
Macro-Reliability in Win32 Exploits
“A la conquete du monde...”

Kostya Kortchinsky

http://www.immunityinc.com/

http://www.immunityinc.com/

Agenda

● Problems with large scale exploitation
● Immunity's Solutions

– Common Addresses

– Remote Language Fingerprinting

● The Future

Problems in Large Scale Remote
Exploitation

● Targets are not homogeneous
● Targets have host protection layers
● Targets have network protection layers
● Targets vary over time

Windows Machine Types

● Targeting a remote exploit requires:
– Major/Minor versions

– Service Packs

– Patches

– Configurations

– Language Packs

– Software version and configuration

– Networking conditions between attacker and target

– Host protections on target

Exploits and Magic Numbers

● Most exploits contain a list of “magic numbers”
that help them target remote machines
– shellcode offsets

– return addresses

– writable addresses

– etc

● Each magic number decreases the reliability of
the exploit in the wild

Minimizing Magic Numbers

● Two obvious approaches
– Find common addresses that are the same across

all your target types

– Find a way to do fine-grained fingerprinting on your
targets to accurately determine their magic
numbers

● Hardest and best way
– Rewrite the exploit to not need magic numbers at all

Common Addresses

● Avoid fingerprinting as much as possible

– Fingerprinting is usually noisy

– SP fingerprinting is not that reliable
● Usually using MSRPC interfaces

– AFAIK, localization fingerprinting is pretty nonexistent
● Major Windows version fingerprinting is quite reliable

– Some work was already done on SP independent return
addresses

● “Universal address” often means English only

Naïve Approach

● Try and find addresses as independent as
possible of the targets
– In DLLs: image base address usually changes with

language pack

– In EXEs: image base doesn't change much

– In EXEs and DLLs: different versions usually means
different offsets relatively to image base

● DLLs with same version and same image base
might provide common return addresses...
– Small C program: dllvers.c

15

443

500

Windows 2000
\system32 DLLs

Common
accross
Language
and SP

Common
accross SP

Others

1

Some Results

● Common DLLs
admparse.dll 5.0.2920.0 0x80000000
bootvid.dll 5.0.2172.1 0x80010000
dbmsadsn.dll 1999.10.20.0 0x42bd0000
dbmssocn.dll 1999.10.20.0 0x73330000
dbmsspxn.dll 1999.10.20.0 0x42be0000
gpkcsp.dll 5.0.2134.1 0x8000000
mcdsrv32.dll 5.0.2160.1 0x80010000
msvcirt.dll 6.1.8637.0 0x780a0000
msvcp50.dll 5.0.0.7051 0x780c0000
rtipxmib.dll 5.0.2168.1 0xd0000000
slbcsp.dll 5.0.2134.1 0x8000000
slbkygen.dll 5.0.2144.1 0x8000000
sqlwid.dll 1999.10.20.0 0x412f0000
vcdex.dll 5.0.2134.1 0x0ffb0000
vdmredir.dll 5.0.2134.1 0x0ffa0000

1English, Japanese, Italian, Dutch, German,
Spanish, Chinese, Russian, French
SP0 to SP4 up to date

Pretty useless!

In Memory

● Not only DLLs and EXEs and memory
– Stacks

– Heaps

– File mappings

– PEB, TEBs

– Various different kinds of sections...

● Do not only stick to EXEs or DLLs to search for
opcodes, look into the whole memory space
– Small C program: dumpop.c

NLS File Mappings

● Several NLS files are mapped by default by Windows
before the process even starts

– unicode.nls
locale.nls
sortkey.nls
sorttbls.nls

● Others can be loaded at runtime depending on the
locale used

– ctype.nls for example
● Mapping base address is (almost) fixed for a given

binary on the same major version of Windows

NLS File Mappings (cont.)

