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Abstract As virtual machine emulators have become 
commonplace in the analysis of malicious code, malicious code 
has started to fight back.  This paper describes known attacks 
against the most widely used virtual machine emulators (VMware 
and VirtualPC).  This paper also demonstrates newly discovered 
attacks on other virtual machine emulators (Bochs, Hydra, 
QEMU, Sandbox, VirtualBox, and CWSandbox), and describes 
how to defend against them. 
 

Index Terms Hardware-assisted, Hypervisor, Para-
virtualization, Virtual Machine 
 

I. INTRODUCTION 
irtual machine emulators have many uses.  For anti-
malware researchers, the most common use is to place 
unknown code inside a virtual environment, and watch 

how it behaves.  Once the analysis is complete, the 
environment can be destroyed, essentially without risk to the 
real environment that hosts it.  This practice provides a safe 
way to see if a sample might be malicious. 
 

The simplest attack that malicious code can perform on a 
virtual machine emulator is to detect it.  As more security 
researchers rely on virtual machine emulators, malicious code 
samples have appeared that are intentionally sensitive to the 
presence of virtual machine emulators.  Those samples alter 
their behavior (including refusing to run) if a virtual machine 
emulator is detected.  This behavior makes analysis more 
complicated, and possibly highly misleading.  Some 
descriptions and samples of how virtual machine emulators 
are detected are presented in this paper. 
 

A harsher attack that malicious code can perform against a 
virtual machine emulator is the denial-of-service; specifically, 
this type of attack causes the virtual machine emulator to exit.  
Some descriptions and samples of how that is done are 
presented in this paper. 
 

Finally, the most interesting attack that malicious code can 
perform against a virtual machine emulator is to escape from 
its protected environment.  No examples of this type of attack 
are presented in this paper. 
 

It is important to note here that most virtual machine 
emulators are not designed to be completely transparent.  
They are meant to be "good enough" so that typical software 
can be fooled to run inside them.  Their use in the analysis of 
malicious code was never a requirement.  This situation is 
changing, though, with the creation of new virtual machine 
emulators, such as Hydrai.  However, even with full 

knowledge of what has been used to detect existing virtual 
machine emulators, it is clearly difficult to develop a virtual 
machine emulator that cannot be detected.  Some descriptions 
and samples of how to detect Hydra are included in this paper. 
 

The interest in detecting virtual machine emulators is also 
not limited to the authors of malicious code.  If malicious code 
is released that makes use of its own virtual machine emulator, 
then it will become necessary for anti-malware researchers to 
find ways to detect the virtual machine emulator, too. 
 

Sample detection code is presented in Appendix A.  For 
simplicity and to prohibit trivial copying, only 16-bit real 
mode assembler code for .COM-format files is supplied.  
 

Virtual machine emulators come in two forms: "hardware-
bound" (also known as para-virtualization) and "pure 
software" (via CPU emulation).  The "hardware-bound" 
category can be split into two subcategories: "hardware-
assisted" and "reduced privilege guest" (or ring 1 guest). 
 

Both forms of the hardware-bound virtual machine 
emulators rely on the real, underlying CPU to execute non-
sensitive instructions at native speed.  They achieve better 
performance, for this reason, when compared with pure 
software implementations.  However, since they execute 
instructions on a real CPU, they must make some changes to 
the environment, in order to share the hardware resources 
between the guest operating system and the host operating 
system.  Some of these changes are visible to applications 
within the guest operating system, if the applications know 
what those changes look like. 
 
 

SECTION 1: HARDWARE 

II. HARDWARE-BOUND VIRTUAL MACHINE EMULATORS 

The difference between hardware-assisted virtual machine 
emulators and reduced privilege guest virtual machines 
emulators is the presence of virtual machine-specific 
instructions in the CPU.  The hardware-assisted virtual 
machine emulators use CPU-specific instructions to place the 
system into a virtual mode.  The guest runs at the same 
privilege level that it would do if it truly controlled the CPU in 
the absence of the virtual machine emulator.  The important 
data structures and registers have shadow copies that the guest 
sees, but these shadow copies have no effect on the host. 
 

Instead, the host controls the real data structures and 
registers.  The result is that the virtualization is almost 
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completely transparent.  The host can direct the CPU to notify 
it of specific events, such as an attempt to query the 
capabilities of the underlying CPU, or to access particular 
memory locations and important registers. 
 

By contrast, the reduced privilege guest virtual machine 
emulators must virtualize the important data structures and 
registers themselves.  The guest is run at a lower privilege 
level than it would do if it truly controlled the CPU.  There is 
no way to prevent the CPU from notifying the host of all 
interesting events. 
 

The idea of hardware-bound virtual machine emulators is 
not new - IBM has been using them for four decades on the 
System/360 hardware and its descendants. 
 

In the days of DOS, reduced privilege guest virtual machine 
emulators could be implemented by hooking interrupt 1ii, for 
example.  The interrupt 1 hook allows the real CPU to execute 
instructions at native speed, but the downside is that every 
instruction is also treated as though it were sensitive. 
 

Another method of reduced-privilege guest virtual machine 
emulation is buffered code emulationiii.  Buffered code 
emulation works by copying an instruction into a host-
controlled buffer and executing it there, if it is not a sensitive 
or special instruction.  Buffered code emulation has fairly 
good performance. 
 

A major problem for both of these methods, when 
implemented in DOS, is that DOS has no notion of privileges.  
Thus, reduced privilege guest is actually a misnomer since it 
runs at the same privilege level as the host.  As a result, code 
could "escape" from the environment by hooking an "Interrupt 
ReQuest Vector" (IRQ) and then waiting for that IRQ to be 
asserted (or, in the case of disk drive IRQs, issuing a 
command which causes the IRQ to be asserted on 
completion).  There were also problems when the emulation 
was run in virtual-8086 mode, because the emulator couldn't 
switch into protected mode and retain control. 
 

This is not a problem for more modern operating systems, 
though, such as Windows and Linux.  In fact, VirtualPCiv uses 
buffered code emulation.  It preloads up to 128 bytes, and 
executes them from there, if possible.  Otherwise, it wraps 
special code around them, and then it passes them to the 
VMM.sys driver that performs the actual execution.  The use 
of buffered code emulation allows VirtualPC to intercept 
instructions that cannot be intercepted by other hardware-
bound virtual machine emulators. 
 

Another application that uses buffered code emulation is 
Dynamo Riov.  The difference between VirtualPC and 
Dynamo Rio in this case is that Dynamo Rio runs at an 
application level and as a Dynamic Link Library within the 
process space of the guest application, whereas VirtualPC 
runs at the system level.  Dynamo Rio actively attempts to 
hide itself by intercepting and manipulating memory requests, 

module lists, etc.  Since it is not a virtual machine emulator as 
defined by the terms described in the introduction, it was not 
considered further. 
 

Some examples of reduced privilege guest virtual machine 
emulators are VMwarevi, Xenvii, Parallelsviii, and VirtualBoxix.  
One other product called Virtuozzox is known to the author, 
but a copy could not be acquired at the time of writing.  
According to documentation on their website, they virtualize 
the kernel itself, rather than the hardware.  It is unclear what 
exactly they mean by this. 
 

III. HARDWARE-ASSISTED VIRTUAL MACHINE EMULATORS 

Xen 3.x, Virtual Server 2005xi, and Parallels, can exist as 
hardware-assisted virtual machine emulators. 
 

From a malicious code author's perspective, the most 
interesting thing about hardware-assisted virtual machine 
emulators (hypervisors) is that they can be used to virtualize 
the currently running operating system at any point in time.  
Thus, the host can boot to completion, and launch any number 
of applications as usual, with one them being the virtual 
machine emulator.  That emulator then sets up some CPU-
specific control structures and uses the VMLAUNCH (Intel) or 
VMRUN (AMD) instruction to place the operating system into 
a virtualized state.  At that point, there are effectively two 
copies of the operating system in existence, but one (the host) 
is suspended while the other (the guest) runs freely in the new 
state.  Whenever an interesting event (an intercept, interrupt, 
or exception) occurs, the host operating system (the virtual 
machine emulator) regains control, handles the event, and then 
resumes execution of the guest operating system. 
 

Thus, any machine that supports the existence of a 
hypervisor can have a hypervisor start running at any time.  
Neither the operating system, nor the user, will be aware of it.  
Further, the hypervisor is actually more privileged than the 
operating system itself, since it sees the interesting events first 
and can hide them even from the host operating system.  A 
hypervisor is, in effect, an “enhanced privilege host”.  
Additionally, once a hypervisor is active, no other hypervisor 
installed later can gain full control of the system.  The first 
hypervisor is in ultimate control. 
 

In theory, once the guest is active, the virtual machine 
emulator cannot be detected since it can intercept all sensitive 
instructions, including the CPUID instruction.  The 
instructions that would leak information now see a shadow 
copy of the sensitive information which appears to correspond 
to a real CPU.  The suggested methods to hide the presence of 
the hypervisor are: clear the CPUID flag that corresponds to 
the hardware-assisted "Virtual Machine eXtensions" (VMX) 
capabilities or emulate the VMX instructions, which would 
allow for nested virtual machines.  The former method is 
apparently used by BluePill; the latter method is used by Xen. 
 

