
SecurityFocus HOME Infocus: Defeating Honeypots : Network iss... http://www.securityfocus.com/infocus/1803

1 of 5 05-10-2004 17:39

Defeating Honeypots: Network Issues, Part 1
by Laurent Oudot and Thorsten Holz

last updated September 28, 2004

0. Abstract

To delude attackers and improve security
within large computer networks, security

researchers and engineers deploy honeypots.
As this growing activity becomes a new trend

in the whitehat community, the blackhats
study how to defeat these same security

tools. Though not everyone agrees on the
power of honeypots, they are effective and

are being deployed as tools -- and blackhats
are already working to find ways to exploit

and avoid them. The cyber battle continues.

The purpose of this paper is to explain how

attackers typically behave when they attempt to identify and defeat honeypots. This is not
an exhaustive description of all the tools and methods that are publicly known (or unknown),

but this article will help security teams who would like to setup or harden their own lines of
deception-based defense. After some theoretical considerations, we will discuss some
technical examples to emphasize our explanations. This two-part paper will focus on

network issues. Further papers will move to the system world and the application layer.

1. Theory

This article discusses actions lauched by attackers remotely, far away from a honeypot, as
well as local actions launched on a compromised honeypot using the network layer. Beyond
the scope of this article, if you're interesting in learning more technical issues from the

underground regarding techniques used to defeat honeypots, you should definitely come to
the next PacSec meeting in Tokyo, organized by Dragos Ruiu. [ref 0]

1.1 Remote actions

Before attackers obtain access to a honeypot, they will sometimes try to detect if there is

something suspicious waiting for them. They might not want to attack a computer being
used to trap them, and they might not want to be monitored because this could reveal their

identity, their methods and their tools. For example, by using a 0-day exploit against a
honeypot that records everything (captures network traffic, low level system activity, and

more), an attacker would probably lose the valued secrecy of her techniques.

Most of the time, the remote actions used by attackers are very easy to understand. They

simply try to interact with the honeypot and look at the results. This game of stimuli might
exist at many layers of the OSI model, depending of the kind of honeypot targeted. Usually,

for a TCP/IP based honeypot, an aggressor will initiate a network dialog and look at the
results at layer 3 and 4, or even at layer 2 if she acts near or on the network segment of his
target. Sometimes, layer 7 (application layer) might also be used by a remote aggressor.

1.2 Local actions

After they get access to a honeypot, for example through a shell or through some custom

shellcode, attackers might still use the network layer in order to determine if they have
compromised a honeypot instead of a real machine. By doing this, they might reveal their

techniques used to fingerprint a honeypot through the network layer. By then, defenders who
operate the honeypot will already have a record of the attacker's malicious activity as a

kind of burglar alarm.

1.3 Cloaking issues

To quote Lance Spitzner, founder of the Honeynet Project, "a honeypot is an information
system resource whose value lies in unauthorized or illicit use of that resource." So, for

example, if a potential aggressor is able to determine that a computer is a honeypot without
being detected, one might believe it to be a problem. But most of the time, honeypots record

almost everything so it is difficult for an attacker to be totally stealthy. By "defeating a
honeypot", this paper refers to defeating the role of a honeypot, or in other words we will
mainly focus on attacks that are used to detect a honeypot and/or disable parts of it (such

as disabling its ability to record all activities). Note that some whitehats use honeypots as
burglar alarms, so these honeypots being fingerprinted or disabled are not an inherent

problem, provided the operator is indeed notified that that a malicious blackhat hacker
came in.

1.4 Breaking the Matrix

Even if a honeypot is not a real computer resource on a production network and it is just

sitting there, waiting to be attacked, there are ways to determine its role. Such an activity

SecurityFocus HOME Infocus: Defeating Honeypots : Network iss... http://www.securityfocus.com/infocus/1803

2 of 5 05-10-2004 17:39

sitting there, waiting to be attacked, there are ways to determine its role. Such an activity
is called fingerprinting. If you want to understand how attackers succeed in fingerprinting

attempts against a honeypot, just ask yourself: what is the difference between a honeypot
architecture and a real architecture?

Though this might look very easy and simple on the surface, this is the key question to
consider when thinking about cloaking and honeypots. Attackers will try to evaluate if this

small world attained by them is a real or fake one. Remember the Matrix movie? This is the
same sort of problem, determining reality. Depending of the level of interaction and type of
honeypot, the fingerprinting methods used may need to be different.

