
A New Approach to DNS Security (DNSSEC)

Giuseppe Ateniese
Department of Computer Science and

JHU Information Security Institute
The Johns Hopkins University

3400 North Charles Street
Baltimore, MD 21218, USA

ateniese@cs.jhu.edu

Stefan Mangard
Institute for Applied Information

Processing and Communications (IAIK)
Graz University of Technology

Inffeldgasse 16a
8010 Graz, Austria

stefan.mangard@iaik.at

ABSTRACT
The Domain Name System (DNS) is a distributed database
that allows convenient storing and retrieving of resource
records. DNS has been extended to provide security ser-
vices (DNSSEC) mainly through public-key cryptography.
We propose a new approach to DNSSEC that may result
in a significantly more efficient protocol. We introduce a
new strategy to build chains of trust from root servers to
authoritative servers. The techniques we employ are based
on symmetric-key cryptography.

Keywords
Domain Name System Security (DNSSEC), Authentication
Protocols, Digital Signatures, Symmetric Encryption

1. INTRODUCTION
The Domain Name System (DNS) [14, 15, 16] is a hi-

erarchically distributed database that provides information
fundamental to Internet operations, such as translating be-
tween human readable host names and Internet Protocol
(IP) addresses. Due to the importance of the information
served by DNS, there is a strong demand for securing com-
munication within the DNS system. The current (insecure)
DNS does not prevent attackers from modifying or injecting
DNS messages. Users accessing hosts on the Internet rely
on the correct translation of host names to IP addresses
by the DNS system. A typical attack, referred to as DNS
spoofing, allows an attacker to manipulate DNS answers on
their way to the users. If an attacker makes changes in the
DNS tables of a single server, those changes will propagate
across the Internet. Recently, the RSA Security web page
was hijacked by spoofing the DNS tables [11]. In short, the
attacker created a fake web page and then redirected to it
all the legitimate traffic to the RSA Security’s original page.
Interestingly, the attacker didn’t crack the DNS server of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

the company but rather the DNS server upstream in the
network.

Increasingly, DNS is also being used to perform load dis-
tribution among replicated servers. For instance, companies
such as Akamai have used DNS to provide Web content dis-
tribution. Moreover, there is consensus that, since DNS is a
global and available database, it can be employed as a Pub-
lic Key Infrastructure (PKI) which would help with enabling
e-commerce applications by making public keys globally ac-
cessible.

Securing DNS means providing data origin authentication
and integrity protection. Confidentiality is not required as
the information stored in the DNS database is supposedly
public. When communication requirements call for private
channels, IP security (IPSEC) is the currently selected can-
didate system which could easily interface with DNS.

Existing proposals for securing DNS are mainly based on
public-key cryptography. In this paper we describe a new
approach based on symmetric (or secret-key) cryptographic
techniques. Our solution enables a wide range of secure
services previously believed to be impractical or too difficult
to manage, such as mutual authentication.

Root

Top Level ...

...

..

..

..

..

..

..

...www.acomp.com

..

.edu

zcomp.comacomp.com

.com

lab.zcomp.com

jhu.edu

cs.jhu.edu

...

...

Figure 1: DNS Domains

2. PRELIMINARIES
We first give an overview of DNS and the current pro-

posal for secure DNS (DNSSEC) as described in [20]. For a
detailed discussion on DNS, we refer the readers to [1].

2.1 Overview of DNS
As already mentioned, DNS is a global, hierarchical and

distributed database. This database associates names, which
are referred to as domain names, with certain data contained
in resource records (RRs). Records linked to a domain name
can be of different types, but the address type is the most
common one. There can be multiple RRs of the same type
for one domain name. The set of resource records of the
same type is called a resource record set (RRset).

