
 
 

 

Securing an Internet  
Name Server 
 
 
CERT® Coordination Center 
 
 
Allen Householder, CERT/CC 
Brian King, CERT/CC 
 
In collaboration with 
Ken Silva, Verisign 
 
 
 
 
August 2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CERT and CERT Coordination Center are registered in the 
U.S. Patent and Trademark Office. 
 
Copyright 2002 Carnegie Mellon University

 



DNS overview 
 
Domain name system (DNS) servers translate names suitable for use by people (such as 
www.example.com) into network addresses (e.g., 192.168.4.22) suitable for use by computers. 
There are a number of different name server software packages available today. Berkeley Internet 
Name Domain (BIND), produced by the Internet Software Consortium (http://www.isc.org), is the 
most widely deployed name server package, and is available on a wide variety of platforms. Other 
popular DNS packages include Microsoft DNS and djbdns. 
 
The goal of this document is to discuss general name server security. However, in order to provide 
useful examples we have chosen to focus on BIND since it is the most commonly used software for 
DNS servers.  

Risks to name servers 
 
Name servers exposed to the Internet are subject to a wide variety of attacks: 
 

• Attacks against the name server software may allow an intruder to compromise the server 
and take control of the host. This often leads to further compromise of the network.  

• Denial of service attacks, even one directed at a single DNS server, may affect an entire 
network by preventing users from translating hostnames into the necessary IP addresses.  

• Spoofing attacks that try to induce your name server to cache false resource records, and 
could lead unsuspecting users to unsavory sites.  

• Information leakage from a seemingly innocent zone transfer could expose internal network 
topology information that can be used to plan further attacks.  

• A name server could even be an unwitting participant in attacks on other sites.  
 

While it is important for network administrators to secure any host connected to the Internet, they 
must give name servers special consideration due to the important role they play. The purpose of 
this document is to outline some common steps that can be taken to secure an Internet Name Server 
from various types of attacks. 

Run a new version of your name server software 
 
As with any piece of software, name server software evolves with each release. Virtually all older 
name servers have widely known vulnerabilities that can be exploited. Vulnerabilities that appear in 
one version are usually fixed in subsequent releases. While running the newest version of your 
name server software doesn’t guarantee your server’s security, it minimizes the possibility of 
exploitation. When upgrading, be sure to read the release notes to understand what has been fixed 
and what has been changed in the software. Upgrading the name server to a new version may 
require that changes be made to the configuration in order to provide the expected performance or 
to take advantage of new features. 

 2

http://www.example.com/
http://www.isc.org/


 
At the time of this writing, the latest versions of BIND are: 
 

• 9.2.0 (recommended)  http://www.isc.org/products/BIND/bind9.html 
• 8.3.1    http://www.isc.org/products/BIND/bind8.html 
• 4.9.8 (deprecated)  http://www.isc.org/products/BIND/bind4.html 
 

Information on vulnerabilities in BIND, and which versions are affected, can be found at the ISC’s 
BIND Vulnerabilities page 
 
 http://www.isc.org/products/BIND/bind-security.html 
 
or by searching the CERT/CC’s Vulnerability Notes Database  
 
 http://www.kb.cert.org/vuls/ 
 

Eliminate single points of failure 
 
Denial of service attacks targeted at a name server, or an accidental network outage isolating the 
name server from the rest of the network can have far reaching effects. If the name servers are 
unreachable, users will be unable to reach other hosts since they will be unable to translate 
hostnames into IP addresses. This can affect both internal and public systems depending on the 
network architecture.  
 
To combat denial of service attacks and prevent accidental service outages, it is necessary to 
eliminate single points of failure in the DNS infrastructure. Some common pitfalls to avoid are 
placing all of your name servers 
 

• on a single subnet. 
• behind a single router. 
• behind a single leased line. 
• within a single autonomous system.  

 
In addition to mitigating the risks described above, you should ensure that you have multiple 
physical paths to your network. This is an important step to verify even if you have multiple service 
providers, since they may lease their physical plant from the same carriers. Without physical path 
diversity, your network is more susceptible to physical disruption (commonly known as “backhoe 
fade”). 
 
