Beyond EIP

spoonm & skape

BlackHat Federal, 2006



Part |

Introduction



Who are we?

> spoonm
» Dropout bum
» Metasploit developer since late 2003
> skape
» Lead software developer by day
» Independent security researcher by night
» Joined the Metasploit project in 2004
» Responsible for all cool features



What'’s this presentation about?

» What it’s not about
» New exploit / attack vectors
» New exploitation techniques
» Oday, bugs, etc



What'’s this presentation about?

» What it’s not about
» New exploit / attack vectors
» New exploitation techniques
» Oday, bugs, etc
» What it is about
» What you can do after owning EIP
» The techniques to do it
» Our tools to support it



Plan of attack

» Introduction
» Payload background
» Technologies used as a basis
» Post-exploitation tools
» Background & review of existing tools
» The technology behind our tools
» How they can be used
» Crazy cool features for the end-user



Our definitions: the exploitation cycle

» Pre-exploitation - Before the attack
» Find a bug, isolate, write exploit
» Write any other tools, payloads, etc



Our definitions: the exploitation cycle

» Pre-exploitation - Before the attack
» Find a bug, isolate, write exploit
» Write any other tools, payloads, etc
» Exploitation - Leveraging the vulnerability
» Recon, information gathering, find target
» Initialize tools and infrastructure
» Launch the exploit



Our definitions: the exploitation cycle

» Pre-exploitation - Before the attack
» Find a bug, isolate, write exploit
» Write any other tools, payloads, etc
» Exploitation - Leveraging the vulnerability
» Recon, information gathering, find target
» Initialize tools and infrastructure
» Launch the exploit
» Post-exploitation - Manipulating the target

v

Arbitrary command execution
Command execute via shell

v

v

File access, VNC, pivoting, etc

v

Advanced payload interaction



What’s a payload?
Definition

» Arbitrary code that is to be executed upon successful exploitation



What’s a payload?
Definition
» Arbitrary code that is to be executed upon successful exploitation
How a payload works

» Client prepares the payload for execution



What’s a payload?
Definition
» Arbitrary code that is to be executed upon successful exploitation
How a payload works

» Client prepares the payload for execution
» Data may be embedded (cmd to execute, hostname, port, etc)



What’s a payload?
Definition
» Arbitrary code that is to be executed upon successful exploitation
How a payload works

» Client prepares the payload for execution
» Data may be embedded (cmd to execute, hostname, port, etc)
» Client transmits the payload via an exploit



What’s a payload?
Definition
» Arbitrary code that is to be executed upon successful exploitation
How a payload works
» Client prepares the payload for execution
» Data may be embedded (cmd to execute, hostname, port, etc)
» Client transmits the payload via an exploit
» Target executes the payload



Payload stagers

» Stagers are typically network based and follow three basic steps

» Establish connection to attacker (reverse, portbind,
findsock)

» Read in a payload from the connection
» Setup connection information and branch to stage



Payload stagers

» Stagers are typically network based and follow three basic steps

» Establish connection to attacker (reverse, portbind,
findsock)

» Read in a payload from the connection
» Setup connection information and branch to stage

» The three steps make it so stages are independent of the
connection method

» No need to have command shell payloads for reverse,
portbind, and findsock



Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute



Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute

» Eliminate the need to re-implement payloads for each
connection method



Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute

» Eliminate the need to re-implement payloads for each
connection method

» Provides an abstraction level for loading code onto a remote
machine through any medium



Existing payload stager technology
» Standard reverse, portbind, and findsock stagers included in
Metasploit 2.2+
» LSD Win32 Assembly Components
» Found in public exploits (Solar Eclipse OpenSSL)



Payload stages

» Payload stages are executed by payload stagers and perform
arbitrary tasks



Payload stages
» Payload stages are executed by payload stagers and perform
arbitrary tasks
» Some examples of payload stages include
» Execute a command shell and redirect 10 to the attacker
» Execute an arbitrary command (ex adduser)
» Download an executable from a URL and execute it



Why are payload stages useful?