The method used by Xen is especially interesting since it 
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means that even a hypervisor can be fooled into thinking that 
it is running on the real hardware.  Normally, one might think 
that if a hypervisor starts running correctly, then it is in full 
control of the system.  In fact that is not the case. 
 

This promise of "undetectibility" has alarmed many people.  
Early Intel documentation regarding these Virtual Machine 
Extensions went as far as to say that it was impossible to 
detect.  More recent documentation has softened the language 
to say that it is difficult to detect.  It is indeed difficult to 
detect, but not impossible. 
 

The most obvious attack against hypervisors is to check a 
local time source, such as the "Time Stamp Counter" (TSC).  
This fact was understood by both Intel and AMD.  The result 
is the "TSCDelta" field in the "Virtual Machine Control 
Block" (VMCB) which can be used to skew the guest's TSC 
by an appropriate value to hide the delay caused by faults to 
the hypervisor. 
 

Therefore, all of the currently documented methods for 
detecting hypervisors rely on external timing.  Specifically, 
they rely on the fact that executing certain instructions many 
times will take far longer within a hypervisor environment 
than withoutxii.  While that is true, without any baseline 
comparison (time required for the same machine to run the 
same number of iterations of the same instructions, prior to the 
hypervisor being installed), it is impossible to know that a 
hypervisor is present.  Any other time source must be 
considered suspect.  For example, the protocol for interacting 
with time servers is documented and easily intercepted by the 
hypervisor. 
 

An alternative exists for Intel-based hypervisors, which 
relies on a different kind of timing.  The method was 
discovered earlier this year, but no details were given at that 
timexiii.  The method is described below. 
 

The "Translation Lookaside Buffers" (TLBs) can be filled 
with known data, by accessing a series of present pages.  Then 
if a hypervisor is present, a hypervisor event can be forced to 
occur by using a hypervisor-sensitive instruction. 
 

In particular, we need a hypervisor-sensitive instruction that 
is not otherwise destructive to the TLBs.  There is only one 
instruction that meets the criteria: CPUID.  CPUID is the only 
instruction that is intercepted by a hypervisor, is not 
privileged, and most importantly, does not affect memory in 
any way. 
 

If the TLBs are explicitly flushed, then the time to access a 
new page can be determined by reading the time stamp 
counter before and after the access.  This duration can be 
averaged over the number of TLBs to be filled.  Once the 
TLBs are filled, the time to access a cached page can be 
determined by reading the time stamp counter before and after 
the access of each page in the TLBs.  This duration can also 
be averaged over the number of TLBs that were filled. 

 
Next, the CPUID instruction is executed, which will cause 

a hypervisor intercept to occur, and at least some of the TLBs 
will be flushed as a side-effect.  If a hypervisor event 
occurred, then each of the pages that should be in the TLBs 
can be accessed again, and the access time can be measured.  
If the access time matches that of a new page instead of a 
cached page, then the hypervisor's presence is revealed. 
 

The TLB method does not work on AMD-based hypervisors 
because they can direct the hardware to not flush the TLBs 
when a hypervisor event occurs.  However, other methods are 
available for AMD-based hypervisors, which can also be used 
to detect Intel-based hypervisors.  One similar method is to fill 
a different cache, such as the L2 via the PREFETCH 
instruction.  At that point, the method is the same: measure the 
time to fetch something from memory before and after 
executing CPUID.  The L2 cache will be flushed on both 
kinds of CPU when a hypervisor event occurs. 
 

Other possible methods that should work on both CPUs 
include the use of particular “Model Specific Registers” 
(MSRs).  The likely candidates are the “Last Branch Record”, 
“Last Exception Record”, and “Fixed-Function Performance 
Counter Register 0”. 
 

IV. PURE SOFTWARE VIRTUAL MACHINE EMULATORS 

Pure software virtual machine emulators work by 
performing equivalent operations in software for any given 
CPU instruction.  The main advantage that pure software 
virtual machine emulators have over hardware-bound virtual 
machines is that the pure software CPU does not have to 
match the underlying CPU.  This allows a guest environment 
to be moved freely between machines of different 
architectures.  Some examples of pure software virtual 
machine emulators are Hydra, Bochsxiv, and QEMUxv. 
 

Another method of virtual machine emulation is most often 
used by anti-virus software.  It emulates both the CPU and a 
portion of an operating system, such as Windows or Linux.  
Two examples of this are Atlantisxvi and Sandboxxvii.  Both of 
these are intended to allow a malicious file to "run", while 
capturing information about its behavior in a completely safe 
manner.  Atlantis supports DOS, Windows, and Linux.  
Sandbox supports Windows only. 
 

Some virtual machine emulators, such as Hydra, Bochs, 
and Atlantis, support different CPUs internally, in order to 
more reliably emulate an environment when the required CPU 
is not known.  A problem for any emulator is that different 
generations of CPUs can display slightly different behaviors 
for identical instructions.  For Intel 80x86 CPUs, for example, 
the AAA instruction sets the flags in one of three different 
ways, depending on whether the CPU is an 80486 or Pentium, 
a Pentium 2 or Pentium 3, or a Pentium 4 or later.  Therefore, 
if a pure software virtual machine emulator is written for one 
specific CPU, the software that is emulated might not behave 
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correctly.  This is, of course, also a problem for hardware-
bound virtual machine emulators, but more so in their case 
because they cannot do anything about it. 
 

V. VIRTUAL MALICIOUS CODE 

Predictably, the increasing interest in virtualization has led 
some researchers to propose malicious uses for virtual 
machines.  One reduced privilege guest virtual machine 
rootkit, called SubVirt, has been described in detail 
elsewherexviii, and is described briefly here.  SubVirt works by 
installing a second operating system.  This operating system 
becomes the new host operating system, which carries an 
operating system-specific virtual machine emulator.  SubVirt 
supports both the Windows and Linux operating systems.  For 
the Windows platform, SubVirt carries VirtualPC; for the 
Linux platform, SubVirt carries VMware.  Once the new host 
operating system loads and runs the virtual machine emulator, 
the virtual machine emulator places the old host operating 
system into a virtual machine and carries on as before.  In the 
absence of software that is able to recognize the presence of a 
virtual machine emulator, software within the system will not 
easily determine that the system has been compromised. 
 

Two hardware-assisted virtual machine rootkits have also 
been described elsewhere, by their authors.  One is BluePillxix, 
and the other is Vitriolxx.  Both of them work by making use of 
the virtual machine extensions that exist in newer AMD and 
Intel CPUs respectively. 
 

It seems that none of these applications is available to other 
anti-malware researchers. 
 

VI. DETECTING VMWARE 

VMware is a proprietary, closed-source, reduced privilege 
guest virtual machine emulator.  It supports guest-to-host and 
host-to-guest communication.  Since it relies on the 
underlying hardware for execution of instructions, it must 
relocate sensitive data structures, such as the “Interrupt 
Descriptor Table” (IDT) and the “Global Descriptor Table” 
(GDT).  VMware also makes use of the “Local Descriptor 
Table” (LDT) which is not otherwise used by Windows.  
Thus, a simple detection method for VMware is to check for a 
non-zero LDT base on Windowsxxi.  The more common 
method for detecting VMware is to check the value of the 
IDT, using the "RedPill"xxii method.  For the "RedPill" 
method, if the value of the IDT base exceeds a certain value, a 
virtual machine emulator is assumed to be present.  However, 
as the LDT paper shows, this method is unreliable on 
machines with multiple CPUs.  The "Scooby Doo"xxiii method 
uses the same basic idea as the RedPill method but it 
compares the IDT base value to specific hard-coded values in 
order to identify VMware specifically.  While the Scooby Doo 
method is less likely to trigger false positives, compared to the 
RedPill method, there is still the chance that some false 
positives will occur. 
 

In addition to the Descriptor Table methods, VMware offers 
a method of guest-to-host and host-to-guest communication 
which can also be used to detect the presence of VMware.  
The most common form of this detection is the followingxxiv: 
 

    mov eax, 564d5868h  ;'VMXh' 
    mov ecx, 0ah        ;get VMware version 
    mov dx, 5658h       ;'VX' 
    in  eax, dx 
    cmp ebx, 564d5868h  ;'VMXh' 
    je  detected 

 
When run in ring3 of a protected-mode operating system, 

such as Windows or Linux, execution of the IN instruction 
causes an exception to be generated, unless the I/O privilege 
level is altered.  This is because the IN instruction is a 
privileged instruction.  The reason that the IDT is relocated is 
to hook this exception privately.  The exception can be 
normally trapped by an application.  However, if VMware is 
running, no exception is generated.  Instead, the EBX register 
is altered to contain 'VMXh' (the ECX register is also altered 
to contain the VMware product ID, which is not relevant in 
this case). 
 

This detection method was attempted recently in the 
W32/Polip virusxxv.  The virus author attempted to obfuscate it 
and ended up by introducing a bug, so VMware was not 
detected even when it was running. 
 

Of course, other values in the ECX register can be specified 
for different effectsxxvi.  Since the execution of the IN 
instruction should never change register values other than the 
EAX register in a real machine, disabling the "get VMware 
version" method alone will not be sufficient to hide VMware. 
 