Even if all the systems listed in a public zone were to become unreachable from the Internet (as 
might be the case if all links to a site were saturated by a DDoS attack), there are a number of 
reasons an organization may wish to arrange for an off-site slave name server. Among these are  
 

 3

http://www.isc.org/products/BIND/bind9.html
http://www.isc.org/products/BIND/bind8.html
http://www.isc.org/products/BIND/bind4.html
http://www.isc.org/products/BIND/bind-security.html
http://www.kb.cert.org/vuls/


• to facilitate troubleshooting from remote networks, whether done by your own staff via 
alternate Internet connections, or by other network administrators attempting to diagnose 
why their users are unable to reach your systems. 

• to maintain proper performance of SMTP mail relaying. If external mail servers are 
completely unable to resolve your domain, they may bounce the messages back to the 
senders as undeliverable. However, if your domain is resolvable but all mail exchangers are 
unreachable, external mail servers will usually queue the messages for later delivery. 

 

Use separate servers 
 
A number of steps can be taken to secure a name server that only has to provide DNS to a single 
audience since it can be optimized for a particular function. Therefore, it can be useful to use 
separate name servers, each configured to play a specific role. Frequently, different security polices 
can be applied to these servers such that even if one server is compromised the other server will 
continue to function normally. 
 
Consider creating two kinds of name server, each optimized for a particular function: 

Advertising name server 
An advertising name server would commonly be used as an external name server that is 
authoritative for your DNS zones. It would “advertise” this DNS information to the Internet. 
Since it should not be queried for zones for which it is not authoritative, it should be 
configured as a non-recursive server. Thus, the server would only provide resolution for the 
zones for which it has authoritative information. 
 
Resolving name server 
A resolving name server would commonly be used to provide name resolution services to 
internal clients. It may or may not be configured as authoritative for internal zones. Since it 
must find DNS information requested by internal hosts (regardless of whether it is 
authoritative for that information or not), it should be configured as a recursive server. 
However, it should only answer queries from trusted sources (internal hosts), not from the 
Internet. 

 
By adopting this strategy the external advertising name server is configured to provide little service 
other than answering queries for which it is authoritative. The internal resolving name server must 
provide recursion, and is therefore somewhat more susceptible to attack since it must accept data 
from other DNS servers. Additional protection of the resolving name server can be provided via 
other means such as packet filtering and restricting the server to respond only to known hosts. 
 
In this manner, if the resolving server were to be compromised or its cache “poisoned”, the 
advertising server’s authoritative zone information would be unaffected, thus limiting the potential 
damage. Similarly, if the resolving name servers are also configured to be authoritative for internal 
zones, a compromise of the advertising name server(s) would not affect the normal operation of the 
internal clients of the resolving name server(s). 

 4



Filter traffic to your name server 
 
Many organizations run their name servers on dedicated hosts. If the hosts that run the name 
servers don’t provide any other services, there is no need for them to respond to non-DNS traffic. 
As such, all unnecessary traffic can be filtered out, thus reducing the possibility of the name server 
being compromised by a vulnerability in some other piece of software. (In addition to filtering 
unused services, it is good security practice to disable or remove any unnecessary software from the 
name server.) 
 
For DNS servers providing public name resolution to the Internet (i.e., the advertising name server 
described above), everything but traffic from the Internet to 53/udp and 53/tcp on the server can be 
safely filtered. Name servers that only provide name resolution services to internal clients can be 
filtered to allow only internal clients to access 53/udp and 53/tcp on the name server, while 
allowing the server to make outbound queries to other name servers.  
 
Table 1 summarizes the filtering recommendations above. 
 

