
Steve Friedl's Unixwiz.net Tech Tips

SQL Injection Attacks by Example

A customer asked that we check out his intranet site, which
was used by the company's employees and customers. This

was part of a larger security review, and though we'd not
actually used SQL injection to penetrate a network before,

we were pretty familiar with the general concepts. We were
completely successful in this engagement, and wanted to

recount the steps taken as an illustration.

"SQL Injection" is subset of the an unverified/unsanitized user input vulnerability ("buffer

overflows" are a different subset), and the idea is to convince the application to run SQL code
that was not intended. If the application is creating SQL strings naively on the fly and then

running them, it's straightforward to create some real surprises.

We'll note that this was a somewhat winding road with more than one wrong turn, and others

with more experience will certainly have different -- and better -- approaches. But the fact that
we were successful does suggest that we were not entirely misguided.

There have been other papers on SQL injection, including some that are much more detailed,

but this one shows the rationale of discovery as much as the process of exploitation.

The Target Intranet

This appeared to be an entirely custom application, and we had no prior knowledge of the

application nor access to the source code: this was a "blind" attack. A bit of poking showed that
this server ran Microsoft's IIS 6 along with ASP.NET, and this suggested that the database was

Microsoft's SQL server: we believe that these techniques can apply to nearly any web
application backed by any SQL server.

The login page had a traditional username-and-password form, but also an email-me-my-
password link; the latter proved to be the downfall of the whole system.

When entering an email address, the system presumably looked in the user database for that

email address, and mailed something to that address. Since my email address is not found, it
wasn't going to send me anything.

So the first test in any SQL-ish form is to enter a single quote as part of the data: the intention
is to see if they construct an SQL string literally without sanitizing. When submitting the form

with a quote in the email address, we get a 500 error (server failure), and this suggests that
the "broken" input is actually being parsed literally. Bingo.

We speculate that the underlying SQL code looks something like this:

Here, $EMAIL is the address submitted on the form by the user, and the larger query

SELECT fieldlist
 FROM table
 WHERE field = ' $EMAIL$EMAIL$EMAIL$EMAIL ';

provides the quotation marks that set it off as a literal string. We don't know the specific
names of the fields or table involved, but we do know their nature, and we'll make some good

guesses later.

When we enter steve@unixwiz.net' - note the closing quote mark - this yields constructed

SQL:

when this is executed, the SQL parser find the extra quote mark and aborts with a syntax
error. How this manifests itself to the user depends on the application's internal error-recovery

procedures, but it's usually different from "email address is unknown". This error response is a
dead giveaway that user input is not being sanitized properly and that the application is ripe for

exploitation.

Since the data we're filling in appears to be in the WHERE clause, let's change the nature of

that clause in an SQL legal way and see what happens. By entering anything' OR 'x'='x , the
resulting SQL is:

Because the application is not really thinking about the query - merely constructing a string -
our use of quotes has turned a single-component WHERE clause into a two-component one,

and the 'x'='x' clause is guaranteed to be true no matter what the first clause is (there is a
better approach for this "always true" part that we'll touch on later).

But unlike the "real" query, which should return only a single item each time, this version will
essentially return every item in the members database. The only way to find out what the

application will do in this circumstance is to try it. Doing so, we were greeted with:

Your login information has been mailed to random.person@example.com.

Our best guess is that it's the first record returned by the query, effectively an entry taken at

random. This person really did get this forgotten-password link via email, which will probably
come as surprise to him and may raise warning flags somewhere.

We now know that we're able to manipulate the query to our own ends, though we still don't
know much about the parts of it we cannot see. But we have observed three different

responses to our various inputs:

� "Your login information has been mailed to email"

� "We don't recognize your email address"

� Server error

The first two are responses to well-formed SQL, while the latter is for bad SQL: this distinction

SELECT fieldlist
 FROM table
 WHERE field = ' steve@unixwiz.net'steve@unixwiz.net'steve@unixwiz.net'steve@unixwiz.net' ';

SELECT fieldlist
 FROM table
 WHERE field = ' anything' OR 'x'='xanything' OR 'x'='xanything' OR 'x'='xanything' OR 'x'='x ';

will be very useful when trying to guess the structure of the query.