● Mapping base address will depend on previously
allocated pages:

– Stack of main thread
● Based on SizeOfStackReserve parameter in PE header

– Imported DLLs
● Based on their image base address

● Include a lot of jmp reg, call reg, push reg & ret

● Haven't changed since Windows NT 4.0

● Contain 1 NULL byte, not executable

– Still can be used quite efficiently

Memory Mapping Example

Remote options

● Passive
– SIGINT can tell you a lot of things about a machine,

including language strings
● This is mostly useful for client-side attacks

● Active
– Scanning may correlate your SIGINT data with a

particular machine after it moves IP addresses

– Various services on the remote machine may offer
“localized” strings which can be used for language
detection

Determining Language Pack
Remotely

● Microsoft Windows does not offer a remote and
anonymous way to correctly determine the language pack
of a Windows install

● The applied language pack changes offsets and base
addresses within DLLs which affect our exploits

● Some vulnerabilities and/or exploits are only effective on
certain languages

– MS06-009: Korean Input Method Editor

– MS07-001: Brazilian Portuguese Grammar Checker

http://www.microsoft.com/technet/security/Bulletin/MS06-009.mspx
http://www.microsoft.com/technet/security/Bulletin/MS07-001.mspx

Why care so much about language
pack?

● Most research on exploit reliability assumes
English Windows

● But any large company has branches in places
where the native language is not English

● Consultants come from all countries and place
their non-English Windows laptops onto
corporate networks

The Same Path Principle

● When exploiting a vulnerability we want to
reduce the number of services and ports used
– All services might not be running

– All ports might not be opened

● Try and find as many ways as possible to
remotely fingerprint a Windows language
– MSRPC

– SNMP

– Web browsers

– ...

MSRPC Localization using Shares

● Works by matching “remark” unicode field of a
SHARE_INFO_1 structure returned by the
NetShareEnum() API
– Interface 4b324fc8-1670-01d3-1278-5a47bf6ee188

v3.0, opnum 15 in services.exe (2000)

– Endpoints on ncacn_np, ncadg_ip_udp (old SP)

● Needs IPC$ and/or C$ share to exist
– Usually better be if exploiting a RPC bug

● Will work anonymously against NT 4.0, 2000,
XP < SP2 and 2003 SP0

Shares Results

● Uniquely matched
– French

Spanish
Russian
German
Dutch
Polish
Simplified Chinese
Traditional Chinese
Turkish
Hungarian
Czech
Norwegian
Swedish
Greek
Danish
Finnish

● “Collisions”
– Common (no translation)

● English
Arabic
Hebrew
Japanese
Korean

– On IPC$ share
● Italian

Portuguese
Brazilian

– On C$ share (or any
disk)

● Portuguese
Brazilian

MSRPC Localization using Users

● List users on a system using LsaLookupSids() API by
bruteforcing SIDs, match the default ones that are
localization dependent

– Interface 12345778-1234-abcd-ef00-0123456789ab
v0.0, opnum 57

– Endpoints on ncacn_np
● Will work anonymously against NT 4.0 and 2000

– Useful in some case to refine previous technique
results

● Works against XP SP1a with fake credentials if a
Share has been setup

MSRPC Localization using Print
Providers

● Best of the RPC methods, unique to CANVAS

● Works by matching the “comment” unicode field of a
PRINTER_INFO_1 structure returned by the
EnumPrinters() API

– API itself doesn't support remote listing of Print Providers

● Needs access to the spoolsv.exe service

– Interface 12345678-1234-abcd-ef00-0123456789ab v1.0,
opnum 0

– Usually through ncacn_np:\PIPE\spoolss

● Works anonymously against up to and including XP SP2!

