
SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

1 of 6 11-10-2004 08:53

Defeating Honeypots: Network Issues, Part 2
by Laurent Oudot and Thorsten Holz
last updated October 7, 2004

0. Continuing from Part One

It is a difficult problem to deploy
honeypots, technology used to track
hackers, that cannot be detected. The value
of a honeypot is in its ability to remain
undetected. In part one of this article we
introduced some of the issues related to
discovering and fingerprinting honeypots,
and then we discussed a few examples such
as tarpits and virtual machines. Now we'll
continue the discussion with more practical
examples for detecting honeypots,
including Sebek-based honeypots,
snort_inline, Fake AP, and Bait and Switch
honeypots.

If you have not yet read part one of this series, please familiarize yourself with that
article before continuing on.

1. Practical examples (continued)

1.1 Sebek-based Honeypots

Sebek [ref 0] is client/server based application, and it is the primary data capture tool
used by honeynet researchers to capture the activities of an attacker found inside a
honeypot. It is a kernel-based rootkit that hijacks the read() system call and it is
therefore able to record all data accessed via read(). Sebek lives entirely in
kernel-space and has access to all data read, so it is able to access most
communication unencrypted. It can, for example, log SSH-sessions, recover files copied
with SCP and record all passwords used by intruders. The recorded data is sent in a
covert manner via UDP to the Sebek server, the other part of Sebek's client/server
architecture. This transmission is done by modifying the kernel in order to hide these
outgoing packets such that an intruder cannot see them. In addition, all network
counters and data structures have to be adapted in order to make detecting these
changes more difficult. Further information about Sebek and its architecture can be
found on the Honeynet site. [ref 1]

It is possibile to detect the presence of Sebek by using the network layer, however.
Because Sebek records everything which is accessed via read() and then sends this data
over the network, some congestion effects will be visible if we read lots of data coming
out of the system. When we read a single byte via a read(1) call, Sebek has to transfer
nearly 100 bytes of data, including all the network headers, over the network to the host
doing the logging. So if we are able to do a read(1) some tens of thousands of times
per second, this will lead to a congested network and finally to dropped packets.

SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

2 of 6 11-10-2004 08:53

We are able to generate many read(1) calls with the help of the dd command:

user@honey:~ dd if=/dev/zero of=/dev/null bs=1

And we are able to identify a congested network with the help of the ping command, as
outlined below.

We first ping a local IP-address (for example, the gateway) in order to get an overview
of the current congestion of the network. Then dd is started in the background and we
run the ping command again. If Sebek is installed on a host, this leads to a significant
increase in the average round-trip time. In practical tests, the average round-trip time
grew from 0.7 milliseconds to over 4800 milliseconds.

There are also further methods to detect and circumvent the presence of Sebek if we
use layers than the network layer. These attacks and further techniques will be covered
in another article.

1.2 Snort_inline

Snort_inline [ref 2] is an inline packet modification engine, and it provides for packet
rewriting of what looks like something dangerous into something harmless. It is
basically a modified version of the popular Intrusion Detection System (IDS) Snort [ref
3] and adds several new rule types (drop, sdrop and reject) to tell iptables whether a
packet should be dropped, rejected, modified, or allowed to pass based on a Snort rule
set.

An example for this technique is the replacement of the string /bin/sh in shellcode with
the string /ben/sh. Another example is the replacement of certain characteristic patterns
in network traffic in order to render these attacks useless, as shown in the following
listing which modifies x86-shellcode:

alert ip $HONEYNET any -> $EXTERNAL_NET any
 (msg:"SHELLCODE x86 stealth NOOP"; sid:651;
 content:"|EB 02 EB 02 EB 02|";
 replace:"|24 00 99 DE 6C 3E|";)

This kind of Intrusion Prevention System (IPS) is used in GenII (2nd generation)
Honeynets [ref 4] in order to identify and block known attacks. Snort_inline is also
necessary because it hampers the possibility of an attacker bouncing from a
compromised honeypot to attack further systems. So Snort_inline also adds some safety
from a legal point of view.

But the dropping or modification of outgoing packets leads to an easy way for attackers
to spot the presence of Snort_inline: If outgoing packets are dropped, that might look
suspicious for an attacker, like a kind of black hole. If outgoing packets are modified,
this will be detected by an sophisticated attacker. She will send packets with malicious
content to another host which she controls and check whether the packet arrives at the
destination in unaltered form (albeit with some small things changed, like a
decremented Time To Live). If the content of the packet differs, she will probably
conclude that this is a bit fishy. The stealthiness of Snort_inline can be increased with
fewer rules, but this leads to more attacks that will not be noticed. A trade-off between

SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

3 of 6 11-10-2004 08:53

fewer rules, but this leads to more attacks that will not be noticed. A trade-off between
stealthiness and safety has to be found.

