
dAnubis – Dynamic Device Driver Analysis
Based on Virtual Machine Introspection

Matthias Neugschwandtner, Christian Platzer, Paolo Milani Comparetti and
Ulrich Bayer

Secure Systems Lab, Vienna University of Technology,
{mneug,cplatzer,pmilani,ulli}@seclab.tuwien.ac.at

Abstract. In the escalating arms race between malicious code and secu-
rity tools designed to analyze it, detect it or mitigate its impact, malicious
code running inside the operating system kernel provides an extremely
powerful tool. Kernel-level code can introduce hard to detect backdoors,
provide stealth by hiding files, processes or other resources and in general
tamper with operating system code and data in arbitrary ways.
Under Windows, kernel-level malicious code typically takes the form of
a device driver. In this work, we present dAnubis, a system for the real-
time, dynamic analysis of malicious Windows device drivers. dAnubis can
automatically provide a high-level, human-readable report of a driver’s
behavior on the system. We applied our system to a dataset of over 400
malware samples. The results of this analysis shed some light on the
behavior of kernel-level malicious code that is in the wild today.

1 Introduction

Malicious code, or malware, is at the root of many security problems on the
internet. Compromised computers running malware join botnets and participate
in harmful activities such as spam, identity theft and distributed denial of service
attacks. It is therefore no surprise that a large body of previous research has
focused on collecting, detecting, analysing and mitigating the impact of malicious
code.

The analysis of malicious code is an important element of current efforts to
protect computer users and systems from malware. Understanding the impact of
a malware sample allows to evaluate the risk it poses and helps develop detection
signatures, removal tools and mitigation strategies. Because of the large number
of new malware samples that appear in the wild each day, malware analysis
needs to be a largely automated process.

The automatic analysis of malicious programs is complicated by the fact that
malware authors can use off-the-shelf packers to make their samples extremely
resistant to static code-analysis techniques. According to a recent large-scale
study of current malware [1], over 40% of malware samples are packed using
a known packer. Clearly, this is a lower bound to the amount of malware that
is packed because malware authors may be using other, yet-unknown packers
or implement their own custom solutions. While many current packers can be

2

defeated by generic unpacking tools [2, 3], packers that use emulation-based pack-
ing can currently be fully defeated only after manually reverse-engineering their
emulator [4]. Furthermore, packers based on opaque constants [5], while not yet
available in the wild, can generate binaries that are provably hard to analyze for
any static code analyzer.

Because of these limitations, automatic malware analysis is mostly based on
a dynamic approach: Malware samples are executed in an instrumented sandbox
environment, and their behavior is observed and recorded. A number of dynamic
malware analysis systems are currently available that can provide a human-
readable report on the malware’s activities [6, 7]. The output of these tools can
further be used to find clusters of samples with similar behavior [8–10], or to
detect specific classes of malicious activity [11].

These systems are able to analyse the behavior of malicious code running in
user-mode. The analysis of kernel-side malicious code, however, poses additional
challenges. First of all, kernel-level malicious code cannot be reliably detected
or analyzed unless the analysis is performed at a higher privilege level than the
kernel itself. Otherwise, kernel-level malware would be able to tamper with or
disable the analysis engine, in a never-ending arms race. This challenge can be
overcome by using out-of-the-box, Virtual Machine Introspection techniques [12],
or with more recent in-the-box monitoring techniques that leverage modern CPU
features to protect the analysis engine [13]. Using such techniques, the injection
and execution of code into kernel-space can be reliably detected [14, 15].

Beyond detection, however, understanding the purpose and capabilities of
malicious kernel code is also useful. This is challenging because, in contrast to a
user-mode process, kernel code is not restricted to its own address space and to
interacting with the rest of the system through a well-defined system call inter-
face. When monitoring the behavior of a system infected by kernel-side malicious
code, it is not trivial to reliably (a) attribute an observed event to the malicious
code or to the benign kernel and (b) understand the high-level semantics of an
observed event. In the limit, kernel-level malware could replace the entire op-
erating system kernel with its own implementation, making understanding the
differences between the behavior of a clean system and an infected one extremely
challenging. In practice, malware authors prefer to perform targeted manipula-
tions of the operating system’s behavior using hooking techniques, and to make
use of functions offered by the kernel rather than re-implement existing func-
tionality. Therefore, detecting malware hooking behavior has been the focus of
a significant body of recent research [16–19].

One aspect of malicious kernel code that has received less attention is device
driver behavior. That is, the malware’s interaction with the system’s IO driver
stacks, and the interface and functionality it offers to userland processes. In this
work, we attempt to provide a more complete picture of the behavior of malicious
kernel code. We introduce dAnubis, an extension to the Anubis dynamic mal-
ware analysis system[20] for the analysis of malicious Windows device drivers.
dAnubis can automatically generate a human-readable report of the behavior
of kernel malware. In addition to providing information on the use of common

3

rootkit techniques such as call hooking, kernel patching and Direct Kernel Ob-
ject Manipulation (DKOM), dAnubis provides information about a malicious
driver’s interaction with other drivers and the interface it offers to userspace. To
improve the coverage of its dynamic analysis, dAnubis also includes a stimula-
tion engine that attempts to trigger rootkit functionality. Running dAnubis on
over 400 malware samples that include kernel components allows us not only to
validate our tool, but also to perform the largest study of kernel-level malware
to date.

In summary, our contributions are the following.

1. We present dAnubis, a system for the real-time dynamic analysis of malicious
Windows device drivers.

2. Using dAnubis, we analyzed over 400 hundred samples and present the results
of the first large-scale study of Windows kernel malware. These results give
insight into current kernel malware and provide directions for future research.

3. dAnubis will be integrated into the Anubis malware analysis service, making
it available to researchers and security professionals worldwide.