There are many other ways to detect the presence of 
VMware, depending on the guest operating system that is in 
use.  For example, the Windows registry is full of VMware-
specific keys, but all of these can be removed.  Other methods 
depend on the presence of particular hardware, such as hard 
disks whose device names are constant, and network cards 
whose MAC addresses fall within a predictable range.  The 
problem with these dependencies is that, depending on the 
intended use of the virtual system, none of these hardware 
elements might be present, and some of them require special 
privileges to access.  
 

Going beyond detection, in December 2005, it was 
disclosed that a component of VMware allowed an attacker to 
escape from the environment.  Specifically, the "VMnat" 
contained an unchecked copy operation while processing 
specially crafted 'EPRT' and 'PORT' FTP requestsxxvii.  The 
result was heap buffer corruption within the host environment, 
with the potential to execute arbitrary code there. 
 

A more serious vulnerability potentially exists in hardware-
bound virtual machine emulators, if the guest can interact with 
third-party devices on the system.  For example, if a buffer-
overflow vulnerability exists in a network driver in the host 
environment, it might be possible for an application within the 
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guest environment to send a specially crafted network packet 
that reaches the host network driver intact, and thus exploit 
that vulnerability. 
 

VII. DETECTING VIRTUALPC 

VirtualPC is a proprietary, closed-source, reduced privilege 
guest virtual machine emulator.  It supports guest-to-host and 
host-to-guest communication.  A version exists for the 
Macintosh platform, as well as for the Windows platform.  
Only the Windows version is considered here. 
 

Just like VMware, VirtualPC must relocate sensitive data 
structures, such as the IDT and the GDT.  Just like VMWare, 
VirtualPC makes use of the LDT.  Thus, RedPill, LDT, and 
Scooby Doo, all work to detect VirtualPC. 
 

Whereas VMware uses a special port to perform guest-to-
host and host-to-guest communication, VirtualPC relies on the 
execution of illegal opcodes to raise exceptions that the kernel 
will catch.  This method is very similar to the illegal opcode 
execution that Windows NT and later operating systems use in 
their DOS box to communicate with the operating system.  By 
reverse-engineering the VirtualPC executable file, the author 
found that the opcodes are the following: 
 
    0F 3F x1 x2 
    0F C7 C8 y1 y2 

 
In ordinary circumstances, execution of these opcodes 

causes an exception to be generated. The 0F 3F opcode causes 
an exception because it is an otherwise undefined opcode.  
The 0F C7 C8 opcode causes an exception because it is an 
illegal encoding of an existing opcode.  This exception can be 
trapped by an application.  However, if VirtualPC is running, 
no exception is generated, depending on the values of x1, x2, 
y1, and y2. 
 

The full list of allowed values for x1 and x2 is not known.  
However, the BIOS code in VirtualPC uses the values 0A 00, 
11 00, 11 01, and 11 02.  The file-sharing module that can be 
installed uses value 02 followed by 01-13, and 07 0b.  These 
appear to be examples of guest-to-host communication.  An 
example of host-to-guest communication is given in the 
following: if x1 is 03 and x2 is 00, then the current host time 
(in hour:minute:second notation) is placed into the DX, CX, 
and AX, registers respectively (see VIRTUALPC TIME 
demo).  Other values for x1 and x2, such as 02 00, return 
other values in the CPU registers.  The values 10 01-03 and 10 
06 alter the Z flag.  The IsRunningInsideVirtualMachine() 
API uses the value 07 0B. 
 

The allowed values for y1 are 00-04.  The allowed values 
of y2 depend on the value of y1.  If y1 is 00 or 03, then y2 can 
be 00-03.  If y1 is 01, then y2 can be 00-02.  If y1 is 02, then 
y2 can be 00-04.  If y1 is 00, then y2 can only be 00.  The 
BIOS code in VirtualPC uses the values 00 00 and 00 01.  The 
Virtual Machine Additions driver uses the value 00 01.  The 
IsRunningInsideVirtualMachine() API uses the value 01 00. 

 
Another method for detecting VirtualPC relies on the fact 

that VirtualPC does not limit the length of an instruction.  
Intel and AMD CPUs have a maximum instruction length of 
15 bytes.  This is achievable only in 16-bit mode, using the 81 
opcode.  The instruction would look something like the 
following: 
 
  lock 
  add dword ptr cs:[eax+ebx+01234567], 89abcdef 

 
In addition to the "ADD" instruction, this encoding of the 

81 opcode also supports "OR", "ADC", "SBB", "AND", 
"SUB", or "XOR".  The 81 opcode also supports the "CMP" 
instruction, but it is not permitted in this context because of 
the "LOCK" prefix. 
 

Any instruction longer than 15 bytes - which is achievable 
only by the addition of redundant prefixes - will cause a 
General Protection Fault.  However, VirtualPC does not issue 
this exception, seemingly no matter how long the instruction 
(see VIRTUALPC ILEN demo). 
 

As noted above, VirtualPC's use of buffered code emulation 
allows it to intercept instructions that cannot be intercepted by 
other hardware-bound virtual machine emulators, particularly 
the hardware-based ones.  In theory, the RedPill method could 
be defeated by intercepting the SIDT instruction, as described 
in the SubVirt paper.  However, this is currently not 
implemented.  The CPUID instruction is one instruction that 
VirtualPC does intercept.  On a real CPU, the returned vendor 
identification string is either "GenuineIntel" or 
"AuthenticAMD".  In VirtualPC, though, it is 
"ConnectixCPU", a reference to the company which 
developed the earlier versions of VirtualPC. 
 

As with VMware, there are many other ways to detect the 
presence of VirtualPC, including the use of hardware devices 
with constant names.  One detection method is even described 
by a Microsoft VirtualPC developerxxviii.  That method queries 
the name of the manufacturer of the motherboard, which is 
"Microsoft Corporation" in VirtualPC.  Since there can be 
only one motherboard, the code can be shortened significantly 
(see VIRTUALPC BOARD demo).  However, the problem 
with this method is that it requires that the Windows 
Management Instrumentation service is running. 
 

VIII. DETECTING PARALLELS 

Parallels is a proprietary, closed-source, reduced privilege 
guest virtual machine emulator.  It supports guest-to-host and 
host-to-guest communication.  It resembles VirtualPC in many 
ways.  Just like VirtualPC, a version exists for the Macintosh 
platform, as well as for the Windows platform.  Only the 
Windows version is considered here. 
 

Just like VMware and VirtualPC, Parallels must relocate 
sensitive data structures, such as the IDT and the GDT.  Just 
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like VMWare and VirtualPC, Parallels also makes use of the 
LDT.  Thus, RedPill and LDT work to detect Parallels. 
 

Parallels has two methods of guest-to-host and host-to-
guest communication.  One of them relies on the execution of 
an opcode to raise an exception.  In this case, the opcode is the 
BOUND instruction.  The difference between the method used 
by Parallels, and the method used by other virtual machine 
emulators, is that Parallels uses authentication to determine 
whether or not the exception is trapped by the kernel. 
 

The method of authentication is to pass in the CPU registers 
(EAX, ECX, EDX, EBX) values that are specific to the 
currently executing session.  When Parallels first loads the 
kernel driver, the driver halts the CPU and waits for an 
interrupt to occur.  At that time, the RDTSC instruction is read 
sixteen times in a row, and the lowest byte is stored in an 
array that corresponds to those registers.  To communicate 
with the kernel, the guest sets the EBP registers to the string 
"0x90", and the EDI register contains the index of the function 
to execute in a function pointer array, and then executes the 
BOUND instruction with values that are guaranteed to raise 
the BOUND exception.  The main Parallels executable file 
also uses this method. 
 
    pushad 
    mov     esi, [ebp+xxxx] 
    mov     eax, [esi] ;load auth value 
    mov     ebx, [esi+4] ;load auth value 
    mov     ecx, [esi+8] ;load auth value 
    mov     edx, [esi+0Ch] ;load auth value 
    mov     edi, [esi+10h] ;load auth value 
    mov     esi, [ebp+xxxx] ;load real esi 
    xor     ebp, ebp 
    push    ebp ;upper bound value 
    push    ebp ;lower bound value 
    mov     ebp, '0x90' 
    bound   ebp, [esp] ;raise exception 
    add     esp, 8 ;discard bound values 
    popad 

 
The second method of guest-to-host and host-to-guest 

communication occurs through the use of the INT 1B vector.  
In that case, the registers are initialized in the following way: 
the ESI register contains the string "magi", the EDI register 
contains the string "c!nu", and the EBX register contains the 
string "mber".  It spells "magic!number".  The EDX register is 
set to point to any variables on the stack that must be passed, 
and the EAX register is set to the function number to call.  
One of the Parallels driver files also uses this method. 
 
    mov     esi, 'magi' 
    mov     edi, 'c!nu' 
    mov     ebx, 'mber' 
    push    [ebp+xxxx] 
    push    [ebp+xxxx] 
    push    [ebp+xxxx] 
    push    xxxxxxxx 
    mov     edx, esp 
    mov     eax, 0 
    int     1bh 

 
The reason for the two different methods is that the 

BOUND method is available from user mode, so it must be 
protected from abuse by non-privileged applications.  The INT 

1B method is available only from kernel mode, so a user with 
sufficient privileges to install a kernel-mode driver should 
presumably have sufficient privileges to communicate with 
Parallels itself. 
 