Moreover, GenII Linux Honeynets typically use the netfilter/iptables-functionality [ref 5]
of the kernel to implement connection limiting. This prevents the abuse of a
compromised honeypot for denial-of-service attacks or mass scanning and nevertheless
allows an attacker to download toolkits or setup automated bots. As an example, the
default configuration of the rc.firewall script provided by the Honeynet Project allows 15
outgoing TCP-connections and 50 outgoing ICMP packets per day.

[...]
Set the connection outbound limits for different protocols.
SCALE="day"
TCPRATE="15"
UDPRATE="20"
ICMPRATE="50"
OTHERRATE="15"
[...]

This connection limiting also leads to a problem with the secrecy of a honeypot: an
aggressor can simply try to open many outgoing connections to different hosts or send a
lot of ICMP echo request packets to varying hosts. If she notices that after some time
no more outgoing packets can reach the target, then this is a clear sign that something
weird is going on and that she probably fell for a honeypot. Again, a trade-off between
stealthiness and safety has to be found. If you allow more outgoing packets, the
detection will be harder, but an attacker has more ways to abuse the honeypot.

1.3 Fake AP

Fake Access Point [ref 6] is a Perl-script that generates bogus 802.11b beacon frames
with random ESSID and BSSID (MAC-address) assignments. It sends these frames on a
random channel and is also able to simulate the wired equivalent privacy (WEP)
protocol. A normal access point will "hide in sight amongst Fake AP's cacophony of
beacon frames" [ref 6] and therefore this kind of tool can also be used as a wireless
honeypot: just deploy one Linux machine running Fake AP near your wireless network
and watch for any suspicious traffic. Legitimate users will know the SSID of the network
and can connect without problems. Malicious users will try to connect to your network with
different SSIDs and can thus be spotted easily.

In its current version, Fake AP does not generate fake traffic on one of the simulated
access points and hence there is an easy way to detect the presence of Fake AP: This
tool only sends beacon frames and also does not send any real traffic. So an attacker
can just monitor the network traffic and easily notice the presence of Fake AP.

1.4 Bait and Switch Honeypots

Traditionally, information security follows the classical security paradigm of "Protect,
Detect and React". In other words, try to protect the network as best as possible (such
as by using firewalls), detect any failures in the defense (with intrusion detection
systems), and then react to those failures (perhaps by alerting the admin via mail). The
problem with this approach is that the attacker has the initiative, and she is always one

SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

4 of 6 11-10-2004 08:53

step ahead. The Bait and Switch Honeypot [ref 7] is an attempt to turn honeypots into
active participants in system defense. It helps to react faster on threats. To archieve this
goal, the Bait and Switch Honeypot redirects all malicious network traffic to a honeypot
after a hostile intrusion attempt has been observed. This honeypot is partially mirroring
the production system and therefore the attacker is unknowingly attacking a trap instead
of real data. Thus the legitimate users can still access all data and work on the real
systems, but the attacker is lured away from all interesting systems. As an additional
benefit, the actions of the aggressor can be observed and then his tools, tactics and
motives can be studied. A Bait and Switch Honeypot is based on Snort [ref 3] , iproute2
[ref 8], netfilter/iptables [ref 5] and some custom code.

An attacker might detect the presence of a Bait and Switch Honeypot by looking at
specific TCP/IP values like the Round-Trip Time (RTT), the Time To Live (TTL), the TCP
timestamp, and others. After a switch event, the attacker will stop talking to the real
computer, and will start to interact with the honeypots. During the switch from the real
system to the honeypot, a sudden change in the IPID can be observed. Previous TCP/IP
values will also probably change after the switching has taken place and this can be
observed by a sophisticated attacker.

Once again, tcpdump and friends are valuable tools for attackers to gather information
about what is going on. Furthermore, the honeypot will probably differ noticeably from
the real system. The attacker will presumably try to find a way to identify the honeypot
by looking at specific differences that might exist between the real system and the
honeypot. Notice that some attackers will use multiple IP addresses as sources of their
attacks, in order to defeat such kinds of IPS. For example, if the shellcode of the
attacker is a reverse shell that connects back to an IP source which is different from the
IP that sent the exploit, the IPS will not be able to change anything. The modus
operandi will differ with every deployment of a Bait and Switch Honeypot, and so the
operator of this kind of honeypot has to take great care in the setup process.

