A DATABASE ENCRYPTIONSOLUTION THAT ISPROTECTING
AGAINST EXTERNAL AND INTERNAL THREATS, AND MEETING

Keywords:

Abstract:

REGULATORY REQUIREMENTS

A practical implementation of field level privacy

Isolation, Intrusion Tolerance, Database Security, Encryption, Privacy, VISA CISP, GLBA, HIPAA.

Security is becoming one of the most urgent challenges in database research and industry, and there has aso
been increasing interest in the problem of building accurate data mining models over aggregate data, while
protecting privacy at the level of individua records. Insteed of building wals around servers or hard drives,
a protective layer of encryption is provided around specific sensitive dataitems or objects. This prevents
outsde atacks as well as infiltration from within the server itself. This aso alows the security administrator
to define which data stored in databases are sensitive and thereby focusing the protection only on the
sengitive data, which in turn minimizes the delays or burdenson the system that may occur from other bulk
encryption methods. Encryption can provide strong security for data at rest, but developing a database
encryption strategy must teke many factors into consideration. This paper presents a practica
implementation of field level encryption in enterprise database systems, based on research and practical
experience from many years of commercial use of cryptography in database security. We presents how this
columnlevel database encryption is the only solution that is capable of protecting against external and
interna threats, and at the same time meeting al regulatory requirements. We use the key concepts of
security dictionary, type transparent cryptography and propose solutions on how to transparently store and
search encrypted database fields. In this paper we will outline the different strategies for encrypting stored
data s0 you can make the decision that is best to use in each different Stuation, for each individud field in
your database to be able to pradically handle different security and operating requirements. Application
code and database schemas are sensitive to changes in the data type and data length. The papers presents a
policy driven solution that alows transparent data level encryption that aes not change the data field type
or length. We focus on how to integrate modern cryptography technology into a relational database
management system to solve some major security problems.

1 INTRODUCTION

Critical busness data in databases is an obvious
target for attackers. Although access control has
been deployed as a security mechanism amost since
the birth of large database systems, for a long time
security of a DB was conddered an additiond
problem to be addressed when the need arose, and
after threats to the secrecy and integrity of data had
occurred [3]. Now many mgor database companies
are adopting the loose coupling approach and adding
optional security support to their products. You can
use the encryption features of your Database
Management System (DBMS), or peform
encryption and decryption outside the database.
Each of thee approaches hes its advantages and
dissdvantages The approach of adding security

support as an optiond feature is not very
satisfactory, since it would aways pendize the
system performance, and more importantly, it is
likely to open new security holes. Database security
is a wide research aea [6, 3] and indudes topics
such as datidicd database security [1], intrusion
detection [14], and most recently privacy presarving
data mining [2], ad reaed papers in designing
information systems that protect the privacy and
ownership of individud informaion while not
impeding the flow of information, include [2, 3, 4,
5].

2 CHOOSING THE POINT OF
ENCRYPTION

Implementing a data privacy solution can be
done a multiple places within the enterprise. There
ae implementation decisons to be made as wadl.
Where will you perform the data encryption —
indde or outsde of the detabase? Your answer can
affect the datds security. How do you create a
system that minimizes the number of people who
have access to the keys? Storing the encryption keys
separately from the data they encrypt renders
information usdess if an atacker found a way into
the database through a backdoor in an application. In
addition, separating the ability of administers to
access or manage encryption keys builds higher
layers of trus and control over your confidentia
information infrestructure. There should be limited
access to the means to decrypt sensitive information
— and this access should be locked down and
monitored with suspicious activity logged. Choosing
the point of implementation not only dictates the
work that needs to be done from an integration
perspective but dso significantly affects the overdl
security model. The sooner the encryption of data
occurs, the more secure the environment—however,
due to digributed business logic in application and
database environments, it is not aways practica to
encrypt data as soon as it enters the network.
Encryption performed by the DBMS can protect data
a rest, but you must decide if you dso reqguire
protection for data while it's moving between the
goplications and the database. How about while
being processed in the gpplication itsdf, particularly
if the gpplication may cache the data for some
period? Sending sendtive information over the
Internet or within your corporate network clear text,
defeats the point of encrypting the text in the
datdbase to provide data privecy. Good security
practice § to protect sendtive data in both cases —as
it is transferred over the network (including interna
networks) and a ret. Once the secure
communication points are terminated, typicaly at
the network perimeter, secure transports are seldom
used within the enteprise. Consequently,
information that has been transmitted is in the clear
and criticdl data is left unprotected. One option to
solve this problem and ddiver a secure daa privacy
solution is to sdectively parse data after the secure
communication is terminated and encrypt sendtive
data dements a the SSL/Web layer. Doing so
dlows enterprises to choose a a very granular leve
(usernames, passwords, etc) sendtive data and
secure it throughout the enterprise. Application-leve
encryption dlows enterprises to sdectively encrypt
granular data within application logic. This solution

