit, qualité de service (taux d'erreur, synchronisation...)
 - Facilité d'utilisation : connexion, mobilité
 - Sécurité, intégrité, confidentialité
- Types de support :
 - Paire torsadée de fils de cuivre, incluse dans un câble métallique => signal électrique
 - Fibre optique, incluse dans un câble optique => signal lumineux tout ou rien
 - Onde radio (> 2 Ghz) => onde électromagnétique
 - Autres : câble coaxial, CPL (courant porteur en ligne)

Caractéristiques des supports

- **Portée** : distance sur laquelle le signal transmis n'est pas trop perturbé pour pouvoir être décodé par le récepteur.
- Vitesse de propagation des signaux
 - ondes : vitesse de la lumière = 300 000 km/s
 - câbles : $\sim 2/3$ de la vitesse de la lumière = 200 000 km/s.
- Bande passante : intervalle de fréquences sur lequel le signal est correctement transmis.
- Sensibilité aux perturbations électromagnétiques
 - câbles électriques, ondes radio
 - fibres optiques pas sensibles -> transmission possible sur longues distances et à très grand débit


Année 2007-2008 24

Notion de débit binaire

- Débit binaire **De** = nombre de bits émis par seconde
- Unités : b/s
 - Kilo Kb/s (1000) : 10^3 b/s
 - Méga Mb/s (1 000 000) : 10⁶ b/s
 - Giga Gb/s (1 000 000 000) : 10⁹ b/s
 - Tera Tb/s (1 000 000 000 000): 10¹² b/s
- Sur une liaison, le débit à la réception **est égal** au débit à l'émission (pas de stockage intermédiaire)
- Notion de « débit utile » **Du** = fraction du débit De correspondant au transport des informations (payload).
- Remarque : les débits sont parfois donnés en octet/s (Byte/s) :
 B/s, KB/s

Notion de liaison

• ensemble d'équipements (liens, amplificateurs, modems, convertisseurs, commutateurs, hubs, etc.) et de protocoles qui permettent l'échange de données appelées **trames** entre deux (ou plus) stations.

Année 2007-2008 26

Propriétés des liaisons

- Topologie bipoint /multipoint
 - émission **point à point** : support en paire de fil (boucle locale), en fibre optique ou onde radio longue distance (réseaux d'infrastructure)
 - émission **multipoint**, à destination de plusieurs stations : support en paire de fil (Ethernet) ou onde radio (WiFi)
- Mode de transmission simplex/duplex
 - simplex : flux dans un seul sens (ex. diffusion radio)
 - duplex : flux possible dans les 2 sens
 - half-duplex : de façon alternée (cas du multipoint Ethernet, WiFi)
 - **full-duplex** : avec 2 liens, multiplexage fréquentiel ou avec annulation d'écho

Année 2007-2008 27

Protocole de liaison

Un protocole de liaison définit les règles d'échange de trames entre stations reliées par une liaison :

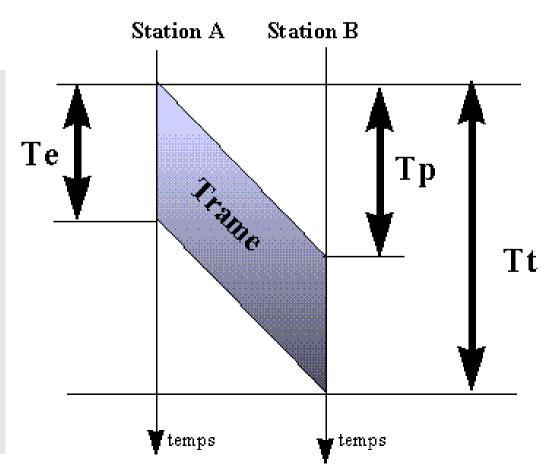
- gestion du mode de connexion : mode connecté (ouverture/ fermeture) ou non connecté (pas de connexion préalable à la transmission)
- gestion de l'accès au support en mode multipoint
- contrôle des erreurs de transmission : détection par code détecteur d'erreur
- contrôle de flux pour éviter que l'émetteur n'envoie plus vite que la capacité de réception du récepteur

Caractéristiques temporelles

Te: Temps d'émission, dépend du débit

Tp: Temps de propagation, dépend de la vitesse de propagation du signal

Tt: Temps de transfert, temps de transmission de bout en bout


$$Te = N / De$$

$$Tp = L / Vp$$

$$Tt = Te + Tp$$

N : nombre de bits de la trame

L : longueur du support

Année zuu/-zuus

Glossaire

- ADSL
- ATM
- CPL
- De
- DSLAM
- Ethernet
- FAI
- HTTP
- Internet
- IP

- LLC
- MAC
- OSI
- PPP
- RTC
- TCP
- UD
- UDP
- WDM
- WiFi