» Highly reusable (connection independent, etc)
» Can conform to some sort of ABI



Why are payload stages useful?

» Highly reusable (connection independent, etc)

» Can conform to some sort of ABI

» Not subject to size limitations of individual vulnerabilities
» This means they can be arbitrarily complex



Part Il

Post Exploitation



What is post-exploitation?

» The purpose of an exploit is to manipulate a target



What is post-exploitation?
» The purpose of an exploit is to manipulate a target
» Manipulation of a target begins in post-exploitation

» Command shells are executed
» Files are downloaded



What is post-exploitation?

» The purpose of an exploit is to manipulate a target
» Manipulation of a target begins in post-exploitation
» Command shells are executed
» Files are downloaded
» Represents the culmination of the exploitation cycle



What do most people do in post-exploitation?

» Most people spawn a command shell
» Poor automation support
» Reliant on the shell’s intrinsic commands
» Limited to installed applications
» Can’t provide advanced features



What do most people do in post-exploitation?

» Most people spawn a command shell

» Poor automation support
Reliant on the shell’s intrinsic commands
» Limited to installed applications

v

v

Can’t provide advanced features
» Some people use syscall proxies

\4

Good automation support
Partial or full access to target native API
Can be clumsy when implementing complex features

v

v

v

Typically require specialized build steps



DispatchNinja - Caveman Post Exploitation

» The idea is to have interactive shellcode
» And be able to keep a very low footprint



DispatchNinja - Caveman Post Exploitation

» The idea is to have interactive shellcode
» And be able to keep a very low footprint
» But also have lots of optional power



DispatchNinja - Caveman Post Exploitation

» The idea is to have interactive shellcode
» And be able to keep a very low footprint

v

But also have lots of optional power

Basically a shellcode read-eval-print loop

DispatchNinja "modules" are sent and executed

>
» First stage loops, reading/executing code
>
» This is what we call "dispatching"



DispatchNinja - Caveman Post Exploitation

» The idea is to have interactive shellcode
» And be able to keep a very low footprint

v

But also have lots of optional power

Basically a shellcode read-eval-print loop
First stage loops, reading/executing code
DispatchNinja "modules" are sent and executed

vV v.v Yy

This is what we call "dispatching”

v

Modules are responsible for their own mini-protocols
» Each module has a corresponding handler on client side



DispatchNinja - Caveman Post Exploitation

» The idea is to have interactive shellcode
» And be able to keep a very low footprint

v

But also have lots of optional power

Basically a shellcode read-eval-print loop
First stage loops, reading/executing code
DispatchNinja "modules" are sent and executed

vV v.v Yy

This is what we call "dispatching”

v

Modules are responsible for their own mini-protocols
» Each module has a corresponding handler on client side

» Modules have a simple C ABI, and have a main function
» Most of our dN modules were written in C (shellforge)



DispatchNinja - Client side APls

» Client side APIs wrap handler and module code
» Msf3 has ruby dN client side APIs



DispatchNinja - Client side APls

» Client side APIs wrap handler and module code
» Msf3 has ruby dN client side APls

» APIs modeled after the ruby APIs (Dir, File, etc)
» Our APlIs should support the majority of Ruby functionality



irb#1 (main) :001:0> ¢ = Qc

=> #<Rex::Post::DispatchNinja::Client:0xb7bf542c
@sock=#<TCPSocket :0xb7bf5440>>

irb#1 (main) :002:0> c.dir.entries(’/tmp’)

=> [".", "..", " Xll-unix", ".ICE-unix", ".font-unix"]

irb#1 (main) :004:0> puts c.file.stat (' /etc/passwd’) .pretty
Size: 1036 Blocks: 8 IO Block: 4096 Type: O
Device: 774 1Inode: 81499 Links: 1
Mode: 100644/rw-r——r—-—
Uid: 0 Gid: O
Access: Tue Jul 26 20:08:09 EDT 2005
Modify: Wed Jul 06 20:45:04 EDT 2005
Change: Wed Jul 06 20:45:04 EDT 2005
=> nil

irb#1 (main) :005:0> Process.pid
=> 1496

irb#1 (main) :006:0> c.process.pid
=> 1498



What is Meterpreter?

