
A Model for When Disclosure Helps Security:
What Is Different About Computer and Network Security?

Peter Swire

Forthcoming, Journal on Telecommunications and High Technology Law (vol. 2, 2004)

Public Law and Legal Theory

Working Paper Series

No. 17

Center for Law, Policy and Social Science
Working Paper Series

No. 12

This paper can be downloaded without charge from the

Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=531782

July 17, 2004

“A Model for When Disclosure Helps Security: What Is Different
About Computer and Network Security?”

Peter P. Swire∗

TABLE OF CONTENTS

 Page

Introduction 2

I. A Model for When Disclosure Helps Security 4

A. Case A: The Open Source Paradigm 5
B. Case B: The Military Paradigm 6
C. Case C: The Information Sharing Paradigm 8
D. Case D: The Public Domain 9
E. The 2x2 Matrix for When Disclosure Improves Security 10

II. The Key Reasons Computer and Network Security May Vary From

Other Security Problems 11
A. Hiddenness and the First-Time Attack 11
B. Uniqueness of the Defense 14
C. Why Low Uniqueness May Be Common for Computer and

Network Security 14
 1. Firewalls 14

 2. Mass-market Software and Computer Games 16
3. Encryption 17

III. Relaxing the Open Source Assumptions – Computer and Network

Security in the Real World 20
A. The Assumption that Disclosure Will Not Help the Attackers 20

∗ Professor of Law and John Glenn Research Scholar in Public Policy Research, Moritz College of Law of
the Ohio State University. Many people from diverse disciplines have contributed to my thinking on the
topic of this paper. An earlier version of the project, entitled “What Should Be Hidden and Open in
Computer Security: Lessons from Deception, the Art of War, Law, and Economic Theory,” was presented
in 2001 at the Telecommunications Policy Research Conference, the Brookings Institution, and the George
Washington University Law School, available at www.peterswire.net. I am also grateful for comments
from participants more recently when this topic was presented at the Stanford Law School, the University
of North Carolina Law School, and the Silicon Flatirons Conference at the University of Colorado School
of Law. Earlier phases of the research were supported by the Moritz College of Law and the George
Washington University Law School. Current research is funded by an award from the John Glenn Institute
for Public Service & Public Policy.

1. The Enlargement of the Public Domain in a World of
Search Engines 21

 2. Deterrence as a Result of Disclosure 22
3. Don’t Disclose Private Keys, Passwords, or Combinations

to a Safe 23
4. Why Secret Surveillance May Improve Security 24
5. When Do Attackers Already Know of the Vulnerability? 26

a. Discovering and Exploiting Vulnerabilities 27
b. The Analogy Between Exploiting Vulnerabilities and

 the Efficient Capital Markets Hypothesis 28
B. The Assumption that Disclosure Will Tend to Improve the Design

of Defenses 29
1. Variables that Affect When Open Source or Proprietary

Software May Provide Better Security 29
a. Expertise of Inside and Outside Programmers 29
b. The Incentives to Improve the Defense 30
c. Persistence of the Expertise 30
d. The Institutional Context for Patching 31
e. Interoperability and Openness 31

2. The Role of Disclosure in Creating Long-Run
Security and Assuming Accountability 31

 C. The Assumption that Disclosure Will Spread Effective Defense
 To Others 33

IV. Conclusion: Security, Privacy, and Accountability 34

Introduction

 This Article asks the question: “When does disclosure actually help security?”
The question of optimal openness has become newly important as the Internet and related
technologies have made it seem inevitable that information will leak out. Sun
Microsystems CEO Scott McNealy received considerable press attention a few years ago
when he said: “You have zero privacy. Get over it.”1 An equivalent statement for
security would be to say: “You have zero secrecy. Get over it.” Although there is a germ
of truth in both statements, neither privacy nor secrecy is or should be dead. Instead, this
Article seeks to provide a more thorough theoretical basis for assessing how disclosure of
information will affect security. In particular, this Article seeks to understand what is
different between traditional security practices in the physical world, on the one hand,
and best practices for computer and network security, on the other.

 The discussion begins with a paradox. Most experts in computer and network
security are familiar with the slogan that “there is no security through obscurity.”2 For

1 A. Michael Froomkin, “The Death of Privacy,” 52 Stanf. L. Rev. 1461, 1462 (2000).
2 A search on Google for “security obscurity” discovered 101,000 web sites with those terms. Reading
through the web sites show that a great many of them discuss some version of “there is no security through
obscurity.”

 2

proponents of Open Source software,3 revealing the details of the system will actually
tend to improve security, notably due to peer review. On this view, trying to hide the
details of the system will tend to harm security because attackers will learn about
vulnerabilities but defenders will not know where to patch the vulnerabilities. In sharp
contrast, a famous World War II slogan says “loose lips sink ships.”4 Most experts in the
military and intelligence areas believe that secrecy is a critical tool for maintaining
security.

 Part I of the Article provides a basic model for deciding when the Open Source
and military/intelligence viewpoints are likely to be correct. Insights come from a 2x2
matrix. The first variable is the extent to which disclosure is likely to help the attackers,
by tipping off a vulnerability the attackers would otherwise not have seen. The second
variable is the extent to which the disclosure is likely to improve the defense. Disclosure
might help the defense, notably, by teaching defenders how to fix a vulnerability and by
alerting more defenders to the problem. The 2x2 matrix shows the interplay of the help-
the-attacker effect and help-the-defender effect, identifying four basic paradigms for the
effects of disclosure on security: the Open Source paradigm; the Military/Intelligence
paradigm; the Information Sharing paradigm; and the Public Domain.

 Part II provides an explanation of why many computer and network security
issues are different from military and other traditional security problems of the physical
world. The discussion focuses on the nature of the “first-time attack” or the degree of
what the paper calls “uniqueness” in the defense. Many defensive tricks, including
secrecy, are more effective the first time there is an attack on a physical base or computer
system. Secrecy is far less effective, however, if the attackers can probe the defenses
repeatedly and learn from those probes. It turns out that many of the key areas of
computer security involve circumstances where there can be repeated, low-cost attacks.
For instance, firewalls, mass-market software, and encryption algorithms all can be

3 Wikipedia, an on-line encyclopedia that uses Open Source approaches, defines “open source” as “a work
methodology that fits the Open Source Definition, and generally is any computer software whose source
code is either in the public domain or, more commonly, is copyrighted by one or more persons/entities and
distributed under an open-source license such as the GNU General Public License (GPL). Such a license
may require that the source code be distributed along with the software, and that the source code be freely
modifiable, with at most minor restrictions.” http://en.wikipedia.org/wiki/Open_source (last visited July
16, 2004).
 Wikipedia states: “Source code (commonly just source or code) refers to any series of statements
written in some human-readable computer programming language. In modern programming languages, the
source code which constitutes a software program is usually in several text files, but the same source code
may be printed in a book or recorded on tape (usually without a filesystem). The term is typically used in
the context of a particular piece of computer software. A computer program's source code is the collection
of files that can be converted from human-readable form to an equivalent computer-executable form. The
source code is either converted into executable by an software development tool for a particular computer
architecture, or executed from the human readable form with the aid of an interpreter.”
http://en.wikipedia.org/wiki/Source_code (last visited July 16, 2004).
4 For images of World War II posters on the subject, see http://www.state.nh.us/ww2/loose.html. The
posters tell vivid stories. One poster has a picture of a woman and the words “Wanted for Murder: Her
Careless Talk Costs Lives”. Another shows a sailor carrying his kit, with the words “If You Tell Where
He’s Going … He May Never Get There”.

 3

http://en.wikipedia.org/wiki/Open_Source_Definition
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Public_domain
http://en.wikipedia.org/wiki/Copyright
http://en.wikipedia.org/wiki/Open-source_license
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Human-readable
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Text_file
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Software_development_tool
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Interpreter_%28computer_software%29
http://en.wikipedia.org/wiki/Source_code
http://www.state.nh.us/ww2/loose.html

attacked repeatedly by hackers. Under such circumstances, a strategy of secrecy – of
“security through obscurity” – is less likely to be effective than for the military case.

 Even recognizing the lower effectiveness of secrecy in many computer and
network applications, there will still often be advantages of secrecy in practice. Part III
relaxes the assumptions of the model presented in Part I. The Open Source approach
makes three assumptions: (1) disclosure will offer little or no help to attackers; (2)
disclosure will tend to upgrade the design of defenses; and (3) disclosure will spread
effective defenses to third parties. In practice, secrecy will often be of greater use than
the Open Source advocates have stated, because one or more of the three assumptions
will not hold. Part III explains some of the major categories of situations where secrecy
is likely to be more or less effective at promoting security.

 The chief intellectual task of this Article is to help us think about when disclosure
will help or harm security. There are other major considerations that go into an informed
judgment about whether to disclose information about a security vulnerability. For
instance, it may promote accountability and the long-run health of the system to err on
the side of disclosure. This instinct underlies the Freedom of Information Act5 and many
other laws and practices encouraging disclosure. As another example, disclosure can
compromise personal privacy in some circumstances. Accountability and privacy are
vital goals in the overall analysis of when to disclose information. Discussion of those
goals figures prominently in my larger research project on openness and security. In this
Article, however, the focus is on when disclosure will help the specific goal of system
security: when will disclosure protect against the attacker gaining control of a physical
installation or computer system.

I. A Model for When Disclosure Helps Security

 When does disclosure help security? The intuition for experts in the military and
intelligence realms is usually that secrecy (the lack of disclosure) is an essential tool for
enhancing security. Military bases and weapon systems are cloaked in secrecy.
Intelligence agencies tell little about their capabilities, sources, and methods. The slogan
for this position is the World War II motto that “loose lips sink ships.” The graphic
image is that too much disclosure (‘loose lips”) will tip off the enemy where to send its
submarines (“sink ships”).6 In such instances, disclosure can be tantamount to treason.

5 See 5 U.S.C. § 552, as amended by Pub. L. No. 104-231, 110 Stat. 3048 (1996).
6 See supra note 3.

 4

 A. Case A: The Open Source Paradigm.

 Despite the World War II intuition, a pervasive theme of many computer security
discussions is that “there is no security through obscurity.”7 For people outside of the
computer security realm, it may initially be difficultto understand how that slogan has
become a truism. Based on research and discussions with computer security researchers,
there seem to be three assumptions, often implicit, that undergird the slogan. In
considering whether to disclose a vulnerability, supporters of openness seem to assume
the following:

(A1) Attackers will learn little or nothing from the disclosure.
(A2) Disclosure will prompt the designers to improve the design of
defenses.
(A3) Disclosure will prompt other defenders to take action.

 The discussion below in Parts II and III will develop in more detail the intuitions
that underlie these three assumptions. It will also critically examine each assumption.
For the present, however, the basic idea for assumption (A1) is that software and network
vulnerabilities, once discovered by any attacker, will often quickly become known to
other attackers. For instance “warez” sites and other mechanisms exist to teach hackers
about new attacks.8 Public disclosure of a vulnerability will thus not significantly help
attackers exploit the vulnerability.

 The basic idea for assumption (A2) is a deeply-held tenet in the Open Source
movement. The idea is that software will improve quickly if a wide array of
programmers can see the code, find flaws in it, and fix those flaws. In the words of
researchers Randy Bush and Steven Bellovin: “Hiding security vulnerabilities in
algorithms, software, and/or hardware decreases the likelihood they will be repaired.”9

 The basic idea for assumption (A3) is that many people may be affected by a
vulnerability other than the software or system designers. For a software program, for
instance, assumption (A2) is directed at the group of programmers who may write new
code to improve the software. There are likely many system owners, however, who use
the software program but are not involved in writing it. Assumption (A3) focuses on how
disclosure of a vulnerability can improve the security of these system owners. System
owners who learn of the vulnerability can install a patch or upgrade once it is available.