In addition, the author found not another way to detect 
Parallels, but a way to crash it.  By entering v86 mode (a 
Windows DOS box was used) and issuing a SIDT instruction 
with the Trap flag set, Parallels encounters a fatal error and 
closes.1
 
 

IX. DETETCING VIRTUALBOX 

VirtualBox is an Open Source, reduced privilege guest 
virtual machine emulator.  It uses a recompiler to perform a 
dynamic translation of some code to improve performance.  
This recompiler is based on QEMU, and for that reason it is 
detected in some of the same ways that the author found.  
Some of the methods are described in the following: 
 

• CPUID instruction returns wrong value for Easter 
egg on AMD CPU (see BOCHS and QEMU 
CPUID_AMD2 demo) 

 
This code works by executing the CPUID 

instruction to check for an AMD CPU.  If one is 
found, then the CPUID instruction is executed again 
to query the Easter egg.  For a real AMD K7 
processor, the returned value is "IT'S HAMMER 
TIME".  For QEMU, nothing is returned.  This 
detection method is available due to what appears to 
be an oversight. 

 
• CMPXCHG8B instruction does not always write to 

memory (see QEMU CMPXCHG8B demo) 
 

This code works by executing registering a Page 
Fault handler then executing a CMPXCHG8B 
instruction on a read-only page.  For a real CPU, the 
CMPXCHG8B instruction always writes to memory, 
no matter what is the result.  For a read-only page, a 
Page Fault will be raised.  For QEMU, no Page Fault 
occurs.  This detection method is available due to 
what appears to be an oversight. 

 
• Double Fault exception is not supported (see QEMU 

EXC_DBL demo) 
 

This code begins by setting the limit of the IDT 
less than what is required to describe the General 
Protection Fault handler.  Then a General Protection 
Fault is raised.  For a real CPU, being unable to raise 
the General Protection Fault causes the Double Fault 
exception to be raised.  For QEMU, the General 
Protection Fault is raised repeatedly.  This detection 

 
1  The vendor was notified, but did not respond after sixty days. 



SYMANTEC ADVANCED THREAT RESEARCH 7

method is available due to a limitation in the 
exception handling code. 

 
 

SECTION 2: SOFTWARE 
 

Pure software virtual machine emulators are also vulnerable 
to detection.  In their case, detection is possible mostly 
because of software bugs or incomplete support for the CPU 
which is being emulated. 
 

X. DETECTING BOCHS2 

Bochs is an Open Source, pure software virtual machine 
emulator.  It does not support guest-to-host or host-to-guest 
communication since it is intended to behave like a stand-
alone machine.  It is vulnerable to a number of detection 
methods.  The simplest of these involves the device support.  
For example, Bochs cannot handle floppy disks of non-
standard sizes.  Attempting to format a 3.5" floppy disk with 
more than 18 sectors per track, or with sectors other than 512 
bytes in size, will cause a kernel panic.  As with VMware and 
VirtualPC, Bochs has constant names for its hardware devices, 
but again, the presence of these devices cannot be relied upon.  
Thus, we are left with the CPU as the target for detection.  
The author discovered a number of methods to detect Bochs.  
Here are some of them: 
 

• INVD and WBINVD instructions always flush TLBs 
(see BOCHS WBINVD demo) 

 
The code works by entering paging mode, and 

then accessing a page.  This causes the CPU to place 
the page's physical address into one of the 
Translation Lookaside Buffers.  When an INVD or 
WBINVD instruction is executed inside Bochs, the 
Translation Lookaside Buffers are flushed.  Hence, if 
the same page is marked "not present" then accessed 
again, a Page Fault occurs.  By registering a Page 
Fault handler prior to executing the INVD or 
WBINVD instruction, Bochs can be detected.  This 
detection method is available due to what appears to 
be an oversight. 

 
• CMPS instruction flags are not retained while REP 

continues in single-step mode (see BOCHS CMPS 
demo) 

 
• SCAS instruction flags are not retained while REP 

continues in single-step mode (see BOCHS SCAS 
demo) 

 
These two codes begin by setting the carry flag.  

Then, in the case of the CMPS instruction, two 
ranges of bytes that are known to be identical are 

compared (the source and destination registers are set 
to the same value).  In the case of the SCAS 
instruction, a single byte, whose value is known to 
match the destination, is compared to the destination.  
The source register is set to the value in memory that 
is pointed to by the destination register.  In a real 
machine, the carry flag remains set until the REP has 
completed.  However, in Bochs, the flag is updated 
immediately.  By registering a trap handler prior to 
executing the CMPS or SCAS instruction, the carry 
flag can be seen to have been cleared, and thus Bochs 
can be detected.  This detection method is available 
due to what appears to be an oversight. 

 
2 This list is the longest in this paper because Bochs was the first 

application to be examined, and received the most scrutiny.  It does not reflect 
the quality of the software. 

 
• CPUID instruction returns wrong value for processor 

name on AMD CPU (see BOCHS CPUID_AMD1 
demo) 

 
This code works by executing the CPUID 

instruction to check for an AMD CPU.  If one is 
found, then the CPUID instruction is executed again 
to query maximum input value for the extended 
CPUID information.  If the processor brand string is 
supported, then the CPUID instruction is executed 
again to query the processor brand string.  For a real 
AMD K7 processor (the only one that Bochs 
supports), the returned string is "AMD Athlon(tm) 
P[rocessor]".  For Bochs, it is "AMD Athlon(tm) 
p[rocessor]" (note the lowercase 'p').  This detection 
method is available due to what appears to be an 
oversight. 

 
• CPUID instruction returns wrong value for Easter 

egg on AMD CPU (see BOCHS and QEMU 
CPUID_AMD2 demo) 

 
This code works by executing CPUID to check for 

an AMD CPU.  If one is found, then the CPUID 
instruction is executed again to query the Easter egg.  
For a real AMD K7 processor (the only one that 
Bochs supports), the returned value is "IT'S 
HAMMER TIME".  For Bochs, nothing is returned.  
This detection method is available due to what 
appears to be an oversight. 

 
• ARPL instruction destroys upper 16 bits of 32-bit 

register in 32-bit mode (see BOCHS ARPL demo) 
 

This code executes the ARPL instruction using the 
undocumented 32-bit register mode.  Officially, the 
instruction accepts 16-bit registers.  For some reason, 
Bochs ORs the top 16 bits with 0ff3f0000h, but the 
author found no real CPU where that behavior 
occurs.  This detection method is available due to 
what appears to be an oversight. 

 
• 16-bit segment wraparound is not supported (see 

BOCHS and HYDRA SEGLOAD demo) 
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This code executes a segment:register load, at an 

offset where the register part is at a lower address 
than is the segment part.  By registering a trap 
handler prior to executing the load instruction, an 
exception will occur in Bochs that should not occur 
at all.  Thus Bochs can be detected.  This detection 
method is available due to what appears to be an 
oversight. 

 
• Non-ring0 SYSENTER CS MSR causes kernel panic 

 
This is similar to the v86 SIDT problem in 

Parallels, in that it is not a method to detect Bochs, 
but a way to crash it.  By simply writing to the 
SYSENTER CS MSR (174h) a value with any of the 
low two bits set, Bochs will encounter a kernel panic 
and close.  A real CPU will accept this value since no 
checks are done until the SYSENTER instruction is 
actually executed.  This detection method is available 
due to what appears to be an oversight. 

 

XI. DETECTING HYDRA3 

Hydra is a proprietary, closed-source, pure software virtual 
machine emulator.  It supports guest-to-host communication, 
even though it is intended to behave like a stand-alone 
machine.  It does not intentionally support host-to-guest 
communication.  The guest-to-host communication channel 
exists for the use of plug-ins that can alter the environment 
and control the execution flow.  However a plug-in is not 
supposed to communicate with the guest.  Hydra also uses a 
special port for guest-to-host communication, much like 
VMware does.  The key differences between VMware and 
Hydra are that in Hydra, the port to use is specific to the plug-
in; and a plug-in can still cause an exception to be generated, 
thus better hiding the interaction.  Since no host-to-guest 
communication occurs, no Hydra-specific information is 
returned by the port access.  In any case, the author discovered 
a number of methods to detect Hydra.  Some of the methods 
are described in the following: 
 

• REP MOVS instruction integer overflow (see HYDRA 
MOVS demo) 

 
• REP STOS instruction integer overflow (see HYDRA 

STOS demo) 
 

This code works by causing a loop counter to 
overflow, when converting from a dword count to a 
byte count.  Thus no bytes are copied (in the case of 
the MOVS instruction) or stored (in the case of the 
STOS instruction).  This leads the emulator to believe 
that an error occurred, so a General Protection Fault 
is raised.  In the absence of a General Protection 
Fault handler, a Double Fault occurs.  In the absence 

of a Double Fault handler, a Triple Fault occurs, 
leading to the emulator exiting completely.  This 
detection method is available due to a limitation in 
the string acceleration code. 

 

 

3 All of the the problems described here have since been fixed. 

 
• 16-bit segment wraparound is not supported (see 

BOCHS and HYDRA SEGWRAP demo) 
 

This code executes a segment:register load, at an 
offset where the register part is at a lower address 
than is the segment part.  By registering a trap 
handler prior to executing the load instruction, an 
exception will occur in Hydra that should not occur 
at all, and thus Hydra can be detected.  This detection 
method is available due to what appears to be an 
oversight. 