Function Description Source IP Source Port Destination 
IP 

Destination 
Port 

Public NS Inbound queries Any 
53/udp,
53/tcp,
>1023/udp,
>1023/tcp

Nameserver 53/udp,
53/tcp

Public NS Query replies Nameserver 53/udp,
53/tcp Any 

53/udp,
53/tcp,
>1023/udp,
>1023/tcp

Internal 
NS Queries from clients Internal 

network 
>1023/udp,
>1023/tcp Nameserver 53/udp,

53/tcp

Internal 
NS Replies to clients Nameserver 53/udp,

53/tcp
Internal 
network 

>1023/udp,
>1023/tcp

Internal 
NS 

Outbound recursive 
queries Nameserver 

53/udp∗,
53/tcp*,
>1023/udp*,
>1023/tcp*

Any 53/udp,
53/tcp

Internal 
NS 

Replies to recursive 
queries Any 53/udp,

53/tcp Nameserver 
53/udp*,
53/tcp*,
>1023/udp*,
>1023/tcp*

Table 1: Packet Filtering for Name servers 
 
Note that it is a common misconception that that only 53/udp is used for DNS queries and that 
53/tcp is only used for zone transfers. However, 53/tcp may be used for longer query responses that 

                                                 
∗  Source ports 53/udp and 53/tcp are required if your resolving name server is running BIND version 4.x software. 
BIND versions 8.x and 9.x default to using source ports >1023/udp and >1023/tcp for queries originating from 
the server. 

 5



won’t fit into a single UDP packet. Thus it is necessary to allow traffic to both 53/udp and 53/tcp. 
Zone transfers via 53/tcp can be further restricted within the name server configuration itself.  
Furthermore, name servers that are configured to forward unresolved queries to another name 
server will appear as clients to the server they forward to. 

Restrict zone transfers 
 
Zone transfers are used to transfer DNS information from one name server to another. Restricting 
zone transfers is an important step in securing a name server. It prevents others from taxing your 
name server’s resources, and it prevents intruders from listing the contents of your zones. An 
intruder who is able to complete a zone transfer can use that information to identify new targets on 
your network, such as routers and network infrastructure equipment, mail servers, other name 
servers, file servers, and anything else in your DNS records.  
 
A common mistake is to restrict zone transfers from the primary master name server while 
neglecting to restrict transfers from slave servers. Since it is just as easy to transfer a zone from a 
slave as it is from the primary master, it is important to ensure that all authoritative name servers 
(regardless of their master or slave status) have restrictions placed on zone transfers. If possible, the 
most secure configuration is to disable zone transfers altogether and use a cryptographically secure 
method of transferring zone files to other authoritative servers. 
 
The host -l command and dig’s axfr option can be useful for testing zone transfer restrictions since 
those commands are implemented as zone transfers. 

Restricting zone transfers with BIND 4 
With BIND 4.9.x, use the xfrnets directive: 
  

xfrnets 192.168.4.154&255.255.255.255

 
This controls which name servers can transfer any zones from this name server. 

Restricting zone transfers with BIND 8 BIND 8 
With BIND 8 or 9, use the allow-transfer substatement, either at the server level: 
 

options {
allow-transfer { 192.168.4.154; };

};

 
or specific to a zone: 
 

type master;
zone “example.com” {

file “db.example.com”;
allow-transfer { 192.168.4.154; };

};

 6



Authenticate zone transfers with TSIG 
 
With BIND 8.2 and later name servers, you can use Transaction Signatures, or TSIG, to 
cryptographically authenticate and verify zone data. TSIG uses a shared-secret cryptographic 
signature to authenticate authoritative zone data. Use of TSIG requires that you configure a shared 
key on your master and slave name servers and then instruct them to use the key to sign 
communication with each other.  
 
TSIG requires participating name servers to have their system clocks synchronized. 

Configuring TSIG with BIND 8.2 and later 
The following example tells the master name server to allow zone transfer requests for the 
example.com zone from any name server, as long as they are signed with the tsig-signing key1: 
 

key tsig-signing. {
algorithm hmac-md5;
secret “mZiMNOUYQPMNwsDzrX2ENw==”;

};
zone “example.com” {

type master;
file “db.example.com”;
allow-transfer { key tsig-signing; };

};

Correspondingly, the slave name server(s) must also contain the shared key: 
 

key tsig-signing. {
algorithm hmac-md5;
secret “mZiMNOUYQPMNwsDzrX2ENw==”;

};
server 192.168.4.47 {

transfer-format many-answers;
keys { tsig-signing.; };

};
zone “example.com” {

type slave;
file “bak.example.com”;
allow-transfer { none; };

};

                                                 
1 RFC-2845 makes a number of recommendations regarding key usage. Among these recommendations are that key 
names should be indicative of the hosts using them, and that distinct keys should be used for each pair of hosts using 
TSIG.  