7 See supra note 2. The origin of the slogan “there is no security through obscurity” is obscure. I would
welcome information on who coined the term. It was certainly used by the early 1990’s. See, e.g.,
Netware Users React to Security Threat, Internet Week, 2 (Oct. 5, 1992) (Rop Gonggrijp refers to “security
through obscurity” as a policy used by Novell).
8 E.g., http://easywarez.com; http://ICEWAREZ.net (examples of “warez” sites that provide downloads of
software illegally, including software that can be used for hacking purposes).
9 E.g., Randy Bush & Steven M. Bellovin, “Security Through Obscurity Dangerous,” Aug. 21, 2002
(Working Draft for Internet Engineering Task Force), available at https://rip.psg.com/~randy/draft-ymbk-
obscurity-01.html.

 5

http://easywarez.com/
http://icewarez.net/

If a patch10 is not yet available, the system owner can decide to take other measures, such
as taking a system off-line or disabling the software, until a defense does become
available.

 Effects of Assumptions (A1), (A2), and (A3): In the Open Source paradigm,
the costs of disclosure of a vulnerability are low because attackers learn little or
nothing from the disclosure. The benefits of disclosure are high because of
improved system design and actions taken by non-designers to protect their systems.

 B. Case B: The Military Paradigm.

 The assumptions in the military setting are directly contrary to the Open Source
paradigm:

 (B1) Attackers will learn a lot from disclosure of a vulnerability.
 (B2) Disclosure will teach the designers little or nothing about how to
improve the defenses.
 (B3) Disclosure will prompt little or no improvement in defense by other
defenders.

 The intuition for assumption (B1) is that it is difficult in a military setting for the
attackers to learn about a vulnerability. Consider a hill that is being defended by mines
or camouflaged machine guns. Should the defenders publish the location of the defenses
on the Internet? The answer clearly is no. It will be difficult and costly for the attackers
to learn those locations and to determine the least-defended path up the hill. Colloquially
and literally, the attackers will have to “pay in blood” to learn the weak points of the
defense. Disclosure in this setting would help attackers considerably.

 The intuition for assumption (B2) is a bit less clear-cut. It certainly is possible
that public disclosure of a design will lead clever persons outside of the military to
suggest improvements in design. More likely, however, the incremental learning from
these outsiders will be modest at best. For specialized military topics, there is likely no
pool of helpful outside experts comparable to Open Source programmers. Instead of
depending on outsiders, the military will often hire or train the best available experts in
specialized military equipment (tanks or fighter planes) or applications (battlefield
communications). Public disclosure of the defenses will then do little to improve the
design of the defenses.

 Under assumption (B3), the military will often be the organization affected
directly by a vulnerability. There may be counter-measures for land mines (magnetic
detectors) or for camouflaged machine guns (infrared detectors). If so, then the military

10 See Webopedia, available at http://webopedia.internet.com/TERM/p/patch.html (defining “patch”:
“Also called a service patch, a fix to a program bug. A patch is an actual piece of object code that is
inserted into (patched into) an executable program. Patches typically are available as downloads over the
Internet.” See also Understanding Patch and Update Management: Microsoft’s Software Update Strategy,
Oct. 20, 2003, available at http://www.microsoft.com/security/whitepapers/patch)management.asp.

 6

http://webopedia.internet.com/TERM/p/patch.html

generally has confidential channels for telling its own people what to do in response.
There are few or no third parties who would benefit from disclosure of the vulnerability
or what to do about the vulnerability. (At least there are no third parties on “our side”
that we want to tell.)

 Turning briefly to the submarine situation during World War II, disclosure of the
sailing time of a convoy helped attackers by revealing a vulnerability. Disclosure did
little or nothing to help the Navy (the system designer for the defense) to protect the
ships. Disclosure also did little to help other parties to defend themselves.11 In this
setting “loose lips” did indeed “sink ships” -- the costs of disclosure outweighed the
benefits.

 Effects of Assumptions B1, B2, and B3: In the military paradigm, the costs
of disclosure of a vulnerability are high because attackers otherwise pay a high cost
to learn of the vulnerability. The benefits of disclosure are low because outside
designers are unlikely to improve the defenses and there are few or no third parties
that the defenders wish to help through disclosure.

 Taking the Open Source and military cases together, we can create a 2x2 matrix
that visually shows the different effects of disclosure under the two paradigms. Under
the Open Source assumptions, disclosure tends to improve the defense without helping
the attackers. There are thus net benefits from disclosure. Under the military
assumptions, the effects are reversed and there are net costs from disclosure.

 Help the Attackers Effect

 Low High

High A: Open
Source

Help the
Defenders

Effect
Low B: Military

Table 1: Greater Disclosure Up and to the Left;
Greater Secrecy Down and to the Right

11 It is possible to imagine some assistance to third parties from disclosure. For instance, other ships might
venture to sea if it becomes known that there is a convoy in another area that will draw the submarines’
attacks. This benefit from disclosure, however, is likely to be outweighed by the harm to the convoy that
becomes the target of the attack.

 7

 C. Case C: The Information Sharing Paradigm

 The matrix also sheds light on when greater “information sharing” will improve
security, such as the numerous information sharing provisions in the USA-PATRIOT
Act12 or proposals for the CIA and the FBI to share more of their data. Perhaps the
easiest case to understand concerns the sharing of “watch lists” of suspected terrorists
with defenders such as airport screeners, visa officers, and officials in other countries.
Will greater disclosure of the watch list improve or harm security? The assumptions are:

 (C1) Attackers may learn a lot from disclosure.
 (C2) Disclosure may teach defenders how to design better systems.
 (C3) Disclosure will allow more defenders to take protective actions.

 The intuition for assumption (C1) is that broader dissemination of the watch list
may tip off attackers who are on the list. The tip may occur either due to a mole (a rogue
employee) or because the list is kept in an insecure place and gets leaked to the attackers.
Persons who are on the list will then be on notice to avoid enforcement officials or to
mask their identity. Persons who are not on the list will learn not to associate publicly
with their colleagues on the watch list. Persons who are not on the list will also learn that
they are “safe” and thus can fly on airplanes or otherwise get through screening
processes. These “safe” people can then infiltrate defenses more effectively to spy or
launch an attack.

 The intuition for assumption (C2) is that broader use of watch lists, implemented
by more defenders, may provide useful feedback for what sorts of watch lists are
effective. A stronger intuition likely exists for assumption (C3). Putting the watch list
into the hands of more defenders increases the likelihood of spotting and capturing the
attacker. For instance, putting the picture of a “most wanted” criminal on television
makes it harder for the criminal to escape. Especially where the criminal already knows
that he or she is being chased, disclosure will help the defenders more than the criminal.

 In practice, how the costs and benefits of disclosure compare will be an empirical
question. Defenders will seek to create systems where defenders can effectively learn
information while attackers cannot. As the number of defenders grows, however, it is
less likely that every one of the defenders is trustworthy and every system containing the
information is secure.13 Information sharing is likely to have both costs and benefits,
which will vary with the circumstances.

12 See Peter P. Swire, “Information Sharing, the Patriot Act, and Privacy,” (presentation made February 28,
2004), available at www.peterswire.net. USA-Patriot Act of 2001, Pub. L. No. 107-56, 115 Stat. 272,
Secs. 203, 326.
13 In some instances, technological measures may help get benefits of disclosure while minimizing the
costs. The technological and institutional issues for doing so are beyond the scope of this paper. The most
intense recent public debate has been about the CAPPS II system for screening airline passengers. See,
e.g., Center for Democracy and Technology, “TSA Issues Second Privacy Act Notice Expanding and
Narrowing CAPPS II,” July 31, 2003, available at http://www.cdt.org/wiretap.

 8

http://www.peterswire.net/
http://www.cdt.org/wiretap

Effects of Assumptions C1, C2, and C3: In the information sharing
paradigm, there are significant costs and significant benefits from disclosure. The
costs of disclosure may be high if attackers learn about the nature of the defense.
The benefits of disclosure may be high if defenders can take additional, effective
measures against the attackers.

 D. Case D: The Public Domain

 Another important possibility is that disclosure of a vulnerability will have low
costs and low benefits. In some instances, a vulnerability is so minor that attackers will
not be inclined to exploit it. More broadly, in many settings the information is already in
the public domain – the relevant information is already available to interested attackers
and defenders. In such settings, the assumptions are:

 (D1) Attackers will learn little or nothing from the disclosure.
 (D2) System designers will learn little or nothing from the disclosure.
 (D3) Other defenders may learn little or a significant amount from the
disclosure.

 An example of information in the public domain is the street map for Manhattan
or Washington, D.C. Having a detailed and accurate street map is a great advantage for
an attacker. In war-time, attackers crave good maps as they move into enemy territory.
Good maps allow precise planning, facilitate coordinated attacks, and reduce the risk of
hidden features that can booby-trap the assault. In response, defenders who know the
terrain may remove street signs or take other measures to prevent the attackers from
learning the area.

 As part of the war on terrorism, it might thus be tempting for the United States to
try to prevent terrorists from getting accurate street maps of potential targets such as
Manhattan or Washington, D.C. The problem, however, is obvious. Detailed and
accurate street maps of those cities are in the public domain, with innumerable copies in
print and on the Internet. It would be very expensive even to try to hide the maps and
such efforts would almost certainly be futile. In addition to these costs of trying to hide
the maps, there would be substantial costs to all the legitimate users of the maps.

 In terms of the three assumptions, assumption (D1) is that attackers would learn
little or nothing new from a “disclosure” such as the publishing of an additional street
map. Assumption (D2) is that the designers of the defense would learn little or nothing
when a new street map is published. Assumption (D3) is that a new street map may in
fact be of some use to other “defenders” – legitimate users of the information including
tourists, urban planners, and all others who rely on street maps.

 Looked at from the other direction, efforts to hide or “re-classify” information
will often be expensive and not very effective in an era of the Internet, on-line search

 9

engines, and archiving of information once it has been on the Internet.14 The benefits of
trying to hide the information will often be small because determined attackers will still
have the information. The costs of trying to hide the information may be considerable,
both in the effort to find and destroy copies that already exist and in the effect on
legitimate users of the information.15 Once a secret is exposed, it is often costly or
impossible to put the genie back in the bottle.

 Effects of Assumptions (D1), (D2), and (D3): For information in the public
domain, there are few or no costs from additional disclosure. There may be benefits
from additional disclosure if additional legitimate users (defenders) learn from the
disclosure. There are likely high costs from trying to hide data once it is in the
public domain.

 E. The 2x2 Matrix for When Disclosure Improves Security

 With the addition of Case C on Information Sharing and Case D on the Public
Domain, each cell of the 2x2 matrix has been filled in. Table 2 shows the result:

 Help the Attackers Effect

 Low High

High A: Open
Source

C. Information
Sharing

Help the
Defenders

Effect
Low D. Public

Domain
B: Military

Table 2: Greater Disclosure Up and to the Left;
Greater Secrecy Down and to the Right

 At this stage, a few comments will help to emphasize what is and is not
accomplished by Table 2. First, a chief goal of the table is to organize our current
thinking about the dueling approaches of disclosure (“no security through obscurity”) and

14 For one informative discussion of the wealth of information available through the Google service, see
Scott Granneman, “The Perils of Googling,” The Register, Mar. 10, 2004, available at
http://www.theregister.co.uk/content/55/36142.html.
15 The discussion here focuses only on the extent to which the disclosure will help or hinder the attackers.
Efforts to censor information in the public domain also can obviously raise serious First Amendment and
other problems. Eugene Volokh has written an excellent analysis of these issues, in an approach that is
congruent in a number of respects with the analysis in this paper. Eugene Volokh, Crime-Facilitating
Speech, (unpublished draft, 2004).

 10

http://www.theregister.co.uk/content/55/36142.html

secrecy (“loose lips sink ships”). By clarifying the assumptions underlying those two
scenarios, the table also reveals the assumptions underlying two other common scenarios
– information sharing and the public domain. Second, the table simplifies reality by
showing a binary split between high and low effects of helping the attackers and
improving the defense. In reality, there is a continuum between high and low effects.
Real-world examples will range along the two dimensions. Third, the table is based on
assumptions about the effects of disclosure on attackers and defenders. Conclusions
about the desirability about a disclosure will depend on how valid the assumptions are in
a given setting.