Since domain names need to be globally unique, a hierar-
chical naming scheme is used. A domain name refers to a
node in a tree (Figure 1) which is called the domain name
space. This tree of domain names is very similar to the
structure of a UNIX file system. Each subtree is called a
domain. For example, the subtree rooted on the .com node
is called the .com domain and includes all domain names
ending with .com. The nodes that are direct children of the
root node are called top level domains.

Communication with the DNS database follows the client/
server paradigm. The domain name tree is divided into
zones, which usually are contiguous parts of the tree. Zones
are defined by the process of delegation which assigns to
some organization the responsibility of managing particular
subdomains. A zone may contain information about a do-
main and its subdomains. Top-level zones, such as .edu,
would mostly contain delegation information.

For each zone, there are authoritative servers (name servers)
answering all queries concerning domain names in that zone.
Name servers can be authoritative for multiple zones, too.
A DNS client program is called a resolver. There are two
kinds of resolvers: real resolvers and stub resolvers (Figure
2).

www.lab.com

..

.com

lab.com
cs.jhu.edu

(resolver)

ho1.cs.jhu.edu

(stub resolver)

(7)

(3)

(2)

(4)

(6)

(8)

(1)

(5)

(9)

Figure 2: A resolver querying for www.lab.com

• A stub resolver is basically a library that needs to be
installed on every host that wants to access the DNS

database. Every time a query needs to be sent, func-
tions of this library are called and the process of re-
trieving the desired information is run. Specifically,
the stub resolver sends a recursive query to a resolver
which will reply with the information needed.

• A resolver is generally located on a DNS server and
serves a group of stub resolvers. When a recursive
query is received, the resolver usually sends an itera-
tive query to one of the root DNS servers serving the
root domain. Iterative queries allow a DNS server,
which does not have the requested mapping, to indi-
cate the next server in the chain which is “closer” to
the authoritative server for those queries.

In the example in Figure 2, the resolver cs.jhu.edu re-
ceives a recursive query for the IP address of the server
www.lab.com from host ho1.cs.jhu.edu. The resolver then
sends an iterative query to a root DNS server, which returns
the IP address of the DNS server authoritative for the .com

zone. The resolver will then query the name server authori-
tative for .com which will return the IP address of the name
server authoritative for lab.com. Finally, the DNS server
of lab.com is queried by the resolver and returns the IP
address of www.lab.com for which it is authoritative. This
answer is then forwarded by the resolver to the stub resolver
ho1.cs.jhu.edu. The entire process is called resolving.

Root servers are essential to the functionality of the DNS
system. There are currently 13 root DNS servers distributed
all over the planet. Caching techniques are employed to
reduce the number of requests in order to speed up the re-
solving process and to reduce network traffic. Consequently,
each RR that is returned from a DNS server has a certain
time-to-live (TTL) which is the time the RR can be cached.

2.2 Overview of DNSSEC
The first RFC on securing DNS was published in 1997 [18].

Since then, several documents (research papers, internet
drafts, and RFCs) have been published on this topic. In this
section, we summarize the basic concepts of secure DNS as
described in [20, 25, 27].

The primary goal of DNSSEC is to provide authentica-
tion and integrity for data received from the DNS database.
This is done via digital signature schemes based on public-
key cryptography. A possible approach is to sign each DNS
message. The general idea is that each node in the DNS tree
is associated with a public key of some sort. Each message
from DNS servers is signed under the corresponding private-
key. It is assumed that one or more authenticated DNS root
public keys are publicly known. These keys are used to
generate certificates on behalf of the top level domains, i.e.
these keys are used to generate a signature that binds the
identity information of each top-level domain to the corre-
sponding public key. The top level domains sign the keys of
their subdomains and so on in a process where each parent
signs the public keys of all its children in the DNS tree. Con-
sidering our example in Figure 2, the resolver, that owns an
authentic copy of the root’s public key, will receive the IP
address of the DNS server of .com from the root along with
its public key all signed via a pre-specified digital signature
algorithm. The public key for the .com zone is trusted since
it is signed by the root and will be used to sign the public
key of the DNS server of lab.com. This process is repeated
going down across the tree. To associate a domain name

with a certain public key, a so called KEY RR [20] is used.
Currently, DSA [21] and RSA [22] are the digital signature
algorithms supported by DNSSEC. The Diffie-Hellman key
agreement protocol is also supported [24, 26].