 7



Restrict dynamic updates 

Although dynamic updates are useful as a way to reduce the overhead typically associated with 
static DNS zone maintenance, they pose additional risk to the integrity of your zone data. This risk 
arises from the fact that an authorized updater can   
 

• add new records to a zone. 
• delete any or all the records from a zone. 
• modify any or all records in a zone. 

 
As a result, administrators of servers allowing dynamic updates should take precautions to restrict 
the potential for abuse. Dynamic updates can be limited in the following ways: 
 

• by individual IP addresses 
• by a list of TSIG keys 

 
As with any IP address-based authentication mechanism, it is important to remember that IP 
addresses are easily spoofed. Furthermore, dynamic updates typically use UDP as the transport 
protocol, so it may only require a single forged packet to cause data corruption. Sites that use IP 
addresses as their primary authentication mechanism for dynamic DNS updates are therefore 
encouraged to implement anti-spoofing mechanisms to reduce the risk of unauthorized data 
modifications. This anti-spoofing function is typically performed at a packet filtering point such as 
a router or firewall. 

Restricting dynamic updates with BIND 8 and 9 
Dynamic updates are implemented in BIND versions 8 and 9. By default, these features are 
disabled. Enabling dynamic updates is done using the allow-update substatement: 

zone "example.com" {
type master;
file "db.example.com";
allow-update {

localhost;
key allowed-updater.;

};
};

The above example restricts dynamic updates for the example.com zone to localhost (as 
authenticated by IP address), and to any updater using the allowed-updater key*. Note, however, 
that any user with the allowed-updater key will be able to add, delete, or modify any record 
in the entire example.com zone. If dynamic updates are in fact required for the entire zone, this 
may be acceptable. 
 

                                                 
* The allowed-updater key would, of course, need to be defined elsewhere in the configuration. 

 8



In the case where dynamic updates are only required for a few entries within a zone, though, it may 
be more appropriate to limit the updates to those particular records. Delegating a new zone 
containing only the record you wish to allow updates to will accomplish this. For example, if the 
only record in the example.com zone requiring dynamic updates is www.example.com, you 
could delegate a new zone for www.example.com. To do this, in the db.example.com zone 
file, you would replace any records for www.example.com with  
 

IN NS ns1.example.com.
IN NS ns2.example.com.

Then, in the named.conf file on the primary master name server for www.example.com, you 
would add 

zone "www.example.com" {
type master;
file "db.www.example.com";
allow-update {

key allowed-www-updater;
};

};

Given this configuration, a user with the allowed-www-updater key would only be able to 
modify or delete the address of www.example.com, or create new subdomains of 
www.example.com. They would not be able to otherwise modify any records in the 
example.com zone, though. 

Restricting dynamic updates with BIND 9 

In BIND 9, the update-policy substatement allows administrators to restrict which domain names in 
a zone can be dynamically updated to a subset of a zone. Thus, it is possible to achieve a result 
similar to the previous example, but with finer control over what can and cannot be updated. For 
example: 
 

zone "example.com" {
type master;
file "db.example.com";
update-policy {

grant allowed-www-updater self www.example.com A;
};

};

This allows a client with the allowed-www-updater key to update only the address record for 
www.example.com without granting the ability to create new subdomains or to modify other 
record types (e.g., MX) associated with www.example.com. 

 9



Protecting against cache-poisoning 

Name servers can operate in one of two ways in response to queries received: 
 

• recursive queries are used when a client makes a request to a name server and the name 
server is expected to traverse the DNS hierarchy to find the answer. The name server in turn 
makes non-recursive queries to find the requested information. 