– No access on 2003 unless configured as a Printer Server

Print Providers

● Windows based clients and servers have 3 print
providers by default

– win32spl.dll comment string is localized

● 3rd party software can install their own print provider

● Side note: multiple vulnerabilities in the recent past,
PP enumeration is interesting for that too

– MS05-043: Heap overflow in win32spl.dll

– Novell TID #3125538: Stack overflow in nwspool.dll

– CTX111686: Stack overflow in cpprov.dll

– And more...

http://www.microsoft.com/technet/security/Bulletin/MS05-043.mspx
http://www.novell.com/support/search.do?cmd=displayKC&externalId=3125538&sliceId=SAL_Public
http://support.citrix.com/article/CTX111686

Print Providers Results

● Uniquely matched
– French

Spanish
Russian
German
Dutch
Polish
Simplified Chinese
Traditional Chinese
Turkish
Hungarian
Czech
Norwegian
Swedish
Greek
Danish
Finnish
Japanese
Korean
Protuguese
Italian
Brazilian

● “Collisions”
– English

Arabic
Hebrew

– Probably due to lazy
translators

SNMP Localization

● No such thing as a Windows Language OID :-(

– Well at least I haven't found one

– SNMPv2-MIB::sysLocation.0 is pretty useless

● Hopefully, Windows provides a list of installed
software accessible from the public community

– HOST-RESOURCES-MIB::hrSWInstalledName.*

– Hopefully the term “Hotfix” is localized
● “Correctif” in French, “Revisión” in Spanish

● Needs at least some hotfixes installed

– No hotfix usually means no trouble for us though :>

IIS & IE Localization

● IIS is not very talkative about its localization
● 40x errors are localized

– 404 error string

– 404 pages
● If customized, several other 40x pages to try

● Localization through IE might be useful for
client-side exploits
– Accept-Language header can give an hint

– Nowadays heap-spray provides a mean to
disregard this

Configuration Options

● Of we can't get the localization of the remote
target:
– Assume it is English or another particular

localization

– Don't run the exploit

– Assume the target has the same localization of the
nearest neighbor

CANVAS Example

Some CANVAS Exploits

Exploit Vulnerability Method Target
ms01_023 IPP ISAPI Overflow NLS mapping 2000 SP0-SP1
ms01_033 Index Server ISAPI Overflow NLS mapping 2000 SP0-SP1
ms03_001 RPC Locator Overflow NLS mapping NT 4.0 SP6a, 2000 SP0-SP3
ms03_022 Media Services ISAPI Overflow NLS mapping 2000 SP0-SP4

ms03_026 RPC Interface Overflow NLS mapping

ms03_049 WksSvc Overflow 2000 SP0-SP4, XP SP0-SP1a

ms04_011 LsaSs Overflow 2000 SP0-SP4, XP SP0-SP1a
ms04_031 NetDDE RPC Overflow NLS mapping 2000 SP0-SP4, XP SP0-SP1a

ms05_039 UPNP RPC Overflow NLS mapping
ms06_066 Netware Service Overflow NLS mapping 2000 SP0-SP4, XP SP0-SP1a
ms06_070 WksSvc Overflow NLS mapping 2000 SP0-SP4

NT 4.0 SP6a, 2000 SP0-SP4,
XP SP0-SP1a, 2003 SP0

ws2help.dll address
based on localization
ws2help.dll address
based on localization

NT 4.0 SP6a, 2000 SP0-SP4,
XP SP0-SP1a

Heap Overflows

● Usually needs a function pointer overwritten
– UEF should be considered last resort since

depending on SP and language

– PEB lock functions are at a fixed location but might
not be triggered when we want

– To avoid an exception, we might want to find a
writable location

● Might be in .data section of a binary

● Memory leaks will help a lot

MSRPC Pointer Leak

● MIDL [unique] attribute leaks a pointer in the
target process memory space on the wire if
combined with [out]
– http://msdn2.microsoft.com/en-us/library/aa367294.aspx

● Example
– long _RpcEnumPrinters (

 [in] long arg_1,
 [in][unique][string] wchar_t * arg_2,
 [in] long arg_3,
 [in, out][unique][size_is(arg_5)] char * arg_4,
 [in] long arg_5,
 [out] long * arg_6,
 [out] long * arg_7
);

http://msdn2.microsoft.com/en-us/library/aa367294.aspx

Wireshark Capture

MSRPC Pointer Leak (cont.)