Two different kinds of signatures for DNS messages as a
whole are currently defined: transaction signatures (TSIGs)
[25] based on symmetric techniques, and public-key signa-
tures which are abbreviated by SIG(0) [27]. TSIG signa-
tures have been introduced mainly for transactions between
local servers, for instance between the resolver and the stub
resolver. It is convenient to use TSIG to secure dynamic
updates or zone transfers between master and slave servers.
SIG(0) is similar to TSIG but employs public-key signatures.
SIG(0) may not be practical to use on a large scale but it
is useful in case integrity protection and authentication of
the message as a whole are desired. SIG(0) could be used to
authenticate requests when it is necessary to check whether
the requester has some required privilege.

A more efficient alternative employs digital signatures to
sign each RRset as described in [20]. The basic idea is to
cover each resource record set with a public-key signature
which is stored as a resource record called SIG RR [20].
These SIG RRs are computed for every RRset in a zone file
and stored therein. A DNS server adds the corresponding
pre-calculated signature for each RRset in answers to DNS
queries. It is imperative for DNS servers to include the entire
RRset in a DNS answer as otherwise the resolver could not
verify the signature.

For this scheme it is also necessary to introduce an addi-
tional type of resource records: NXT RRs [20]. The NXT
resource record is associated with a domain name and in-
dicates the types of RRs that are available for that domain
name and additionally which domain name is next by dic-
tionary order (the zone should be in canonical order). In
order to build a closed chain of NXT records for a zone,
the first and the last entry are considered to be next to
each other. These NXT resource records are, like any other
RRset, signed. If a resolver queries for a domain name or
a type of data that does not exist, the corresponding NXT
RR and a covering SIG RR are returned. The NXT records
identify what does not exist in a zone to avoid generating sig-
natures on general statements of nonexistence which could
be replayed. However, notice that an attacker could query
for the NXT record of a domain name to find the next do-
main name in canonical order and repeat the process to learn
all the domain names in the zone.

3. OUR PROPOSAL
In this section we describe our approach to DNSSEC. As

we employ mostly symmetric (or secret-key) cryptography,
we will refer to our proposal as SK-DNSSEC. The proposals
of DNSSEC using SIG RRs [20] and SIG(0) [27] make use
of public-key cryptography and will thus be referred to as
PK-DNSSEC.

3.1 Symmetric Certificates
The system we propose makes use of symmetric ciphers

such as AES or Blowfish in CBC mode, and symmetric
signatures implemented via Message Authentication Code
(MAC) functions. A practical construction for MAC func-
tions is described in [3, 19], called HMAC. To achieve pri-
vate and authenticated channels, we can combine encryption
techniques with MAC functions. In our system, we would

encrypt a message m as follows:

Ek [m, MAC`(m)] = Ek [MAC`(m)||m] , 1

where Ek is a symmetric encryption algorithm, and k and
` are independent random session keys. A careful analysis
of the building block Ek(m, MAC`(m)), in the context of
secure channels, can be found in [9]. We assume that the
symmetric encryption algorithm, Ek(·), is computed in CBC
mode and secure against chosen-plaintext attacks. Further-
more, we assume that the message authentication code is
secure against chosen-message attacks.

There are several other secure methods that provide au-
thentication and privacy [4, 9], which can be employed in
our system. In particular, encrypting first the message and
then computing the MAC function over the ciphertext is
usually preferable since the encryption function does not
have to be computed in CBC mode [9] and invalid cipher-
texts can be discarded without the overhead of decryption.
However, direct authentication of the plaintext is a desir-
able property, and also notice that we employ the MAC
to authenticate messages that are not necessarily private
and that can be predictable or induced. Moreover, in the
scheme we are proposing, it is impossible to apply a chosen
plaintext attack as DNS servers encrypt exclusively freshly
self-generated session keys.