• non-recursive queries are used when a name server asks another name server for 
information. The queried server will return either (a) an answer, (b) a referral to another 
name server, or (c) an error indicating that the queried name server has no information to 
fulfill the request. 

 
By default, most name servers will allow recursive queries from any source. 
 
Name servers that provide recursive resolution services to the Internet at large may be susceptible 
to cache poisoning. Cache poisoning occurs when a name server caches bogus data for a domain 
name. This can result in denial-of-service or man-in-the-middle attacks. By making a recursive 
query to a name server that provides recursion, an attacker can cause a name server to look up and 
cache information contained in zones under their control. Thus the victim name server is made to 
query their malicious name servers, resulting in the victim caching and serving bogus data. 
 
To reduce this risk, BIND administrators have four options, depending on the software version in 
use: 
 

1. Disable recursion entirely, if possible (BIND 4.9 and up). 
2. Restrict the addresses that can make queries (of any type) to the name server (BIND 8 and 

up). 
3. Restrict the addresses that can make recursive queries to the name server (BIND 8.2.1 and 

up). 
4. Disable the fetching of glue records, if possible (BIND versions prior to 9 only). 

Turning off recursion (BIND 4.9 and later)  
Disabling recursion puts your name servers into a passive mode, telling them never to send queries 
on behalf of other name servers or resolvers. A totally non-recursive name server is protected from 
cache poisoning, since it will only answer queries directed to it — it doesn’t send queries, and 
hence doesn’t cache any data. Disabling recursion can also prevent attackers from bouncing denial 
of services attacks off your name server by querying for external zones. 
 
BIND 4.9 supports recursion disabling via the options directive. 
 

options no-recursion

 
 

 10



In BIND 8 and 9, the same feature is disabled using the options statement: 
 

options {
recursion no;

};

Restricting queries using allow-query (BIND 8 and later) 
As mentioned above, it is recommended that sites use separate name servers for (1) providing 
authoritative responses for their zones (advertising), and (2) providing recursive name resolution 
services to their internal systems. This allows for recursion to be completely disabled on the 
authoritative advertising name servers, while still providing the necessary recursive services to 
internal resolvers. This may not be practical in all environments, though, since one or more of the 
following may be true 

• other name servers may forward unresolved queries to the name server in question for 
recursive resolution 

• client resolvers may require recursive services of them. 

Hence BIND versions 8 and 9 offer a variety of methods to restrict queries.  (Unfortunately, BIND 
4 does not offer these features.) The basic options allow the administrator to specify   
 

• the addresses that should be allowed to make queries 
• the zones those addresses should be permitted to query for 

 
In an environment where both authoritative responses and recursive queries are required, it is 
commonly the case that while queries for records in authoritative zones can come from anywhere, 
queries for records outside of authoritative zones (i.e., recursive queries from clients) should only 
come from internal addresses. 

For example, if your internal network uses the 192.168.4.0/24 address block but you need to 
provide authoritative responses for the example.com zone, you could use the allow-query 
substatement to restrict recursive services to that block while allowing any address to make 
requests in the example.com zone. The first step is to define an access list describing your 
internal network block: 

acl internal { 192.168.4.0/24; };

Alternatively, if the name server is only to be used by other internal name servers as a local cache, 
the access list could be defined to include only those name servers that are permitted to use its 
services. In our example, the name servers to be permitted are at 192.168.4.154 and 
192.168.4.47: 

acl internal { 192.168.4.154/32; 192.168.4.47/32; };

 
 
 

 11



Next, make the server default to only providing service to the internal network: 

options {
...
allow-query { internal; };
...

};

Finally, override the default to allow queries from anywhere only for records in the 
example.com zone: 

zone "example.com" {
type master;
file "db.example.com";
allow-query { any; };
...

};

Restricting recursion using allow-recursion (BIND 8.2.1 and later) 
Furthermore, in those configurations in which it is not possible to completely disable recursion on 
the name server, it is recommended that the name server be restricted to providing recursive 
resolution only to a limited set of addresses. BIND 8.2.1 and later allow you to restrict the IP 
addresses you accept recursive queries from. When this option is used, queries from other IP 
addresses will be processed as non-recursive, regardless of whether recursion was requested or not. 
This feature is activated through the use of the allow-recursion substatement. 
 