dso provides a strong security framework and, if
designed correctly, will leverage dandard
goplication cryptographic APIs such as JCE (Java
based applications), MSCAPI (Microsoft -based
gpplications), and other interfaces. Because this
solution interfaces with the gpplication, it provides a
flexible framework that dlows an enterprise to
decide where in the busness logic the
encryption/decryption should occur. Some of these
goplications include CRM, ERP, and Internet-based
aoplications. This type of solution is well suited for
data dements (eg. credit cads, emal addresses,
citicad hedth records, etc) that ae processed,
authorized, and manipulated at the application tier. If
deployed correctly, gpplicationlevel encryption
protects data againgt storage attacks, theft of storage
media, and applicationlevel compromises, and
database dtacks, for example from mdicious DBAs.
Although it is secure, agpplication encryption aso
poses some chalenges. If data is encrypted a the
goplication, then al gpplications tha access the
encrypted data must be changed to support the
encryption/decryption modd. Clearly, during the
planning phase, an enterprise must determine which
goplications will need to access the data that is being
encrypted. Additiondly, if an enterprise leverages
busness logic in the database in the form of sored
procedures and triggers, then the encrypted data can
bresk a stored procedure. As a result application
levd encryption may need to be deployed in
conjunction with database encryption so that the
DBMS can decrypt the data to run a specific
function. Findly, while leveraging cryptographic
APls is useful, the implementation does require
goplication code changes as wel as some database
migration tasks to address fiedld width and type
changes as a result of encryption, if not type
presarving encryption is used. And while
homegrown applications can be retrofitted, off the
shelf gpplications do not ship with the source and
often do not provide a mechanism to explicitly make
acryptographic function cal in thelogic.

2.1 Database-layer Encryption

Databaselevel encryption dlows enterprises to
secure data as it is written to and read from a
database This type of deployment is typicaly done
a the column levd within a database table and, if
coupled with database security and access controls,
can prevent theft of criticd data Databaseleve
encryption protects the data within the DBMS and
aso protects agangt a wide range of threats
including storage media theft, wel known storage
attacks, databaselevel attacks, and mdicious DBAs.
Database-levd encryption diminates al gpplication

changes required in the goplicatioHevel modd, and
dso addresses a growing trend towards embedding
business logic within a DBMS through the use of
dored procedures and triggers. Since the
encryption/decryption only occurs within the
database, this solution does not require an enterprise
to understand or discover the access characteristics
of applications to the data that is encrypted. While
this type of solution can certainly secure data, it does
require some integration work a the database leve,

incduding modificetions of exiging database
schemas and the use of trigges and dored
procedures to undertake encrypt and decrypt

functions. Additionaly, careful consideration has to
be given to the performance impact of implementing
a database encryption <olution, particulally if
support for accderated index-serch on encrypted
data is not used. Fird, enterprises must adopt an
gpproach to encrypting only senstive fieds. Second,
this level of encryption must condder leveraging
hardware to increase the levd of security and
potentially to offload the cryptographic process in
order to minimize any performance impact. The
primary vulnerability of this type of encryption is
that it does not protect against applicationleve
dtacks as the encryption function is drictly
implemented within the DBMS.