Schema field mapping

The first steps are to guess some field names: we're reasonably sure that the query includes
"email address" and "password", and there may be things like "US Mail address" or "userid" or

"phone number". We'd dearly love to perform a SHOW TABLE, but in addition to not knowing
the name of the table, there is no obvious vehicle to get the output of this command routed to

us.

So we'll do it in steps. In each case, we'll show the whole query as we know it, with our own

snippets shown specially. We know that the tail end of the query is a comparison with the
email address, so let's guess email as the name of the field:

The intent is to use a proposed field name (email) in the constructed query and find out if the

SQL is valid or not. We don't care about matching the email address (which is why we use a

dummy 'x'), and the -- marks the start of an SQL comment. This is an effective way to
"consume" the final quote provided by application and not worry about matching them.

If we get a server error, it means our SQL is malformed and a syntax error was thrown: it's

most likely due to a bad field name. If we get any kind of valid response, we guessed the name

correctly. This is the case whether we get the "email unknown" or "password was sent"
response.

Note, however, that we use the AND conjunction instead of OR: this is intentional. In the SQL

schema mapping phase, we're not really concerned with guessing any particular email
addresses, and we do not want random users inundated with "here is your password" emails

from the application - this will surely raise suspicions to no good purpose. By using the AND

conjunction with an email address that couldn't ever be valid, we're sure that the query will
always return zero rows.

Submitting the above snippet indeed gave us the "email address unknown" response, so now

we know that the email address is stored in a field email. If this hadn't worked, we'd have
tried email_address or mail or the like. This process will involve quite a lot of guessing.

Next we'll guess some other obvious names: password, user ID, name, and the like. These are
all done one at a time, and anything other than "server failure" means we guessed the name

correctly.

As a result of this process, we found several valid field names:

� email

� passwd

SELECT fieldlist
 FROM table
 WHERE field = ' x' AND email IS NULL; x' AND email IS NULL; x' AND email IS NULL; x' AND email IS NULL; -------- ';

SELECT fieldlist
 FROM table
 WHERE emailemailemailemail = ' x' AND userid IS NULL; x' AND userid IS NULL; x' AND userid IS NULL; x' AND userid IS NULL; -------- ';

� login_id

� full_name

There are certainly more (and a good source of clues is the names of the fields on forms), but

a bit of digging did not discover any. But we still don't know the name of the table that these
fields are found in - how to find out?

Finding the table name

The application's built-in query already has the table name built into it, but we don't know what

that name is: there are several approaches for finding that (and other) table names. The one
we took was to rely on a subselect.

A standalone query of

Returns the number of records in that table, and of course fails if the table name is unknown.
We can build this into our string to probe for the table name:

We don't care how many records are there, of course, only whether the table name is valid or

not. By iterating over several guesses, we eventually determined that members was a valid
table in the database. But is it the table used in this query? For that we need yet another test

using table.field notation: it only works for tables that are actually part of this query, not

merely that the table exists.

When this returned "Email unknown", it confirmed that our SQL was well formed and that we
had properly guessed the table name. This will be important later, but we instead took a

different approach in the interim.

Finding some users

At this point we have a partial idea of the structure of the members table, but we only know
of one username: the random member who got our initial "Here is your password" email. Recall

that we never received the message itself, only the address it was sent to. We'd like to get
some more names to work with, preferably those likely to have access to more data.

The first place to start, of course, is the company's website to find who is who: the "About us"
or "Contact" pages often list who's running the place. Many of these contain email addresses,

but even those that don't list them can give us some clues which allow us to find them with our
tool.

SELECT COUNT(*) FROM tabname

SELECT email, passwd, login_id, full_name
 FROM table
 WHERE emailemailemailemail = ' x' AND 1=(SELECT COUNT(*) FROM x' AND 1=(SELECT COUNT(*) FROM x' AND 1=(SELECT COUNT(*) FROM x' AND 1=(SELECT COUNT(*) FROM tabnametabnametabnametabname);););); -------- ';

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' x' AND members.email IS NULL; x' AND members.email IS NULL; x' AND members.email IS NULL; x' AND members.email IS NULL; -------- ';

The idea is to submit a query that uses the LIKE clause, allowing us to do partial matches of
names or email addresses in the database, each time triggering the "We sent your password"

message and email. Warning: though this reveals an email address each time we run it, it
also actually sends that email, which may raise suspicions. This suggests that we take it easy.