Similar to our example from above, we first define the internal network block in an access list: 

acl internal { 192.168.4.0/24; };

Then set the server default to allow recursion from internal addresses only: 

options {
...
allow-recursion { internal; };
...

};

This time, however, no special configuration is required in the example.com domain: 

zone "example.com" {
type master;
file "db.example.com";
...

};

 12



Restricting recursion using views (BIND 9 and later) 
BIND 9 implements a new feature through which administrators can define different "views" for 
the data served by a name server. Using views, other name servers and resolver clients may see 
different responses based on their IP addresses. 
 
In the following example, the internalview view allows recursion addresses defined in the 
internal access list, while the externalview view does not permit recursion: 

view "internalview" {
match-clients { internal; };
recursion yes;

};
view "externalview" {

match-clients { any; };
recursion no;

};

Note that in this case we have not defined any zones within the views, so if the example.com 
domain were defined elsewhere in the named.conf file: 

zone "example.com" {
type master;
file "db.example.com";

};

both the internalview and externalview views would see the same data for the 
example.com zone. 

Turning off glue fetching (BIND 4.9 and 8 only) 

If a name server is returning NS records in a response but does not have the corresponding A 
records to include as additional information, it may attempt to retrieve them. This glue fetching is 
the default behavior in BIND versions prior to 9, and is a potential source of cache poisoning. By 
disabling glue fetching it is possible to prevent this lookup, thereby eliminating the possibility that 
the name server might cache bogus A records retrieved in this manner. 
 
To disable glue fetching, use the no-fetch-glue directive in BIND 4.9: 

options no-fetch-glue

or the fetch-glue statement in BIND 8: 

options {
...
fetch-glue no;
...

};

 13



Although BIND 9 allows the same syntax as BIND 8, the statement is obsolete since BIND 9 will 
not fetch glue under any circumstances. 

More protection against spoofing (BIND 8) 

BIND uses message IDs to identify incoming responses that were the result of outgoing queries. It 
is possible, though, that an attacker could predict the message ID of a query and spoof the response, 
thereby providing bogus information to the name server. BIND 8 allows administrators to 
randomize the message IDs used through the use-id-pool directive, thereby making it more 
difficult to spoof replies: 

options {
...
use-id-pool yes;
...

};

This option is obsolete in BIND 9 since all BIND 9 message IDs are randomized. 

Run your name server as a user other than root (BIND 8.1.2 
and up) 

To ensure that the exploitation of a vulnerability in BIND doesn't give an attacker direct root access 
to your host, you can run named as a user other than root. Ideally, the user account running named 
would have as little privilege as possible; for example, only being able to read BIND related files, 
the named.pid file, and the like. BIND versions 8.1.2 and later support this feature. 
 
The steps involved in running named as a non-root user are: 

1. Create a new user and group to run named as (e.g., user = named, group = named). 
2. Make sure the new user has read access to the zone files∗ . 
3. If you are using dynamic updates, ensure that the new user has write access to any zone files 

for which dynamic updates are required. 
4. Make sure this the new user can write to named's PID file. 

• The default PID file is /var/run/named.pid, but /var/run/ is not usually 
writable by non-root users. 

• The default can be overridden with the pid-file option. For example, if 
/var/named/ is writable by the new user, then the PID file could be put in this 
directory using: 

 
options {

                                                 
∗ It is not necessary for the new user to be able to read the named.conf file, since named will still start up as root, 
read the named.conf file, then change to the unprivileged user. 
 

 14



...
pid-file "/var/named/named.pid";
...

};

5. Start named with the -u option telling it to change to the new user. For example: 

# named -u named

Run your name server in a chroot() "jail" 

Further protection against attackers compromising the entire system through a BIND vulnerability 
can be obtained by running named in a chroot() "jail". Doing so effectively confines named to 
its own subdirectory so that a compromised named cannot expose the entire filesystem. 
 