2 Overview

Rootkits provide malware authors with one of their most flexible and powerful
tools. The term “rootkit” derives from their original purpose of maintaining
root access after exploiting a system, being a “kit” of pieces of technology with
the purpose to hide the attacker’s presence in the system [21]. This can include
hiding files, processes, registry keys and network ports that could reveal an
intruder’s access to the system. Early rootkits ran entirely in user space and
operated by replacing system utilities such as ls, ps and netstat with versions
modified to hide the activities of an unauthorized user. Later rootkits included
kernel-level code, enabling the attacker to do virtually anything on the target
machine, including directly tampering with control flow and data structures of
the operating system. Today, the boundaries between different classes of malware
have become indistinct; many techniques originally used in rootkits are now
employed in other types of malware, such as bots, worms or Trojan horses. In
this paper, we will use the term rootkit to refer to malware that uses kernel-level
code to carry out its operations.

To inject malicious code into the kernel, the attacker can either use an un-
detected, unpatched kernel exploit, such as a buffer overflow, or – much more
convenient – load and install a device driver. The latter method has the disad-
vantage that it depends on hijacking an administrator account. This is in practice
not much of a problem since most Windows machines are operated with Admin-
istrator privileges out of convenience for the user. While Windows Vista or 7 at
least require the user to confirm administrative actions such as driver loading,
Windows XP provides APIs that allow loading an unsigned driver without any
user interaction. As a result, a rootkit usually comes as a user-mode executable
that loads a device driver, which in turn provides all the powerful functionality.

4

The goal of dAnubis is to provide a human-readable report of a device driver’s
behavior. Note that detection, that is, distinguishing malicious device drivers
from benign ones, is outside the scope of this work. Some behavior, such as
directly patching kernel code, may give a clear indication that a sample is ma-
licious. Many types of suspicious behavior, however, may also be exhibited by
benign code, especially security tools such as antivirus or personal firewall soft-
ware. The reason is that these tools may attempt to “outsmart” malware by
running deep inside the operating system.

dAnubis analyses a driver’s behavior from outside the box, using a Virtual
Machine Introspection (VMI) approach [12, 22]. Our implementation is an exten-
sion of the Anubis malware analysis system, and is based on the Qemu [23] emula-
tor. By instrumenting the emulator, we can monitor the execution of code in the
guest OS, to observe events such as the execution of the malicious driver’s code,
invocation of kernel functions, or access to the guest’s virtual hardware. Fur-
thermore, by instrumenting the emulator’s Memory Management Unit (MMU),
we can observe the manipulation of kernel memory performed by the rootkit.
dAnubis attempts to reconstruct the high level semantics of the observed events.

One focus of our analysis is to monitor all the “legitimate” communication
channels between the rootkit and the rest of the system. That is, all channels
provided by the OS for the driver to interact with the kernel, with other drivers
and with user-space. This includes the invocation of kernel functions as well
as the use of devices to participate in Windows I/O communication and to
receive commands from user-space. Additionally, dAnubis can detect the use
of a number of rootkit techniques such as hooking and runtime patching of
kernel routines, and provide precise information on which routines are patched
or hijacked. Overall, our tool can thus provide a comprehensive picture of the
behavior of malicious kernel code.

3 System Implementation

A major drawback of any VMI-based approach is the loss of semantic informa-
tion about the guest operating system. Instead of objects and well-defined data
structures, only a heap of bytes is visible from the host system’s point of view.
To reconstruct the necessary information we extract all exported symbols and
data structure layouts from the Windows OS as a preliminary step. During anal-
ysis, we utilize guest view casting of the virtual machine memory as proposed
by Jiang et al. [22].

A further problem arises when comparing process-based dynamic analysis,
as it is implemented in Anubis or comparable sandboxes, and driver-aware ap-
proaches. For userland processes, it is sufficient to watch and trace instructions
belonging to the process in question, whose execution context is easily identifi-
able. Kernel-level code, however, can be triggered by multiple means, like inter-
rupts or system calls, thus possibly running in the context of an arbitrary user-
mode process. Therefore, we use the instruction pointer to determine whether
the code being executed belongs to the malicious driver.

5

Analyzers

Driver State
Analyzer

Device Handling
Analyzer

Qemu
Emulator

Virtual System
Introspection

Analysis Coordinator
Manage tracked drivers, forward instruction / memory hooks

Memory Coordinator
Memory access checks

Device Driver Coordinator
(Un)Loading supervision, Instruction hooks

Function Coordinator
System call detection

SSDT Integrity
Analyzer

String Analyzer

DKOM Process
Analyzer

Various function call
analyzers

dAnubis extension

Driver Activity
Analyzer

Register Analyzer DKOM Driver Analyzer

IRP Function Table
AnalyzerKernel Module

Integrity Analyzer

Fig. 1. Architectural overview

Our system consists of two major parts. The Device Driver Coordinator han-
dles device driver-related operations while the Memory Coordinator is respon-
sible for rootkit activity. Specific analysis tasks are carried out by a number of
Analyzers. Figure 1 provides an overview of our system’s architecture.

3.1 Device Driver Analysis

To analyze the behavior of device drivers, we monitor all available interfaces
through which the driver can interact with the rest of the kernel, with other
drivers and with userland processes [24]. The first thing to do in this respect
is intercepting the low-level load- and unload mechanisms. The Windows kernel
objects involved in the loading procedure provide us with import information,
above all the codebase location of the driver, which allows us to track instruc-
tions belonging to the driver. Furthermore, the function addresses of the driver’s
entry routine (comparable to the main function of a normal program), its unload
routine and its I/O dispatch routines can be gathered. Among the latter are the
major functions, a set of well-defined functions a driver has to provide in order
to participate in Windows I/O device communication. Knowing the function ad-
dresses allows us to implement a basic state supervision and relate later analysis
events to the context in which they occurred.