We can do the query on email name or full name (or presumably other information), each time
putting in the % wildcards that LIKE supports:

Keep in mind that even though there may be more than one "Bob", we only get to see one of

them: this suggests refining our LIKE clause narrowly.

Ultimately, we may only need one valid email address to leverage our way in.

Brute-force password guessing

One can certainly attempt brute-force guessing of passwords at the main login page, but many

systems make an effort to detect or even prevent this. There could be logfiles, account
lockouts, or other devices that would substantially impede our efforts, but because of the non-

sanitized inputs, we have another avenue that is much less likely to be so protected.

We'll instead do actual password testing in our snippet by including the email name and

password directly. In our example, we'll use our victim, bob@example.com and try multiple
passwords.

This is clearly well-formed SQL, so we don't expect to see any server errors, and we'll know we

found the password when we receive the "your password has been mailed to you" message.

Our mark has now been tipped off, but we do have his password.

This procedure can be automated with scripting in perl, and though we were in the process of
creating this script, we ended up going down another road before actually trying it.

The database isn't readonly

So far, we have done nothing but query the database, and even though a SELECT is readonly,

that doesn't mean that SQL is. SQL uses the semicolon for statement termination, and if the
input is not sanitized properly, there may be nothing that prevents us from stringing our own

unrelated command at the end of the query.

The most drastic example is:

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' x' OR full_name LIKE '%Bob%x' OR full_name LIKE '%Bob%x' OR full_name LIKE '%Bob%x' OR full_name LIKE '%Bob% ';

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' bob@example.com' AND passwd = 'hello123bob@example.com' AND passwd = 'hello123bob@example.com' AND passwd = 'hello123bob@example.com' AND passwd = 'hello123 ';

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' x'; DROP TABLE members; x'; DROP TABLE members; x'; DROP TABLE members; x'; DROP TABLE members; -------- '; -- Boom!

The first part provides a dummy email address -- 'x' -- and we don't care what this query
returns: we're just getting it out of the way so we can introduce an unrelated SQL command.

This one attempts to drop (delete) the entire members table, which really doesn't seem too
sporting.

This shows that not only can we run separate SQL commands, but we can also modify the
database. This is promising.

Adding a new member

Given that we know the partial structure of the members table, it seems like a plausible

approach to attempt adding a new record to that table: if this works, we'll simply be able to
login directly with our newly-inserted credentials.

This, not surprisingly, takes a bit more SQL, and we've wrapped it over several lines for ease of
presentation, but our part is still one contiguous string:

Even if we have actually gotten our field and table names right, several things could get in our

way of a successful attack:

1. We might not have enough room in the web form to enter this much text directly (though

this can be worked around via scripting, it's much less convenient).

2. The web application user might not have INSERT permission on the members table.

3. There are undoubtedly other fields in the members table, and some may require initial

values, causing the INSERT to fail.

4. Even if we manage to insert a new record, the application itself might not behave well due

to the auto-inserted NULL fields that we didn't provide values for.

5. A valid "member" might require not only a record in the members table, but associated

information in other tables (say, "accessrights"), so adding to one table alone might not
be sufficient.

In the case at hand, we hit a roadblock on either #4 or #5 - we can't really be sure -- because

when going to the main login page and entering in the above username + password, a server
error was returned. This suggests that fields we did not populate were vital, but nevertheless

not handled properly.

A possible approach here is attempting to guess the other fields, but this promises to be a long

and laborious process: though we may be able to guess other "obvious" fields, it's very hard to
imagine the bigger-picture organization of this application.

We ended up going down a different road.