 II. The Key Reasons Computer and Network Security May Vary from Other
 Security Problems

 In the legal academy, there has been a lively debate about the extent to which
cyberspace (and the law of cyberspace) is different from the physical world (and the law
of the physical world). For instance, writers such as David Post and David Johnson have
stressed the uniqueness of the Internet, while writers such as Frank Easterbrook and Jack
Goldsmith have stressed how the law of the Internet is fundamentally similar to previous
legal issues.16 The topic of this Part is to examine the extent and nature of the differences
between computer and network security, on the one hand, and the military and other
traditional security problems of the physical world, on the other.

 The conclusion here is that there is no logical or necessary difference between
cybersecurity and physical security. One can generate examples where the nature of the
security challenge and the optimal degree of disclosure are the same regardless of what is
being protected. Nonetheless, the claim here is that there are reasons why there are
commonly important differences between cybersecurity and physical security. These
differences, I believe, contribute a great deal to why so many cybersecurity experts
intuitively believe in “no security through obscurity” while so many military and other
physical security experts intuitively believe that “loose lips sink ships.”

 A. Hiddenness and the First-Time Attack

 Here is an organizing concept for when hiddenness helps security: a hidden
feature is more likely to be effective against the first attack, but less likely to be effective
against repeated attacks. Consider an example from the physical world. A fort is
protected by a simple security device that relies on hiddenness. On the path up to the fort
there is a pit covered by leaves, with a sharpened stick at the bottom. The first time an
attacker comes up the path, the attacker might fall into the pit. Even if hiddenness works
against the first attacker, however, later attackers will likely not “fall” for the same trick.
The later attackers may know where the pit is, or they may come equipped with sticks
that probe the path so that they don’t fall in. In this simple example, using obscurity may

16 See Jack L. Goldsmith, “Against Cyberanarchy,” 65 U. Chi. L. Rev. 1199, 1199 n.3 (1998) (collecting
citations to works of Post, Johnson, and others who stress uniqueness of cyberspace law); Frank H.
Easterbrook, “Cyberspace and the Law of the Horse,” 1996 U. Chi. L. Forum 207.

 11

work against the first attacker but is unlikely to work once the attackers learn to watch for
the hidden pit.

 The concept of the first-time attack can be generalized. Consider a “hidden”
defensive feature as one that is not known initially to any attacker. The effectiveness of
hiddenness will be a function of five variables:

 (1) The effectiveness of the defensive feature at stopping the first attack. (“E” for
effectiveness.)

 (2) The number of attacks. (“N” for number of attacks.)

 (3) The extent to which an attacker learns from previous attacks. (“L” for the
learning that occurs.)

 (4) The extent to which the attacker communicates this learning to other attackers.
(“C” for communication.)

 (5) The extent to which the defenders can effectively alter the defensive feature
before the next attack. (“A” for alteration of the defense.). Note that the alteration may
come from the system designer/defender (A-D). The proposed alteration may also come
from Third Parties who learn how to fix the vulnerability (A-T), such as when an Open
Source programmer designs a patch.

 The effectiveness of hiddenness will vary directly with greater initial
effectiveness (E) and greater ability by the designer to alter the defense (A-D). It will
vary inversely with the number of attacks (N), the degree of learning by attackers (L), the
ability of attackers to communicate (C), and the ability of third parties to alter the defense
(A-T). When the effects of N, L, and C grow very large, there will be no usefulness of
hiding the defensive feature. All attackers will then know everything about the “hidden”
feature.17

 The military and Open Source examples explained earlier illustrate how the
effectiveness of hiddenness can vary depending on the five variables. Start with the
example of camouflaged machine guns guarding a hill, where the effect of hiddenness is
the difference between announcing the location of the machine guns and keeping them
hidden. Initially, the attackers do not know where the machine guns are hidden. E, the
effectiveness of the defense, will likely be high against infantry attackers because the

17 The discussion here does not present a detailed mathematical model of how hiddenness contributes to
security. Identification of the five variables, however, should enable those who are mathematically more
skilled than I am to build such a model. As suggested in conversation by Rena Mears, the approach here
implicitly assumes a calculus function where the effectiveness of hiddenness goes to zero as the number of
attacks approaches infinity (assuming a positive value for L and C) (and also assuming the effect of L and
C in helping attackers outweighs the effect of alterations in helping defenders)..

 12

hidden guns will make it hard for attackers to find a safe path up the hill.18 N, the
number of attacks, will be low. Each attack is a major event that is costly in terms of
casualties. L, or learning, will vary depending on the ability of an individual attacker to
get back safely from the first attack or go around the machine gun nest. If all the
attackers are killed in the attack, then L will be zero. C, or the ability to communicate,
will vary depending on the ability of any individual attacker to tell the rest of the troops
about the location of the hidden guns. If the attackers have radios, then there will be a
high C because they can tell their comrades what locations to avoid. If the attackers have
to rely on word-of-mouth, then C will be low and the defense may have time to set up a
new ambush in time for the second attack.

 Pulling these observations together, each attack on the hidden machine guns is
very expensive for the attackers. Hiddenness benefits the defender in the first attack.
The number of attacks will be small (would there be even three or four charges against a
well-defended hill?). Attackers may not learn quickly about the hidden defenses, may
find it difficult to communicate their learning to the other attackers, and may face a
changed defense by the time they launch their next attack. For all of these reasons,
hiddenness will benefit the defense.

 Under the assumptions used thus far for Open Source software, hiddenness will
be much less effective. It is possible that the initial effectiveness of a defensive trick, E,
will be substantial. The number of attacks, N, will quite possibly be high. Malicious
hackers can probe for weaknesses in a software product over and over again. The
attackers learn (L) from the attacks, such as by seeing whether they can gain control over
the software. Attackers can communicate (C) about flaws, such as by posting their
exploits to web sites to let other attackers know about the flaws.

 Under these assumptions, each attack on a software program is very cheap –
attackers can probe the program over and over again from the comfort of their own
homes or computer labs. They learn about flaws and tell others about flaws. Very
quickly, under these assumptions, the hidden defense is exposed to the world. Thus,
there is “no security through obscurity.”

 The possibility of altering the defense also works differently than for the physical
attack against machine guns. In the machine gun setting, the defense may be able to
move the guns between each attack. If that is true, then the second ambush may be as
effective as the first, and hiddenness once more favors the defender. Under the Open
Source assumptions, disclosure of the vulnerability actually increases A, the likelihood of
effective alteration of the defense. The idea is that other Open Source programmers will
come forward to write a patch for the vulnerability. In terms of hiddenness, improved
protection against the next attack works in opposite ways for the machine gun and Open
Source examples.

18 The example here assumes foot soldiers charging up a hill against machine guns. If the attack is made by
heavy tanks, then ordinary machine guns will not stop the attack. For the tank attack, the value of E, the
initial effectiveness, would be low.

 13

 B. Uniqueness of the Defense

 How should we refer to the effect of the five variables? “First-time attack” has
the advantage of communicating to a wide audience. Using ordinary English, a reader
can grasp the idea that a hidden trick may work against the first attack but fail against the
1000th attack. The problem with the term “first-time attack,” however, is generalizing the
effect to “second-time attacks” (hiddenness may still work very well), “twentieth-time
attacks” (hard to know how well hiddenness will work), and “nth-time attacks” (the
hidden features will quite possibly be discovered).

 This paper will use the word “uniqueness” to refer to the usefulness of hiddenness
for the defense. Despite the possible complaints of English teachers,19 this paper will
discuss uniqueness as a function, varying from “unique” or “entirely unique” down
through “somewhat unique” to “not unique at all.”20 The function for uniqueness (U), or
the usefulness of hiddenness for the defense, is thus:

U = f (E, N, L, C, A)

Under the terminology employed here, “high uniqueness” refers to situations where
hiddenness is effective, due to a combination of high values of initial effectiveness (E)
and ability to alter the defense (A) and low values for the number of attacks (N), learning
from previous attacks (L), and communication among attackers (C). “Low uniqueness”
refers to situations where the values are reversed.

 C. Why Low Uniqueness May Be Common for Computer and Network
 Security

 Important areas of computer and network security include: perimeter defense such
as firewalls; mass-market software, including video games; and encryption. For each of
these areas there will often be a low degree of uniqueness, so secrecy is unlikely to be
very effective.

 1. Firewalls. There is a plausible case that firewalls are subject to a large number
of attacks (N), considerable learning by attackers (L), and effective communications
among attackers (C). Using the Internet, attackers can probe a firewall from anywhere on
the planet. They can attack again and again at low cost, trying various combinations of
attacks until they find one that works. They can then tell other attackers about the
vulnerability, such as by posting a script of the attack to a web site or e-mail list. Even

19 One web page lists “errors” in English usage, and says: “’Unique’ singles out one of a kind. That ‘un’ at
the beginning is a form of ‘one.’ A thing is unique (the only one of its kind) or it is not. Something may be
almost unique (there are very few like it), but nothing is "very unique."
http://www.wsu.edu:8080/~brians/errors/unique.html.
20 When I gave this paper at a conference at the Stanford Law School, Bruce Schneier and Matt Blaze both
suggested the term “instance” to refer to what I am here calling “uniqueness.” I have chosen the latter term
for two main reasons. First, “instance” has so many uses in English that it may be confusing to readers for
it to have a more technical definition. Second, my sense is that readers will intuitively understand the idea
of different degrees of uniqueness.

 14

unskilled “script kiddies”21 may then be able to use the attack to pierce that firewall or
other firewalls that use the same defenses.

 Comparison with an attack on a walled city illuminates the way that computer and
physical attacks are both similar and different. The similarities between a computer
firewall and a medieval city wall are easy to see. A strong barrier is designed to allow
friends to enter but keep foes out. Either sort of defense can be set to various levels of
security. In times of peace, a city gate may allow anyone to enter, with guards on hand to
handle anyone suspicious. At a higher level of alert, guards might check the credentials
of each person before entering the city. During a siege, the gates might be closed
completely, barring all entry. Additional security might exist within the city wall. For
instance, the armory (containing weapons), the mint (containing treasure), and the castle
keep (containing the ruler) all would have additional protections against entry.

 A company’s firewall is similar. For non-essential systems most messages will be
allowed entry. For secure systems, a password or other credential is required. Under
severe conditions, such as a distributed denial of service attack, all messages may be
blocked from entering the company’s system. Additional security will exist for priority
functions, such as the system security (the armory), the corporate treasury (the mint), and
the root directory (the ruler’s residence).

 Along with these similarities, it is logically possible for attacks against a physical
wall to have high N, L, and C. For a long and badly defended wall, for instance,
intruders might repeatedly probe for weak spots, learn about weak spots, and tell fellow
attackers where to enter.22

 Many attacks against a city wall, however, do not fit that pattern. In medieval
warfare, an attack against a walled city was a major event in which many people might
die. Any hidden trick by the defenders might cost attackers’ lives or save defenders’
lives before the attackers learned how to counter the trick. The number of attacks was
low, attackers might not survive to tell about weak spots, and communication back to the
attacking generals was rudimentary. Similarly, any hidden weaknesses might not be
revealed in time to help the attack. In short, N, L, and C would all be low.

