
More recently, it has been reported that in the devastating
Stacheldraht DDoS attacks, buffer flows played a large part
in the installation of the malicious agents used to facilitate
the attacks:

 “Stacheldraht agents were originally found in binary form
on a number of Solaris 2.x systems, which were identified as
having been compromised by exploitation of buffer overrun
bugs in the RPC services “statd,” “cmsd” and
“ttdbserverd.” They have been witnessed “in the wild” as
late as the writing of this analysis.”

Despite the fact that fixing individual buffer overrun
vulnerabilities is fairly simple, buffer overrun attacks
continue to be a common problem in network security today.
New programs are being developed with more care, but are
often still developed using unsafe languages such as C,
where simple errors can leave serious vulnerabilities. Many
legacy systems are still running today that utilize thousands
of lines of code with privileged daemons that contain
numerous software errors.

Buffer Overrun Attack Methodology
Buffer overrun attacks exploit a lack of bounds-checking on
the size of input being stored in a buffer array. By writing
data past the end of an allocated array, the malicious user can
make arbitrary changes to the program state stored adjacent
to the array. Many C programs have buffer overrun
vulnerabilities, both because the C language lacks array
bounds-checking, and because the culture of C programmers
encourages a performance-oriented style that avoids error-
checking where possible to enhance performance. For
instance, many of the standard C library functions such as
“gets” and strcpy (???) do not perform any bounds-checking
by default.

There are two definitive types of buffer overrun attacks:
1. Stack Buffer Over Flow 2. Heap Buffer Overrun

The threat was first seen widely in 1988 and it is still an
active attack methodology in 2000. A buffer overrun attack
was one of the mechanisms reportedly utilized to deploy the
malicious agents used on the Solaris-based servers in the
recent DDoS attacks. To see just how common buffer
overrun attacks are, all you need to do is search the archives
of CERT, CIAC, BugTraq, RootShell or X Force for the term
“buffer overrun.” The results are disturbing.

The problem of buffer overruns in C programs has been
recognized since the early ‘70s as one possible consequence
of the C language-data integrity model. The C programming
language does not automatically support bounds-checking
internally when initializing, copying or moving data between
or into variables.

One of the first widely publicized buffer overrun attacks
occurred in 1988 as part of the infamous Internet worm
incident:

A vulnerability that was exploited by the famous
Internet worm involved a buffer overrun in “fingered.”
Using the “gets() call” function, fingered would read a
line of information. The buffer allocated for the string
was 512 bytes long, but fingered did not check to see if
the read was greater than 512 bytes before exiting the
subroutine. If the line of information read was greater
than 512 bytes, the data was written over the
subroutine’s stack frame return address location. The
stack could effectively be rewritten by the intruder to
create a new shell and allow the intruder to execute
commands from root.

The Internet worm wrote 536 bytes to the “gets() call”
function. The 24 bytes overrun contained Vax machine
language instructions that, upon return from the main()
call, tried to execute a shell by calling
execve(”/bin/sh”,0,0).

Buffer Overrun Attacks
Paul A. Henry MCP+I, MCSE, CISSP
CyberGuard Corp.

buffer overrun, machine level commands
are placed on the stack and are
subsequently executed by overwriting
the return address on the stack. While in
a heap buffer overrun, dynamically
stored application variables are
overwritten in effort to increase the level
of system privilege.

Defending your network :
A prudent security policy should include
risk mitigation of protocol header buffer
overruns. The static packet filter,
dynamic (stateful) packet filter and
many circuit gateway-based firewalls
simply do not provide a mechanism to
prevent protocol header-based buffer
overrun attacks on your critical servers
behind the firewall. Simply put, with
these protection methodologies the
malicious packet is allowed to pass to
the critical server unchallenged.
Currently only the strong application
proxy provides the level of inspection
necessary to verify all protocol header
lengths are in compliance with RFC
requirements to mitigate this broadly
used attack methodology.

References :

“The stacheldraht distributed denial-of-
service attack tool”
David Dittrich University of Washington

“How To Write Buffer Overflows”
by mudge@l0pht.com 10/20/95
http://www.pmf.ukim.edu.mk/~damjanev/se
c/buffer.txt
http://www.insecure.org/stf/mudge_buffer_o
verrun_tutorial.html

“Smashing The Stack For Fun And Profit”
Phrack 49 Volume Seven, Issue Forty-Nine,
File 14 of 16
By Aleph One
http://www.pmf.ukim.edu.mk/~damjanev/se
c/stack-smash.txt

The injected attack code is usually a
short sequence of instructions that
spawns a shell to give the malicious user
a shell with root privileges. If the
program input comes from a network
connection, it may allow any user
anywhere on the network the ability to
become root on the targeted host.

The Heap Buffer Overrun :
Memory that is dynamically allocated
by an application for variable storage is
called the heap. In the typical heap
buffer overrun attack, variables such as
passwords, file names and a saved uid in
the heap are overwritten by the
malicious user. Heap overrun attacks are
not as common as stack buffer overrun
attacks but they can be effective in
providing unauthorized privileged
access for the intruder.

An early heap buffer overrun
vulnerability was found in BSDI crontab
in 1996. This heap buffer overrun
involved passing a long file name which
overran its buffer in the heap. The
overrunning data wrote over the fields in
the heap which held the user’s user
name, password, uid, gid, etc. When
used maliciously, one could easily
change the privileges associated with the
user / application by changing the
uid/gid to 0.

Principle differences
While there are many similarities to the
methodologies involved in the stack
buffer and heap buffer overruns, there is
one principle differentiator. In the stack

The Stack Buffer Overrun

The most common form of buffer
overrun exploitation is to attack buffers
allocated on the stack. Stack buffer
overrun attacks are designed to achieve
two mutually dependent goals:

1. Insert Malicious Code:

The malicious user provides an input
string that is actually executable
binary code that is native to the
machine being attacked. Typically
this code is simple, and does
something similar to exec(”sh”) to
produce a root shell.

2. Change the Return Address :

There is a stack frame for a currently
active function above the buffer on
the stack that is being attacked. The
stack buffer overrun changes the
return address to point to the attack
code. When the function returns,
instead of jumping back to where it
was called from, it jumps to the attack
code. In many cases the malicious
code is preceded by a block of NOP
instructions which reduces the
accuracy required to guess the exact
return address for the malicious code.
If the return address lands anywhere
within the block of NOP instructions
the malicious code will be executed.

The programs that are attacked using
this technique are almost always
privileged daemons– programs that run
at root to perform some specific service.

Top of Heap

GID

UID

Password

User Name

Program Variable

Bottom of Heap

Original
Heap Space

Program Variable

Program Variable

Program Variable

Program Variable

Top of Heap

GID

UID

Password

User Name
Overflowed

Program Variable

Bottom of Heap

Exploited
Heap Space

Program Variable

Program Variable

Program Variable

Program Variable

Top of Stack

Malicious Code

NOP

NOP

NOP

NOP

Return Address

Local Variables

Buffer

0XFFF

0X000

Address Space

String Growth

Stack Growth