» Short for Meta-Interpreter

» An advanced post-exploitation system

» Based on library injection technology

» First released with Metasploit 2.3

» Detailed write-up can be found in reference materials



What is Meterpreter?

» Short for Meta-Interpreter

An advanced post-exploitation system

Based on library injection technology

First released with Metasploit 2.3

Detailed write-up can be found in reference materials

vV v.v Yy

v

After exploitation, a Meterpreter server DLL is loaded on the
target



What is Meterpreter?

vV v v v Y

Short for Meta-Interpreter

An advanced post-exploitation system

Based on library injection technology

First released with Metasploit 2.3

Detailed write-up can be found in reference materials

After exploitation, a Meterpreter server DLL is loaded on the
target

Attackers use a Meterpreter client to interact with the server to...
» Load run-time extensions in the form of DLLs
» Interact with communication channels



What is Meterpreter?

vV v v v Y

Short for Meta-Interpreter

An advanced post-exploitation system

Based on library injection technology

First released with Metasploit 2.3

Detailed write-up can be found in reference materials

After exploitation, a Meterpreter server DLL is loaded on the
target

Attackers use a Meterpreter client to interact with the server to...
» Load run-time extensions in the form of DLLs
» Interact with communication channels

But before understanding Meterpreter, one should understand
library injection...



Library injection

» Provides a method of loading a library (DLL) into an exploited
process



Library injection
» Provides a method of loading a library (DLL) into an exploited
process
» Libraries are functionally equivalent to executables
» Full access to various OS-provided APls
» Can do anything an executable can do



Library injection
» Provides a method of loading a library (DLL) into an exploited
process
» Libraries are functionally equivalent to executables
» Full access to various OS-provided APls
» Can do anything an executable can do
» Library injection is covert; no new processes need to be created



Library injection
» Provides a method of loading a library (DLL) into an exploited
process
» Libraries are functionally equivalent to executables
» Full access to various OS-provided APls
» Can do anything an executable can do
» Library injection is covert; no new processes need to be created
» Detailed write-up can be found in reference materials



Types of library injection

» Two primary methods exist to inject a library

1. On-Disk: loading a library from the target’s harddrive or a
file share

2. In-Memory: loading a library entirely from memory
» Both are conceptually portable to non-Windows platforms



On-Disk library injection
» Loading a library from disk has been the defacto standard for
Windows payloads

» Loading a library from a file share was first discussed by Brett
Moore



On-Disk library injection
» Loading a library from disk has been the defacto standard for
Windows payloads

» Loading a library from a file share was first discussed by Brett
Moore

» On-Disk injection is subject to filtering by Antivirus due to
filesystem access

» Requires that the library file exist on the target’s harddrive or that
the file share be reachable



In-Memory library injection

» First Windows implementation released with Metasploit 2.2



In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory



In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory
» No disk access means no Antivirus interference



In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory

» No disk access means no Antivirus interference

» Most stealthy form of library injection thus far identified



In-Memory library injection

First Windows implementation released with Metasploit 2.2
Libraries are loaded entirely from memory

>

>

» No disk access means no Antivirus interference

» Most stealthy form of library injection thus far identified
>

No disk access means no forensic trace if the machine loses
power



In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk



In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL .DLL must be tricked



In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL . DLL must be tricked

» When loading libraries, low-level system calls are used to
interact with the file on disk

» NtOpenFile
» NtCreateSection
» NtMapViewOfSection

» These routines can be hooked to change their behavior to
operate against a memory region



In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL . DLL must be tricked

» When loading libraries, low-level system calls are used to
interact with the file on disk

» NtOpenFile
» NtCreateSection
» NtMapViewOfSection

» These routines can be hooked to change their behavior to
operate against a memory region

» Once hooked, calling LoadLibrarya with a unique pseudo file
name is all that's needed



In-Memory library injection on Windows

» But why not just write a stub loader instead of using
NTDLL.DLL?