 In sum, low levels of N, L, and C likely meant that medieval city walls had
high uniqueness – secrecy was likely to be a useful tool. Firewalls using standard
software likely have low uniqueness due to the high levels of N, L, and C.23

21 ”Script kiddies” are unskilled programmers who merely follow a script rather than understanding how to
write code themselves. See, e.g., The Jargon Dictionary, available at
http://info.astrian.net/jargon/terms/s/script_kiddies.html (defining script kiddies as “the lowest form of
cracker; script kiddies do mischief with scripts and programs written by others, often without understanding
the exploit.”)
22 An example of a physical barrier with high N, L, and C might be the United States border with Mexico.
There are many persons who seek to cross the border, there are professionals who learn the soft spots in the
defenses, and others who wish to cross the border learn from earlier successes.
23 Despite the intuition that firewalls have low uniqueness, I have talked with some computer security
experts who build higher uniqueness into their own firewalls. Even for some experts who support the idea

 15

http://info.astrian.net/jargon/terms/s/script_kiddies.html

 2. Mass-market software and computer games. A next major topic of modern
computer security is how to protect standardized software against hackers. Popular
products may be on thousands or millions of desktops. Designers of standardized
software might try to use hiddenness to stop the hackers. For instance, the designer
might have a program freeze up permanently if a user hacked into inappropriate portions
of the software. This kind of defense would be similar to falling into the pit covered with
leaves – the attackers who goes into the wrong place never comes out again.

 This hiddenness will often not work well, however, for mass-market software.
Suppose, for instance, that there are a dozen paths for hacking a piece of code to do
something forbidden such as send a virus or make illegal copies. Suppose the designer
puts traps on eleven of the twelve, to freeze up the program permanently if a hacker
trespasses into the wrong part of the code. Suppose further that the designer leaves the
twelfth path free so that the designer can get back in to rewrite the code.

 This sort of defense would work reasonably well against a one-time attack. In the
physical world, an attacker would face a grave risk (11 out of 12) of falling into the pit
and getting injured. Similarly, in the computer world, a hacker who can get only one
copy of the program, and who needs that program to keep functioning, will find it too
risky to fool around with the program and likely have it freeze into uselessness. By
contrast, a hacker who can buy (or illegally copy) many copies of the program will not
mind much if a few copies freeze up. This hacker can systematically try one possible
attacker after another until something works – a high N and L. Meanwhile, other hackers
around the world also try their favorite attacks, and the hackers can communicate
amongst themselves when they find a vulnerability – a high C.

 The combination of high N, L, and C also exist for computer and video games
today when players try to “beat the game.”24 “Beating the game” is a (presumably)
innocent version of hacking a software system – users ultimately reach their goal of
gaining control over the software. An old-fashioned (although perhaps satisfying) way to
“beat the game” is to keep trying by yourself until you overcome all the obstacles. As an
alternative, video game players today can also enlist a global network of fellow
aficionados. Web sites appear almost instantly after release of a game. The sites offer
“secrets” (press the third brick on the left to get a magic sword), “walk throughs” (on
Level 13 here are the seven things you have to do before you attack the dragon), and even
“cheats” (if you enter this code, your player will become invulnerable to all attacks and as
strong as Superman). Translated back into the language of computer security, there is a
high number of attacks, N – just ask the parents. Users learn from experience and
communicate that learning – a high L and C. A hidden measure by the game designers
will not stay hidden for long.

of “no security through obscurity” there is an understanding that putting some hidden tricks into a
defensive system such as a firewall can be helpful. The hidden or subtle changes notably can stop attacks
by “script kiddies” and others who are not able to modify their attacks in the face of a new defense.
24 This paragraph is based on insights from my sons Nathan and Jesse Swire, now 15 and 13.

 16

 In summary, where there are high levels of N, L, and C for attacks on mass-
market software, there will tend to be low uniqueness and little “security through
obscurity.”

 3. Encryption. Encryption is a third major area of modern computer security,
along with system defense (firewalls) and defending software. The word “encryption”
comes from the Greek word for “hidden,” so it might seem exceedingly odd to say that
being hidden does not work well for encryption.25 Yet, in the sense used in this article,
that is precisely the claim. The question, for our purposes, is whether hiddenness paired
with encryption that suffers from vulnerabilities will succeed, or whether instead security
can be provided only by strong encryption, i.e., encryption that is successful even when
the attacker knows the method used to encrypt the message.

 Modern cryptographers are likely the most avid believers that there is no security
through obscurity. Cryptographic authority Bruce Schneier has stated:

A basic rule of cryptography is to use published, public, algorithms and
protocols. This principle was first stated in 1883 by Auguste Kerckhoffs:
in a well-designed cryptographic system, only the key needs to be secret;
there should be no secrecy in the algorithm. Modern cryptographers have
embraced this principle, calling anything else "security by obscurity." Any
system that tries to keep its algorithms secret for security reasons is
quickly dismissed by the community, and referred to as "snake oil" or
even worse.26

The Schneier quote, with its discussion of “snake oil,” highlights the risk that a vendor
will dupe purchasers of an allegedly secure system. Once the system is exposed to
attack, however, the system may have only weak protections, and all of the
communications of the purchaser may thus be exposed to view. Having “published,
public, algorithms and protocols” is thus an important consumer protection against the
vendor who tries to hide the vulnerabilities of a weak system.

 A second reason for the cryptographers’ belief in openness is that a secret is
unlikely to remain secret when known to a large number of people. Cryptography today
is used by an enormous number of users on the Internet. In earlier times, by contrast,
encryption was used by far fewer persons, most prominently by diplomats and the
military. Encryption became more widespread when people wished to send a lot of
important messages through a channel where other people could see or hear the message.
In times when the post was not secure, letter writers used encryption. In the days of the

25 For excellent historical introductions to encryption, see DAVID KAHN, THE CODEBREAKERS: THE STORY
OF SECRET WRITING (1996); SIMON SINGH, THE CODE BOOK: THE EVOLUTION OF SECRECY FROM MARY
QUEEN OF SCOTS TO QUANTUM CRYPTOGRAPHY (1999).
26 Bruce Schneier, “Secrecy, Security, and Obscurity,” Cryptogram Newsletter, May 15, 2002, available at
http://www.schneier.com/crypto-gram-0205.html. Schneier returned to these issues in Beyond Fear:
Thinking Sensibly about Security in an Uncertain World 126-32 (2003). These writings are extremely
insightful and the most detailed I have found on the issues that appear both in this article and in the draft
version of my work that was posted to the Internet in 2001, see supra note *.

 17

http://www.schneier.com/crypto-gram-0205.html

telegraph, many businesses used encryption to keep their commercial secrets away from
the eyes of the telegraph operators. For radio communications, anyone with a receiver
could hear the message. Most famously, German submarines in World War II used the
Enigma system when radioing back to headquarters. Allied cryptographers learned to
break the system after enormous effort, helping to win the war and more or less inventing
the computer as a by-product.

 The need for encryption is thus not new with the Internet. But the Internet has
been accompanied by an enormous increase in the need for and use of encryption by
ordinary people and businesses. The Internet is a famously “open” system.27 A message
from Alice to Bob is typically routed through many computers on its way through the
Internet. A hacker might be in control of any of those computers. The hacker might
make a copy of all the messages coming through the system and then comb through the
messages looking for any that have commercial, diplomatic, or military value. In
response, Alice and Bob need to encrypt their important messages, containing credit card
numbers, trade secrets, large transfers of currency, and anything else they don’t want the
hacker to read and copy.

 The Internet does more than increase the number of messages that use encryption.
The Internet has also accelerated demand for public-key encryption approaches that
permit anyone to send an encrypted message to anyone else. The basic idea of a public-
key system is that a user, Alice, can send a message to a recipient, Bob, whom she has
never met before.28 She uses Bob’s public key to encrypt her message. Bob can then
decrypt it using his private key. The public key can be posted on the Internet or
otherwise revealed to the world. The private key is kept secret by Bob and not made
known to attackers. The combination of many messages through insecure channels (the
Internet) and many users who wish to communicate securely with each other (as in E-
commerce) has meant that an unprecedented number of individuals rely on
cryptosystems29 that are widely deployed.

27 See generally Jane Kaufman Winn, Open Systems, Free Markets, and Regulation of Internet Commerce,
72 TUL. L. REV. 1177 (1998) (discussing the openness of the Internet).
28 For further discussion, see, e.g., Bruce Schneier, Applied Cryptography ch. 19 (2d ed. 1996).
29 Modern encryption draws a distinction between the “cryptosystem” and the “key.” The cryptosystem is a
mathematical technique that has a standard way to re-arrange symbols (“put every second letter in front of
the letter before it”) and substitute one symbol for another (“change each letter A into the number 1”). The
most widely-used modern cryptosystems publish the algorithm for converting between plaintext (readable
English) and ciphertext (the message as transmitted in its encrypted form). A well-known example is the
RSA algorithm developed in 1978 by mathematicians Ronald Rivest, Avi Shamir, and Leonard Adleman.
The security of the RSA cryptosystem depends on a mathematical algorithm that is easy to calculate in one
direction (when one encrypts the message) but extremely difficult to calculate in the other direction (when
an unauthorized person tries to decrypt the message.) For the mathematical basis of the RSA algorithm,
created in 1978, see “What is the RSA Cryptosystem?”, available at
http://www.rsasecurity.com/rsalabs/node.asp?id=2214.
 The security of the RSA cryptosystem also depends on each user having a secret key to turn
ciphertext back into plaintext. The idea of a key is simple enough. Suppose that the cryptosystem turns
each letter into a number, such as A=1, B=2, C=3, and so on. There are 26 possible starting points, such as
A=25, B=26, C=1, and so on. In this simplified example, the cryptosystem is a regular pattern for turning
letters into numbers. The key is knowing how to begin the calculation, by knowing which number
corresponds to the letter A. In actual cryptosystems, the key is a long chain of randomized numbers.

 18

 Given this understanding of today’s networked encryption, we can now better
understand why modern cryptographers believe there is no security through obscurity.
Because so many communications flow through the Internet and can be read by hackers,
the number of attacks, N, is extremely high. If L and C are even slightly positive, then
attackers will learn about the vulnerabilities in a method for encrypting messages and
communicate about those vulnerabilities to others. The response by cryptographers is to
use methods for encryption that do not rely on secrecy. Instead, cryptographers increase
the length of the secret key to try to make brute force attacks prohibitively costly.

 The combined effects of N, L, and C mean that the cost of disclosure of the
cryptosystem – the help-the-attackers effect – is low. The benefit of disclosure to
defenders is also likely to be high. For one thing, use of a public-key algorithm means
that myriad users can easily send encrypted messages to each other. In addition, there is
likely a high value for A, the ability of defenders to improve the defensive system. The
rise of the Internet and the spread of public-key encryption means that the number of
encryption experts has grown rapidly in recent years. The likelihood of improved
defenses is thus substantial: “The long history of cryptography and cryptanalysis has
shown time and time again that open discussion and analysis of algorithms exposes
weaknesses not thought of by the original authors, and thereby leads to better and more
secure algorithms.”30

 Before leaving the topic of encryption, it might be useful to see how this
conclusion – the advantage of an open cryptosystem – would have been less true in
Roman or Medieval times. In that setting, there likely would have been lower N, L, C,
and A. The number of encrypted messages subject to interception would have been far
lower than on the Internet. The sophistication of those intercepting the messages would
have been lower. Slow communications would have meant that other attackers would
have learned very slowly if at all from the breakthrough by one attacker. In addition, the
chances of “outside cryptographic experts” improving the system would have been low.
All of these variables would therefore have pointed toward the usefulness of a hidden
cryptosystem, in contrast to conditions today.31

Attackers who do not have the key then need to try every possible combination of numbers until a key fits
the lock (decrypts this plaintext). Trying each of the combinations, which can easily number in the billions,
trillions, and up, is called a “brute force attack.” An attacker who can try every single possible key will
eventually be able to read the code. The response by those who build cryptosystems is to try to make the
number of combinations so large that no available computer can try all the combinations.
30 Randy Bush & Steven Bellovin, “Security Through Obscurity Dangerous,” Internet Society Working
Draft, Aug. 21, 2002, available at https://rip.psg.com/~randy/draft-ymbk-obscurity-01.html
31 In comments on an earlier draft, cryptographer Susan Landau disagreed with the discussion of the role of
hiddenness in earlier times. She mentioned a 14th Century Arabic encyclopedia, the Subh al-a ‘sha, that
contained sophisticated mathematical techniques for breaking ciphers. In response, the claim here is that
secrecy is more likely to have net benefits in situations with lower N, L, C, and A. Where attackers such as
users of that encyclopedia have sophisticated techniques, they will have higher L, reducing the
effectiveness of secrecy. The claim in the text is that earlier periods generally had far lower N, L, and C
than would attacks today on a widely-used cryptosystem on the Internet. Modern attackers will thus be
more efficient at overcoming hidden defenses (due to today’s higher learning) and modern defenders will
be more likely to get suggestions for useful alterations (due to today’s larger group of potentially helpful

 19

https://rip.psg.com/~randy/draft-ymbk-obscurity-01.html

 In summary, secrecy in modern cryptosystems is unlikely to be useful due to
high N, L, C, and A. Modern encryption relies, however, on strict secrecy for private
keys.