6

Driver communication. The communication endpoint of a driver is the device.
To receive I/O requests, a driver has to create a device and provide the afore-
mentioned major functions to handle the requests. If requests require complex
processing that can be subdivided in different parts, devices can be arranged in
a stack. For example this could be the case for an encrypted file system, where
the encryption is handled by the topmost driver in the stack and actual hard-
ware access by the lowest driver. Driver stacking can be exploited for malicious
purposes. For example, a rootkit may attach to the filesystem device stack to
filter the results of file listings before forwarding them up the stack, while a key-
logger can attach to the keyboard device to monitor all keystrokes. Therefore,
we monitor whether a driver creates or attaches to a device.

Actual communication between devices and user- or kernel-mode code hap-
pens by encapsulating the request parameters in an I/O request packet (IRP)
by the Windows I/O manager, which invokes the corresponding major func-
tion of the topmost driver in the stack. The IRP is then passed down and up
its destined device stack. We intercept calls to attached devices, analyze these
IRPs and watch for completion routines, which are invoked upon completion of
a request, allowing them to filter results. Larger data amounts are not directly
passed within the IRP, rather the way how it can be done – buffered I/O, direct
I/O or neither of them – is specified. We also parse this information and detect
strings in the data to be able to track further references to them during execu-
tion. This is accomplished using dynamic data tainting [25]. Specifically, we use
techniques from [9] to detect the use of these tainted bytes in string comparison
operations. This can in some cases reveal triggers for conditional behavior of the
analyzed binary.

Driver activity. To get a picture of what the driver actually does when one of its
functions is executed, we log calls to all exported Windows kernel functions. We
expect that rootkit developers will not develop everything from scratch but make
use of existing functionality. In our evaluation, we show that this assumption
proves correct for most real-world samples.

We also scan the complete driver image for string occurrences and taint them
to be able to log any subsequent access to such strings. As we will show in the
evaluation, this simple mechanism can in practice reveal trigger conditions in the
malicious code, such as the names of files and processes that are to be hidden.

3.2 Memory Analysis

Taking a look at the “standard” rootkit techniques, one similarity is obvious:
they all somehow tamper with kernel memory. We achieve the goal of detecting
malicious kernel memory manipulation by hooking the memory management
unit (MMU) of Qemu. This allows us to detect write access independently of
the instruction used so that we can put specific memory regions of the guest OS
under supervision and analyse malicious changes.

Since some kernel regions are flagged read-only, rootkits often use memory
descriptor lists (MDLs) to re-map a desired memory region to a new virtual

7

address and bypass write protection. Therefore dAnubis also needs to analyze
MDL usage.

Call table hooking. The first interesting memory region is represented by the
system service dispatch table (SSDT). This table keeps a list of Windows system
call handlers that can be invoked by usermode processes by issuing an interrupt
or using the sysenter instruction. In a healthy system, the called table entry
points to the beginning of the desired service routine. Malicious drivers, however,
can overwrite the SSDT entry to point to arbitrary code. When called, this
code typically forwards the request to the original service function, receives the
response and alters it before passing it to the original caller. Again, this method
provides the possibility to exclude rootkit-related information from queries like
directory listings or process lists.

The same principle applies to hooks of other call tables, such as the major
function dispatch table of device drivers. For incoming IRPs the Windows I/O
manager normally looks up the proper handling routine in this table before
invoking it. Again, the control flow can be re-routed by changing an entry in
this table.

To monitor call table hooking behavior, we watch the complete memory
region where a call table resides. If a manipulation occurs in one of the watched
memory regions, we will know exactly which system service or major function
has been hooked and monitor following calls to the hook.

DKOM. Direct kernel object manipulation (DKOM) modifies important data
objects residing in Windows kernel memory. This way it can alter system be-
havior without changing the control flow. To hide a certain process from the
process list, for example, the EPROCESS structure has to be altered such, that
the forward and backward pointers are directed around the target entry, effec-
tively excluding it. Although this method is more powerful and harder to detect
than hooking, it has its shortcomings. It is, for instance, not feasible to mask a
file from a directory listing this way.

To detect and understand DKOM activity, it is necessary to know the exact
location of the kernel objects as well as their data structure and meaning. In our
current implementation, DKOM detection is limited to the process and driver
lists, that are frequently targeted by rootkits for the purpose of stealth.

Runtime patching. Rootkits can also affect the system by directly patching
existing kernel code in memory. Usually the patch jumps to a detour containing
malicious code and then back again to the original code.

To detect runtime patching, we walk through the PsLoadedModuleList to
get the information on the codebase of the kernel modules and put them under
supervision. On an integrity breach we determine exactly which kernel func-
tion has been patched by matching the patched addresses against information
automatically obtained from the Windows debugging symbols.

Hardware access. In addition to manipulating kernel memory, rootkits can af-
fect the system by directly accessing the underlying hardware. dAnubis monitor-
ing of hardware access is currently limited to detecting writes to the IA32 SYSEN-

8

TER EIP model specific register. This register points to the system service dis-
patcher routine. Making this register point to malicious code places rootkit code
in the execution path of all system calls.

3.3 Stimulation

Rootkit functionality often depends on external stimuli. While the entry routine
may already perform some malicious activity such as hooking or patching, many
types of behavior may only be performed when triggered by specific user be-
havior. Without the required stimuli, such as keyboard events for keyloggers or
process enumeration for process-hiding rootkits, the results of dynamic analysis
are bound to be incomplete.

Our goal is to improve code coverage by simulating user activity with a
stimulation engine placed in the virtual machine. To this end, we implemented
a stimulator that repeatedly issues a number of Windows API calls. For ex-
ample, the stimulator issues the EnumProcesses API call, that lists all cur-
rently running processes, triggering process hiding behavior. Similarly, it is-
sues the RegEnumKeyEx call, revealing register hiding. The FindFirstFile and
FindNextFile API calls are used as well to reveal file hiding behavior. Note that
although the directory we are querying with these calls might not contain files
to be hidden, hook code will nevertheless be executed. To trigger network hid-
ing behavior, the GetUdpTable and GetTcpTable calls are used. Furthermore,
random keypresses and mouse actions are injected to simulate user input.