2.2 Storage-L ayer Encryption

Sorege-levd encryption enables enterprises to
encrypt data at the dtorage subsystem, either at the
file levd (NASDAS) or a the block leve SAN.
This type of encryption is well suited for encrypting
files, directories, storage blocks, and tgpe media. In
today's large dorage environments, Storage-level
encryption addresses a requirement to secure data
without using LUN masking or zoning. While this
solution does provide the &hility to segment
workgroups and provides some security, it presents a
couple limitations. Firdt, it only protects againgt a
narow range of threats, namey media theft and
dorage system atacks. However, <orage-leve
encryption does not protect against most application-
or databaseleve attacks, which tend to be the most
prominent type of thrests to sendtive data Second,
current storage security mechanisms only provide
block-levd encryption; they do not give the
enterprise the ability to encrypt data within an
goplication or dadbase a the fidd levd.
Consequently, one can encrypt an entire database,
but not specific information housed within the
database.

3 USER MANAGEMENT ISSUES

To access database resources, a user must have
an account with the daabases Usxr account
management is the bads for the overdl databese
system security. A DBA has the responsibility to
create and maintain al DB user accounts, which Is a
large portion of her/his system adminigtration effort.
At the account crestion time, the DBA species how
the newly created user will be authenticated, and
what system resources the user can use. When a user
wants to connect to a database, shelhe must identify
her-sdffhimself to the sarver and the server will
veify her/his identity usng the prespecied
authentication method. Current commercia
RDBMSs support many dierent kinds of identication

and adhentication methods, among them ae
password-based authentication [12], host-besed
arthentication [4, 12, 11], PKI (Public Key

Infrastructure) based authentication [19], and other
third party-based authentications such as Kerberos
[17], DCE (Distributed Computing Environment
[23]) and smat cad [20]. Essentidly, dl methods
rely on a secret known only to the connecting user. It
is vitd tha a user should have totd control over
her/his own secret. For example, only shefhe should
be ale to change her/his password. Other people
can change a user's password only if they are
authorized to do so. In a DB system, a DBA can
rest a user's password upon the user's request,
probably because the user might have forgotten
her/his password. However, as we have noticed
before, the DBA can temporarily change a us's
password without being detected and caught by the
user, because the DBA has the capability to update
(directly or indirectly) the system catadogs. Design
Issues in Encryption and Key Management. The
most important problem in using
encryption/decryption is key management
implementation across dl daabase plaforms in an
enterprise. When we consder incorporating
encryption in a database sarver, there are two design
issues:

1. There should be a way for a user to indicate
that some data should be encrypted before storage,
and an option to send encrypted data to the
goplication tier.

2. There should be a way for a user to specify
(explicitly or implicitly) akey that will be used for
data encryption, and optiona use of HSM
(Hardware Security Module) support.

3.1 A separated Security Directory

A traditiona daa directory sores dl of the
information that is used to manage the objects in a
database. A data directory consists of many cataog
tablesand views. It isgenerdly recommended that
users (including DBAs) do not change the contents
of a cadog teble manualy. Ingtead, those catadogs
will be maintained by the DB server and updated
only through the execution of system commands.
However, a DBA can ill make changes in a catadog
table if shelhe wants to do so. To prevent
unauthorized access to important security-related
information, we introduce the concept of security
cadog. A scuity cadog is like a traditiond
system catalog but with two security properties. It
can never be updated manudly by anyone, and its
access is controlled by a drict authentication and
authorization policy.

4 COMPLETE ACCOUNTABILITY

From an adminigration point of view, a DBA
(Database Adminigtrator) is playing an important
and podtive role However, when security and
privacy become a big issue, we cannot smply trust
particular individuds to have tota control over other
peoples secrecy. This is not just a problem of
trustiness, it is a principle. Technicaly, if we dlow a
DBA to control security without any restriction, the
whole system becomes vulnerable because if the
DBA is compromised, the security of the whole
system is compromised, which would be a disaster.
On the other hand, if we have a mechanism in which
eech user could have control over higher own
secrecy, the security of the system is maintained
even if some individuds do not manage ther
security properly. Access control is the magjor
security mechanism deployed in all RDBMSs. It is
based upon the concept of privilege A subject (i.e,
a use, an goplication, etc) can access a database
object if the aubject has been asigned the
corresponding privilege. Access control is the bass
for many security features. Speciad views and stored
procedures can be created to limit users access to
table contents. However, a DBA has al the system
privileges. Because of herthis ultimae power, a
DBA can manage the whole system and make it
work in the mogt efficient way. In the mean time,
shelhe dso has the capability to do the most damage
to the system. With a separated security directory the
security adminidrator is responsible for setting the
user permissons. Thus, for a commercia database,
the security administrator (SA) operates through a