Mail me a password

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' x';x';x';x';
 INSERT INTO members ('email','passwd','login_id','full_name') INSERT INTO members ('email','passwd','login_id','full_name') INSERT INTO members ('email','passwd','login_id','full_name') INSERT INTO members ('email','passwd','login_id','full_name')
 VALUES ('steve@unixwiz.net','hello','steve','Steve Friedl');VALUES ('steve@unixwiz.net','hello','steve','Steve Friedl');VALUES ('steve@unixwiz.net','hello','steve','Steve Friedl');VALUES ('steve@unixwiz.net','hello','steve','Steve Friedl');-------- ';

We then realized that though we are not able to add a new record to the members database,
we can modify an existing one, and this proved to be the approach that gained us entry.

From a previous step, we knew that bob@example.com had an account on the system, and
we used our SQL injection to update his database record with our email address:

After running this, we of course received the "we didn't know your email address", but this was

expected due to the dummy email address provided. The UPDATE wouldn't have registered
with the application, so it executed quietly.

We then used the regular "I lost my password" link - with the updated email address - and a
minute later received this email:

Now it was now just a matter of following the standard login process to access the system as a

high-ranked MIS staffer, and this was far superior to a perhaps-limited user that we might
have created with our INSERT approach.

We found the intranet site to be quite comprehensive, and it included - among other things - a

list of all the users. It's a fair bet that many Intranet sites also have accounts on the corporate

Windows network, and perhaps some of them have used the same password in both places.
Since it's clear that we have an easy way to retrieve any Intranet password, and since we had

located an open PPTP VPN port on the corporate firewall, it should be straightforward to
attempt this kind of access.

We had done a spot check on a few accounts without success, and we can't really know

whether it's "bad password" or "the Intranet account name differs from the Windows account

name". But we think that automated tools could make some of this easier.

Other Approaches

In this particular engagement, we obtained enough access that we did not feel the need to do
much more, but other steps could have been taken. We'll touch on the ones that we can think

of now, though we are quite certain that this is not comprehensive.

We are also aware that not all approaches work with all databases, and we can touch on some
of them here.

 Use xp_cmdshell

SELECT email, passwd, login_id, full_name
 FROM members
 WHERE email = ' x';x';x';x';
 UPDATE membersUPDATE membersUPDATE membersUPDATE members
 SET email = 'steve@unixwiz.net'SET email = 'steve@unixwiz.net'SET email = 'steve@unixwiz.net'SET email = 'steve@unixwiz.net'
 WHERE email = 'bob@example.comWHERE email = 'bob@example.comWHERE email = 'bob@example.comWHERE email = 'bob@example.com ';

From: system@example.com
To: steve@unixwiz.net
Subject: Intranet login

This email is in response to your request for your Intranet log in information.
Your User ID is: bob
Your password is: hello

Microsoft's SQL Server supports a stored procedure xp_cmdshell that permits what
amounts to arbitrary command execution, and if this is permitted to the web user,

complete compromise of the webserver is inevitable.
What we had done so far was limited to the web application and the underlying database,

but if we can run commands, the webserver itself cannot help but be compromised.
Access to xp_cmdshell is usually limited to administrative accounts, but it's possible to

grant it to lesser users.

 Map out more database structure

Though this particular application provided such a rich post-login environment that it

didn't really seem necessary to dig further, in other more limited environments this may
not have been sufficient.

Being able to systematically map out the available schema, including tables and their field

structure, can't help but provide more avenues for compromise of the application.
One could probably gather more hints about the structure from other aspects of the

website (e.g., is there a "leave a comment" page? Are there "support forums"?). Clearly,
this is highly dependent on the application and it relies very much on making good

guesses.

Mitigations

We believe that web application developers often simply do not think about "surprise inputs",
but security people do (including the bad guys), so there are three broad approaches that can

be applied here.

 Sanitize the input

It's absolutely vital to sanitize user inputs to insure that they do not contain dangerous

codes, whether to the SQL server or to HTML itself. One's first idea is to strip out "bad
stuff", such as quotes or semicolons or escapes, but this is a misguided attempt. Though

it's easy to point out some dangerous characters, it's harder to point to all of them.
The language of the web is full of special characters and strange markup (including

alternate ways of representing the same characters), and efforts to authoritatively identify
all "bad stuff" are unlikely to be successful.