● Ideal use:
– Populate target memory with an entry of your own

using a 1st RPC function

– Retrieve the entry using a 2nd RPC function with the
MSRPC Pointer Leak

● You have the pointer to your entry!

● Doesn't happen that often:
– MS05-010: License Logging Service overflow

● Will give a good idea of the base address of the
heap anyway

http://www.microsoft.com/technet/security/bulletin/ms05-010.mspx

HEROES: MS06-070

● Description of Vulnerability
– Pseudo-code
array=(unsigned int *)malloc(n*sizeof(unsigned int *))

//initialization and various operations on array
...
for (i=0;condition==true;i++) {
 free(array[i]);
 //process some more, update condition
 ...
}

– We can influence condition based on the content of
the SNMP request, thus freeing pointers outside of
array

HEROES: MS06-070 (cont.)

● Several issues arise when attempting to exploit
this vulnerability:
– How can we control the pointer that will be freed?

– Given pointer control, what do we actually want to
free?

– Once we get our Write4 primitive, what will we
overwrite?

– How do we leverage our Write4 primitive into full
blown code execution?

HEROES: MS06-070 (cont.)

● Exploitation stages
– Crash

– Find information leak

– Get working on a language dependent way
● Only writable function pointers are in .data section of

snmpapi.dll:
– Image base depends on language
– Offset relative to image base depends on version

– Get working with special OID for global lock
function pointer

● Using the PEB lock routines

Other similar vulnerabilities

● VERDE
– Arbitrary Free in DHCP MSRPC Service on

Windows 2000 SP2/SP3

● DTLOGIN
– Arbitrary Free in XDMCP service of dtlogin on

Solaris (or other commercial Unixes)

Networking Issues

● Attacking an entire class-B you will find many
networking setups
– Port forwarding

– Load balancing

– NAT (perhaps both the attacker and target are
behind different NATs)

– Firewalls with ex-filtration filters

– Poorly configured routers

● Each of these setups forces complications on
your exploit efforts

Defeating network speed-bumps

● Accurate network reconnaissance is hugely
expensive in memory, network traffic, time, and
technology

● Ideally the solution is to re-use the socket we
came in on

● Alternately, we could use a shellcode that did
not require socket connections at all, such as
an HTTP downloader shellcode
– But this does require SOME network connectivity,

and our target may be in a strict DMZ

Socket Stealing on Windows

● Windows socket stealing is difficult

– Common technique is to call getpeername() on all handles
and check to see which ones come from our host and/or
source port

● This fails to handle NAT and other networking setups
properly

● Getpeername will freeze when called on named pipes
and other handles, causing the shellcode to sometimes
fail

– Immunity's 3rd generation Windows socket stealing shellcode
launches one thread per handle and sends a GOOO to the
client

– This handshake ensures proper operation over all network
types

Socket Stealing on Windows (cont)

● Sometimes stealing a socket is not possible
– MSRPC calls typically go through the SMB stack

and no socket is available
● In this case a “bind-to-an-MSRPC function” shellcode is

useful

– Overflows are often in a different process than the
socket, for example, ISAPIs

ISAPI stealing

● Immunity's ISAPI-GO-Code will search the
stack for the currently used ISAPI structure

● This contains a Read and Write function, which
can be used to send and receive data from the
Inetinfo.exe process

● Using this code allows exploits to steal SSL
sockets, even though the process being
exploited is not the Inetinfo process!

The Future

● Windows XP SP2
– Remote language fingerprinting is – I think –

absolutely necessary to work out DEP issues
● Most addresses are language-dependent

– Microsoft Netware Service stack overflow
– Novell Netware Client for Windows PP stack overflow

● Vista
– Even more languages supported!

● OS X/Linux
– Getting more important all the time!

Conclusion

● Attacking large scale global networks can be
done effectively by spending a fairly reasonable
amount of time doing effective fingerprinting

● Questions?