It is assumed that each message sent contains a nonce. A
nonce is typically a random number which helps prevent-
ing several kinds of attacks, such as replay attacks. We
will consider a nonce as a pair of values, a random number
and a timestamp, respectively. Timestamps provide mes-
sage freshness but must be used carefully in asynchronous
systems such as the Internet. However, the upcoming secure
network time protocols, such as secure NTP [12], should en-
courage a more consistent use of timestamps.

We introduce the concept of DNS symmetric certificates
that will be used to efficiently build a chain of trust from a
DNS root to the authoritative server. Our strategy is very
similar to the one introduced by Davis and Swick [6]. A
symmetric certificate binds the owner’s identity to a secret
key and it is generated by using symmetric cryptographic
techniques.

3.2 Motivation
Any public-key cryptographic algorithm requires some form

of authentication. Usually, this is achieved via trusted cer-
tification authorities (CAs) which generate certificates on
the users’ behalf. A certificate binds the user’s identity to a
public key and contains other pertinent information such as
inception and expiration dates. It is assumed that a method
to verify the validity of certificates is known a priori.

Secure communication based on public-key cryptography
has several positive aspects and in particular: It requires
only a functional Trusted Third Party (TTP) and the TTP
has the ability to operate off-line in the sense that it does not
have to be involved during secure transactions. A functional
TTP does not have access to the secret keys corresponding
to the public keys, hence, in some scenarios, it does not have
to be unconditionally trusted. However, this does not apply
to the case of certified public keys. Indeed, the CA (i.e., the
TTP) could generate a fake certificate and pretend to be
someone else. It could then read encrypted messages or sign

1The symbol || denotes the concatenation operation.

KXY secret-key pair (K1

XY , K2

XY) shared by X and Y (Y ’s master key)
K1

XY secret key shared by X and Y used for encryption
K2

XY secret key shared by X and Y used for MAC functions
KR0

root’s (R0) key pair (K1

R0
, K2

R0
) (root’s master key)

PXY symmetric certificate shared by X and Y

Info(PXY) contains relevant information about PXY

PER0
public-key encryption under root’s public key

Noncei r||t, where r is a random number and t a timestamp
IX identity information about X

Table 1: Notation

arbitrary messages under the stolen identity. In this case,
the CA must be fully trusted. On the other hand, secret-key
cryptography requires unconditionally trusted TTPs which,
in addition, have to be operated on-line. However, secret-
key algorithms are extremely fast and make use of relatively
short keys.

The PK-DNSSEC system [20, 27] uses the entire DNS
tree of domains as an on-line certification authority that,
for each request of host mapping information, returns the
public key of the authoritative server responsible for that
host. The DNS tree builds a chain of trust from the root
to the authoritative server and each node that is passed
through acts as a CA for its child nodes. In addition, the
information retrieved from the DNS database is signed by
DNS servers which must be then unconditionally trusted.

Let us emphasize these two points:

1. the DNS system is involved in any request, thus acting
as an on-line certification authority;

2. the information retrieved from the database is signed
by name servers which implies that each DNS server
must be unconditionally trusted.

From the previous two points, it is clear that the network
configuration and the trust model of PK-DNSSEC would not
change if secret-key cryptography were employed in place of
public-key cryptography.

In the next sections, we investigate a new approach to
DNS security based on secret-key cryptography. We pro-
pose a new system which addresses some open issues of the
current DNSSEC proposals.