Instead, rather than "remove known bad data", it's better to "remove everything but
known good data": this distinction is crucial. Since - in our example - an email address

can contain only these characters:

There is really no benefit in allowing characters that could not be valid, and rejecting them

early - presumably with an error message - not only helps forestall SQL Injection, but also
catches mere typos early rather than stores them into the database.

Sidebar on email addresses

It's important to note here that email addresses in particular are troublesome to
validate programmatically, because everybody seems to have his own idea

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
@.-_+

about what makes one "valid", and it's a shame to exclude a good email address
because it contains a character you didn't think about.

The only real authority is RFC2822 (which encompasses the more familiar
RFC822), and it includes a fairly expansive definition of what's allowed. The truly

pedantic may well wish to accept email addresses with ampersands and
asterisks (among other things) as valid, but others - including this author - are

satisfied with a reasonable subset that includes "most" email addresses.

Those taking a more restrictive approach ought to be fully aware of the

consequences of excluding these addresses, especially considering that better
techniques (prepare/execute, stored procedures) obviate the security concerns

which those "odd" characters present.

Be aware that "sanitizing the input" doesn't mean merely "remove the quotes", because
even "regular" characters can be troublesome. In an example where an integer ID value is

being compared against the user input (say, a numeric PIN):

In practice, however, this approach is highly limited because there are so few fields for

which it's possible to outright exclude many of the dangerous characters. For "dates" or
"email addresses" or "integers" it may have merit, but for any kind of real application, one

simply cannot avoid the other mitigations.

 Escape/Quotesafe the input

Even if one might be able to sanitize a phone number or email address, one cannot take

this approach with a "name" field lest one wishes to exclude the likes of Bill O'Reilly from
one's application: a quote is simply a valid character for this field.

One includes an actual single quote in an SQL string by putting two of them together, so
this suggests the obvious - but wrong! - technique of preprocessing every string to

replicate the single quotes:

However, this naïve approach can be beaten because most databases support other string
escape mechanisms. MySQL, for instance, also permits \' to escape a quote, so after

input of \'; DROP TABLE users; -- is "protected" by doubling the quotes, we get:

The expression '\'' is a complete string (containing just one single quote), and the usual

SQL shenanigans follow. It doesn't stop with backslashes either: there is Unicode, other
encodings, and parsing oddities all hiding in the weeds to trip up the application designer.

SELECT fieldlist
 FROM table
 WHERE id = 23 OR 1=123 OR 1=123 OR 1=123 OR 1=1 ; -- Boom! Always matches!

SELECT fieldlist
 FROM customers
 WHERE name = ' Bill O''ReillyBill O''ReillyBill O''ReillyBill O''Reilly '; -- works OK

SELECT fieldlist
 FROM customers
 WHERE name = ' \''; DROP TABLE users; \''; DROP TABLE users; \''; DROP TABLE users; \''; DROP TABLE users; -------- '; -- Boom!

Getting quotes right is notoriously difficult, which is why many database interface
languages provide a function that does it for you. When the same internal code is used for

"string quoting" and "string parsing", it's much more likely that the process will be done
properly and safely.

Some examples are the MySQL function mysql_real_escape_string() and perl DBD
method $dbh->quote($value).

These methods must be used.

 Use bound parameters (the PREPARE statement)

Though quotesafing is a good mechanism, we're still in the area of "considering user input

as SQL", and a much better approach exists: bound parameters, which are supported by
essentially all database programming interfaces. In this technique, an SQL statement

string is created with placeholders - a question mark for each parameter - and it's

compiled ("prepared", in SQL parlance) into an internal form.
Later, this prepared query is "executed" with a list of parameters:

Example in perl

Thanks to Stefan Wagner, this demonstrates bound parameters in Java:

Insecure version

Secure version

Here, $email is the data obtained from the user's form, and it is passed as positional

parameter #1 (the first question mark), and at no point do the contents of this variable
have anything to do with SQL statement parsing. Quotes, semicolons, backslashes, SQL

comment notation - none of this has any impact, because it's "just data". There simply is
nothing to subvert, so the application is be largely immune to SQL injection attacks.

There also may be some performance benefits if this prepared query is reused multiple

times (it only has to be parsed once), but this is minor compared to the enormous
security benefits. This is probably the single most important step one can take to secure a

web application.