III. Relaxing the Open Source Assumptions – Computer and Network Security in the
 Real World

 Part II sought to explain why computer security experts so often believe there is
no security through obscurity. Firewalls, mass-market software, and encryption are
major topics for computer and network security. In each setting, there are typically high
values for number of attacks (N), learning by attackers (L), and communication among
attackers (C). Secrecy is of relatively little use in settings with high N, L, and C –
attackers will soon learn about the hidden tricks. By contrast, many physical-world
security settings have lower values for N, L, and C. In these settings of persistent and
higher uniqueness, secrecy is of greater value to the defense.

 Part II thus solidifies the assumptions of the Open Source paradigm, that (1)
disclosure will offer little or no help to attackers; (2) disclosure will tend to upgrade the
design of defenses; and (3) disclosure will spread effective defenses to third parties.
High levels of N, L, and C strengthen the first assumption, because attackers will quickly
learn about secrets. Alterations (A) from outside experts, in cryptosystems and
elsewhere, fit with the second assumption. Finally, high levels of A and C will alert other
defenders to vulnerabilities under the third assumption.

 After this reinforcement of the Open Source assumptions, Part III will now try to
test the assumptions against the real world. In practice, secrecy will often be of greater
use than suggested by the assumptions of the Open Source paradigm.

 A. The Assumption that Disclosure Will Not Help the Attackers

 The first assumption in the Open Source paradigm is that disclosure will provide
little or no help to the attackers. The assumption is that there are many capable persons
who are willing and able to launch attacks against firewalls, mass-market software, and
cryptosystems.

 To scrutinize this assumption, it is important first to develop the intuition that the
public domain of information is expanding in a world of search engines such as Google.
Next, disclosure can sometimes help defenders when the disclosure deters attacks. Third,
the case for disclosure of private keys, such as cryptographic keys, is especially weak.
Fourth, the area of surveillance is subject to a different analysis. Finally, the discussion
turns to a more specific discussion of the extent to which attackers already know about
how to launch effective attacks against firewalls, mass-market software, and
cryptosystems.

cryptographic experts). There will thus be higher expected benefits today of disclosure of the
cryptosystem.

 20

 1. The Enlargement of the Public Domain in a World of Search Engines. Do
attackers know specific facts about defenders? The answer today, in a world of the
Internet and search engines, is that the cost of doing searches has gone way down. Many
facts that were impossible or costly to find in the past are easy to find today.

 All readers of this article know this to some extent, but it is helpful to flesh out
some of the reasons that so much more information is today in the public domain. The
Internet itself has only recently expanded beyond the domain of DARPA32 and the
academic community. Indeed, it was not until 1992 that the terms of service for the
Internet changed to permit commercial activity on the Internet.33 The growth in
commercial activity coincided with the incredible expansion of Internet usage, so that
ordinary people all over the world could find out information, at no cost, about a huge
range of topics. Search engines have made it trivially easy to search through the many
web sites to find specific information. Google was launched in 1998 and indexed 30
million items at that time. Today, it indexes over 6 billion items.34

 At a simple yet powerful level, the ubiquity of search engines (and the other
research tools of the Information Age) increases the knowledge available to attackers.
Attackers can correlate information from diverse sources to infer facts that are themselves
not explicitly made public. Attackers can communicate with other attackers through
blogs35, web sites, and global, free e-mail. Search engines are extremely useful. For
instance, you can pick the mass-market software or firewall you wish to attack and search
on Google for the name of the product and “bugs” or “vulnerabilities.” If you do so, you
may find a patch that has already been announced for the known bug. In launching actual
attacks, you are also likely to discover that a large portion of the product’s users have not
installed the patch.

 The increase of information in the public domain increases the set of instances
where the Open Source paradigm is a better approximation than the military paradigm.
More often than before, disclosure of a security flaw will add little or nothing to
attackers’ knowledge. It will be harder to keep many things secret, because attackers will
be able to infer the truth from other available information. At the very least, the ubiquity

32 DARPA is the Defense Advanced Research Projects Agency, which played a key role in fostering the
early stages of the Internet. See Michael Hauben, “History of ARPANET; Behind the Net - The untold
history of the ARPANET; Or - The "Open" History of the ARPANET/Internet,” available at
http://www.dei.isep.ipp.pt/docs/arpa.html.
33 The Scientific and Advanced Technology Act of 1992, signed into law on October 23, 1992, “subtly
modified [the National Science Foundation’s] authority to support computer networks that are not limited
to research and education.” NATIONAL SCIENCE FOUNDATION, OFFICE OF INSPECTOR GENERAL, REVIEW OF
NSFNET, March 23, 1993 (citing 42 U.S.C. § 1862(g)). This change was one important legal step toward
development of commercial activity over what is now called the Internet.
34 Robert Weisman, “Investors Monitoring Climate for Google IPO,” Miami-Herald.com, Mar. 21, 2004,
available at http://www.miami.com/mld/miamiherald/business/national/8243019.htm.
35 For an early discussion of the legal implications of weblogs, or “blogs,”, see Attiya Malik, Are You
Content with the Content? Intellectual Property Implications of Weblog Publishing, 21 John Marshall J.
Computer & Information L.439. (2003).

 21

of search engines increases the costs of trying to keep information out of the hands of
attackers.36

 In summary, the growth of the Internet and of search engines means that the
optimal solution often shifts toward openness in weighing the costs and benefits of
disclosure. In many instances, the help-the-attacker effect is likely to be low, while
the costs to defenders of trying to keep secrets will have risen.

 2. Deterrence as a Result of Disclosure. Up until this point, the focus has been on
how disclosure may reveal vulnerabilities and thus help the attackers. More generally,
the analysis should include the full range of ways that attackers might respond to
disclosure about the defense. One principal way that disclosure can help the defense is
through deterrence – the effect of disclosure on reducing the likelihood of attack.

 The distinction between “strong” and “weak” is likely the main axis for when
disclosure will create deterrence. Attackers who see a “strong” defense will tend to be
less likely to attack. Attackers who see a “weak” defense are more likely to believe that
they will be able to overcome the defenses. This effect is not always true – a “strong”
defense, for instance, might be a clue to an attacker that something valuable is contained
inside.37 Nonetheless, the appearance of a “strong” defense is generally a good predictor
for the magnitude of deterrence.38

36 There is a growing literature that laments the shrinking of the public domain. E.g., Lawrence Lessig, The
Future of Ideas: The Fate of the Commons in a Connected World (2002); James Boyle, “The Second
Enclosure Movement and the Construction of the Public Domain,” 66 L. & Contemp. Prob. 33 (2003).
This literature emphasizes, for instance, the ways in which copyright and other intellectual property rules
have expanded. Even though copyright law itself does not apply to facts, some actual and proposed legal
developments could reduce the set of facts available to the public. For instance, the anti-circumvention
provisions of the Digital Millennium Copyright Act, 42 U.S.C. § 1201, can make it illegal to access facts
that are in a format protected by anti-circumvention measures. In addition, there have been repeated
legislative attempts in the United States to enact sui generis database protection, which would create new
limits on the ability of users to reproduce facts in certain databases. Jonathan Band, “New Theories of
Database Protection,” Managing Intellectual Property (2003).
 Notwithstanding these concerns, the argument here is that the development of the Internet and of
search engines has made available an increased range of factual information at lower cost than previously.
Especially in the wake of the attacks of September 11, there have been some measures by the U.S.
government to reduce the information available to the public. Edward Lee, “The Public’s Domain: The
Evolution of Legal Restraints on the Government’s Power to Control Public Access Through Secrecy or
Intellectual Property,” 55 Hastings L.J. 91 (2003). Despite these changes, vastly more security information
is available today to a teenage hacker or a foreign terrorist than would have been true before the rise of the
Internet.
37 As another example where deterrence would not succeed, some attackers might be attracted to a strongly
defended target simply because it is strongly defended. Just as medieval knights sought glory by attacking
famous champions, modern-day hackers sometimes seek “hacker glory” by attacking systems that are
thought to be highly secure.
38 The “strong”/”weak” distinction was first suggested to me by Jim Steinberg, who served as Deputy
National Security Advisor under President Clinton. The fact that the suggestion came from a person
steeped in national security issues suggests that the deterrence effect may implicitly be an important way
that military and national security experts decide when disclosure will help security.

 22

 Deterrence can exist because the defense is strong in an absolute sense. In such
circumstances, the defender will perceive that the costs of the attack are greater than the
benefits. An example in the physical world is if there is a high fence, topped with razor
wire and with surveillance cameras in clear sight. A potential trespasser who sees this
defense may estimate that it will be difficult to climb the fence, dangerous to get over the
razor wire, and risky in terms of being detected and caught.

 Deterrence can also exist in a relative sense. There is the old story about the two
hikers in the woods who see a dangerous bear rushing toward them. One of the hikers
turns around and starts running. The other hiker asks why he is running when everyone
knows that bears can run faster than people. The first hiker responds: “I don’t have to run
faster than the bear. I just have to run faster than you.” In terms of deterrence, a house
with bars on the windows and large locks on the front door may simply be more trouble
to attack than a neighboring house that lacks these features. The visible defense
measures, in such circumstances, may shift the risk of attack to the neighboring house.

 An essential element to successful deterrence is that the attackers know about the
strong defense. This element was memorably missing in the movie “Dr. Strangelove,”
where the Soviet Union failed to tell the rest of the world about the existence of a
doomsday device that would be triggered by any nuclear attack. When one nuclear bomb
was accidentally used, the entire world was destroyed. The complete failure of
communication in that instance drives home the point – it is the perception of the defense
by the attackers that is key to deterrence.

 In summary, the effects of disclosure on security include the deterrent effect
on attacks (a help-the-defense effect) as well as the help-the-attackers effect
discussed previously. The chief predictor of deterrence is the extent to which
attackers perceive the defense as strong.

 3. Don’t Disclose Private Keys, Passwords, or Combinations to a Safe. The
discussion of encryption, above, drew a sharp distinction between the cryptosystem and
the private key. Modern cryptographers generally support “no security through
obscurity” and favor disclosure of the cryptosystem. They also support secrecy for the
private key or password. Modern cryptographic systems feature a high initial
effectiveness for the cryptosystem (E). They also are resistant to a high number of
attacks (N). The private keys are long enough to require brute force attacks that are too
lengthy for attackers to undertake.

 A similar analysis applies to physical protections such as a combination safe. The
initial effectiveness (E) is high because attackers cannot easily get through the metal skin
of the safe. The combination of the safe is then complicated enough to make a brute
force attack difficult (resist against a high N). A complex combination can be very
effective -- bank robbers typically do not wish to stay in the bank vault long enough to try
every possible combination to open the safe.

 23

 For passwords, good practice is to make it difficult for attackers to guess the
password. Programs to guess passwords are easily available on the Internet.39 In
response, good practice is to require a password to include symbols and numbers in
addition to letters. That practice increases the initial effectiveness (E) by forcing users
not to use the defaults that come with software or common terms such as “password.”
Use of different characters in the password increases the number of attacks (N) needed to
guess the password. In addition, altering the password periodically (A) reduces the
likelihood that attackers can continue to take advantage of one successful attack.