The changes required to implement named in a chroot() environment are more complicated 
than we can go into given the scope of this document. The basic steps are described below, but for 
additional resources on this topic please refer to 

• Chapter 11 of DNS and BIND, 4th Edition http://www.oreilly.com/catalog/dns4/ 
 

• Chapter 10 of DNS and BIND, 3rd Edition http://www.oreilly.com/catalog/dns3/ 
 

• Chroot-BIND HOWTO http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html 
 

• Dual chrooted BIND/DNS servers http://www.etherboy.com/dns/chrootdns.html  

The major steps required to implement named in a chroot() environment are: 

1. Create a new directory for named to run in (e.g., /var/named/ ). 
 

2. Create the appropriate subdirectories for named. 
 

3. Copy the necessary files into the new directory. At minimum, this will include 

• the named binary. 
• the named.conf configuration file. 
• all zone files. 
• the named-xfer binary. 

 Additional files, such as shared libraries, may be required. 

4. Start named with the -t option to specify the chroot() directory 

# named -u named -t /var/named

 15

http://www.oreilly.com/catalog/dns4/
http://www.oreilly.com/catalog/dns3/
http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html
http://www.etherboy.com/dns/chrootdns.html


Example configurations 
 
Here are some example configurations showing you how to put it all together. 
 

• A BIND 8 or 9 name server, primary master for a zone, supporting no resolvers, not used as 
a forwarder, with IP-based authentication of slaves: (This configuration allows anyone to 
query this name server, but treats all queries as non-recursive) 

acl slaves { 192.168.4.47; 192.168.4.201; };

options {
directory “/var/named”;
recursion no;
fetch-glue no; // for BIND 8 only
allow-query { any; }; // the default

};
zone “example.com” {

type master;
file “db.example.com”;
allow-transfer { slaves; };

};

• Same as above, but with TSIG-key authenticated slaves: 

key master-slave. {
algorithm hmac-md5;
secret “Niwn23hw=-whnOUn37.s97jwbaIaNuiaw083”;

};

options {
directory “/var/named”;
recursion no;
fetch-glue no; // for BIND 8 only
allow-query { any; }; // the default

};
zone “example.com” {

type master;
file “db.example.com”;
allow-transfer { key master-slave.; };

};

• A BIND 8 or 9 name server, primary master for a zone, that supports one or more resolvers: 

acl internal { 192.168.4/24; };
acl slaves { 192.168.4.47; 192.168.4.201; };
options {

directory “/var/named”;
recursion yes; // the default
allow-query { internal; };
use-id-pool yes; // for BIND 8 only

};
zone “example.com” {

type master;

 16



file “db.example.com”;
allow-transfer { slaves; };
allow-query { any; };

};

• A BIND 8.2.1+ or 9 name server, slave for a zone, that’s used as a forwarder: 

acl internal { 192.168.4/24; };
options {

directory “/var/named”;
recursion yes; // the default
allow-recursion { internal; };
use-id-pool yes; // for BIND 8 only

};
zone “example.com” {

type slave;
masters { 192.168.4.154; };
file “bak.example.com”;
allow-query { any; }; // the default
allow-transfer { none; };

};

• A BIND 8 or 9 caching-only name server: 

acl internal { 192.168.4/24; };
options {

directory “/var/named”;
recursion yes; // the default
use-id-pool yes; // for BIND 8 only
allow-query { internal; };

};
zone “.” {

type hint;
file “db.cache”;

};

A split service name server configuration 
• An advertising name server: 

acl slaves { 192.168.4.47; 192.168.4.201; };
options {

directory “/var/named”;
recursion no;
fetch-glue no; // for BIND 8 only
allow-query { any; }; // the default

};
zone “example.com” {

type master;
file “db.example.com”;
allow-transfer { slaves; };

};

 17



• A resolving name server: 

acl internal { 192.168.4/24; };
options {

directory “/var/named”;
recursion yes; // the default
use-id-pool yes; // for BIND 8 only
allow-query { internal; };

};
zone “.” {

type hint;
file “db.cache”;

};
zone “example.com” {

type slave;
masters { 192.168.4.154; };
file “bak.example.com”;
allow-transfer { internal; };

};

Follow relevant newsgroups and mailing lists 
 
Unfortunately, new vulnerabilities are found in name servers all the time, however, vendors usually 
patch these vulnerabilities quickly. If you follow the relevant newsgroups and mailing lists closely, 
you’ll learn quickly about the vulnerabilities and any necessary patches or reconfigurations. 