If the operator of a honeypot is trying to simulate or emulate an environment, the attacker
will probably try to find a path to the truth by looking at specific differences that exist in the

compromised envrionment, as compared to a real one. Imagine for example that you deploy
a fake proxy service to catch spammers. Consider these questions:

Are you sure that you will respond to any possible requests the way a real proxy
service would do?

What if the spammer sends unusual or abnormal requests?
What if the spammer tries to use unimplemented or complex functions that should be

found on your service?
What if the spammer tries to use the proxy to test if it remains functional under heavy

load, and for a long time?

As you can see, simulating reality is not so easy. In the above example about spammers,

aggressors will probably use remote actions based on layer 7, such as sending bogus
requests. By using protocols to their practical limits, attackers will probably find a way to
fingerprint the simulation of our fake world.

One solution might be the use of a high interaction honeypot that is based on a real system.
From a cloaking point of view, a perfect honeypot could be a "sacrificed" one that has a real

system installed on it. But when you setup such a security resource, you want to record as
many events as possible. Network captures made on the wire of your honeypot might not be

enough. Think about attackers who use encrypted channels. It is widely known that some
blackhats enjoy SSH sessions to compromised computers. Because of this, people have

begun to manipulate the kernel of the operating system in their need to record low-level
system events. Further papers will focus on such system issues.

If you plan to monitor everything on a honeypot and want to be stealthy, how do you export
security events to a logging host? After all, you have to store the logging data on a different

host because you cannot trust the logged data on a honeypot after it has been
compromised. If you are using the network, there might be ways for the attackers to detect

it by playing with network tools on your honeypot (e.g. after obtaining a shell).

Another problem with a high interaction honeypot is the activity: as this is not a real
computer, what kind of network activity will be seen if the attacker sniffs the traffic?

Nothing. And finally, what if the attacker tries to bounce from your honeypot to attack
further systems? If you let her jump away, she will be able to attack something else using

your IP address as the source of attack, which might be a very big problem from a legal
point of view. So usually, this sort of bouncing might be either forbidden or controlled. If it is

forbidden, this might look strange to an attacker, like a kind of black hole -- and it will no
doubt will raise a flag in the mind of an attacker. If it is controlled, the aggressor might find

forbidden requests or limitations, and she might then also conclude that it is a honeypot.

The theory of cloaking and honeypots can be summed up as follows: the closer you are to

reality, the more difficult it will be to properly assume data capture and data control, but
also the stealthier you will be. That is all part of the game and your choices will depend on

the kind of attackers you wish to catch. If you are waiting for script kiddies or
unsophisticated attackers, they will probably be blind and will not even notice the honeypot.

But if you are waiting for skilled attackers, you should be aware of the methods and tools
they use to identify honeypots.

Now let's start with some technical examples.

2. Practical examples

2.1 Tar Pits

A tarpit is a computer entity that will intentionally respond slowly to incoming requests. The
goal is to delude clients so that unauthorized or illicit use of a fake service might be logged

and slowed down. Note that some purists do not really consider a tarpit to be a honeypot,
though it is certainly a fake information system resource that can delay any incoming

aggressors. For example, to fight off spammers, some people run tarpits that look like open
mail relays, but instead answer very slowly to SMTP commands. These are layer 7 tarpits.

Other known tarpits are those that play with the TCP/IP stack in order to hold the incoming
client's network socket open while forbidding any traffic over it (layer 4).

The Labrea Tarpit [ref 1] is an excellent example that plays with the TCP/IP stack and has

SecurityFocus HOME Infocus: Defeating Honeypots : Network iss... http://www.securityfocus.com/infocus/1803

3 of 5 05-10-2004 17:39

The Labrea Tarpit [ref 1] is an excellent example that plays with the TCP/IP stack and has
been used to slow down the spread of worms over the Internet, but there are also others

such as Honeyd [ref 2] and some native tools in Linux. For example, netfilter/iptables [ref
3] supports a TARPIT target. To achieve this tarpit state, iptables accepts an incoming
TCP/IP connection and then immediately switches to a window size of zero. This prohibits

the attacker from sending any more data. Any attempt to close the connection is ignored
because no data can be sent by the attacker to the target. Therefore the connection

remains active. This consumes resources on the attacker's system but not on the Linux
server or the firewall running the tarpit. An example iptables rule for TARPIT mode looks

like:

iptables -A INPUT -p tcp -m tcp -dport 80 -j TARPIT

Though tarpits are not built to avoid fingerprinting, this is an interesting technical case to
propose for our first example.