3.3 The New Protocol
The notation used throughout the paper is shown in Ta-

ble 1. Given the DNS tree of domains, it is assumed that
each node shares a key with its parent, called master key.
For instance, the node serv.com (subdomain) shares a key
with .com (domain) that is referred to as the master key
of serv.com. The root domain has an asymmetric key pair
(public and secret keys) as well as its own master key that
is not shared with any other node. The root’s master key is
used to start the process of building the chain of trust from
the root to the authoritative servers.

The general idea behind our proposal is quite simple. As
a viable example, suppose that a local name server (acting
as a resolver) U queries the root domain server for the IP
address of host.company.com. The root is not authoritative
for this query and thus will refer the resolver to the DNS
server .com. (It is assumed that U has an authentic copy of

the root’s public key.) The root server generates a secret key
Ka which is sent (encrypted) to U along with a symmetric
certificate for .com. The key Ka will be shared by U and
the server .com. The symmetric certificate is an encryption
under the master key of .com of the key Ka and informa-
tion about U . The name server U queries .com by sending
the original DNS request along with the symmetric certifi-
cate generated by the root server. The .com server will re-
trieve the key Ka from the certificate and use it to encrypt a
freshly generated key Kb. To safely communicate such a key
to .company.com, the server .com inserts the key Kb into an-
other symmetric certificate created for .company.com. The
key Kb will be shared by U and the server .company.com.
Finally, the server .company.com will send the IP address of
host.company.com to U symmetrically signed with Kb.

The entire process is done to create a trusted path from
the root to .company.com. Symmetric certificates can be
seen as a sort of tickets in the Kerberos system [10, 17] and
the trusted path from the root to the authoritative server
is similar to the trusted path created in Kerberos from the
authentication server to the destination server going through
the ticket-granting server [17].

Master keys are used to generate symmetric certificates
which allow safe transport of secret keys from the parent to
the child in the DNS tree. Each node shares a master key
with its node parent. This is usually achieved manually or
via out-of-band cryptographic techniques (as it is done for
transaction signatures (TSIGs) [25]).

Name servers acting as resolvers must have an authentic
copy of the root’s public key. (This is the same assumption
made in the PK-DNSSEC proposal.) Such a public key can
be recovered from trusted sources, bundled with the DNS
server software distribution or could just be printed in some
popular newspapers.

When a DNS resolver contacts the root server for the first
time, it sends a request DNS RootCert Req encrypted un-
der the public key of the root. Inside the encryption, the re-
solver includes two secret keys K1, K2 and a protocol header
PH which should minimally contain the identities of both
the resolver and the root server, lifetime of the encryption,
and a nonce (i.e., a random number and a timestamp). The
root server will generate a symmetric certificate for itself,
the DNS root certificate, which is symmetrically signed and
encrypted with the key K2 and K1, respectively. The en-
cryption is then sent to the resolver. The symmetric certifi-
cate will be used to create an authenticated channel between
the resolver and the root server.

Public-key cryptography is used only the first time the re-
solver communicates with the root server, since the root does

not store (and will never store) locally any secrets shared
with the resolvers. However, the next time the resolver con-
tacts the root server, it will communicate securely via effi-
cient symmetric-key protocols (see Remark 1).

DNS Root Certificate:

R0 ←− U : PER0
(PH,K1, K2, DNS RootCert Req);

R0 −→ U : PR0U , EK1
(KR0U , MACK2

(KR0U , PR0U));

PR0U = Info(PR0U), EK1
R0

(KR0U ,

MACK2
R0

(Info(PR0U), KR0U)).

The communication cost associated with the above re-
quest (two network messages) can be amortized. Indeed,
the request for the root symmetric certificate can be sent
along with an ordinary DNS request.

The value Info(PXY) contains relevant information about
the certificate PXY , shared by the servers X and Y , which
is similar to the information contained in standard public-
key certificates. In particular, Info(PXY) has to minimally
contain the identity strings IX and IY , inception and expira-
tion dates, details about the encryption and authentication
algorithms employed, certificate and key unique identifiers
(in case of multiple keys), and the identity of the creator of
the certificate.