In-Memory library injection on Windows

» But why not just write a stub loader instead of using
NTDLL.DLL?

» Lots of reasons...

v

Requires manual import processing

» Requires manual relocation fix-ups

» Requires loading dependent DLLs

» May require manual insertion into the loaded module lists

v

Other uncommon PE features that wouldn’t be supported



In-Memory library injection on Windows

» But why not just write a stub loader instead of using
NTDLL.DLL?

» Lots of reasons...

v

Requires manual import processing

» Requires manual relocation fix-ups

» Requires loading dependent DLLs

» May require manual insertion into the loaded module lists
Other uncommon PE features that wouldn’t be supported

v

» No compelling reason to re-implement what is already supplied
in NTDLL.DLL



Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLIs



Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLlIs

» First demonstrated at BlackHat USA 2004



Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLlIs

» First demonstrated at BlackHat USA 2004

» Metasploit team converted RealVNC to a standalone DLL
No non-standard file dependencies

No installation required

v

v

v

Does not make any registry or filesystem changes

v

Does not listen on a port; uses payload connection as a
VNC client



Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLlIs

» First demonstrated at BlackHat USA 2004
» Metasploit team converted RealVNC to a standalone DLL

v

No non-standard file dependencies

v

No installation required

v

Does not make any registry or filesystem changes

v

Does not listen on a port; uses payload connection as a
VNC client

» By using the generic library loading stager, VNC was simply
plugged in



Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLlIs

» First demonstrated at BlackHat USA 2004
» Metasploit team converted RealVNC to a standalone DLL

v

No non-standard file dependencies

v

No installation required

v

Does not make any registry or filesystem changes

v

Does not listen on a port; uses payload connection as a
VNC client

» By using the generic library loading stager, VNC was simply
plugged in

» Extremely useful when illustrating security weaknesses

» Suits understand mouse movement much better than command
lines



Meterpreter: Design goals

» Primary design goals are to be...



Meterpreter: Design goals

» Primary design goals are to be...
» Stealthy: no disk access and no new process by default



Meterpreter: Design goals

» Primary design goals are to be...
» Stealthy: no disk access and no new process by default
» Powerful: channelized communication and robust protocol



Meterpreter: Design goals

» Primary design goals are to be...
» Stealthy: no disk access and no new process by default
» Powerful: channelized communication and robust protocol

» Extensible: run-time augmentation of features with
extensions



Meterpreter: Design goals

» Primary design goals are to be...
» Stealthy: no disk access and no new process by default
» Powerful: channelized communication and robust protocol

» Extensible: run-time augmentation of features with
extensions

» Portability also a design consideration

» The current server implementation is only for Windows



Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification



Architecture - design goals
» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions (like openssh)



Architecture - design goals
» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions (like openssh)

» Should be as stealthy as possible



Architecture - design goals
» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions (like openssh)

» Should be as stealthy as possible
» Should be portable to various platforms



Architecture - design goals
» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions (like openssh)

» Should be as stealthy as possible
» Should be portable to various platforms
» Clients on one platform should work with servers on another



Architecture - design goals

>

vV v.v Yy

Very flexible protocol; should adapt to extension requirements
without modification

Should expose a channelized communication system for
extensions (like openssh)

Should be as stealthy as possible

Should be portable to various platforms

Clients on one platform should work with servers on another
All non-critical features should be implemented by extensions



Architecture - protocol

» Uses TLV (Type-Length-value) to support opaque data



Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs



Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs
» Packets themselves are TLVs

» Type is the packet type (request, response)

» Length is the length of the packet

» Value is zero or more embedded TLVs



Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs
» Packets themselves are TLVs
» Type is the packet type (request, response)
» Length is the length of the packet
» Value is zero or more embedded TLVs
» TLVs make packet parsing simplistic and flexible

» No formatting knowledge is required to parse the packet
outside of the TLV structure

» This allows a core TLV parsing engine without any
knowledge of the extensions or their protocols.