 

XII. DETECTING QEMU 

QEMU is an Open Source, pure software virtual machine 
emulator.  It does not support guest-to-host or host-to-guest 
communication since it is intended to behave like a stand-
alone machine.  It supports dynamic translation of code to 
improve the performance on the supported CPUs.  The use of 
dynamic translation is always risky in the presence of self-
modifying code, especially when non-intuitive CPU behavior 
occurs, such as a self-overwriting REP sequence4.  The author 
discovered a number of methods to detect QEMU.  Some of 
the methods are described in the following: 
 

• CPUID instruction returns wrong value for processor 
name on AMD CPU (see QEMU CPUID_AMD 
demo) 

 
This code works by executing the CPUID 

instruction to check for an AMD CPU.  If one is 
found, then the CPUID instruction is executed again 
to query maximum input value for the extended 
CPUID information.  If the processor brand string is 
supported, then the CPUID instruction is executed 
again to query the processor brand string.  For a real 
AMD K7 processor, the returned string is "AMD 
[processor name] Processor".  For QEMU, it is 
"QEMU Virtual CPU version x..x..x". 

 

4 The REP instruction is handled specially by x86 CPUs, such that it 
completes even if the sequence is replaced in memory.  For example, 

 
   mov al, 90h 
   mov cx, 7 
   mov di, offset $ 
   rep stosb 
   jmp $ 
 
Here, the NOP instruction in the AL register is used to overwrite the REP 

STOSB and the following JMP instruction.  Incorrect emulation (or single-
stepping through the code, as with a debugger) will cause the REP to exit 
prematurely, resulting in the JMP instruction being executed. 
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• CPUID instruction returns wrong value for Easter 
egg on AMD CPU (see BOCHS and QEMU 
CPUID_AMD2 demo) 

 
This code works by executing the CPUID 

instruction to check for an AMD CPU.  If one is 
found, then the CPUID instruction is executed again 
to query the Easter egg.  For a real AMD K7 
processor, the returned value is "IT'S HAMMER 
TIME".  For QEMU, nothing is returned.  This 
detection method is available due to what appears to 
be an oversight. 

 
• CMPXCHG8B instruction does not always write to 

memory (see QEMU CMPXCHG8B demo) 
 

This code works by executing registering a Page 
Fault handler then executing a CMPXCHG8B 
instruction on a read-only page.  For a real CPU, the 
CMPXCHG8B instruction always writes to memory, 
no matter what is the result.  For a read-only page, a 
Page Fault will be raised.  For QEMU, no Page Fault 
occurs.  This detection method is available due to 
what appears to be an oversight. 

 
• Double Fault exception is not supported (see QEMU 

EXC_DBL demo) 
 

This code begins by setting the limit of the IDT 
less than what is required to describe the General 
Protection Fault handler.  Then a General Protection 
Fault is raised.  For a real CPU, being unable to raise 
the General Protection Fault causes the Double Fault 
exception to be raised.  For QEMU, the General 
Protection Fault is raised repeatedly.  This detection 
method is available due to a limitation in the 
exception handling code. 

 

XIII. DETECTING ATLANTIS AND SANDBOX 

Since both Atlantis and Sandbox emulate only a subset of 
all of the possible Windows APIs, and of those, some of the 
APIs do not behave in the same way as on a real machine.  
Thus, they are vulnerable to detection through the use of any 
unimplemented API or any API that is not emulated correctly.  
An example is the Beep() API, which has limitations on the 
frequency of the sound to produce when executed on Windows 
NT and later versions of Windows.  Atlantis does not check 
that parameter since it emulates Windows 9x.  Thus, it returns 
no error, no matter what value is specified.  Any program that 
assumes it is running on Windows NT or later will know 
immediately if Atlantis is hosting the environment, by calling 
that API with an illegal value.  Another example is through 
the use of an exploit.  There are several current documentedxxix 
denial-of-service vulnerabilities in different versions of 
Windows for the Windows Meta File (WMF) format.  If such a 
malformed WMF file is played successfully, then an operating 

system emulator is running.  A detailed list of methods to 
detect Sandbox follows. 
 

XIV. DETECTING SANDBOX 

Sandbox is a proprietary, closed-source, pure software 
virtual machine and operating system emulator.  Though it is a 
retail product, copies of it are freely available on many P2P 
sites.  For some reason, Sandbox places the IDT in a very high 
memory location, and the LDT has a non-zero value.  For 
those reasons, RedPill and LDT work to detect Sandbox. 
 

The CPU supported by Sandbox seems to be a partial 
implementation of an Intel Pentium 2, however some Pentium 
2 instructions such as FXSAVE are not supported, nor are 
some Pentium 1 instructions such as RDMSR or 
CMPXCHG8B.  These instructions will cause exceptions in 
Sandbox, which can be used to detect its presence. 
 

Strangely, despite the supported processor, the ID flag is 
not set in the EFLAGS register.  Despite this, the CPUID 
instruction causes no exceptions. However, index 0 returns a 
bad Basic Processor Information value and Vendor 
Identification String. 
 

The author discovered a number of methods to detect 
Sandboxs.  Here are some of them: 
 

• EFLAGS.bit 1 is clear by default and can be toggled 
 

On a real CPU, this bit is always set and read-only. 
 

• GetVersionExA() returns inconsistent information 
 

 This API returns the platform identification value 
that corresponds to Windows 2000, but the IDT is 
readable from ring 3, and certain interrupts point to 
0c0xxxxxx space, which reflects Sandbox’s Windows 
9x origins. 

 
• the first KERNEL32 export is named “Aaaaaa” and 

matches the Windows 9x/Me VxDCall code 
 

• IDT and GDT limits contain incorrectly aligned 
values 

 
 On a real system, the IDT and GDT limits are one 

less than the size of the table (i.e. a limit of 256 has a 
value of 255).  On Sandbox, the values are exactly 
the size of the table. 

 
• GDT base is in low memory 

 
• vulnerable to self-overwriting REP, as described in 

the QEMU footnote 
 
• CMPXCHG does not always write to memory 
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This is identical to the detection of QEMU, but 
using a slightly different instruction. 

 
• int 2a instead of GetTickCountxxx

 
Sandbox generates an exception when this 

interrupt is issued. 
 

Since Sandbox does not support emulation of real mode, no 
source code is included to illustrate detection methods. 
 

XV. DETETCING CWSANDBOX 

As a special request, CWSandboxxxxi was analyzed by the 
author.  CWSandbox is a proprietary, closed-source, 
application-level sandbox.  As with Dynamo Rio, CWSandbox 
hooks some operating system APIs, but otherwise allows an 
application to run on the real hardware.  The documentation 
states "...a lot of effort has been put into hiding the presence of 
the CWSandbox and the injected CWMonitor.DLL from the 
malware", however those efforts are ineffective.  For example, 
the author found several global objects, such as a mutex called 
"cws_[pid]_mutex" (where "[pid]" is the process ID of the 
targeted application), two events called 
"cws_[pid]_event_data" and "cws_[pid]_event_result", and a 
file mapping called "cws_[pid]_mapping".  The API hooking 
consists of "ff 25"-style trampolines for 290 APIs and 10 
methods (see Appendix B for the full list).  Escape from the 
environment is simply a matter of calling 
FreeLibrary(GetModuleHandleA("cwmonitor")) to unload the 
DLL. 
 

XVI. MISCELLANEOUS DETECTIONS 

Following the publication of the original version of this 
paperxxxii, the author conducted further research on the low-
level behavior of the CPU.  Two very interesting things were 
noted.  The firstxxxiii is operating-system specific.  It detects 
hybrid models such as Atlantis and Sandbox. 

 
The secondxxxiv is hardware-specific, and is actually a set of 

four different behaviors.  The first hardware-specific behavior 
- fault while fetching - detected only Hydra.  The reason for 
that is because the hardware performs a fetch and full decode 
in parallel, before testing if an opcode is invalid. However, for 
performance reasons, Hydra performs the test first, to avoid 
full decode. 
 

The second hardware-specific behavior is the 
undocumented opcodes in the range 0f 19-1e.  They are 
identical to 0f 1f (multi-byte NOP), but both Bochs and 
Sandbox raise an exception when those instructions are 
executed. 
 

The third hardware-specific behavior is the undocumented 
opcode maps for the opcodes 0f 20-23, using MODR/M 
values below 0c0.  Sandbox raises an exception when these 
values are used. 

 
The fourth hardware-specific behavior is the undocumented 

opcode maps for the opcodes 0f 18 2x-3x, and 0f 1f.  Both 
Bochs and Sandbox raise an exception when those instructions 
are executed. 
 

XVII. CONCLUSION 

So what can we do?  The answer to this question depends 
on the application that is being used.  However, for the 
reduced privilege guest virtual machines emulators, the 
ultimate answer is "nothing".  The problem for them is that 
their design does not allow them to intercept non-sensitive 
instructions that cause information leakage, such as the SIDT 
instruction.  As a result, they cannot hide their presence from 
the RedPill, LDT, and Scooby Doo, attacks. 
 

The Liston/Skoudis paperxxxv has a title that suggests that 
they can reduce the ability of software to detect virtual 
machine emulators.  However, it is actually more concerned 
with ways to detect virtual machine emulators.  The 
recommendations in that paper for reducing the ability of 
software to detect virtual machine emulators are exclusively 
for VMware, and insufficient, as noted earlier. 
 