The resolver U may send a DNS query to the root do-
main server which is not authoritative for it. The root does
not need to store any information about U as all it needs is
stored into the symmetric certificate enclosed with the re-
quest. In particular, the certificate contains the necessary
secret keys used to create private and authenticated chan-
nels between the root and the host U .

DNS Request to Root with Symmetric Certificate:

R0 ←− U : PR0U , DNS Req, Nonce0;

R0 −→ U : PR1U , DNS Ans0, EK1
R0U

(KR1U ,

MAC
K2

R0U

(DNS Ans0, Nonce0, KR1U));

PR1U = Info(PR1U), E
K1

R0R1

(KR1U ,

MACK2
R0R1

(Info(PR1U), KR1U)).

The response from the root is signed using the MAC func-
tion whose output is also encrypted under the key shared
by the root and the server U . The field DNS Ans contains
the answer to U ’s query in accordance with the DNS pro-
tocol. In particular, DNS Ans contains information that
undeniably identifies it as the answer to the original query
DNS Req (e.g., DNS Ans may simply include DNS Req).

The symmetric signature contains also the nonce gener-
ated by U and a secret key that will be shared by U and R1.

Furthermore, in case of multiple keys being used, an addi-
tional piece of information containing key identifiers should
be included. The symmetric certificate of R1, PR1U , is sent
along with the signature. It contains the secret key KR1U

shared by R1 and U . Finally, the encryption is computed
under R1’s master key and contains a MAC function which
acts as symmetric signature and precludes malleability at-
tacks. Iterative requests to intermediated servers have the
same structure:

DNS Request to Intermediate Server:

Ri ←− U : PRiU , DNS Req, Noncei;

Ri −→ U : PRi+1U , DNS Ansi, EK1
RiU

(KRi+1U ,

MACK2
RiU

(DNS Ansi, Noncei, KRi+1U));

PRi+1U =Info(PRi+1U), E
K1

RiRi+1

(KRi+1U ,

MACK2
RiRi+1

(Info(PRi+1U), KRi+1U)).

Symmetric certificates can be cached and used later by U

for similar requests.
Once the authoritative server is queried by U , it will send

the answer signed using the MAC function. No other sym-
metric certificates are generated in this final phase.

DNS Request to Authoritative Server:

Rn ←− U : PRnU , DNS Req, Noncen;

Rn −→ U : DNS Ansn, MACK2
RnU

(DNS Ansn, Noncen);

DNS Ansn is the authoritative answer.

The above is a high-level description and it does not in-
clude implementation details needed for a robust and effi-
cient execution of the protocol. We refer the reader to [2] for
technical details about the implementation of the system.

If mutual authentication and protection for DNS requests
are needed (see section 4), then, for any 0 ≤ i ≤ n, the first
message

Ri ←− U : PRiU , DNS Req, Noncei

becomes:

Ri ←− U :

PRiU , DNS Req, Noncei, MACK2
RiU

(DNS Req, Noncei).

The timestamp in Noncei should be verified by Ri, and
U should set a timeout period after which rejecting signed
messages which contain Noncei. Obviously, in case of mu-
tual authentication, the server U should authenticate itself
first. This needs to be done only once, for instance it can
be done together with the request for the DNS root sym-
metric certificate. The server U would sign the public-key
encryption (the first message) by computing:

SIGNU (PH1, PER0
(PH,K1, K2, DNS RootCert Req)),

where PH1 is a protocol header similar to PH which also
contains a sentence clearly stating that the signature is com-
puted over an encryption in accordance with the DNS pro-
tocol. The public-key of U may be embedded in a certificate
signed by some certification authority recognized by the root
server. Finally, the root will set an appropriate flag inside
the symmetric certificate to inform other nodes that the re-
solver was indeed authenticated. Similarly, this entire task
can be performed by any downward name server and not
necessarily by the root.