separate middleware, the access control system
(ACS), which sarve for authentication verification,
authorization, audit, encryption and decryption. The
ACS is tightly coupled to the database management
system (DBMS) of the database. The ACS controls
access in red-time to the protected fields of the
database. Such a security solution provides
separation of the duties of a security administrator
from a database administrator (DBA). The DBA's
role could for example be to peform usua DBA
taks, such as extending tablespaces etc, without
being able to see (decrypt) sendtive data The SA
could then administer privileges and permissions, for
indance add or ddete usars For most commercid
databases, the database administrator has privileges
to access the database and perform most functions,
such as changing password of the dadbase users,
independent of the settings by the system
adminigtrator. An administrator with root privileges
could adso have full access to the database. This isan
opening for an atack where the DBA can ded dl
the protected data without any knowledge of the
protection system above. The atack is in this case
based on that the DBA impersonates another user by
manipulating that users password, even though the
user's password is enciphered by a hash agorithm.
An attack could proceed as follows. First the DBA
logs in as himsdf, then the DBA reads the hash
vdue of the usas password and dores this
separately. Preferably the DBA aso copies al other
rdevat user data By these actions the DBA has
crested a snapshot of the user before any dtering.
Then the DBA executes the command “ALTER
USER username IDENTIFIED BY newpassword”.
The next step is to log in under the user name
"username’ with the password “newpassword’ in a
new sesson. The DBA then resats the user's
password and other relevant user data with the
previoudy stored hash vaue. Thus, it is important to
further separate the DBA’s and the SA’s privileges.
For ingtance, if services are outsourced, the owner of
the database contents may trus a vendor to
administer the database. Then the role of the DBA
belongs to an externd person, while the important
SA role is kept within the company, often a a high
management levd. Thus there is a need for
preventing a DBA to impersonate a user in a attempt
to gan access to the contents of the daabase The
method comprises the steps of: adding a trigger to
the teble the trigger a least triggering an action
when an adminigrator dters the table through the
datadbase management system (DBMS) of the
database; cdculaing a new password hash vaue
differing from the stored password hash vaue when
the trigger is triggered; replacing the dored
password hash value with the new password hash
vadue. A smilar authentication verification may aso

be implemented if VPN based connection and
authentication is used.

The first security-related component in an RDBMS
(and actudly in most systems) is user management.
A user account needs to be crested for anyone who
wants to access database resources. However, how
to maintain and manage user accounts is not a trivia
task. User management includes user account
creation, maintenance, and user authentication. A
DBA (DataBase Adminigtrator) is responsible for
creging and managing user accounts. When a DBA
cregtes an account for user Alice, shehe dso species
how Alice is going to be authenticated, for example,
by using a database password. The accounts and the
rdlated adthentication information are sored and
maintained in sysem catdog tebles When a user
logs in, shehe must be authenticated in the exact
way as specified in her/his account record. However,
there is a security hole in this process. A DBA can
impersonate any other user by changing (implicitly
or explicitly) the system catdogs and shelhe can do
things on a usa's behdf without being
authorized/detected by the user, which is a security
hole. A DBA's capability to impersonate other users
would dlow he/him to access other usars
confidentid data even if the daaare encrypted.