2. Summary

It is clearly a difficult problem to deploy honeypots in a very stealthy manner -- and the
effectiveness of honeypot technology exists only if an attacker does not know that she
is attacking a trap and not a real system. The operator of a honeypot therefore must be
aware of many of the possibilities for attackers to identify honeypots. As outlined in the
previous sections, and in part one of this article, there are many ways to detect the
presence of a honeypot if an attacker simply looks at the network layer.

In this article series we explained how attackers often behave when they try to identify
honeypots, and we gave some technical examples of some different methods. We hope
that this helps security specialists who want to setup and use honeypots. It is important
that the operator of a honeypot customizes and adapts it to his own needs. For
example, the MAC address (in case of Labrea or User-mode Linux) or error messages
should be customized. In order to be a step ahead of attackers, the coders of honeypot
software must also continually update and change their programs to avoid detection --
the arms-race between whitehats and blackhats has begun.

Note that there are even commercial tools such as Honeypot Hunter [ref 9] that use
anti-honeypot technology. Honeypot Hunter checks with lists of HTTPS and

SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

5 of 6 11-10-2004 08:53

anti-honeypot technology. Honeypot Hunter checks with lists of HTTPS and
SOCKS4/SOCKS5 proxies for honeypots, and it is used by spammers in order to detect
the presence of tarpits or other kinds of honeypots/proxies. Honeypot hunter works by
opening a local (fake) mail server on port 25 (SMTP) and connects back to itself through
the proxy. A honeypot is detected if the proxy reports that the connection is up but the
tool does not receive a connection to this simulated mail server. This approach identifies
most invalid proxies and honeypots and the approach is quite simple. But it can be
circumvented easily if you allow allow a small, but limited, number of outbound
connections from the honeypot/proxy. The mere availability of such a programm shows
that the cyber battle between detection and stealthiness of honeypots has not only
begun, but that an arms-race will likely follow.

3. Conclusion

This paper gave an overview of current state-of-the-art of honeypot detection by looking
at the network layer. Further papers on this topic will move to the system world and the
application layer and explain how to identify a honeypot by looking at these higher
layers.

4. References

[ref 0, Sebek, by Edward Balas et al.: http://www.honeynet.org/tools/sebek/]

[ref 1, Know Your Enemy: Sebek: http://www.honeynet.org/papers/sebek.pdf]

[ref 2, Snort_inline, by Rob McMillen, William Metcalf, Jed Haile and Victor Julien:
http://snort-inline.sourceforge.net/]

[ref 3, Snort, by Martin Roersch: http://www.snort.org/]

[ref 4, GenII honeypots, by the Honeynet Project
http://www.honeynet.org/papers/gen2/index.html]

[ref 5, netfilter/iptables: http://www.netfilter.org/]

[ref 6, Fake AP tool, by Black Alchemy: http://www.blackalchemy.to/project/fakeap/]

[ref 7, The Bait and Switch Honeypot, by Jack Whitsitt:
http://violating.us/projects/baitnswitch/]

[ref 8, iproute2, by Alexey Kuznetsov: ftp://ftp.inr.ac.ru/ip-routing/,
http://www.linuxgrill.com/iproute2-toc.html]

[ref 9, Honeypot Hunter: http://www.send-safe.com/honeypot-hunter.php]

4.1 Credits

Thanks to Kelly Martin, Lance Spitzner, Dragos Ruiu, Maximillian Dornseiff, Felix
Gärtner and folks from the German and the French Honeynet Projects.

5. About the Authors

Thorsten Holz is a research student at the Laboratory for Dependable Distributed
Systems at RWTH Aachen University. He plans to graduate next spring and continue

SecurityFocus HOME Infocus: Defeating Honeypots: Network Issues, ... http://www.securityfocus.com/infocus/1805

6 of 6 11-10-2004 08:53

Systems at RWTH Aachen University. He plans to graduate next spring and continue
his studies as a Ph.D. student. His research interests include the practical aspects of
secure systems, but he is also interested in more theoretical considerations of
dependable systems. He is one of the founders of the German Honeynet Project and
have given talks at both Black Hat and Defcon.

Laurent Oudot is a computer security engineer currently employed by the Commissariat
a l'Energie Atomique in France. On his spare time, he is a member of the team Rstack
with other security addicts. He has presented at different security events including
Cansecwest, Defcon, Black Hat USA and Asia, HOPE, and others. Regarding honeypots,
Laurent is a member of the steering committee of the Honeynet Alliance and is an
active member of the French Honeynet Project.