The resolving process will end once the resolver U sends
the information retrieved from the authoritative server to
the stub resolver H, which requested it. The host H could
share a key with the local name server U so they could
communicate securely via mechanisms that may be already
in place, such as TSIG [25]. The secret key may be generated
by the system administrators and stored manually in both
U and H.

Remark 1. (Hybrid Approach). Notice that once a
name server becomes operative for the first time, it has to
query one of the root servers for a root symmetric certificate.
This forces the root server to decrypt a message each time a
name server needs to use public-key encryption. This, how-
ever, is not an issue since the name server will retrieve the
root symmetric certificate and use it thereafter. Moreover, a
public-key encryption function is never applied on the entire
message but rather on a short symmetric key2.

Observe that the problem in DNSSEC is not that root
servers cannot compute cryptographic functions fast enough.
Indeed, root servers are very powerful (and expensive) ma-
chines 3 and, if necessary, they can be equipped with special-
ized hardware, such as high speed encryption accelerators.
The real problems in DNSSEC are the potential increase of
network traffic due to larger DNS messages and the high cost
of cryptographically verifying, at the resolver side, public-
key digital signatures computed over zone data.

Alternatively, however, it is possible to implement a hy-
brid system which uses both PK-DNSSEC and SK-DNSSEC.
The idea is to let some servers sign answers via public-key
signatures which will include, at a certain point, subdo-
mains’ public keys used by SK-DNSSEC. Suppose, for in-
stance, that root servers are configured to use PK-DNSSEC
whereas top-level domains use SK-DNSSEC. A resolver may
query one of the roots for the IP address of comp.ccc.com.
Since the root is not authoritative, it will send a referral
which will be signed via a public-key signature. The signa-
ture contains the SK-DNSSEC public-key of .com used for
encryption. The resolver can then start using SK-DNSSEC
by requesting a symmetric certificate from .com via the pro-
tocol, introduced earlier, used for requesting DNS root cer-
tificates.

This modus operandi may be useful to relieve certain
name servers (root servers, for instance) from computing
public-key decryptions.

2A fast Pentium III (800Mhz) server can compute about 200
RSA decryptions of a short key (128 bits) per second, when
the modulus is 768 bits long.
3The root server F.root-servers.net [8] is a virtual parallel
machine with currently 8 processors and a total of 8 Gb of
memory.

Operation key len. Ops per sec.

Create SK authoritative ans 128 52083.3
Verify SK authoritative ans 128 98039.2
Create SK referral 128 33444.8
Verify SK referral 128 84033.6
Create DSA signature 768 349.5
Verify DSA signature 768 286.2
Create RSA signature 768 198.8
Verify RSA signature 768 1990.0
Create DSA signature 1024 234.5
Verify DSA signature 1024 192.7
Create RSA signature 1024 114.4
Verify RSA signature 1024 1355.6

Table 2: Ops per sec. over a 500-byte message on a
fast Pentium III

Remark 2. The system described so far considers only it-
erative queries. A resolver, however, may send a recursive
query to a name server for information about a particular
domain name. The queried server is then forced to interact
with other name servers in order to find the answer and re-
spond with the requested data. (Stub resolvers always send
recursive queries.) Recent versions of BIND allow config-
uration of servers to ignore or refuse recursive queries. In
particular, root and top-level name servers generally do not
accept recursive queries given the burden associated with
them.

Handling authenticated recursive requests in SK-DNSSEC
is natural since we assume the existence of master keys
shared between child nodes and their parent domains. It
is sufficient to employ the existing transaction signatures
(TSIGs) [25] to secure the exchange of information between
a child node and its parent4.