5 CHOSING THE STORAGE
FORMAT OF ENCRYPTED
INFORMATION

Application code and database schemas ae
sengtive to changes in the data type and data length.
If data is to be managed in binary format, varbinary
can be used as the data type to store encrypted
information. On the other hand, if a binary format is
not dedrable, the encrypted data can be encoded and
sored in a vacha fidd. Thee ae sze ad
performance pendties when usng an encoded
format, but this may be necessary in environments
that do not interface well with binary formats, if
support for transparent data level encryption is not
used. In environments where it is unnecessary to
encrypt al data within a database, a solution with
granular capabilities is ided. Even if only a gmall
subset of sengtive information needs to be
encrypted, additiond space will ill be required if
trangparent data level encryption is not used. The
secure data level encryption for data a rest can be
based on block ciphers. The proposed solution is
based on transparent data level encryption with Data
Type Presarvation tha Does Not Change ASCII
Data Fied Type or length. The solution provides a

cog effective implementation, avoiding changes of
Millions of Lines of Busness Code in larger
enterprise information systems. The solution dso
provides an effective lagt line of defence sdective
column-eve data item encryption,
cryptographicdly enforced authorization; key
management based on hardware or software, secure
audit and reporting facility, and enforced separation
of duties. The method is Cryptographically Strong,
Work With Any DBMS and OS, Work With
Different Character Setss, No Application or
Dabese Changess No Programming Language
Dependence, Fal Safe, Requires no DBA
intervention. Loader Functions Normdly and
Queries Function Normaly. Accderated search
capabilities based on partia encryption of data and
accd erated search index can dso be utilized.

5.1 Searching on encrypted data

Searching for an exact mach of an encrypted
vdue within a column is possble, provided that the
same initidization vector is used for the entire
column. On the other hand, searching for partiad
matches on encrypted data within a database can be
chdlenging and can rexult in full table scans if
support for accderated indexsearch on encrypted
data is not used. One gpproach to performing partia
searches, without prohibitive performance
congraints and without reveding too much sengtive
information, is to apply an HMAC to pat of the
sengtive daa and dore it in another column in the
same row, if support for acceerated indexsearch on
encrypted data is not used. For example, a table that
sores encrypted customer emall addresses could
aso store the HMAC of the first four characters of
eech emal addess. This gpproach can be usad to
find exact maches on the beginning or end of a
fidd. One drawback to this approach is tha a new
column needs to be added for each unique type of
search criteria So if the database needs to dlow for
searching based on the first four characters as well
as the lagt five characters, two new columns would
need to be added to the table. However, in order to
save space, the HMAC hash vadues can be truncated
to ten bytes without compromising security in order
to save gspace. Ths approach can prove to be a
reasonable compromise especidly when combined
with non-sendgitive search criteria such as zip code,
city, ec and can dgnificantly improve search
performance if support for accelerated indexsearch
on encrypted datais not used.

5.2 Encryption of Primary and
Foreign Keys

Encrypted columns can be a primary key or part
of a primary key, since the encryption of a piece of
data is dable (i.e, it adways produces the same
result), and no two digtinct pieces of data will
produce te same cipher text, provided that the key
and initidization vector used ae condsent.
However, when encrypting entire columns of an
exiding database, depending on the data migration
method, database administrators might have to drop
exiging primay keys, as wel as any other
asociaed reference keys, and recreate them after
the data is encrypted. For this reason, encrypting a
column that is part of a primary key congtraint is not
recommended if support for accderated index-
search on encrypted data is not used. Since primary
keys ae automdicaly indexed there ae ds0
performance considerations, particularly if support
for accderated index-search on encrypted data is not
used. A foreign key congtraint can be crested on an
encrypted column. However, specid care must be
given during migration. In order to convert an
exiding table to one that holds encrypted data, al
the tables with which it has congraints must first be
identified. All referenced tables have to be converted
accordingly. In cetan cases the referentid
condrants have to be temporarily disdbled or
dropped to dlow proper migration of existing data
They can be reendbled or recrested once the data
for al the associated tables is encrypted. Due to this
complexity, encrypting a column that is part of a
foreign key congrant is not recommended, if
automated deployment tools are not used. Unlike

indexes and primary keys though, encrypting
foreign keys generdly does not present a
performanceimpact.