 For all three defenses – the private key, the combination to the safe, and the
password – there is a large help-the-attacker effect from disclosure of the secret
information. All three defenses are designed to frustrate a brute force attack by having
too many possible combinations. If there is disclosure of the secret key, then the entire
defensive strategy falls apart.

 Is there a help-the-defender effect from disclosure? Almost always, the answer is
no. In these examples, the defenders are relying on fundamentally sound defenses, such
as a strong cryptosystem or a heavy metal safe. These defenses will not be designed
better just because one user’s key or one safe’s combination is revealed.

 In summary, there is a large help-the-attacker” effect from disclosure of a
private key, combination to a safe, or password. There is usually no help-the-
defender effect. Even for supporters of “no security through obscurity,” this sort of
information should stay secret.40

 4. Why Secret Surveillance May Improve Security. The next question is whether
it improves security to reveal surveillance techniques used by defenders. Under the Open
Source paradigm, one might believe that disclosure will help the defenders because
outside experts will suggest how to improve the surveillance system. In addition, the
Open Source paradigm would suggest that attackers already know or will readily learn
about the defenses of a system, so that disclosure will not help the attackers. The
intuitions of intelligence experts are precisely the opposite. These experts believe that it
is imperative to keep secret the sources and methods used for intelligence gathering.

 The model for uniqueness shows why the latter view is usually better for
achieving security. The key factual point is that attackers usually learn little or nothing
about surveillance (low L) from their attacks. As the level of L approaches zero, then
attackers do not learn about vulnerabilities even after a high number of attacks. Where L
is so low, the effectiveness of hidden surveillance persists.

39 For the person interested in testing this, simply use a search engine with terms such as “password
hacker.”
40 One can imagine a couple of settings where disclosure of the private key may be justified. One reason is
if the defender does not deserve to win, such as when the defender is a criminal. Another reason is if a
defender won’t change a compromised password or private key, even after being told about the
vulnerability. Telling that defender that the entire world will learn the password might be the drastic step
needed to prompt the change. These examples, however, do not take away from the general point – it
almost always helps the attackers more than the defenders to disclose the private key.

 24

 To illustrate the difference between surveillance and most physical attacks, return
to the example of the machine guns or the hidden pit covered by leaves. The attackers
have a high L from these attacks – they learn about the location of the machine guns or of
the existence of the hidden pit. By contrast, suppose that there are well-hidden observers
or surveillance cameras that watch the attack. Even attacks that succeed quite possibly
would not capture the observer or find out the strategy for the hidden cameras.

 The same pattern exists for wiretaps or bugs on networked systems such as
telephones or the Internet. A person using the telephone is not supposed to be able to tell
if the line is tapped. Even a hacker who gets past a firewall may trigger alarms that the
attacker can’t perceive. Once again, there is a low L about surveillance defenses.

 Those involved in surveillance have long understood the importance of preventing
the opposition from knowing the nature of their surveillance. For instance, Neal
Stephenson organizes his masterful novel Cryptonomicon around precisely this theme.41
The novel retells the story of the Allies’ decryption of the German Enigma encryption
system during World War II. The strategic question for the Allies is how much to act on
the secret messages they have decoded. For instance, if a convoy is crossing the Atlantic
and the U-boats are poised to attack, should the convoy shift course? If the convoy does,
then the Germans might deduce that the Enigma system has been broken, undermining
the long-term ability to win the war. If it does not, then many people and boats will be
lost. The novel describes elaborate efforts by the Allies to create cover stories for how
they get useful intelligence. They seek to reduce the learning (L) by the attackers who
are subject to surveillance.

 The importance of retaining a hidden surveillance capability was also crucial to
the entry of the United States into World War I.42 At a time when Germany and the
United States were officially neutral, the Germans sent the famous “Zimmerman
telegram” to the government of Mexico. The telegram offered enticements for Mexico to
ally with Germany against the United States, including promises of returning to Mexico
territories that it held prior to the 1848 war. British intelligence decrypted the
communication, but the intelligence agency was extremely loath to reveal to anyone else
that it had the capability of breaking German codes. British intelligence then went
through an elaborate, and successful, effort to make the leak appear to come from within
the Mexican government. The Zimmerman telegram became public, speeding the entry
of the United States into the war while retaining the British ability to conduct hidden
surveillance of German communications.

 These examples highlight the reasons that intelligence experts believe that sources
and methods of surveillance should remain secret. They believe that disclosure of
sources and methods will increase L and thus significantly help attackers. Even in many
computer security settings, there is often a low L and surveillance measures can stay
hidden. If these factual assertions are correct, as I believe they are, then disclosure of

41 NEAL STEPHENSON, CRYPTONOMICON (2002).
42 The account here follows Singh, supra note __.

 25

surveillance sources and methods will typically have a large help-the-attacker effect.
Persons subject to wiretaps will stop talking on the phone. Persons who know that some
radio frequencies are being monitored will shift to other frequencies, and so on.

 It is vital to underscore the nature of the claim here. The claim is that hiddenness
about surveillance sources and methods will often improve security. This surveillance
will improve the ability of defenders to protect their systems from the attackers. The
claim is not, however, that hidden surveillance is therefore desirable (or lawful) in any
particular setting. The assessment of overall desirability depends on judgments about
multiple and often conflicting goals. Wiretaps and other surveillance, for instance,
intrude on personal privacy. Fear of surveillance may chill desirable uses of
communications networks, with negative effects on the economy and free speech. Public
disclosure and debate about surveillance techniques are also crucial to holding
government accountable. My current scholarly work on “The System of Foreign
Intelligence Surveillance Law” examines these issues of security, privacy, and
accountability in great detail.43 The claim here is about the effectiveness of keeping
surveillance hidden. Disclosure about sources and methods will rarely make the
surveillance more effective at stopping attacks.

 In summary, hidden surveillance techniques mean that there is a low level of
learning (L) from attacks. Disclosure about the sources and methods of hidden
surveillance is likely to reduce security, at least in the short term. Any overall
judgment about the desirability of surveillance depends, in addition, on important
other values such as the protection of privacy and the accountability of those
conducting the surveillance.

 5. When Do Attackers Already Know of the Vulnerability? We now can return
to the first assumption of the Open Source paradigm: that attackers will learn little or
nothing from the disclosure. The discussion here has shown one setting in which
attackers learn from the disclosure but in ways that benefit the defenders – attackers will
sometimes be deterred when they learn about the defense. The discussion here has also
identified two important categories where the assumption seems incorrect. First, private
keys and the combinations to safes should stay secret, because the defense is based on the
strategy of hiding that information from attackers. Second, surveillance techniques will
often not be observable by the attackers, so the assumption that attackers already know
about those techniques will often be wrong.

 a. Discovering and Exploiting Vulnerabilities. With these important
categories better understood, the main debate for software and network security concerns
scenarios that do not primarily involve deterrence, private keys, or hidden surveillance.
The main scenarios involve the following question – do hackers already know about, or
will they promptly know about, the vulnerabilities in a firewall, a mass-market software
program, or a cryptosystem?

43 Peter P. Swire, “The System of Foreign Intelligence Surveillance Law,” __ Geo.Wash. L. Rev. __
(forthcoming, 2004).

 26

 In answering this question, an important variable is how hard it is for outsiders to
discover a vulnerability. If it is generally easy to spot a vulnerability and exploit it, then
the Open Source assumption will be correct – additional disclosure will not help the
attackers much. Based on my discussions with computer security experts, however, there
are at least three reasons to believe that spotting a new vulnerability in a mass-market
software program is often more difficult. First, modern software programs often are
incredibly complex, involving millions of lines of code.44 Spotting any individual
vulnerability requires considerable searching. There is thus often a lower number of
attacks (N) on any piece of code than might otherwise be assumed. Second, the greater
emphasis on computer security in recent years quite possibly has reduced the number of
bugs per line of code. Third, my discussions with professional “bug hunters” suggest that
finding a single vulnerability often takes considerable work by a highly skilled person. If
one considers a cryptosystem rather than a mass-market software program, this last point
is likely to be even more true – it will take a skilled person a considerable amount of
work to find a vulnerability if there is one.

 If a vulnerability is discovered, the next question is how difficult it is to write the
exploit code to take advantage of the vulnerability. If it is hard to write the exploit code,
then discovery of the vulnerability will not lead to rapid attacks on the vulnerability. This
step may actually be easier for experts to do than one might have suspected. Based on
my interviews with computer security experts, for large software programs even an
announcement at a high level of generality about a flaw often quickly translates into
exploit code. The “progress” from description of the vulnerability to successful attack
happens due to high learning about what attacks work (L) and high communication with
other potential attackers (C). Even a fairly general description of a vulnerability can
focus skilled attackers on a subset of the millions of lines of code, speeding discovery of
the exploit code.

 The experts’ rapid ability to exploit a vulnerability may or may not translate into
non-experts’ ability to do the same. At issue is the ability to attack by “script kiddies,”
the often-young hackers who find a step-by-step script on the Internet for doing an attack.
Script kiddies can effectively attack a system that is configured in a standard way and has
not installed a patch for a known vulnerability. On the other hand, defenders can often
defeat script kiddies by altering the system in some way. In terms of the model
developed in this paper, uniqueness (U) by the defender aids the defense. Having a
unique and hidden defense quite possibly will defeat attackers who are simply following
a script.

 b. The Analogy Between Exploiting Vulnerabilities and the Efficient
Capital Markets Hypothesis. There is a useful analogy to the rich literature on the
efficient capital market hypothesis (“ECMH”) in economics.45 Efficiency in the ECMH

44 See, e.g., Dennis Fisher, Microsoft Puts Meat Behind Security Push, EWeek, Sept. 30, 2002, available at
http://www.landfield.com/isn/mail-archive/2002/Oct/0004.html (discussing Microsoft’s “massive bug hunt
among millions of lines of its Windows code”).
45 Credit for the ECMH is often given to Eugene Fama, “The Behavior of Stock Market Prices,” 38 J. Bus.
34 (1965). For a detailed explanation of the ECMH in historical perspective, together with critiques of it,

 27

http://www.landfield.com/isn/mail-archive/2002/Oct/0004.html

means that the current price of the stock or other security accurately includes all the
relevant information. Efficiency in the Open Source paradigm also means that all the
relevant information is already known to outsiders – disclosure of a vulnerability does not
help the attackers.

 The claim here is that the Open Source paradigm has implicitly assumed what is
called the “strong” form of the ECMH, that “current security prices fully reflect all
currently existing information, whether publicly available or not.”46 The efficiency of
capital markets, in this theory, depends on the actions of a large number of traders who
follow the market extremely closely and exploit any opportunity to make a profit. The
traders who analyze new information more quickly and accurately than other traders can
gain a temporary advantage. The combined effect of all these traders is to push the
market very quickly to the point where the price reflects all available information.47

 The Open Source paradigm makes assumptions similar to the ECMH – attackers
learn little or nothing from disclosure, because the attackers have already efficiently
figured out the vulnerabilities. One can identify some important differences, however.
First, the number of traders in the capital markets is very high, with numerous experts
and traders for even the lesser-known stocks. By contrast, there is not necessarily a
supply of expert hackers for each aspect of the large computer programs and for each
lesser-known computer program. Second, the incentive structure to create “efficiency” is
quite different. In the stock market, it is lawful trading that pushes the stock market to
efficiency. The successful analyst buys stock and makes money immediately and in large
quantities. By contrast, there is seldom a big cash reward for discovering a vulnerability
(although the “bug finder” may develop a good reputation and gain consulting contracts).
Exploiting the vulnerability also has different incentives – there are criminal penalties for
attacking computers, so the incentive to use the knowledge is presumably lower than for
lawful stock trading.