 Limit database permissions and segregate users

In the case at hand, we observed just two interactions that are made not in the context of
a logged-in user: "log in" and "send me password". The web application ought to use a

database connection with the most limited rights possible: query-only access to the

members table, and no access to any other table.
The effect here is that even a "successful" SQL injection attack is going to have much

more limited success. Here, we'd not have been able to do the UPDATE request that

$sth = $dbh->prepare("SELECT email, userid FROM members WHERE email = ???? ;");

$sth->execute($email$email$email$email);

Statement s = connection.createStatement();
ResultSet rs = s.executeQuery("SELECT email FROM member WHERE name = "
 + formFieldformFieldformFieldformField); // *boom*

PreparedStatement ps = connection.prepareStatement(
 "SELECT email FROM member WHERE name = ???? ");
ps.setString(1, formFieldformFieldformFieldformField);
ResultSet rs = ps.executeQuery();

ultimately granted us access, so we'd have had to resort to other avenues.
Once the web application determined that a set of valid credentials had been passed via

the login form, it would then switch that session to a database connection with more
rights.

It should go almost without saying that sa rights should never be used for any web-based
application.

 Use stored procedures for database access

When the database server supports them, use stored procedures for performing access on
the application's behalf, which can eliminate SQL entirely (assuming the stored procedures

themselves are written properly).
By encapsulating the rules for a certain action - query, update, delete, etc. - into a single

procedure, it can be tested and documented on a standalone basis and business rules

enforced (for instance, the "add new order" procedure might reject that order if the
customer were over his credit limit).

For simple queries this might be only a minor benefit, but as the operations become more
complicated (or are used in more than one place), having a single definition for the

operation means it's going to be more robust and easier to maintain.
Note: it's always possible to write a stored procedure that itself constructs a query

dynamically: this provides no protection against SQL Injection - it's only proper binding
with prepare/execute or direct SQL statements with bound variables that provide this

protection.

 Isolate the webserver

Even having taken all these mitigation steps, it's nevertheless still possible to miss

something and leave the server open to compromise. One ought to design the network
infrastructure to assume that the bad guy will have full administrator access to the

machine, and then attempt to limit how that can be leveraged to compromise other
things.

For instance, putting the machine in a DMZ with extremely limited pinholes "inside" the
network means that even getting complete control of the webserver doesn't automatically

grant full access to everything else. This won't stop everything, of course, but it makes it

a lot harder.

 Configure error reporting

The default error reporting for some frameworks includes developer debugging
information, and this cannot be shown to outside users. Imagine how much easier a time

it makes for an attacker if the full query is shown, pointing to the syntax error involved.
This information is useful to developers, but it should be restricted - if possible - to just

internal users.

Note that not all databases are configured the same way, and not all even support the same

dialect of SQL (the "S" stands for "Structured", not "Standard"). For instance, most versions of
MySQL do not support subselects, nor do they usually allow multiple statements: these are

substantially complicating factors when attempting to penetrate a network.

We'd like to emphasize that though we chose the "Forgotten password" link to attack in this

particular case, it wasn't really because this particular web application feature is dangerous. It
was simply one of several available features that might have been vulnerable, and it would be

a mistake to focus on the "Forgotten password" aspsect of the presentation.

This Tech Tip has not been intended to provide comprehensive coverage on SQL injection, or

even a tutorial: it merely documents the process that evolved over several hours during a
contracted engagement. We've seen other papers on SQL injection discuss the technical

background, but still only provide the "money shot" that ultimately gained them access.

But that final statement required background knowledge to pull off, and the process of

gathering that information has merit too. One doesn't always have access to source code for
an application, and the ability to attack a custom application blindly has some value.

Thanks to David Litchfield and Randal Schwartz for their technical input to this paper, and to

the great Chris Mospaw for graphic design (© 2005 by Chris Mospaw, used with permission).

Other resources

� (more) Advanced SQL Injection, Chris Anley, Next Generation Security Software.

� SQL Injection walkthrough, SecuriTeam

Last modified: Thu Jan 13 14:36:43 PST 2005

Nav: More Tech Tips

[Home] Stephen J. Friedl Software Consultant Tustin, California USA