4 Evaluation

To evaluate our prototype, we first verified its functionality on a set of rootk-
its with known behavior. For this, we chose a representative suite of six well-
known rootkits that employ the popular techniques described in the previous
sections and can be obtained from www.rootkit.com. For each of the six rootk-
its, dAnubis was able to correctly identify its characteristic behavior and present
it in the human-readable report. Table 1 shows which dAnubis components were
involved in providing information on each of the rootkits.

The first sample we selected is TCPIRPHook. This malware modifies the
address of DEVICE CONTROL in the major function table of Tcpip.sys, rerouting
it to a hooking function. This allows the rootkit to hide open network ports.
This hooking behavior was detected by the IRP function table analyzer.

We then selected the HideProcessMDL rootkit as a straightforward exam-
ple of process hiding by SSDT hooking. This rootkit first creates an MDL in order
to gain write access to the SSDT. This is recognized by the memory coordinator,
that can thus apply the mapping upon write access to the watched memory re-
gion. This enables the SSDT integrity analyzer to report the rootkit’s hooking of
NtQuerySystemInformation as soon as the hook is placed. Once the stimulator
queries for the running processes, the driver state analyzer detects the call to the
hooking routine, which in turn invokes the original NtQuerySystemInformation

9

function. Furthermore, The string analyzer reveals that the hooking routine ac-
cesses the string “ root ” indicating the name of the process that is to be hidden.

Klog is a key-logger based on layered filter drivers. During driver initial-
ization it creates a log file and a virtual device, which it uses to attach to the
keyboard device stack. This behavior, along with name and location of the log
file, is revealed by the device handling, driver activity and string analyzer. Upon
stimulation of keystrokes, the device handling analyzer further detects that the
driver Kbdclass is called by Klog and dynamically adds the completion routine
to the state analysis and so execution of the completion routine is subsequently
logged.

Migbot uses run-time patching to modify the kernel functions SeAccessCheck
and NtDeviceIoControlFile. The integrity breach along with the names of the
functions is immediately reported by the kernel integrity analyzer.

The FU rootkit uses DKOM for process and driver hiding. However, it only
performs this hiding function when it receives commands from a user-mode pro-
gram through device communication. To test the DKOM analyzers we manually
ordered FU to hide certain processes and drivers. These manipulations along with
the corresponding filenames were immediately reported by the DKOM analyzers.
Furthermore, the device handling analyzer revealed the string “msdirectx.sys” in
the communication with the user-mode program. This is the name of the driver
we ordered FU to hide.

Finally, we tested the sysenter rootkit to verify that sysenter hooks are
correctly recognized.

Analyzer TCPIRPHook HideProcessMDL Migbot Klog FU sysenter

Device driver coordinator
√ √ √ √ √ √

Memory coordinator -
√

- - - -
Driver state analyzer

√ √ √ √ √ √

Driver activity analyzer
√ √ √ √ √

-
IRP function table analyzer

√
- - - - -

SSDT analyzer -
√

- - - -
String analyzer -

√
-

√ √
-

Integrity analyzer - -
√

- - -
Device handling analyzer - - -

√ √
-

DKOM process analyzer - - - -
√

-
DKOM driver analyzer - - - -

√
-

Register analyzer - - - - -
√

Table 1. dAnubis Testing results

During the analyis of these six rootkits, we also measured the impact of
dAnubis on the performance of the Anubis sandbox. The overhead added by
dAnubis was between 14% and 33%. These results are consistent with our goal of
integrating driver analyis into a large-scale dynamic analysis framework, because
the entire analysis of a malware sample can still be performed in real time, within
the six minute timeslot that Anubis typically allocates to an analysis run. This
is in contrast to some previous systems, such as K-Tracer [18], that need to

10

Driver activity number of samples exhibiting behavior
Device driver loaded 463
Windows kernel functions used 360
Windows device I/O used 339
Strings accessed 300
Kernel code patched 76
Kernel call tables manipulated 37
MDL allocated 34
Kernel object manipulated 3

Table 2. Global analysis statistics

perform a heavyweight analysis of detailed execution traces. For instance, K-
Tracer needed over two hours to analyze the HideProcessMDL rootkit.

4.1 Quantitative results

We used dAnubis to conduct a large-scale study of kernel malware behavior. To
obtain malware samples for this study, we leveraged the analysis results of the
existing Anubis system. We first considered 64733 malware samples successfully
analysed by Anubis in the month of August 2009. Among those, we selected
the 463 samples (0.72%) that loaded a device driver during Anubis analysis.
More precisely, we selected samples that performed the NtLoadDeviceDriver
system call. We then repeated the analysis of these samples using dAnubis. Note
that some malware may use different mechanisms to load kernel code, such as
the undocumented NtSetSystemInformation system call. Therefore, the actual
number of rootkit samples in the dataset may have been higher than 463. While
dAnubis is capable of correctly analysing rootkits loaded using such methods,
the legacy Anubis system does not detect and log this behavior.

All samples were automatically processed by our implementation and cor-
rectly recognized as drivers. For each test run, we defined a timeout of six min-
utes, during which the driver had time to carry out its operations. During the
entire analysis stimuli where provided by our stimulation engine. Table 2 shows
which high-level activity of the samples could be observed by dAnubis. Three
quarters of the samples performed device I/O activity. Among the typical rootkit
techniques, MDL-enabled call table hooks and runtime patching seem to be very
popular compared to DKOM.