VirtualPC could be improved to intercept the SIDT 
instruction.  This would go a long way towards hiding its 
presence, but it would also need to implement a check for the 
maximum instruction length. 
 

The interception of the CPUID instruction in both 
VirtualPC and QEMU to replace the processor identification 
string should be removed, too. 
 

The use of session key authentication to control guest-to-
host and host-to-guest communication in Parallels is a good 
idea that other applications could use. 
 

Bochs, Hydra, QEMU, Sandbox, and VirtualBox, all suffer 
from bugs and limitations that allow their detection.  These are 
problems that are relatively easily fixed.  Given that, only pure 
software virtual machine emulators can approach complete 
transparency.  It should be possible, at least in theory, to reach 
the point where detection is unreliable because it can also be 
attributed to anomalous behavior of a real CPU (for example, 
the f0 0f bugxxxvi).  We might call that “virtual reality”. 
 

On the other hand, if a majority of future machines run a 
virtual machine emulator, then malicious code that chooses to 
not run in its presence will eventually be unintentionally 
choosing to not run at all. 
 

Once that point is reached, the attacks will move from 
detection to exploitation.  The ultimate attack against a 
hypervisor would be to run arbitrary code inside it.  Along 
those lines, in February a privilege escalation exploit was 
publishedxxxvii for the hypervisor in Microsoft’s Xbox 360 
platform.  The exploit code took advantage of improper 
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parameter validation to execute arbitrary code with the 
privileges of the hypervisor itself. 
 

One thing is clear – the future looks complicated. 
 

APPENDIX A 
VIRTUALPC TIME DEMO: 

 
.model  tiny 
.code 
org     100h 
 
demo:   mov     ax, 2506h 
        mov     dx, offset int06 
        int     21h 
        db      0fh, 3fh, 3, 0 
        jmp     $ ;detected 
int06:  int     20h 
end     demo 

 
 
VIRTUALPC ILEN DEMO: 
 
.model  tiny 
.code 
org     100h 
 
demo:   mov     ax, 250dh 
        mov     dx, offset int0d 
        int     21h 
        db      0eh dup (2eh) 
        jmp     $ ;detected 
int0d:  int     20h 
end     demo 

 
 
VIRTUALPC BOARD DEMO: 
 
For Each board in 
GetObject("winmgmts:!\\.\root\cimv2").ExecQuery("Sel
ect * from Win32_BaseBoard") 
    If board.Manufacturer = "Microsoft Corporation" 
then while 1 : wend 'detected 
Next 

 
 
BOCHS WBINVD DEMO: 
 
.model  tiny 
.486p 
.code 
org     100h 
 
demo:   mov     edx, ds 
        mov     cx, 1000h 
        movzx   eax, cx 
        add     ah, dh 
        mov     es, ax 
        shl     eax, 4 
        mov     cr3, eax 
        shl     edx, 4 
        mov     bx, offset gdt 
        add     [bx + 2], edx 
        mov     [bx + 0ah], dx 
        add    [bx+offset idtr-offset gdt+2],edx 
        bswap   edx 
        mov     [bx + 0ch], dh 
        mov     [bx + 0fh], dl 

        add     eax, 1007h 
        xor     di, di 
        stosd 
        push    7 
        pop     eax 
        mov     di, cx 
create_tbl: 
        stosd 
        add     eax, 1000h 
        loop    create_tbl 
        mov     fs, cx 
        cli 
        sidt    fword ptr [offset idt_end] 
        lidt    [bx + offset idtr - offset gdt] 
        lgdt    [bx] 
        mov     eax, cr0 
        mov     ecx, eax 
        or      eax, 80000001h 
        mov     cr0, eax 
        int     3 
int03:  mov     al, fs:[1000h] 
        dec     byte ptr es:[1004h] 
        wbinvd 
        mov     al, fs:[1000h] 
        mov     cr0, ecx 
        lidt    fword ptr [offset idt_end] 
        mov     ah, 4ch 
        int     21h 
int0e:  jmp     $ ;detected 
 
gdt     dw      offset gdt_end - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
gdt_end: 
 
idtr    dw      offset idt_end - offset idt - 1 
        dw      offset idt 
        dw      0 
 
idt     dd      6 dup (0) 
        dw      offset int03 
        dd      86000008h 
        dd      14h dup (0) 
        dw      offset int0e 
        dd      86000008h 
        dw      0 
idt_end: 
 
end     demo 

 
 
BOCHS CMPS DEMO: 
 
.model  tiny 
.code 
org     100h 
 
demo:   mov     ax, 2501h 
        mov     dx, offset int01 
        int     21h 
        mov     cx, 101h 
        mov     si, cx 
        mov     di, cx 
        push    cx 
        popf 
        repe    cmpsb 
int01:  jnb     $ ;detected 
        int     20h 
end     demo 

 
 
BOCHS SCAS DEMO: 
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.model  tiny 
.code 
org     100h 
 
demo:   mov     ax, 2501h 
        mov     dx, offset int01 
        int     21h 
        mov     cx, 101h 
        mov     di, cx 
        push    cx 
        popf 
        repe    scasb 
int01:  jnb     $ ;detected 
        int     20h 
end     demo 

 
 
BOCHS CPUID_AMD1 DEMO: 
 
.model  tiny 
.586 
.code 
org     100h 
 
demo:   xor     eax, eax 
        cpuid 
        cmp     ecx, 444d4163h 
        jne     exit 
        mov     eax, 80000000h 
        cpuid 
        cmp     eax, 2 
        jb      exit 
        mov     eax, 80000002h 
        cpuid 
        shr     edx, 1eh 
        jb      $ ;detected 
exit:   ret 
end     demo 

 
 
BOCHS and QEMU CPUID_AMD2 DEMO: 
 
.model  tiny 
.586 
.code 
org     100h 
 
demo:   xor     eax, eax 
        cpuid 
        cmp     ecx, 444d4163h 
        jne     exit 
        mov     eax, 8fffffffh 
        cpuid 
        jecxz   $ ;detected 
exit:   ret 
end     demo 

 
 
BOCHS ARPL DEMO: 
 
.model  tiny 
.486p 
.code 
org     100h 
 
demo:   mov     eax, ds 
        shl     eax, 4 
        mov     bx, offset gdt 
        add     [bx + 2], eax 
        mov     [bx + 0ah], ax 
        bswap   eax 

        mov     [bx + 0ch], ah 
        mov     [bx + 0fh], al 
        cli 
        lgdt    [bx] 
        mov     eax, cr0 
        inc     ax 
        mov     cr0, eax 
        cdq 
        push    cs 
        push    dx 
        push    8 
        push    offset pmode 
        retf 
pmode   db      66h 
        arpl    dx, ax 
        test    edx, edx 
        js      $ ;detected 
        dec     ax 
        mov     cr0, eax 
        retf 
 
gdt     dw      offset gdt_e - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
        dd      0ffffh 
        dd      0cf9300h 
gdt_e: 
end     demo 

 
 
BOCHS and HYDRA SEGLOAD DEMO: 
 
.model  tiny 
.code 
org     100h 
 
demo:   mov     ax, 250dh 
        mov     dx, offset int0d 
        int     21h 
        lds     ax, ds:[0fffeh] 
        ret 
int0d:  jmp     $ ;detected 
end     demo 

 
 
HYDRA MOVS DEMO: 
 
.model  tiny 
.486p 
.code 
org     100h 
 
demo:   mov     edx, ds 
        mov     cx, 1000h 
        movzx   eax, cx 
        add     ah, dh 
        mov     es, ax 
        shl     eax, 4 
        mov     cr3, eax 
        shl     edx, 4 
        mov     bx, offset gdt 
        add     [bx + 2], edx 
        mov     [bx + 0ah], dx 
        add    [bx+offset idtr-offset gdt+2],edx 
        bswap   edx 
        mov     [bx + 0ch], dh 
        mov     [bx + 0fh], dl 
        add     eax, 1007h 
        xor     di, di 
        stosd 
        push    7 
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        pop     eax 
        mov     di, cx 
create_tbl: 
        stosd 
        add     eax, 1000h 
        loop    create_tbl 
        mov     fs, cx 
        cli 
        sidt    fword ptr [offset idt_end] 
        lidt    [bx + offset idtr - offset gdt] 
        lgdt    [bx] 
        mov     eax, cr0 
        mov     edx, eax 
        mov     ecx, 80000001h 
        or      eax, ecx 
        mov     cr0, eax 
        int     3 
int03:  dec     byte ptr es:[1004h] 
        xor     esi, esi 
        db      64h 
        db      67h 
        rep     movsw ;shut down Hydra 
int0e:  mov     cr0, edx 
        lidt    fword ptr [offset idt_end] 
        mov     ah, 4ch 
        int     21h 
 
gdt     dw      offset gdt_end - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
gdt_end: 
 
idtr    dw      offset idt_end - offset idt - 1 
        dw      offset idt 
        dw      0 
 
idt     dd      6 dup (0) 
        dw      offset int03 
        dd      86000008h 
        dw      0 
        dd      14h dup (0) 
        dw      offset int0e 
        dd      86000008h 
        dw      0 
idt_end: 
 
end     demo 

 
 
