
Creating Secure VM
Comparison between Intel and AMD, and one more thing…

Tsukasa Ooi <li@livegrid.org>
Livegrid Incorporated, Lead Analyst

mailto:li@livegrid.org

Related Topics

• Virtualization

• Behavior based Detection

• Reverse Engineering

What is “Secure VM”?

• Virtual Machine having…

– Invisible Breakpoint

– Direct Memory Lookup/Modification

– System I/O Interception

– Instruction/Memory Tracing

• They are useful for security!

– Direct Memory Lookup to detect rootkits

– Hooking disk I/Os to find malwares

How to “secure” Virtual Machines

• There are two major ways
(if CPU-assisted virtualization is used)

• Using Debug Registers (DR0~DR7)
– DR7.GD bit : Makes guest DRx registers inaccessible

– VM exit when DR access : Can hook DRx read/write

• Using Page Table Modification
– PTE.R/W bit : Can hook page write

– PTE.P bit : Can hook page access (read/write/exec)

– PTE.NX bit : Can hook page execution

How to set Breakpoint (Debug Registers)

• Set VM exit when:

– DRx access

– #DB (Debug) exception

• Set guest DR7.GD bit

• Set guest breakpoint using guest DRx

– Useful point : Kernel Functions, System Calls…

• If breakpoint is hit…

– Do extra validation

How to set Breakpoint (Page Table)

• Set VM exit when:

– #PF (Page Fault) exception

• Reset PTE.P bit or PTE.NX bit of page

– Do not change guest page table, but shadow.

• If Page Fault is occurred

– Check if breakpoint is hit (can be false-positive)

– If breakpoint is hit, do extra validation

Comparison (Debug Registers / Page Table)

• Using Debug Registers is simple
– Easy to implement

• Using Page Table can handle 5 or more breakpoint
– Breakpoints of Debug Registers are limited to 4

– If guest OS also use Debug Registers,
need to emulate using Page Table Modification

• Using Debug Registers is faster
– No false-positive, low overhead

• Using Page Table is flexible
– Can intercept “nearly everything”

Considerations of CPU-assisted virt.

• Cannot intercept important instructions

– Such as sysenter, sysexit

• Limited interception
compared than Binary Translation

Comparison between AMD-V/Intel VT-x

• Only AMD-V can intercept IRET instruction

– Guest OS can workaround host-set breakpoint
by set EFLAGS.RF bit (Resume Flag: Suppress
breakpoints for single instruction) and execute
IRETD instruction

• AMD-V is better if you use Debug Registers

– No difference if you use Page Table Modification

– Enough for hooking system calls (not mostly
called through IRET instruction)

Second Level Address Translation (SLAT)

• Newer features for virtualization

• Two page tables to translate addresses

– Guest Logical Addr → Guest Physical Addr

– Guest Physical Addr → Host Physical Addr

• Intel and AMD both have SLAT extension

– Intel : Extended Page Tables (EPT)

– AMD : Nested Paging / Rapid virtualization index (RVI)

• But they got a problem…

SLAT considerations

• Limited ways for interception

– REAL (guest) Page Tables are visible

– Managing two page tables are bad for security-use

– In some situation, SLAT cannot be enabled

• Debug Registers can be still used

What about difference?

• Intel EPT can make page “execute-only”

– If Supported by CPU
• Currently, all CPUs supporting Intel EPT also

supports Execute-Only page

– Stealthy is not enough, but can make invisible chunk

– Please consider that guest software also can execute
invisible chunk with jump instructions.

• Mostly same but Intel EPT is better

THANK YOU?

FULL VIRTUALIZATION OF
X86 ARCHITECTURE ON X86_64

One More Thing:

x86 emulation on x86_64 architecture

• Using Binary Translation…

• They are possible and (nearly) practical!

Why “x86 on x86_64”?