For a layer 7 tarpit, by looking purely at the latency from the service, an attacker might
guess that she has found a fake system after multiple attempts.

For a layer 4 tar pit like Labrea, the TCP window size is reduced to zero, and the tar pit
continues to acknowledge incoming packets. This simple signature will probably alert the

attacker.

You can see that an attacker (10.0.0.2) trying to reach a fake web server, simulated by
Labrea in persistent mode (10.0.0.1), in the following recording made with tcpdump:

03:26:01.435072 10.0.0.2.1330 > 10.0.0.1.80: S [tcp sum ok]
911245487:911245487(0) win 64240 <mss 1460,nop,nop,sackOK> (DF) (ttl 64, id 6969, len 48)
03:26:01.435635 10.0.0.1.80 > 10.0.0.2.1330: S [tcp sum ok]
3255338435:3255338435(0) ack 911245488 win 3 (ttl 255, id 48138, len 40)
03:26:01.435719 10.0.0.2.1330 > 10.0.0.1.80: . [tcp sum ok]
1:1(0) ack 1 win 64320 (DF) (ttl 128, id 4970, len 40)
03:26:01.435887 10.0.0.2.1330 > 10.0.0.1.80: . [tcp sum ok]
1:4(3) ack 1 win 64320 (DF) (ttl 128, id 4971, len 43)
03:26:01.436224 10.0.0.1.80 > 10.0.0.2.1330: . [tcp sum ok]
1:1(0) ack 4 win 0 (ttl 255, id 44321, len 40)
03:26:03.731433 10.0.0.2.1330 > 10.0.0.1.80: . [tcp sum ok]
4:5(1) ack 1 win 64320 (DF) (ttl 128, id 4973, len 41)
03:26:03.731673 10.0.0.1.80 > 10.0.0.2.1330: . [tcp sum ok]
1:1(0) ack 4 win 0 (ttl 255, id 35598, len 40)

By looking at the answers from 10.0.0.1, you will at first notice a window size of 3 and then

0 for the next connection (win 0). You can then understand how an attacker could fingerprint
this behavior easily.

2.2 A few words about layer 2

If an attack is launched from the same LAN segment as a honeypot, there might be issues

seen at layer 2. This might be important if you want to handle the inherent risks with an
intruder who would otherwise succeed in gaining access deeper and deeper into your

network infrastructure. It might also be important with a honeypot that would be used to
catch malicious internal users.

Labrea also has the capability of answering requests sent to computers that do not exist.
By looking at unanswered ARP requests, Labrea might be configured to simulate unused IP

addresses, which is very interesting way to fight worms on large networks with thousands of
such IP addresses. If an attacker is on the same network segment as Labrea, there is a

way to do fingerprinting at layer 2: this daemon always answers with the same unique MAC
address 0:0:f:ff:ff:ff, which acts as a kind of black hole, and thus there is an obvious way to
detect it. By looking at such ARP responses, the attacker might have such a concern:

04:59:00.889458 arp reply 10.0.0.1 (0:0:f:ff:ff:ff) is-at 0:0:f:ff:ff:ff

If you want to explore this as an exercise, you can find and change this hard coded value in

the sources of Labrea (PacketHandler.c):

u_char bogusMAC[6] = {0,0,15,255,255,255};

VMWare [ref 4] is a well known commercial software for virtual machines that allows you to
launch multiple instances of different operating systems on a single piece of hardware.

These operating systems are isolated in secure virtual machines and the VMware
virtualization layer maps the physical hardware resources to the virtual machine's

resources, so each virtual machine has its own CPU, memory, disks, I/O devices, etc. It
only emulates x86 hardware at the moment and it is widely used by honeypot operators

because it allows, among other things, an easy deployment of honeypots. Sometimes you
can guess that a system is running on top of VMWare by looking at the MAC addresses. It

does not mean that this is a honeypot, but this might give pause and some doubts to an
aggressor. If you look at the IEEE standards [ref 5], you will find this current range of MAC

SecurityFocus HOME Infocus: Defeating Honeypots : Network iss... http://www.securityfocus.com/infocus/1803

4 of 5 05-10-2004 17:39

aggressor. If you look at the IEEE standards [ref 5], you will find this current range of MAC
adresses assigned to VMWare, Inc:

00-05-69-xx-xx-xx
00-0C-29-xx-xx-xx
00-50-56-xx-xx-xx

So, if you see such a MAC address either by looking at the cached MAC addresses (via arp

-a) or by looking at the data related to the interface (Unix: ifconfig or Windows: ipconfig
/all), an aggressor might find something interesting.