Table 3 shows an overview of device-related activity. The majority of the
samples – 339 – created at least one device. In 110 cases the device was actively
used for communication by a user mode program: It was at least opened, as
indicated by the calls to the CREATE major function. Out of these, 86 samples
carried out further communication using the device control interface. In the data
buffers passed along with the IRPs, meaningful communication strings could be
found in 24 cases (an example is shown in Table 7). Only two samples attached to
a device stack and registered completion routines. These results allow us to draw
the conclusion that devices are primarily used for communication with user mode

11

Device activity number of samples
Device created 339
Driver’s device accessed from user mode 110
Strings detected during communication 24
Attaches to device stack 2
Registers completion routine 2

Table 3. Device analysis statistics

SSDT hook runtime patching DKOM IRP hook Filter driver total
Registry 5 45 0 0 0 50
File 8 2 0 0 2 12
Process 3 2 3 0 0 8
Driver 0 0 3 0 0 3
Network port 5 0 0 1 0 6

Table 4. Hiding statistics: subject vs. technique

programs whereas hijacking device stacks seems to be far less popular. However,
a significant amount of samples – 229 – register a device, but this device is never
put to any use during the entire analysis run. The most likely explaination for
this discrepancy is that the associated executables are merely launchers for the
drivers, that in turn wait for further commands to be manually issued by the
human attacker. This is the case of the FU rootkit we previously discussed. This
means that some of the malicious functionality of these rootkits lies dormant,
waiting for activation, and is therefore not covered by the dynamic analysis. This
result highlights the need for further research in rootkit analysis. Future analysis
systems might be able to automatically trigger rootkits’ dormant functionality,
although the problem of finding trigger conditions in arbitary code cannot be
solved in general [26].

Overall, only 15% percent of the samples carried out rootkit activities. Table
4 shows the amount of samples that provided stealth broken down by the tech-
niques employed as well as the type of object being hidden. Clearly, call table
hooking and runtime patching are the more widespread techniques: only three
samples used DKOM for process hiding. The same samples also used DKOM to
hide their device drivers from the list of kernel modules.

Of the 19 samples that employed SSDT hooking, most hooked more than
one system call. Table 5 shows the most popular system calls hooked. The idea
that rootkits strive to provide stealth is confirmed by the fact that the sys-
tem calls to list files, registry keys and processes are clearly favored by the
attackers. In addition to stealth, another common goal of rootkits is to disable
antivirus protection. Samples hooking the NtCreateProcessEx use this to pre-
vent the launch of anti-malware programs. IRP function table hooks were only
employed by one sample, that hooked the DEVICE CONTROL major function of
Tcpip.sys. Rerouting the device control interface, that is the main communica-

12

tion access point to the driver, allows this rootkit to hide open network ports.
A less subtle method of hijacking the device control interface is to directly hook
the NtDeviceIoControlFile system call. This technique is used by five sam-
ples, also for the purpose of port hiding. None of the samples used sysenter
hooks. The StringAnalyzer, that was mainly introduced to reveal trigger con-
ditions, shows its full potential with SSDT hooks. For example in more than
half of the cases where NtQueryDirectoryFile or NtQuerySystemInformation
has been hooked, the filenames to be hidden showed up in the analysis. This
also demonstrates the importance of event stimulation and the effectiveness of
our stimulation engine, as the strings were mainly detected during execution of
hooking routines that would not have been called without stimulation.

System service samples
NtQueryDirectoryFile 8
NtCreateProcessEx 8

NtDeviceIoControlFile 5
NtEnumerateKey 3

NtQuerySystemInformation 3
NtEnumerateValueKey 2

NtOpenKey 2
NtClose 1

NtCreateKey 1
NtSetInformationFile 1

NtSystemDebugControl 1
NtOpenProcess 1
NtOpenThread 1
NtCreateFile 1

NtOpenIoCompletion 1
NtSetValueKey 1

NtDeleteValueKey 1
NtMapViewOfSection 1

Table 5. Hooked system calls

About ten percent of the samples used runtime patching. In these cases
dAnubis took advantage of kernel debugging symbols to automatically identify
the patched kernel functions.

Table 6 shows that, as is the case for SSDT hooks, functions that take part
in processing file, process and registry key queries are among the most popular
kernel functions to be manipulated. The pIofCallDriver pointer points to the
low-level kernel code implementation that invokes the major functions of a driver.
Rerouting its control flow allows a rootkit to intercept and manipulate IRPs. The
KiFastCallEntry function is the default handler of the sysenter instruction.
By patching this function, a rootkit inserts malicious code into the code path of
every system call. In this case the automatic analysis cannot tell us what types
of objects are actually being hidden by this rootkit.

13

Kernel function samples
NtQueryValueKey 42

NtSetValueKey 2
PsActiveProcessHead 2

NtEnumerateKey 1
IoCreateFile 1

NtQueryDirectoryFile 1
NtOpenKey 1
NtCreateKey 1
pIofCallDriver 1

KiFastCallEntry 1
ObReferenceObjectByHandle 1

KiDoubleFaultStack 1

Table 6. Patched kernel functions

4.2 Qualitative results

To provide a clearer picture of the types of behavior that can be revealed by the
analysis of a kernel malware sample using dAnubis, we selected three interesting
samples out of the dataset discussed in the previous section. For matters of space
and readability the relevant information from the reports has been condensed
into tables.

In Table 7 a selection of analysis results of Sample A are shown. This rootkit
hooks various system calls, among them functions suitable for file and registry
key hiding. Process hiding is performed using DKOM. As the hooking functions
are very similarly structured, the hook of NtEnumerateKey has been chosen
as an example. After calling the original function it queries an object and its
name. It then performs some string operations, which is usually necessary for
filtering information. Furthermore, in the course of the driver’s entry function
a device is created. This device is then used for user mode communication:
DEVICE CONTROL is called from user mode several times and both a registry
key and a file name could be intercepted, that the driver is presumably ordered
to hide. DEVICE CONTROL itself looks up objects according to their name or
ID using ObReferenceObjectByName and PsLookupProcessByProcessId – again
an indication that these objects are to be hidden.