• Architecture is very similar
– No need to execute normal instruction by 3

instructions (just 1 or 2)

• Have extra memory
– x86 emulation on x86_64 requires 44GB of virtual

memory range, but it is easy to allocate in 64-bit mode.

• Have extra registers!
– R8~R15 registers can be used for extra emulation

context including trace log pointer…

How to “emulate” x86? (1)
PUSH EBP

MOV EBP, ESP

MOV EAX, [EBP+8]

MOV EDX, [EBP+12]

MOV EAX, [EAX*4+EDX]

POP EBP

RET

How to “emulate” x86? (1)
PUSH EBP

MOV EBP, ESP

MOV EAX, [EBP+8]

MOV EDX, [EBP+12]

MOV EAX, [EAX*4+EDX]

POP EBP

RET

MOV [RCX+RBP-4], EBX

LEA EBP, [EBP-4]

MOV EBX, EBP

MOV EAX, [RCX+RBX+8]

MOV EDX, [RCX+RBX+12]

LEA R14D, [EAX*4+EDX]

MOV EAX, [RCX+R14]

MOV EBX, [RCX+RBP]

LEA EBP, [EBP+4]

(Return Intrinsics)

How to “emulate” x86? (2)

• Register Remapping

– ESP → EBP/RBP (Stack in x86_64 is 8-bytes)

– EBP → EBX/RBX (To reduce cost of stack reference)

• RCX : Base address of 32-bit virtual memory

– All virtual memory range!

• R14/R14D : Temporary Register

• R15 : Widely Used by Emulation System

Using Binary Translation…

• Full instruction/memory tracing of x86!

– Including execution path, memory read/write…

• Very high overhead but it is worth doing.

What For?

• Detecting some kind of interferences
– Exploits

– Hooks

– (Table/Memory) Modification

• Reverse Engineering
– Can Trace Everything!

• Anti-reverse engineering techniques can be detected

– Protocol Reversing (File, Network…)

– Algorithm reversing and finding
• Finding algorithms are useful for anti-DRM.

How to “emulate” x86 with tracing? (1)
PUSH EBP

MOV EBP, ESP
MOV EAX, [EBP+8]

MOV EDX, [EBP+12]

MOV EAX, [EAX*4+EDX]

POP EBP

RET

MOV [RCX+RBP-4], EBX
LEA EBP, [EBP-4]
MOV EBX, EBP
MOV EAX, [RCX+RBX+8]
MOV [R13], EAX
LEA R13, [R13+4]
MOV EDX, [RCX+RBX+12]
MOV [R13], EDX
LEA R13, [R13+4]
LEA R14D, [EAX*4+EDX]
MOV EAX, [RCX+R14]
MOV [R13], EAX
LEA R13, [R13+4]
MOV EBX, [RCX+RBP]
MOV [R13], EBX
LEA R13, [R13+4]
LEA EBP, [EBP+4]
(Return Intrinsics)

How to “emulate” x86 with tracing? (2)

• R13 : Trace Log Pointer

– Result of Memory Read

– Address of Branch

• 1~5 instructions for emulating normal instructions

– If translation program is “optimized”,
required number of instructions can be reduced.

Is it practical?

• Nearly.
– Current Performance Index w/o Disk-write stalls:

Pentium 4 1.5GHz
≧ Core i7 3.0GHz in emulation
＞ Pentium III 1.0GHz

• Not enough for full-system emulation but
enough for user-mode-emulation!

• Faster than any tracing methods before
(Like debuggers such as OllyDbg, IDA Pro…)

Limitations / Considerations

• x86 segmentation and addressing

– x86_64 is constrained “flat memory model”

– High overhead to emulate segment limit

• VERY FAST Disks are required

– Fortunately, writing trace log is almost
“sequential-write” so RAID using HDD is useful

• Consumes much of resources

– Requires much of memory

When will be available?

• Currently, only experimental programs
are working…

– Not “practical” programs…

• I hope… Q2, 2010

THANK YOU.

Have any questions?