 These differences would predict that the market for finding computer
vulnerabilities is less efficient than the market for finding wrongly-priced securities. The
likely inefficiency in finding vulnerabilities undermines the Open Source assumption that
attackers already know about vulnerabilities or will promptly discover them. The likely
inefficiency is even greater, moreover, in light of the criticisms made against the ECMH
itself in recent years. There has been a significant and growing literature showing ways

see Lawrence A. Cunningham, “From Random Walks to Chaotic Crashes: The Linear Genealogy of the
Efficient Capital Market Hypothesis,” 62 Geo. Wash. L. Rev. 546 (1994).
46 Id. at 560.
47 The strong version of the ECMH assumes that the market price of the security reflects publicly-available
information as well as information known only to the company itself. Under the semi-strong view, insiders
might know additional information that would shift the price of the security if publicly revealed. This
“insider information” can thus be valuable to insiders because they can predict the price better than public
traders. Section 10(b) of the Securities Act of 1934 prohibits insider trading. 15 U.S.C. § 78j(b).
 The semi-strong view of the Open Source paradigm, by analogy, would state that insiders might
know of vulnerabilities that are unknown to the outside attackers. The efficiency of the market would be
determined by how well the outsiders could detect and exploit the vulnerabilities that do not depend on
having such insider information.

 28

in which capital markets are not as efficient as the ECMH’s proponents had previously
thought.48

 Additional research might fruitfully develop the analogy further between the
ECMH and the efficiency of finding vulnerabilities in computer systems. For instance,
researchers might explore each of the criticisms of the ECMH in order to examine the
possible sources of inefficiency in the exploitation of vulnerabilities. By analyzing the
possible sources of inefficiency, computer security researchers can identify areas where
vulnerabilities are less likely to be known to attackers, and where disclosure is thus more
likely to provide substantial assistance to attackers.

 On the other hand, there are scenarios where attackers have very strong incentives
to discover vulnerabilities. In future military conflicts, for instance, attackers will be
highly motivated to discover any vulnerability in the computer or network systems held
by their enemy. Where there are determined and well-financed adversaries, the attackers
may be very effective in discovering vulnerabilities. One can therefore imagine the
following counter-intuitive situation. Civilian attackers may be inefficient, so that
disclosure has a large help-the-attacker effect. Military attackers, by contrast, may be
efficient in exploiting vulnerabilities that can be perceived from the outside. For those
vulnerabilities, greater disclosure might actually be rational. The disclosure will do little
or nothing to help the attackers, but there may be help-the-defender effects for system
designers or for other defenders who rely on the system.

 In summary, there is likely greater inefficiency today in the discovery of
computer and network vulnerabilities than assumed in the Open Source paradigm.
The analogy to the Efficient Capital Markets Hypothesis shows that the degree of
efficiency depends on the incentives and institutional arrangements that attackers
have to discover and communicate about vulnerabilities.

48 See, e.g., William T. Allen, “Securities Markets as Social Products: The Pretty Efficient Capital Market
Hypothesis,” 28 J. Corp. L. 551 (2003); Lynn A. Stout, “The Mechanisms of Market Inefficiency: An
Introduction to the New Finance,” 28 J. Corp. L. 635 (2003).

 29

 B. The Assumption that Disclosure Will Tend to Improve the Design of
 Defenses.

 The next assumption is the one most strongly held by Open Source proponents --
disclosure of code and vulnerabilities will improve security because it will result in
improved design of defenses. As firewall experts Chapman and Zwicky have written:
“Some people feel uncomfortable using software that’s freely available on the Internet,
particularly for security-critical applications. We feel that the advantages outweigh the
disadvantages. You may not have the ‘guarantees’ offered by vendors, but you have the
ability to inspect the source code and to share information with the large community that
helps to maintain the software. In practice, vendors come and go, but the community
endures.”49

 In this paper, I do not take a position on the almost theological issue of whether
Open Source software provides better security than proprietary software.50 Instead, the
discussion here will seek to identify some of the variables that would tilt the outcome in
one direction or the other. The previous discussion showed how mass-market software
and firewalls are subject to more efficient attacks due to the high number of attacks (N),
learning from attacks (L), and communication among attackers (C). The focus here is on
how defenders can alter the defenses (A) in ways that improve the defense over time.
After looking at variables that affect when Open Source or proprietary software may
provide better security, the discussion turns to how openness has particular value in
promoting security and accountability in the long run.

 1. Variables that Affect When Open Source or Proprietary Software May Provide
Better Security. Consistent with the goals of this paper, the effort here is to identify
situations where openness is more or less likely to improve security. In this discussion, it
is helpful to distinguish between two meanings of “open.” The focus of the discussion in
this paper is on “open” in the sense of “not hidden.” In particular, outsiders can generally
see the source code for Open Source software but not for proprietary software. This
paper does not address the extent to which software should be “open” in the sense of “not
owned” under copyright or other laws.

 a. Expertise of Inside and Outside Programmers. The security of
proprietary software relies substantially on the expertise of “inside” programmers. These
individuals are employees or contractors of the company that owns the mass-market
software or the organization that operates the firewall.51 By contrast, the Open Source
paradigm relies on “outside” programmers – individuals who usually are not employed
by or under contract with whomever initially designed the software.

49 D. Brent Chapman & Elizabeth D. Zwicky, Building Internet Firewalls 23 (1995).
50 In the interests of full disclosure, I note that I am a member of Microsoft’s Trustworthy Computing
Academic Advisory Committee, which is a group of 19 academics that has been asked to provide advice on
security and privacy issues to Microsoft. I have also discussed the issues in this paper at great length with
many Open Source advocates. The views expressed herein are entirely my own.
51 Proprietary organizations may also get tips about problems and solutions from users of the software and
other outsiders, but the emphasis is likely to be on inside programmers.

 30

 The respective effectiveness of either the Open Source or the proprietary
approaches will depend on the relative quantity and expertise of inside and outside
programmers. Chapman and Zwicky emphasized the advantage of outside programmers
when they referred to “the large community that maintains the software.”52 In other
settings, an organization might be able to bring more and better programmers, who have
the relevant expertise, to the inside. For example, consider the software for specialized
military uses such as for launching rockets. In such a setting, there may not be a “large
community [on the outside] that maintains the software.”53 The more effective approach,
in the absence of that outside community, quite likely would be to rely on inside
programmers - persons who are hired or trained by the military. In such instances,
disclosure of the software does not enlist a community of outside programmers, although
it may help the attackers find vulnerabilities.

 b. The Incentives to Improve the Defense. One of the chief arguments for
supporters of the proprietary approach is that the owner of the software or the system has
strong incentives to provide security. The reputation of the software manufacturer or
system owner is on the line, and bad security can lead to a direct loss of revenue. In the
Open Source model, the incentives are less clearly defined. The outside programmers
might gain a good reputation by designing a patch. A good reputation might translate
into consulting contracts or other remunerative work, although the time spent working on
a patch seems less directly profitable for the Open Source programmer than it is for a
company that increases sales due to better security. Open Source programmers may also
improve software due to a combination of other motives, including membership in a
community of programmers and the feeling of satisfaction from helping solve the
problems facing others.

 The extent to which one approach - proprietary or Open Source - will provide
greater incentives to improve the defense is essentially a question of sociology and
organizational behavior. Over time the sociological context might shift. A vibrant Open
Source community in one period might descend into a “what’s in it for me?” approach in
a later period. Alternatively, a vibrant Open Source community might become broader
and deeper in its skills over time compared with the inside programmers available to
proprietary efforts.

 c. Persistence of the Expertise. Chapman and Zwicky point out the risk
that any single company can disappear: “In practice, vendors come and go, but the
community endures.” Users of a proprietary product thus risk the chance that the
company will go bankrupt or otherwise stop supporting the product. On the other hand,
there are scenarios where the proprietary approach would likely lead to better persistence
of expertise. The owner of a software program or a firewall might invest in having
specialized expertise.54 For instance, the owner of a software program may find it

52 Chapman & Zwicky, supra note __, at 23.
53 Id.
54 The economist Oliver Williamson calls this sort of investment “transaction specific capital” and
considers it an important predictor of where firms make investments. Oliver E. Williamson, The Economic
Institutions of Capitalism 30-32 (1998).

 31

worthwhile to keep on staff a person who is expert in one complex piece of a software
program. Similarly, the military might decide to keep on staff persons who are experts in
software that only the military uses. In these instances, the proprietary model may well
create more persistent expertise than an Open Source approach.

 d. The Institutional Context for Patching. The usual Open Source belief
has been that patching – the release of improved code that addresses a vulnerability –
works better where the Open Source community can probe for vulnerabilities and then fix
them. The accompanying belief has been that many proprietary companies have been
reluctant to admit to vulnerabilities or to invest the resources to issue good patches.

 My interviews with computer security experts suggest that these conclusions have
quite possibly become less true over time. First, proprietary companies have shifted to a
norm of issuing patches as part of the overall effort to improve cybersecurity. Second,
proprietary companies have in some instances created substantial institutional structures
to create and disseminate patches. These institutional structures can respond to
vulnerabilities in a coordinated way. A coordinated approach, if carried out effectively,
may lead to faster and more consistent responses to problems across different platforms.

 The point here is not to announce that one approach or the other is necessarily the
winner when it comes to effective patching. Instead, the speed and quality of patching is
likely to vary over time depending on the institutions that exist to create and disseminate
patches.

 e. Interoperability and Openness. Having Open Source code can facilitate
interoperability. System owners will have the ability to see what they are including in
their system and how to integrate it with existing programs. For this reason, greater
disclosure can improve security to the extent it permits system owners to know their
systems and avoid vulnerabilities.

 On the proprietary side, there is the usual market incentive to provide effective
solutions for clients. Software companies want their products to work well for a large
range of users. They often design their products to inter-operate with other products, and
they work with system integrators to create overall systems that work.55 As with other
factors discussed in this section, the extent to which the possible advantages of openness
outweigh the possible advantages of vendors directly seeking to satisfy the market by
increasing sales is an empirical question..

 2. The Role of Disclosure in Creating Long-Run Security and Assuring
Accountability. Much of the comparison thus far of the Open Source and proprietary
approaches implicitly concerned short and medium-term security, such as which
approach would typically create a better patch for a newly discovered vulnerability. An
additional basis for disclosing information is to improve long-run security. Bruce

55 For a discussion of the incentives for software and other manufacturers to promote interoperability, see
Joseph Farrell & Philip Weiser, Modularity, Vertical Integration, and Open Access Policies: Towards a
Convergence of Antitrust and Regulation in the Internet Age, 17 HARV. J. L. & TECH. 85, 97-104 (2003).

 32

Schneier, for instance, writes that “public scrutiny is the only reliable way to improve
security -- be it of the nation's roads, bridges and ports or of our critically important
computer networks.”56 The belief is that organizations that rely on secrets are unlikely in
the long-run to update their security effectively. On this view, testing by outsiders is
crucial to overcoming inertia within the organization. Even if secrecy masks
vulnerabilities in the short-run, the secretive organization is laying the groundwork for a
larger-scale problem in the long-run.

 It is difficult to provide empirical tests for when secrecy leads to long-run failure
to adapt and modernize. One can try to compensate for secrecy by creating institutions
that inspect and challenge the status quo without disclosing secrets to the world.
Organizations can hire “Tiger Teams”57 and other sorts of outside experts to probe for
weaknesses. Organizations can hire independent auditors and create oversight boards to
watch for areas of weakness. The usefulness of these institutional responses will vary
widely, but they are unlikely to be effective unless they can probe into possible areas of
vulnerability and then have institutional support when they recommend changes.

 Over the long run, the usefulness of openness for promoting security overlaps
with the usefulness of openness for assuring accountability more generally. The Freedom
of Information Act58 and other openness mechanisms are useful in part because they
allow vulnerabilities to be discovered and security to be improved. These mechanisms
are also useful, however, for exposing corruption, abuse of power, and the other evils that
can flourish in secret. It is a topic of my continuing research to shed light on situations
where openness is most important to accountability and long-run improvement in
security. For purposes of this paper, however, the claim is more modest. Once one has
done the analysis on the extent to which disclosure helps security, there is reason to place
a thumb (and perhaps an entire palm) on the scale on the side of disclosure. That tilt is
due to the recognition of the likely long-run decrease in security and accountability that
comes from secrecy. The longer that information is designed to stay secret, the greater
the risk to system security and general accountability.