In Table 8 selected analysis results of Sample B are shown. During driver
entry, this sample creates a named device (FILEMON701) for communication
with user mode. This device is then used to issue commands to the driver via
FastIoDeviceControl to install filter drivers for sr.sys and mrxsmb.sys. To this
end, two unnamed devices are created and attached to the associated device
stacks.

The sr.sys driver is the Windows restore filesystem filter driver, that tracks
and copies system files before changes. The mrxsmb.sys is the Windows SMB
Redirector, a filesystem driver that provides access to remote folders shared over
the SMB/CIFS protocol. Our stimulation engine, however, does not perform
operations on network shares, nor does it modify system files. Therefore, during

14

Driver name syssrv
Created devices \Device\MyDriver
Rootkit activity NtOpenProcess hooked SSDT Hook

NtOpenThread hooked SSDT Hook
NtCreateFile hooked SSDT Hook
NtOpenIoCompletion hooked SSDT Hook
NtQueryDirectoryFile hooked SSDT Hook
NtOpenKey hooked SSDT Hook
NtEnumerateKey hooked SSDT Hook
NtEnumerateValueKey hooked SSDT Hook
NtSetValueKey hooked SSDT Hook
NtDeleteValueKey hooked SSDT Hook
svchost.exe hidden DKOM process hiding
ntoskrnl.exe: PsActiveProcessHead Runtime patching

Invoked major functions CREATE called 5x from user mode
DEVICE CONTROL called 5x from user mode
CLOSE called 5x from kernel mode

Detected strings syssrv in DEVICE CONTROL IRP
\Device\HarddiskVolume1 in DEVICE CONTROL IRP
\WINDOWS\system32\mssrv32.exe
SOFTWARE\Microsoft\Windows in DEVICE CONTROL IRP
\CurrentVersion\Run\mssrv32
\Device\%s during entry
MyDriver during entry

Used kernel functions IoCreateDevice during entry
KeInitializeMutex during entry
ObReferenceObjectByName during DEVICE CONTROL
ObReferenceObjectByHandle during DEVICE CONTROL
ObQueryNameString during DEVICE CONTROL
KeWaitForSingleObject during DEVICE CONTROL
KeReleaseMutex during DEVICE CONTROL
PsLookupProcessByProcessId during DEVICE CONTROL
NtEnumerateKey during NtEnumerateKey Hook
ObReferenceObjectByHandle during NtEnumerateKey Hook
ObQueryNameString during NtEnumerateKey Hook
wcslen, wcscpy, wcscat during NtEnumerateKey Hook
KeWaitForSingleObject during NtEnumerateKey Hook
KeReleaseMutex during NtEnumerateKey Hook

Table 7. Analysis report, Sample A

15

anlysis we only observed interception of QUERY VOLUME INFORMATION of sr.sys,
that is used to query free disk space or file types. This highlights the challenge of
implementing a stimulation engine that is capable of activating all hooks inserted
by a rootkit. Note that generic hook-detection tecniques such as Hookfinder [17]
and KTracer [18] cannot detect hooks that are never activated.

The Windows system restore functionality can be used to perform a system
rollback based on the information gathered by the sr.sys driver. By attaching to
sr.sys, the rootkit can prevent system restore from obtaining the necesary infor-
mation on system file changes and ensure that the rootkit will not be removed
by a rollback. The device name and symbols included in the rootkit’s executable
suggest that the publicly available sources of the Filemon tool [27] were used as
a basis for this rootkit.

Driver name FILEMON701
Created devices \Device\Filemon701

unnamed device 1
unnamed device 2

Attached to devices sr
MRxSmb

Completion routine QUERY VOLUME INFORMATION for device ”sr”
Invoked I/O functions CREATE from user mode

QUERY VOLUME INFORMATION from kernel mode
CLEANUP from kernel mode
CLOSE from kernel mode
READ from kernel mode
FastIoDeviceControl

Used kernel functions IoCreateDevice during entry
IoCreateSymbolicLink during entry
IoGetCurrentProcess during entry
ZwCreateFile during FastIoDeviceControl
IoCreateDevice during FastIoDeviceControl
IoAttachDeviceByPointer during FastIoDeviceControl

Table 8. Analysis report, Sample B

Sample C performs SSDT hooking on the NtQueryDirectoryFile and NtEn-
umerateValueKey system calls to provide stealth. Furthermore, this sample calls
the PsSetLoadImageNotifyRoutine to receive a callback whenever a process or
driver image is loaded. The sting analyzer reveals that this callback accesses a
number of strings hardcoded in the rootkit image, that are shown in Table 9.
These strings are clearly filenames, most of them related to antivirus software
or other security tools. The most logical explanation for these observations is
that the rootkit uses this technique to interfere with the loading and execution
of anti-malware programs. Manual analysis confirms that the callback uses the
ZwTerminateProcess function to kill these processes. We could not directly
observe this behavior during analysis because none of the listed processes are
executed in our analysis environment. This attack on security software highlights
the need for a secure execution context for analysis software. The watchdog.sys

16

vsdatant.sys watchdog.sys zclient.exe bcfilter.sys bcftdi.sys
bc hassh f.sys bc ip f.sys bc ngn.sys bc pat f.sys bc prt f.sys
bc tdi f.sys filtnt.sys sandbox.sys mpfirewall.sys msssrv.exe
mcshield.exe fsbl.exe avz.exe avp.exe avpm.exe
kavsvc.exe klswd.exe ccapp.exe ccevtmgr.exe ccpxysvc.exe
issvc.exe rtvscan.exe savscan.exe bdss.exe bdmcon.exe
cclaw.exe fsav32.exe fsm32.exe gcasserv.exe icmon.exe
nod32krn.exe nod32ra.exe pavfnsvr.exe kav.exe kavss.exe
inetupd.exe livesrv.exe iao.exe Windows-KB890830-V1.32.exe

Table 9. Processes targeted by Sample C

file that is among those targeted by the rootkit is a driver that is also used by
CWSandbox [7], a malware analysis system that is not based on VMI but on
in-the-box monitoring using a kernel driver.