HYDRA STOS DEMO: 
 
.model  tiny 
.486p 
.code 
org     100h 
 
demo:   mov     edx, ds 
        mov     cx, 1000h 
        movzx   eax, cx 
        add     ah, dh 
        movzx   esi, ah 
        mov     es, ax 
        shl     eax, 4 
        mov     cr3, eax 
        shl     edx, 4 
        mov     bx, offset gdt 
        add     [bx + 2], edx 
        mov     [bx + 0ah], dx 
        add    [bx+offset idtr-offset gdt+2],edx 
        bswap   edx 
        mov     [bx + 0ch], dh 
        mov     [bx + 0fh], dl 
        add     eax, 1007h 

        xor     di, di 
        stosd 
        push    7 
        pop     eax 
        mov     di, cx 
create_tbl: 
        stosd 
        add     eax, 1000h 
        loop    create_tbl 
        cli 
        sidt    fword ptr [offset idt_end] 
        lidt    [bx + offset idtr - offset gdt] 
        lgdt    [bx] 
        mov     eax, cr0 
        mov     edx, eax 
        mov     ecx, 80000001h 
        or      eax, ecx 
        mov     cr0, eax 
        int     3 
int03:  dec     byte ptr es:[esi*4 + 1018h] 
        db      67h 
        rep     stosw ;shut down Hydra 
int0e:  mov     cr0, edx 
        lidt    fword ptr [offset idt_end] 
        mov     ah, 4ch 
        int     21h 
 
gdt     dw      offset gdt_end - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
gdt_end: 
 
idtr    dw      offset idt_end - offset idt - 1 
        dw      offset idt 
        dw      0 
 
idt     dd      6 dup (0) 
        dw      offset int03 
        dd      86000008h 
        dw      0 
        dd      14h dup (0) 
        dw      offset int0e 
        dd      86000008h 
        dw      0 
idt_end: 
 
end     demo 

 
 
QEMU CPUID_AMD DEMO: 
 
.model  tiny 
.586 
.code 
org     100h 
 
demo:   xor     eax, eax 
        cpuid 
        cmp     ecx, 444d4163h 
        jne     exit 
        mov     eax, 80000000h 
        cpuid 
        cmp     eax, 2 
        jb      exit 
        mov     eax, 80000002h 
        cpuid 
        cmp     eax, 554d4551h 
        je      $ ;detected 
exit:   ret 
end     demo 
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QEMU CMPXCHG8B DEMO: 
 
.model  tiny 
.586p 
.code 
org     100h 
 
demo:   mov     edx, ds 
        mov     cx, 1000h 
        movzx   eax, cx 
        add     ah, dh 
        mov     es, ax 
        shl     eax, 4 
        mov     cr3, eax 
        shl     edx, 4 
        mov     bx, offset gdt 
        add     [bx + 2], edx 
        mov     [bx + 0ah], dx 
        add    [bx+offset idtr-offset gdt+2],edx 
        bswap   edx 
        mov     [bx + 0ch], dh 
        mov     [bx + 0fh], dl 
        add     eax, 1007h 
        xor     di, di 
        stosd 
        push    7 
        pop     eax 
        mov     di, cx 
create_tbl: 
        stosd 
        add     eax, 1000h 
        loop    create_tbl 
        mov     fs, cx 
        cli 
        sidt    fword ptr [offset idt_end] 
        lidt    [bx + offset idtr - offset gdt] 
        lgdt    [bx] 
        mov     eax, cr0 
        mov     ecx, eax 
        or      eax, 80010001h 
        mov     cr0, eax 
        int     3 
int03:  mov     byte ptr es:[1004h], 5 
        mov     al, fs:[1000h] 
        inc     ax 
        cmpxchg8b fs:[1000h] 
        jmp     $ ;detected 
int0e:  mov     cr0, ecx 
        lidt    fword ptr [offset idt_end] 
        mov     ah, 4ch 
        int     21h 
 
gdt     dw      offset gdt_end - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
gdt_end: 
 
idtr    dw      offset idt_end - offset idt - 1 
        dw      offset idt 
        dw      0 
 
idt     dd      6 dup (0) 
        dw      offset int03 
        dd      86000008h 
        dw      0 
        dd      14h dup (0) 
        dw      offset int0e 
        dd      86000008h 
        dw      0 
idt_end: 
 
end     demo 

 

 
QEMU EXC_DBL DEMO: 
 
.model  tiny 
.486p 
.code 
org     100h 
 
demo:   mov     eax, ds 
        shl     eax, 4 
        mov     bx, offset gdt 
        add     [bx + 2], eax 
        mov     [bx + 0ah], ax 
        add    [bx+offset idtr-offset gdt+2],eax 
        bswap   eax 
        mov     [bx + 0ch], ah 
        mov     [bx + 0fh], al 
        cli 
        sidt    fword ptr [offset idt_end] 
        lidt    [bx + offset idtr - offset gdt] 
        lgdt    [bx] 
        mov     eax, cr0 
        inc     ax 
        mov     cr0, eax 
        int     3 
int03:  int     0ffh 
int08:  dec     ax 
        mov     cr0, eax 
        lidt    fword ptr [offset idt_end] 
        mov     ah, 4ch 
        int     21h 
 
gdt     dw      offset gdt_end - offset gdt - 1 
        dw      offset gdt 
        dd      0 
        dd      0ffffh 
        dd      9b00h 
gdt_end: 
 
idtr    dw      offset idt_end - offset idt - 1 
        dw      offset idt 
        dw      0 
 
idt     dd      6 dup (0) 
        dw      offset int03 
        dd      86000008h 
        dw      0 
        dd      8 dup (0) 
        dw      offset int08 
        dd      86000008h 
        dw      0 
idt_end: 
 
end     demo 

 

APPENDIX B 
APIs hooked by CWSandbox: 
 
KERNEL32.LoadLibraryExW 
ICMP.IcmpSendEcho 
ICMP.IcmpSendEcho2 
MPR.WNetAddConnectionA 
MPR.WNetAddConnectionW 
MPR.WNetAddConnection2A 
MPR.WNetAddConnection2W 
MPR.WNetAddConnection3A 
MPR.WNetAddConnection3W 
MPR.WNetCancelConnectionA 
MPR.WNetCancelConnectionW 
MPR.WNetCancelConnection2A 
MPR.WNetCancelConnection2W 
MPR.WNetOpenEnumA 
MPR.WNetOpenEnumW 
NETAPI32.NetScheduleJobAdd 
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NETAPI32.NetUserAdd 
NETAPI32.NetUserEnum 
NETAPI32.NetUserDel 
NETAPI32.NetUserGetInfo 
NETAPI32.NetShareAdd 
NETAPI32.NetShareEnum 
NETAPI32.NetShareEnumSticky 
NETAPI32.NetShareDel 
NETAPI32.NetShareDelSticky 
WININET.InternetOpenUrlA 
WININET.InternetOpenUrlW 
WININET.HttpOpenRequestA 
WININET.HttpOpenRequestW 
WININET.InternetConnectA 
WININET.InternetConnectW 
URLMON.URLOpenStreamA 
URLMON.URLOpenStreamW 
URLMON.URLOpenPullStreamA 
URLMON.URLOpenPullStreamW 
URLMON.URLDownloadToFileA 
URLMON.URLDownloadToFileW 
URLMON.URLDownloadToCacheFileA 
URLMON.URLDownloadToCacheFileW 
URLMON.URLOpenBlockingStreamA 
URLMON.URLOpenBlockingStreamW 
MSWSOCK.WSARecvEx 
MSWSOCK.AcceptEx 
MSWSOCK.TransmitFile 
MSWSOCK.GetAddressByNameA 
MSWSOCK.GetAddressByNameW 
PSTOREC.PStoreCreateInstance 
PSTOREC.PStoreEnumProviders 
WS2_32.WSAStartup 
WS2_32.WSACleanup 
WS2_32.socket 
WS2_32.WSASocketA 
WS2_32.WSASocketW 
WS2_32.bind 
WS2_32.listen 
WS2_32.accept 
WS2_32.WSAAccept 
WS2_32.connect 
WS2_32.WSAConnect 
WS2_32.recv 
WS2_32.WSARecv 
WS2_32.recvfrom 
WS2_32.WSARecvFrom 
WS2_32.send 
WS2_32.WSASend 
WS2_32.sendto 
WS2_32.WSASendTo 
WS2_32.gethostbyname 
WS2_32.gethostbyaddr 
WS2_32.WSAAsyncGetHostByAddr 
OLE32.CoCreateInstance 
OLE32.CoCreateInstanceEx 
OLE32.CoGetClassObject 
OLE32.CoGetInstanceFromFile 
OLE32.CoGetInstanceFromIStorage 
OLE32.OleCreate 
OLE32.OleCreateEx 
OLE32.OleCreateFromFile 
OLE32.OleCreateFromFileEx 
PSAPI.EnumProcesses 
PSAPI.EnumProcessModules 
SHELL32.ShellExecuteA 
SHELL32.ShellExecuteW 
SHELL32.ShellExecuteExW 
SHELL32.ShellExecuteExA 
SHELL32.SHLoadInProc 
USER32.FindWindowA 
USER32.FindWindowW 
USER32.FindWindowExA 
USER32.FindWindowExW 
USER32.EnumWindows 
USER32.EnumThreadWindows 
USER32.EnumDesktopWindows 
USER32.EnumChildWindows 
USER32.GetTopWindow 
USER32.GetWindow 