5.3 Indexing of encrypted columns

Indexes are created to facilitate the search of a
particular record or a set of records from a database
table. Carefully plan before encrypting information
in indexed fidds Lookups and searches in large
databases may be serioudy degraded by the
compuationd overhead of decrypting the fidd
contents esch time searches ae conducted if
accdlerated database indexes are not used. This can
prove frudrating a fird¢ because most often
adminigrators index the fidds that must be
encrypted — socid security numbers or credit card
numbers. New planning considerations will need to
be made when determining what fidds to index if
accderated datebase indexes are not used. Indexes

are created on a specific column or a st of columns.
When the daebase table is sdected, and WHERE
conditions are provided, the database will typicaly
use the indexes to locate the records, avoiding the
need to do a full table scan. In many cases searching
on an encrypted column will require the database to
peform a full table scan regadless of whether an
index exiss For this reason, encrypting a column
that is pat of an index is not recommended, if
support for accderated indexsearch on encrypted
dataisnot used.

5.4 Useof Initialization Vectors

When usng CBC mode of a block encryption
dgorithm, a randomly generated initidization vector
is used and must be stored for future use when the
data is decrypted. Since the 1V does not need to be
kept secret it can be dored in the database. If the
goplication requires having an IV per column, which
can be necessary to dlow for searching within that
column, the vdue can be dtored in a separate table.
For a more secure deployment, but with limited
searching capabilities if support for accelerated
indexsearch on encrypted data is not used, an IV
can be generated per row and stored with the data. In
the case where multiple columns are encrypted, but
the table has space limitations, the same IV can be
reused for each encrypted vdue in the row, even if
the encryption keys for each cdumn ae different,
provided the encryption agorithm and key sze are
the same.

6 IMPLEMENTING ENCRYPTION
KEY MANAGEMENT

One of the essentid components of encryption
that is often overlooked is key management, which
refers to the way cryptographic keys are generated
and managed throughout ther life Because
cryptography is based on keys that encrypt and
decrypt data, your database protection solution is
only as good as the protection of your keys. Security
depends on two factors where the keys are stored
and who has access to them. When evduating a data
privecy solution, it is essentid to include the ability
to securdy generate and manage keys. This can
often be achieved by centrdizing al of the tasks of
key management on a dngle plaform and
effectively automating adminigrative key
management tasks, which will lead to both
operationd efficdency and reduced cogt of
management. Data privacy solutions should dso
include an automated and secure mechanism for key

rotation, replication, and backup. Today's complex
and peformance sendtive environments require the
use of a combination of software cryptography and
specidized cryptographic chipsets, HSM, to baance
security, cost, and performance needs. One easy
solution is to store the keys in a restricted database
table or file. But, adl adminigtrators with privileged
access could also access these keys, decrypt any data
within your system and then cover their tracks. Your
database security in such a Stuetion is based not on
industry best practice, but based on an honour code
with your employees. If your human resources
department locks employee records in file cabinets
where one person is ultimately responsible for the
keys, shouldn't smilar precautions be taken to
protect this same information in its eectronic
format? All fidds in a database do not need the same
leve of security. With tamper-proof hardware and
software implemented, the encryption being
provided by different encryption processes utilizing
a leest one process key in each of the categories
master keys, key encryption keys, and daa
encryption keys, the process keys of different
caegories being hed in the encryption devices

wherein the encryption processes are of a least
two different security levels, where a process of a
higher security level utilizes the tamperproof
hardware device to a higher degree than a process of
a lower security leve; wherein each data eement
which is to be protected is assigned an atribute
indicating the levd of encryption needed, the
encryption level corresponding to an encryption
process of a cetan security level. With such a
system it becomes possble to combine the benefits
from hardware and software based encryption. The
softwareimplemented device could be any daa
processng and dorage device, such as a persond
computer. The tamper-proof hardware device
provides strong encryption without exposing any of
the keys outsde the device but lacks the
perfformance needed in some gpplications. On the
other hand the <oftware-implemented device
provides higher peformance in executing the
encryption for short blocks, in most implementations
[26], but exposes the keys resulting in a lower level
of security.