Core client/server interface

» Server written in C, client written in any language



Core client/server interface

» Server written in G, client written in any language
» Provides a minimal interface to support the loading of extensions



Core client/server interface

» Server written in G, client written in any language

» Provides a minimal interface to support the loading of extensions
» Implements basic packet transmission and dispatching

» Exposes channel allocation and management to extensions



Core client/server interface

Server written in G, client written in any language

Provides a minimal interface to support the loading of extensions
Implements basic packet transmission and dispatching

Exposes channel allocation and management to extensions

vV v v v Y

Also includes support for migrating the server to another running
process



Core client/server interface

vV v v v Y

Server written in C, client written in any language

Provides a minimal interface to support the loading of extensions
Implements basic packet transmission and dispatching

Exposes channel allocation and management to extensions

Also includes support for migrating the server to another running
process

» Metasploit 2.x has a perl Meterpreter client

» Metasploit 3.x has a ruby Meterpreter client



Augmenting features at run-time

» Adding new features is as simple as loading a DLL on the server
» Client uploads the extension DLL
» Server loads the DLL from memory and initializes it



Augmenting features at run-time

» Adding new features is as simple as loading a DLL on the server
» Client uploads the extension DLL
» Server loads the DLL from memory and initializes it

» Client can begin sending commands for the new extension



Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0
» Combination of previous extensions into standard interface



Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0
» Combination of previous extensions into standard interface
» Provides access to standard OS features



Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0

» Combination of previous extensions into standard interface
» Provides access to standard OS features

» Feature set provides for robust client-side automation



Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0

» Combination of previous extensions into standard interface
» Provides access to standard OS features

» Feature set provides for robust client-side automation

» Designed to mirror the Ruby API to make it easy to use existing
scripts against targets



Why is Meterpreter useful?

» Standard interface makes it possible to use one client to perform
common actions on various platforms



Why is Meterpreter useful?

» Standard interface makes it possible to use one client to perform
common actions on various platforms

» Execute a command interpreter and channelize the output



Why is Meterpreter useful?
» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’'s USB webcam and begin streaming
video



Why is Meterpreter useful?
» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’'s USB webcam and begin streaming
video

» Programmatically automatable

» RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

» Extension-based architecture makes Meterpreter
completely flexible



Why is Meterpreter useful?
» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’'s USB webcam and begin streaming
video

» Programmatically automatable

» RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

» Extension-based architecture makes Meterpreter
completely flexible

» Use of in-memory library injection makes it possible to run in a
stealth fashion



Some of the features Meterpreter can offer

» Command execution & manipulation

Registry interaction

File system interaction

Network pivoting & port forwarding

Complete native API proxying

Anything you can do as a native DLL, Meterpreter can do!

>
>
>
>
>
» Sky’s the limit!



Part I

Demos



Part IV

Conclusion



What does the future hold?

» Exploitation vectors and techniques are mature



What does the future hold?

» Exploitation vectors and techniques are mature
» Public post-exploitation suites still very weak



What does the future hold?

» Exploitation vectors and techniques are mature
» Public post-exploitation suites still very weak
» However, post-exploitation is maturing



What does the future hold?

» Exploitation vectors and techniques are mature
» Public post-exploitation suites still very weak

» However, post-exploitation is maturing

» Metasploit 3.0 should be cool



Reference Material
Payload Stages

» Library Injection
http://www.nologin.org/Downloads/Papers/
remote-library-injection.pdf

» Meterpreter

http:
//www.nologin.org/Downloads/Papers/meterpreter.pdf


http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf

	Introduction
	Introduction
	Payloads
	Stagers
	Stages



	Post Exploitation
	Post Exploitation
	Introduction
	DispatchNinja
	Library Injection
	Overview
	In-Memory Implementation on Windows
	Example DLL: VNC

	Meterpreter
	Architecture
	Example Extension: Stdapi



	Demos
	Demos

	Conclusion
	Conclusion