 On the comparison of Open Source and proprietary software, this paper does
not take a position on the contentious issue of which approach provides better
overall security. Significant variables include: the relevant expertise of inside and
outside programmers; the incentives to improve the defense; the persistence of
relevant expertise; the institutional context for patching; and how interoperability is
assured. Disclosure is often additionally useful for promoting long-run security and
assuring accountability.

56 Bruce Schneier, “Internet Shield: Secrecy and Security,” S.F. Chronicle, Mar. 2, 2003.
57 Michael Lee et al., Electronic Commerce, Hackers, and the Search for Legitimacy: A Regulatory
Proposal, 14 Berkeley Tech. L.J. 839, 884 n. 195 (1999) (defining “Tiger team” as computer security
experts, hired by the owner of a computer system, who simulate hostile break-ins).
58 5 U.S.C. § 552.

 33

 C. The Assumption that Disclosure Will Spread Effective Defenses to Others.

 The third assumption in the Open Source paradigm is that disclosure will spread
effective defenses to third parties. The assumption in the military paradigm is that
disclosure will prompt little or no improvement in defense by other defenders. The
discussion here will seek to explain when each assumption is more likely to be true and
thus when disclosure is likely to help other defenders.

 The military assumption is more convincing in settings where mechanisms exist
to disclose only to trusted defenders. In the military setting, there are strongly-
authenticated fellow defenders, such as the others that share the same uniform. When
changes should be made in the defenses, the military has a hierarchical command
structure. Orders can be given to the appropriate units to implement the change in
defense. Under these assumptions of strong authentication and an established hierarchy,
disclosure to the entire world has low or zero benefits (the other defenders improve their
defenses) and potentially significant costs (the help-the-attacker effect).59

 The situation changes for mass-market software. There is no strong
authentication for who is an “authorized security specialist” for widely-used software.
Suppose that a large software company tried to send security information to every
“authorized security specialist” while trying to keep the information secret from all
potential hackers. That sort of mass notification, with no leakage, is highly unlikely to
succeed. In the absence of strong authentication that separates “good guys” from “bad
guys,” the disclosure that does occur will generally be available to both. The military
option of selective disclosure is much less likely to be available.

 The mass-market software programmer also has less hierarchical control over
defenses than does a military commander. For mass-market software, many users lack
expertise. Many defenders also may not pay much attention to the programmer’s plea to
install patches or otherwise upgrade the defense. Given the lack of hierarchical control,
those seeking to spread the new defensive measure may have to rely on widespread
publicity to alert the third-party defenders about the threat.

 In short, disclosure is more likely to help attackers where there is a unified
defense (one organization with hierarchical controls). Disclosure is more likely to help
defenders where there are numerous third parties that risk harm from a vulnerability. The
latter situation is more likely to occur for the major settings for computer and network
security. For firewalls and mass-market software there are many ordinary users who
might have the vulnerability. For encryption, the messages of many users are subject to
attack if the cryptosystem is broken. Because there are so many third parties, disclosure

59 In the real life of the military, of course, the assumptions of strong authentication and effective hierarchy
do not always exist. Spies might learn about information that was supposed to go only to members of the
military. Orders might not be followed. Nonetheless, the ability to get information to selected fellow
defenders is likely much greater in a well-run military organization than it is for mass-market software
companies.

 34

becomes more important in order to alert defenders about whether a product is secure or
whether a patch is needed.

 Interestingly, the needs of the U.S. military seem to have played a role in
prompting mass-market software companies to disclose more about vulnerabilities. Over
time, the military has followed the dictates of Congress and bought a great deal of COTS
(commercial off-the-shelf) software. Based on my interviews with security experts, 60
the military became aware over time of software vulnerabilities that had not been
disclosed either to the military or to the general public. The military found it
unacceptable to be vulnerable to attacks that were known to attackers and to the software
company, but not to the military. The military thus put pressure on software providers to
increase the disclosure of vulnerabilities, so that users such as the military would be in a
better position to know about vulnerabilities and develop a response.

 In summary, disclosure will tend to help the attackers but not the defenders
in a military setting, where there is strong authentication of defenders and an
established hierarchy to implement better defenses. Disclosure provides greater
benefit to defenders when there are numerous third-party users, no effective way to
communicate only to friendly defenders, and no hierarchical way to ensure that
defenses are put into place.

IV. Conclusion: Security, Privacy, and Accountability.

 This paper has addressed when disclosure of information will improve security.
“Security,” for this paper’s purposes, is defined as preventing the attacker from gaining
control of a physical installation or computer system.61

 There are clearly other compelling goals to consider in deciding when to disclose
information. Accountability usually increases with greater disclosure. Disclosure of
information can produce economic winners and losers. Free speech and other First
Amendment issues are implicated by disclosure policy. Personal privacy, the subject of
much of my previous academic and government work, can also be compromised when

60 The information about this history was provided to me on background by persons in both the public and
private sector.
61 A more expansive definition of “information security” is given in the Federal Information Security
Management Act of 2002, Pub. L. 107-347, 116 Stat. 2946, Sec. 301:

"(1) The term 'information security' means protecting information and information
systems from unauthorized access, use, disclosure, disruption, modification, or
destruction in order to provide--
 "(A) integrity, which means guarding against improper information modification or
destruction, and includes ensuring information nonrepudiation and authenticity;
 "(B) confidentiality, which means preserving authorized restrictions on access and
disclosure, including means for protecting personal privacy and proprietary information;
and
 "(C) availability, which means ensuring timely and reliable access to and use of
information.

 35

information is disclosed62 Compelling goals such as accountability, economic growth,
free speech, and privacy should be included in any overall decision about whether to
disclose information.

 An essential part of the analysis, however, is to understand when disclosure helps
security itself. Understanding this is important in its own right, as an intellectual topic
that not that has not received sufficient attention to date. It is also crucial in the debates
about how to create cyber-security and physical security in the age of the Internet and of
terrorist threats.

 This paper seeks to correct two common misunderstandings about when
disclosure improves security. Secrecy helps much more often than is suggested by the
slogan that “there is no security through obscurity.” In presenting earlier versions of this
paper, the most sophisticated technologists have understood this fact. They have known
that keys and passwords should remain secret and that a good firewall can benefit from
idiosyncratic features that defeat the script kiddies. This paper draws on the literature
about Efficient Capital Markets Hypothesis, however, to suggest that the efficiency of
attackers in discovering vulnerabilities will often be less than Open Source proponents
have presumed. More broadly, my discussions with security experts have uncovered no
models or systematic ways to analyze the limits of what I have called the Open Source
paradigm for security through openness.

 The paper also teaches that disclosure improves security much more often than is
suggested by the slogan that “loose lips sink ships.” First, military systems often rely on
commercially-available software, and the security of those systems thus depends on
military system owners learning about vulnerabilities. Second, military actions are
subject to the growth of the Public Domain, where information gets communicated so
quickly and effectively among potential attackers.63 Third and most broadly, the model
in this paper suggests that openness may be the best general strategy in situations with

62 From 1999 until early 2001 I served as the Clinton Administration’s Chief Counselor for Privacy, in the
U.S. Office of Management and Budget This research project arises from my perception at that time that
some of the hardest and least understood issues concerned how privacy and security should intersect. My
work on the topic began in the summer of 1999, when the Federal Intrusion Detection Network (FIDNet)
became a topic of controversy. In the wake of criticism of FIDNet (see John Markoff, “U.S. Drawing Plan
That Will Monitor Computer Systems,” N.Y. Times, July 28, 1999, at A1), I was asked to work with
Richard Clarke’s cyber-security team to ensure that federal computer security was done consistently with
privacy and civil liberties. The next year, I served as chair of a White House Working Group on how to
update electronic surveillance laws for the Internet Age, another topic where privacy and security concerns
intersected. Since my return to academic life, many of my writing have addressed the intersection of
security, privacy, and surveillance issues. My privacy and other publications are available at
www.peterswire.net.
63 The growth of the Internet, with its lack of national boundaries on communications, has lowered the cost
and increased the effectiveness of research about other countries. Military commanders expect to use new
technologies to “see the battlespace” and have “integrated sight” of the enemy’s capabilities. ADMIRAL
BILL OWENS, LIFTING THE FOG OF WAR 119, 133 (2000) (describing greater information gathering and
processing as a central part of the “Revolution in Military Affairs”). Opposing forces will similarly pursue
strategies of high N, L, and C to “life the fog of war.”

 36

http://www.peterswire.net/

low uniqueness, where there are high values for number of attacks (N), learning from an
individual attack (L), and communication among attackers (C).

 In terms of methodology, this paper has offered an economic analysis for
determining when “there is no security through obscurity” and when “loose lips sink
ships.” The first step is to assess the costs and benefits of the disclosure with respect to
potential attackers. In some instances, for strong positions, disclosure will deter attacks
and is thus beneficial. In other instances, disclosure tends to spread information about
vulnerabilities. Even then, where the facts fit the Open Source and Public Domain
paradigms, disclosure will offer little or no aid to attackers. Thus, disclosure can go
forward if there are benefits to the defenders or if other values favor disclosure. When
the facts fit the Information Sharing and Military paradigms, disclosure is more likely to
help the attackers. Nonetheless, disclosure is more likely than previously to have net
benefits in cyber-settings and other modern settings where attackers can mount numerous
attacks (high N), gather information cheaply (high L) and communicate efficiently about
vulnerabilities (high C).

 Another important theme of the paper is that there are often third-party defenders
who benefit from disclosure about vulnerabilities. The Military Paradigm implicitly
assumes that defenders act in a unified way with strong authentication (the ability to
recognize allied soldiers) and hierarchical control (the ability to order fixes for
vulnerabilities). When these assumptions no longer hold, such as for mass-market
software and networks operated by diverse actors, then disclosure is much more likely to
have net benefits for defenders.

 By defining the factors that contribute to high uniqueness, the paper identifies the
variables that determine when secrecy will improve the defense: the effectiveness of the
defensive feature against the initial attack (E); the number of attacks (N); the degree of
learning by the attacker (L); the degree of communication with other potential attackers
(C); and the extent to which defenders can effectively alter the feature before the next
attack (both alteration by the system designer (A-D) and alteration by third parties, such
as Open Source programmers (A-T)).

 Identification of these variables provides the answer to the question asked in the
paper’s title: What is different about computer and network security? For key computer
and network topics such as firewalls, mass-market software, and encryption, the effect of
variables such as high N, L, C, and A-T show why the benefits of disclosure of
vulnerabilities often outweigh the benefits of secrecy. Disclosure is not necessarily or
logically more desirable for computer and network security than for physical security, but
the crucial variables much more often result in having net benefits from disclosure.
Examination of the variables also illuminates important special cases, such as why
disclosure of passwords and private keys will almost always be harmful and why
surveillance generally benefits from secrecy concerning sources and methods.

 In closing, the intellectual structure of this paper provides a systematic way to
identify the costs and benefits of disclosure for security. Further research can assess the

 37

empirical levels of the relevant variables in different security contexts. Further research
can enrich the theoretical structure for assessing the effects of disclosure on security, such
as by drawing more on the Efficient Capital Markets Hypothesis literature to identify
where vulnerabilities are most likely to be discovered by attackers. Finally, further
research can better explain how security goals should be integrated with other compelling
goals such as accountability, economic growth, free speech, and privacy.

 38

	swirecover.pdf
	Page 1
	Page 2

	swire.ssrn.aug23.pdf
	Help the Attackers Effect
	Help the Defenders Effect
	Low
	High
	High
	A: Open Source
	Low
	B: Military
	Table 1: Greater Disclosure Up and to the Left;
	Help the Attackers Effect
	Help the Defenders Effect
	Low
	High
	High
	A: Open Source
	C. Information Sharing
	Low
	D. Public Domain
	B: Military
	Table 2: Greater Disclosure Up and to the Left;