5 Related work

In this section we will discuss related research in the area of detection and
analysis of malicious kernel code.
Integrity checking. In [14] the authors implement a tamper-resistant rootkit
detector for Linux systems that uses VMI. To detect runtime patching, this
system verifies the integrity of the kernel by hashing portions of clean memory
considered critical and regularly comparing the hashes with their up-to-date
counterparts. A limitation of this approach lies in the need to balance security
with performance in selecting how often to perform hashing. In any case, such a
system cannot guarantee that no injected code will ever be executed. To protect
kernel code, an improved solution is offered by Nickle [15]. Nickle instruments the
memory management unit of an emulator to redirect code fetches performed in
kernel mode to a protected memory region. This way, it can detect code injected
into the kernel as soon as its first instruction is executed.
Cross-view detection. Hiding an intruder’s presence on a compromised system
is a widespread goal of rootkits. This very behavior, however, can be exploited
to detect kernel compromise. For this, cross-view detection approaches [12, 28]
compare system information obtained from a high-level abstract view, e.g. the
Windows API, with information extracted from a lower level view, in order to
reveal hiding. [14] uses a cross-view approach to detect process, kernel module
and network port hiding. To detect process hiding, the authors of [29] use Ant-
farm [30] to determine implicit process information, without prior knowledge of
the monitored guest’s OS. They then perform cross-view comparison, detect-
ing process hiding. While OS-independence is an attractive advantage of this
approach, the technique employed cannot be easily extended to other types of
stealth behavior. A drawback of cross-view is that it can detect the fact that
something has been hidden, but cannot provide any information on how this has
been done. Moreover, for information arranged in more complex data structures
cross-view soon becomes impractical. For example, it can only detect file hiding
if the contents of every directory on the system are compared.

17

Hooking detection. Hooking is another characteristic aspect of rootkit behav-
ior that can be exploited for detection purposes. In [16], the authors present
Hookmap, a system that can systematically discover possible hooking points in
the execution path of system calls, enabling detection of rootkits that use these
hooking points. Hookfinder [17] uses dynamic taint propagation to monitor the
impact of a rootkit on the kernel. It detects a hook when a tainted value is loaded
to the instruction pointer. In [18], the authors introduce k-tracer, a system that
performs a sophisticated analysis of malware hooking behavior. For this, k-tracer
first records an execution trace for a system call, reaching from the sysenter
to the sysexit instruction. Then, an offline analysis is applied to the trace, by
performing forward slicing to identify read access and backward slicing to reveal
manipulation of sensitive data. This approach is however not compatible with
our performance requirements for large-scale malware analysis, since k-tracer
may require hours to analyze a single rootkit.
Rootkit analysis. Closely related to dAnubis is recent work on the dynamic
analysis of rootkit behavior. In [31], the authors present rkprofiler, a system
for the analysis of Windows kernel malware that is also based on VMI using
Qemu. This system can reveal which system calls have had their execution paths
modified to include injected code. Both [31] and [19] address the problem of
understanding the semantics of rootkit modifications to dynamically allocated
kernel memory. For this, they introduce techniques to recursively infer the type
of an object in memory based on the type of the pointers that are used to
access it, starting from the known structure of static kernel objects and function
parameters.

6 Limitations

Our evaluation demonstrates that dAnubis can provide a substantial amount of
information on malicious drivers. Nonetheless, our system suffers from a number
of limitations.
Rootkit detection. To be able to analyze a rootkit’s behavior, dAnubis must
first detect the rootkit’s presence in the analysed system. That is, it must be
aware that extraneous code has been inserted into kernel space. For this, dAnubis
relies on hooking system calls used for loading drivers. Therefore, we are unable
to analyse rootkits injected through kernel or device driver exploits. This is a de-
sign choice, because it allows most dAnubis instrumentation to remain disabled
until a driver is loaded, improving performance on the majority of analysed sam-
ples that do not load a driver. At the cost of some performance, this limitation
could be addressed by integrating techniques from [15], that can reliably detect
the execution of injected code. The detection of return-oriented rootkits [32],
however, remains an open problem, since these rootkits do not inject any code
into kernel space.
Dynamic analysis coverage. A general limitation of dynamic approaches to
code analysis is that only code that is actually executed can be analyzed. In order
to cover as many code paths as possible, we strive to stimulate typical rootkit
functionality. Behavior that is triggered by benign user activity can be emulated
to a certain extent by our stimulator. However, our large scale study has shown

18

that many samples waits for commands to be issued from userspace through
a device interface and never receive any such commands during analysis. The
rootkit behavior associated with these commands is therefore not covered by our
analysis. Related work in this field [19, 18, 31] does not specifically address this
issue. Future research in rootkit analysis could attempt to design a stimulator
capable of automatically issuing valid commands to malicious device drivers.

Related to the problem of coverage is the issue of detection of virtual environ-
ments and of analysis environments in general. If malware can detect our analysis
environment it can thwart analyis by simply refusing to run. Unfortunately, im-
plementing an undetectable virtual environment is infeasable in practice [33],
although attackers may be reluctant to make their malware not function on
widely deployed virtual environments. Defeating VM detection is largely a re-
active, manual process. However, recent research [34, 35] has shown that it may
be possible to automatically detect previously unknown virtualization detection
techniques.
Event attribution. In order to differentiate between legitimate and malicious
actions, the origin of these actions has to be determined. To attribute a write
access to a monitored driver we take the program counter of the instruction that
carried out the manipulation and compare it with the codebase of the driver.
While this technique works in practice, it can easily be fooled if the malicious
driver uses a legitimate kernel function to manipulate the desired memory region.
[36] introduces secure control attribution techniques based on taint tracking to
tackle a similar problem in the context of (malicious) shared-memory browser
extensions. Since Anubis provides tainting support, these techniques could also
be adapted for integration in dAnubis.