• news:comp.protocols.dns.bind newsgroup (and mailto:bind-users@isc.org, its mailing list 
equivalent); join by sending mail to bind-users-request@isc.org 

 
• bind-announce@isc.org, a lower volume announcement list; join by sending mail to bind-

announce-request@isc.org) 
 

• news:comp.protocols.tcp-ip.domains newsgroup 
 

• The CERT Advisory mailing list; join by sending mail to cert-advisory-request@cert.org 
 

• Internet Software Consortium (BIND publishers) http://www.isc.org/ and 
http://www.isc.org/products/BIND/  

 
• Your UNIX vendor’s security announcement mailing list 

 

 18

news:comp.protocols.dns.bind
mailto:bind-users@isc.org
mailto:bind-users-request@isc.org
mailto:bind-announce@isc.org
mailto:bind-announce-request@isc.org
mailto:bind-announce-request@isc.org
news:comp.protocols.tcp-ip.domains
mailto:cert-advisory-request@cert.org
http://www.isc.org/
http://www.isc.org/products/BIND/


Appendix: Other documents on DNS security 
 
Secure BIND Template 
By Rob Thomas 
http://www.cymru.com/~robt/Docs/Articles/secure-bind-template.html  
 
Chroot-BIND HOWTO 
By Scott Wunsch 
http://www.linuxsecurity.com/docs/LDP/Chroot-BIND-HOWTO.html 
 
DNS Tools  
By D. J. Bernstein 
http://cr.yp.to/djbdns.html 
 
RFC-2845 Secret Key Transaction Authentication for DNS (TSIG) 
http://www.ietf.org/rfc/rfc2845.txt?number=2845  
 
DNS and BIND, 4th Edition 
By Paul Albitz, Cricket Liu 
http://www.oreilly.com/catalog/dns4/  

 19

http://www.cymru.com/~robt/Docs/Articles/secure-bind-template.html
http://www.linuxsecurity.com/docs/LDP/Chroot-BIND-HOWTO.html
http://cr.yp.to/djbdns.html
http://www.ietf.org/rfc/rfc2845.txt?number=2845
http://www.oreilly.com/catalog/dns4/

	Securing an Internet �Name Server
	CERT® Coordination Center
	
	
	
	
	
	
	Allen Householder, CERT/CC
	In collaboration with
	Ken Silva, Verisign
	August 2002







	DNS overview
	Risks to name servers
	Run a new version of your name server software
	Eliminate single points of failure
	Use separate servers
	Filter traffic to your name server
	
	
	
	
	
	Table 1: Packet Filtering for Name servers






	Restrict zone transfers
	
	Restricting zone transfers with BIND 4
	Restricting zone transfers with BIND 8 BIND 8


	Authenticate zone transfers with TSIG
	
	Configuring TSIG with BIND 8.2 and later


	Restrict dynamic updates
	
	Restricting dynamic updates with BIND 8 and 9

	Restricting dynamic updates with BIND 9

	Protecting against cache-poisoning
	
	Turning off recursion (BIND 4.9 and later)
	Restricting queries using allow-query (BIND 8 and later)
	Restricting recursion using allow-recursion (BIND 8.2.1 and later)
	Restricting recursion using views (BIND 9 and later)


	Turning off glue fetching (BIND 4.9 and 8 only)
	More protection against spoofing (BIND 8)
	Run your name server as a user other than root (BIND 8.1.2 and up)
	Run your name server in a chroot() "jail"
	Example configurations
	
	A split service name server configuration


	Follow relevant newsgroups and mailing lists
	Appendix: Other documents on DNS security