CONCLUSION

This paper presents experience from many years of
rescarch and practicd use of cryptography in
database security. We use the key concepts of
security dictionary, type transparent cryptography
and propose solutions on how to transparently store
and search encrypted dadbase fidds Database
attacks are on the rise even as the risks of data

disdosure ae increassng. Severd indudries must
ded with legidation and regulaion on daa privacy.
In this environment, your security planning must
include a drategy for protecting sendtive databases
agang attack or misuse by encrypting key data
dements. Whether you decide to implement
encryption insgde or outsde the database we
recommend that encrypted information should be
stored separately from encryption keys, strong
authentication should be used to identify users
before they decrypt serstive information, access to
keys should be monitored, audited and logged,
Sendtive data should be encrypted endto-end, while
in trangit in the gpplication and while in gorage in
enterprise databases. A forthcoming paper will
discuss performance aspects, transparent storage and
search of encrypted database fieldsin more detail.

REFERENCES

[1] N. R. Adam and J. C. Wortman. Security-control
methods for statistical databases. ACM Computing
Surveys, 21(4):515- 556, Dec. 1989.

[2] R. Agrawdl and J. Kiernan. Watermarking relational

databases. In 28th Int’| Conferenceon Very Large
Databases, Hong Kong, China, August 2002.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In Proc. of the 28th Int’|
Conference on Very Large Databases, Hong Kong,
China, August 2002.

[4] Agrawal,JKiernan,R.Srikant,andY .Xu.Implementing
P3P using database technology. In Proc. of the 19th
Int'| Con-ference on Data Engineering, Bangalore,
India, March 2003.

[5]R.Agrawal ,J Kiernan,R.Srikant,andY .Xu.AnX Path-
basad preference language for P3P. In Proc. of the 12th
Int'| World Wide Web Conference, Budapest,
Hungary, May 2003.

[6] D. E. Denning. Cryptography and Data Security.
Addison-Wesley Publishing Company, Inc., 1982.

[7] T. Dierksand C. Allen. The TLS Protocol - Verson
1.0, Internet -Draft. November 1997.

[8] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol
Version 3.0, Internet-Draft. November 1996.

[9] S. Garnkd and G. Spaord. Web Security &
Commerce. O'Rellly & Associates, Inc., 1997.

[10] S. B. Guthery and T. M. Jurgensen. Smart Card
Developer's Kit. Macmillan Technical Publishing,
1998.

[11] Informix. Informix-Online Dynamic Server
Adminigtrator's Guide, Version 7.1. INFORMIX
Software, Inc., 1994.

[12] G. Koch and K. Loney. Oracle8: The Complete
Reference. Oshorne/McGrawHill, 1997.

[13] J. C. Lagarias. Pseudo-random number generatorsin
cryptography and number theory. InCryptology and
Computational Number Theory, pages 115{143.
American Mathematical Society, 1990.

[14] T. F. Lunt. A survey of intruson detection
techniques. Computer & Security, 12(4), 1993.

[15] National Bureau of Standards FIPS Publication 180.
Secure Hash Standard, 1993.

[16] National Bureau of Standards FIPS Publication 46.
Data Encryption Standard (DES), 1977.

[17] B. C. Neuman and T. Tso. Kerberos: An
authentication service for computer networks. |EEE
Communications, 32(9):33{ 38, 1994.

[18] San Jose Mercury News. Web site hacked; cards
being canceled, Jan. 20, 2000.

[19] Oracle Technical White Paper. Database Security in
Oracle8i, November 1999.

[20] W. Rankl and W. E_ng. Smart Card Handbook. John
Wiley & SonsLtd, 1997.

[21] R. Rivest. The MD5 Message-Digest Algorithm,
RFC1321 (1). April 1992.

[22] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital sgnature and public key
cryptosystems. Communications of the ACM,
21:120{ 126, February 1978.

[23] W. Rosenberry, D.Kenney, and G. Fisher.
Understanding DCE. O'Rellly & Associates, Inc.,1992.

[24] A. Shamir. How to share a secret. Communication of
the ACM, 22(11):612{ 613, 1979.

[25] D. R. Stinson. Cryptography; Theory and Practice.
CRC Press, Inc., 1995.

[26] M. Lindemann and SW Smith, Improving DES
Hardware Throughput for Short Operations, IBM
Research Report, 2001.