Some attackers try to reach remote NetBIOS services in order to launch Windows specific
attacks. Honeypots builders dream of catching 0-day exploits against a patched system,

but using the Windows integrated firewall might stop most attackers. That's why they often
open the related Windows ports (NetBIOS ports, including 135, 137-139 and 445

TCP/UDP), waiting for an intruder. But what if an attacker interacts with the NetBIOS
service? She will be able to get the MAC address and guess that a system is in fact a

VMWare guest (Unix: nmblookup or Windows: nbtstat -A @IP). Some could argue that it is
possible to change the MAC address in the configuration of VMWare, but still only some
addresses might be accepted: VMWare's MAC addresses are beginning with 00:50:56

(e.g. ethernet0.address = 00:50:56:XX:YY:ZZ).

There are also other points of interests for attackers that would like to fingerprint a VMWare

owing to MAC addresses. For example, when the VMWare ESX server automatically
generates MAC addresses like 00:05:69:XX:YY:ZZ, it usually means that the IP address

of this server is like A.B.C.D where XX is the hexadecimal of C, and YY is the hexadecimal
of D. This might reveal the use of NAT before the VMWare box (different external address).

Honeyd [ref 2] is a powerful open source honeypot daemon written by Niels Provos. In the
past, most people have used Honeyd with another tool, arpd. This one answered ARP

requests in order to redirect needed traffic to Honeyd. Some people thought that this could
create a stealth problem because there would be multiple IP address with the same MAC

address (but this can also happen on a layer 2 bridge). If you use a recent version, Honeyd
now allows you to specify a MAC address for each virtual computer without being limited to

just one. Simply add this line for a created template, by choosing the MAC address for your
simulated systems:

set template ethernet "<vendor|mac address>"

This might be better than using the arpd daemon and gives a great opportunity for stealth at
layer 2. Maximillian Dornseiff has also outlined some possibilities for using honeyd without

arpd. [ref 6]

User-Mode Linux (UML), a free software under the GPL, is another tool to create virtual

machines. [ref 7] It virtualises Linux itself so that you can run an entire Linux environment
in user-space and it allows you to run multiple instances of Linux at the same time and on a

single piece of hardware. Dedicated to Linux, it looks similar to the commercial solution
VMware. That's why so many people use it to build honeypots. From a layer 2 point of view,

there is a powerful option to fix the MAC address of the UML guests by appending some
parameters while launching it:

eth0=tuntap,,xx:xx:xx:xx:xx:xx,@IP (where xx:xx:xx:xx:xx:xx is the MAC address
and @IP is the IP address).

3. Concluding Part One

It is a difficult problem to deploy honeypots that cannot be detected by hackers. We must
remember that honeypot technology is only effective if an attacker does not know she is

attacking a "trap" instead of a real system. Therefore, it is critically important for security
professionals who deploy honeypots to be aware of the methods blackhat hackers use to

identify them.

3.1 Coming up

This introduced the issues at hand and then discussed issues with tarpits and virtual

machines, primarily at layer 2 of the OSI model. Next time we'll continue the discussion
with many more practical examples of detecting honeypots, including Sebek-based

honeypots, snort_inline, Fake AP, and Bait and Switch honeypots. Stay tuned.

4. References

[ref 0, PacSec in Tokyo [http://pacsec.jp/], organized by Dragos Ruiu, and attend the talk

"Countering Attack Deception Techniques" from Oudot Laurent.

[ref 1, Labrea Tarpit, by Tom Liston: http://labrea.sourceforge.net/]

[ref 2, Honeyd project, by Niels Provos: http://honeyd.org/]

[ref 3, netfilter/iptables: http://www.netfilter.org/]

SecurityFocus HOME Infocus: Defeating Honeypots : Network iss... http://www.securityfocus.com/infocus/1803

5 of 5 05-10-2004 17:39

[ref 3, netfilter/iptables: http://www.netfilter.org/]

[ref 4, VMWare: http://www.vmware.com/]

[ref 5, IEEE standards: http://standards.ieee.org/regauth/oui/oui.txt]

[ref 6, Maximillian Dornseif's discussion on using honeyd without arpd.

http://blogs.23.nu/antlab/stories/4485/]

[ref 7, Know Your Enemy: Learning with User-Mode Linux

http://www.honeynet.org/papers/uml]

View more articles by Laurent Oudot on SecurityFocus.