7 Conclusions

The analysis of malicious code faces additional challenges when the code to
be analyzed executes in kernel space. In this work, we discussed the design
and implementation of dAnubis, a system for the dynamic analysis of Windows
kernel malware. dAnubis can provide a comprehensive picture of a device driver’s
behavior and its interaction with the operating system, with other drivers and
with userland processes.

We used dAnubis to conduct a large-scale study of kernel malware behav-
ior that provides novel insight into current kernel-level threats. In this study,
we analysed more than 400 recent rootkit samples to reveal the techniques em-
ployed to subvert the Windows kernel and, in most cases, the nefarious goals
attained with these techniques. These results demonstrate that dAnubis can be
an effective tool for security researchers and practitioners. We therefore plan to
make it publicly available as part of the Anubis malware analysis service.

Acknowledgments

This work has been partially supported by the European Commission through
project ICT-216026-WOMBAT funded under the 7th framework program.

19

References

1. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: Insights into cur-
rent malware behavior. In: 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET). (2009)

2. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automat-
ing the hidden-code extraction of unpack-executing malware. In: 22nd Annual
Computer Security Applications Conf. (ACSAC). (2006)

3. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: ACM Workshop on Recurring malcode (WORM). (2007)

4. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies. (WOOT). (2009)

5. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection
. In: 23rd Annual Computer Security Applications Conference (ACSAC). (2007)

6. Bayer, U.: Ttanalyze a tool for analyzing malware. Master’s thesis, Vienna Uni-
versity of Technology (2005)

7. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 2(2007) (5)

8. Bailey, M., Oberheide, J., Andersen, J., Mao, Z., Jahanian, F., Nazario, J.: Auto-
mated Classification and Analysis of Internet Malware. In: Symposium on Recent
Advances in Intrusion Detection (RAID). (2007)

9. Bayer, U., Milani Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
Behavior-Based Malware Clustering. In: Network and Distributed System Security
Symposium (NDSS). (2009)

10. Rieck, K., Holz, T., Willems, C., Duessel, P., Laskov, P.: Learning and classification
of malware behavior. In: Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). (2008)

11. Jacob, G., Debar, H., Filiol, E.: Malware behavioral detection by attribute-
automata using abstraction from platform and language. In: Recent Advances
in Intrusion Detection (RAID). (2009)

12. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Network and Distributed Systems Security Symposium
(NDSS). (2003)

13. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: ACM conference on Computer and communications security
(CCS). (2009)

14. Quynh, N.A., Takefuji, Y.: Towards a tamper-resistant kernel rootkit detector. In:
SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing, ACM
(2007) 276–283

15. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In: RAID ’08: Proceedings of the 11th interna-
tional symposium on Recent Advances in Intrusion Detection, Berlin, Heidelberg,
Springer-Verlag (2008) 1–20

16. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering persistent kernel rootkits
through systematic hook discovery. In: Recent Advances in Intrusion Detection
(RAID). (2008)

17. Yin, H., Liang, Z., Song, D.: Hookfinder: Identifying and understanding malware
hooking behaviors. In: Network and Distributed Systems Security Symposium
(NDSS). (2008)

18. Lanzi, A., Sharif, M., Lee, W.: K-tracer: A system for extracting kernel malware
behavior. In: Proceedings of the 16th Annual Network and Distributed System
Security Symposium. (2009)

20

19. Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior.
In: EuroSys ’09: Proceedings of the 4th ACM European conference on Computer
systems, New York, NY, USA, ACM (2009) 47–60

20. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
Journal in Computer Virology 2(1) (2006) 67–77

21. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional (2005)

22. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security. (2007)

23. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
annual conference on USENIX Annual Technical Conference, USENIX Association
(2005) 41–41

24. Orwick, P., Smith, G.: Developing Drivers with the Microsoft Windows Driver
Foundation. Microsoft Press (2007)

25. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Network and
Distributed Systems Security Symposium (NDSS). (2005)

26. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using con-
ditional code obfuscation. In: Network and Distributed System Security (NDSS).
(2008)

27. Russinovich, M.: Filemon. (2010) http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx.

28. Beck, D., Vo, B., Verbowski, C.: Detecting stealth software with strider ghost-
buster. In: Proceedings of the 2005 International Conference on Dependable Sys-
tems and Networks. (2005) 368–377

29. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Vmm-based hidden
process detection and identification using lycosid. In: VEE ’08: Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ACM (2007) 91–100

30. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking pro-
cesses in a virtual machine environment. In: ATEC ’06: Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference. (2006)

31. Xuan, C., Copeland, J., Beyah, R.: Toward revealing kernel malware behavior in
virtual execution environments. In: Proceedings of the 12th International Sympo-
sium on Recent Advances in Intrusion Detection. (2009)

32. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium. (2009)

33. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: Vmm detection myths and realities. In: Proceedings of the 11th Workshop
on Hot Topics in Operating Systems. (2007)

34. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How to
automatically generate procedures to detect CPU emulators. In: USENIX Work-
shop on Offensive Technologies (WOOT). (2009)

35. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security (NDSS). (2010)

36. Saxena, P., Sekar, R., Iyer, M.R., Puranik, V.: A practical technique for con-
tainment of untrusted plug-ins. Technical Report SECLAB08-01, Stony Brook
University (2008)