USER32.DestroyWindow 
USER32.ExitWindowsEx 
ADVAPI32.RegOpenKeyA 
ADVAPI32.RegOpenKeyW 
ADVAPI32.RegOpenKeyExA 
ADVAPI32.RegOpenKeyExW 
ADVAPI32.RegCreateKeyA 
ADVAPI32.RegCreateKeyW 
ADVAPI32.RegCreateKeyExA 
ADVAPI32.RegCreateKeyExW 
ADVAPI32.RegSetValueA 
ADVAPI32.RegSetValueW 
ADVAPI32.RegSetValueExA 
ADVAPI32.RegSetValueExW 
ADVAPI32.RegQueryValueA 
ADVAPI32.RegQueryValueW 
ADVAPI32.RegQueryValueExA 
ADVAPI32.RegQueryValueExW 
ADVAPI32.RegQueryMultipleValuesA 
ADVAPI32.RegQueryMultipleValuesW 
ADVAPI32.RegDeleteValueA 
ADVAPI32.RegDeleteValueW 
ADVAPI32.RegDeleteKeyA 
ADVAPI32.RegDeleteKeyW 
ADVAPI32.RegEnumValueA 
ADVAPI32.RegEnumValueW 
ADVAPI32.RegEnumKeyA 
ADVAPI32.RegEnumKeyW 
ADVAPI32.RegEnumKeyExA 
ADVAPI32.RegEnumKeyExW 
ADVAPI32.OpenSCManagerA 
ADVAPI32.OpenSCManagerW 
ADVAPI32.CreateServiceA 
ADVAPI32.CreateServiceW 
ADVAPI32.OpenServiceA 
ADVAPI32.OpenServiceW 
ADVAPI32.StartServiceA 
ADVAPI32.StartServiceW 
ADVAPI32.ControlService 
ADVAPI32.DeleteService 
ADVAPI32.EnumServicesStatusA 
ADVAPI32.EnumServicesStatusW 
ADVAPI32.EnumServicesStatusExA 
ADVAPI32.EnumServicesStatusExW 
ADVAPI32.ChangeServiceConfigA 
ADVAPI32.ChangeServiceConfigW 
ADVAPI32.ChangeServiceConfig2A 
ADVAPI32.ChangeServiceConfig2W 
ADVAPI32.LogonUserA 
ADVAPI32.LogonUserW 
ADVAPI32.GetUserNameA 
ADVAPI32.GetUserNameW 
ADVAPI32.ImpersonateLoggedOnUser 
ADVAPI32.RevertToSelf 
ADVAPI32.CreateProcessAsUserA 
ADVAPI32.CreateProcessAsUserW 
ADVAPI32.InitiateSystemShutdownA 
ADVAPI32.InitiateSystemShutdownW 
KERNEL32.CreateToolhelp32Snapshot 
KERNEL32.Process32FirstW 
KERNEL32.Process32First 
KERNEL32.Module32FirstW 
KERNEL32.Module32First 
KERNEL32.FindFirstFileExA 
KERNEL32.FindFirstFileA 
KERNEL32.FindFirstFileExW 
KERNEL32.FindFirstFileW 
KERNEL32.CopyFileA 
KERNEL32.CopyFileW 
KERNEL32.CopyFileExA 
KERNEL32.CopyFileExW 
KERNEL32.MoveFileA 
KERNEL32.MoveFileW 
KERNEL32.MoveFileExA 
KERNEL32.MoveFileExW 
KERNEL32.MoveFileWithProgressA 
KERNEL32.MoveFileWithProgressW 
KERNEL32.DeleteFileA 
KERNEL32.DeleteFileW 
KERNEL32.CreateFileA 
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KERNEL32.CreateFileW 
KERNEL32.CreateNamedPipeA 
KERNEL32.CreateNamedPipeW 
KERNEL32.CreateMailslotA 
KERNEL32.CreateMailslotW 
KERNEL32.GetFileAttributesA 
KERNEL32.GetFileAttributesW 
KERNEL32.GetFileAttributesExA 
KERNEL32.GetFileAttributesExW 
KERNEL32.SetFileAttributesA 
KERNEL32.SetFileAttributesW 
KERNEL32.SetFileTime 
KERNEL32.GetSystemDirectoryA 
KERNEL32.GetSystemDirectoryW 
KERNEL32.GetWindowsDirectoryA 
KERNEL32.GetWindowsDirectoryW 
KERNEL32.GetComputerNameA 
KERNEL32.GetComputerNameW 
KERNEL32.GetSystemTime 
KERNEL32.GetLocalTime 
KERNEL32.LoadLibraryA 
KERNEL32.LoadLibraryW 
KERNEL32.LoadLibraryExA 
KERNEL32.IsDebuggerPresent 
KERNEL32.CreateMutexA 
KERNEL32.CreateMutexW 
KERNEL32.OpenMutexA 
KERNEL32.OpenMutexW 
KERNEL32.ReadProcessMemory 
KERNEL32.GetPrivateProfileIntA 
KERNEL32.GetPrivateProfileIntW 
KERNEL32.GetPrivateProfileSectionA 
KERNEL32.GetPrivateProfileSectionW 
KERNEL32.GetPrivateProfileSectionNamesA 
KERNEL32.GetPrivateProfileSectionNamesW 
KERNEL32.GetPrivateProfileStringA 
KERNEL32.GetPrivateProfileStringW 
KERNEL32.GetPrivateProfileStructA 
KERNEL32.GetPrivateProfileStructW 
KERNEL32.GetProfileIntA 
KERNEL32.GetProfileIntW 
KERNEL32.GetProfileSectionA 
KERNEL32.GetProfileSectionW 
KERNEL32.GetProfileStringA 
KERNEL32.GetProfileStringW 
KERNEL32.WritePrivateProfileSectionA 
KERNEL32.WritePrivateProfileSectionW 
KERNEL32.WritePrivateProfileStringA 
KERNEL32.WritePrivateProfileStringW 
KERNEL32.WritePrivateProfileStructA 
KERNEL32.WritePrivateProfileStructW 
KERNEL32.WriteProfileSectionA 
KERNEL32.WriteProfileSectionW 
KERNEL32.WriteProfileStringA 
KERNEL32.WriteProfileStringW 
KERNEL32.WinExec 
KERNEL32.LoadModule 
KERNEL32.CreateProcessA 
KERNEL32.CreateProcessW 
KERNEL32.CreateProcessInternalW 
NTDLL.NtShutdownSystem 
NTDLL.NtSetSystemPowerState 
NTDLL.NtQuerySystemTime 
NTDLL.NtQueryInformationFile 
NTDLL.NtQueryFullAttributesFile 
NTDLL.NtSetInformationFile 
NTDLL.NtQuerySystemInformation 
NTDLL.RtlQueryProcessDebugInformation 
NTDLL.NtQueryInformationProcess 
NTDLL.LdrLoadDll 
NTDLL.NtSetContextThread 
NTDLL.NtCreateThread 
NTDLL.NtCreateProcess 
NTDLL.NtOpenProcess 
NTDLL.NtTerminateProcess 
NTDLL.NtCreateMutant 
NTDLL.NtOpenMutant 
NTDLL.NtCreateEvent 
NTDLL.NtOpenEvent 
NTDLL.RtlCreateUserProcess 

NTDLL.NtQueryDirectoryFile 
NTDLL.NtCreateFile 
NTDLL.NtOpenFile 
NTDLL.NtDeleteFile 
NTDLL.NtQueryAttributesFile 
NTDLL.NtCreateKey 
NTDLL.NtOpenKey 
NTDLL.NtDeleteKey 
NTDLL.NtQueryKey 
NTDLL.NtQueryMultipleValueKey 
NTDLL.NtEnumerateKey 
NTDLL.NtEnumerateValueKey 
NTDLL.NtDeleteValueKey 
NTDLL.NtQueryValueKey 
NTDLL.NtSetValueKey 
NTDLL.NtVdmControl 
NTDLL.NtCreateMailslotFile 
NTDLL.NtMapViewOfSection 
NTDLL.RtlpNtCreateKey 
NTDLL.RtlpNtOpenKey 
NTDLL.RtlpNtSetValueKey 
NTDLL.RtlpNtQueryValueKey 
NTDLL.RtlpNtEnumerateSubKey 
NTDLL.RtlCreateRegistryKey 
NTDLL.RtlCheckRegistryKey 
NTDLL.RtlDeleteRegistryValue 
NTDLL.RtlQueryRegistryValues 
NTDLL.RtlWriteRegistryValue 
NTDLL.NtAllocateVirtualMemory 
NTDLL.NtProtectVirtualMemory 
NTDLL.NtReadVirtualMemory 
NTDLL.NtWriteVirtualMemory 
NTDLL.NtClose 
 
Methods hooked by CWSandbox: 
 
IPStore.QueryInterface() 
IPStore.EnumTypes() 
IPStore.EnumSubtypes() 
IPStore.DeleteItem() 
IPStore.ReadItem() 
IPStore.WriteItem() 
IPStore.OpenItem() 
IPStore.EnumItems() 
IEnumPStoreItems.Clone() 
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