Remark 3. A queried name server may return several
servers authoritative for the same zone. Resolvers based
on BIND use the roundtrip time, or RTT, to choose be-
tween the name servers authoritative for the same zone.
The RTT, which measures the time necessary to a name
server to respond to queries, ensures that the resolver will,
most likely, query the closest authoritative name server. In
SK-DNSSEC, we have currently adopted a single strategy:
Name servers, authoritative for the same zone, store the
same secrets. Only one symmetric certificate needs to be
generated and the resolver would just select the name server
with the lowest RTT.

4. ANALYSIS
We believe SK-DNSSEC addresses some interesting issues:

Performance. In PK-DNSSEC, it is possible to reuse digi-
tal signatures in order to save time. However, signatures still
have to be verified each time a response is received from DNS
servers. Even when using RSA, which is faster in verifica-
tion than DSA, the verification of many digital signatures
would require substantial computational resources. In con-
trast, symmetric signatures can be verified very efficiently.

4For instance, the master key may be stored in both servers
via the TSIG key statement. The TSIG server statement
may be extended so that each server is instructed to sign
recursive queries and answers sent to a direct child or parent
domain.

A fast Pentium machine, for instance, can verify more than
98, 000 symmetric signatures per second. On the other hand,
SK-DNSSEC requires queried servers to sign each response.
However, as shown in Table 2, computing SK-DNSSEC au-
thenticated authoritative answers and referrals can be ex-
tremely rapid. Table 2 reports the number of SK-DNSSEC
(which is abbreviated to the shorter “SK”) operations that
can be computed per second on a Pentium III (800Mhz)
machine. In particular, creating a SK authoritative answer
requires the name server to first open and verify the symmet-
ric certificate sent by the resolver and then compute a MAC
over the answer. To verify an authoritative answer, the re-
solver simply checks the MAC. Computing a SK referral is
more complicated. It requires the name server to open and
verify the certificate, sign the answer and create a symmet-
ric certificate for its child node. Verifying such an answer
requires decrypting a session key and checking the MAC.
Details on these operations can be found in Section 6.3. On
reading these numbers, it should be taken into account that
the F.root-servers.net, often the busiest root server on the
Internet according to [8], receives about 3, 150 requests per
second (more than 272 million requests per day).

Table 2 also reports similar estimates for public-key sig-
natures, computed over the hash of a 500-byte message,
with comparable level of security (consider that applying
a brute-force attack against a 128-bit-key symmetric cipher
is roughly as difficult as factoring a public-key modulus of
approximately 2, 300 bits).

Network traffic. DNS usually runs over UDP. One of
the major problems of PK-DNSSEC is that authenticated
queries and responses do not fit into a 512-byte UDP data-
gram [13]. Moreover, if a name server based on PK-DNSSEC
with SIG RR is queried for n different types of RRs, it
would return n public-key signatures (one for each RRset).
SK-DNSSEC does not require to sign entire RRsets and, as
shown in Section 6.2, the final authenticated DNS message is
very short and may well fit into a 512-byte UDP datagram.

Storage. SK-DNSSEC uses very short certificates. With
the same amount of cache it is possible to store more sym-
metric certificates which, in principle, should improve the
delay performance and reduce the number of DNS messages
in the network. In addition, there is no need for NXT RRs
which authenticatably deny the nonexistence of requested
records. This fact makes the zone data file more manage-
able and smaller.

Replay Attacks. SK-DNSSEC provides protection against
replay attacks since signatures cannot be reused. Signatures
in PK-DNSSEC may be exposed to replay attacks unless the
inception and expiration dates are very close. The expira-
tion date is usually set to be 4 or 16 times the TTL [20].
Finally, as mentioned earlier, there is no need for NXT RRs
which were introduced to avoid to release an authenticated
general statement of nonexistence which, clearly, can be re-
played.

Mutual Authentication. When necessary, mutual au-
thentication can be achieved very efficiently in SK-DNSSEC
as it requires only an additional MAC computation. Indeed,
once a DNS server receives a request, it must compute a
MAC function in order to determine whether the request
comes from an authorized name server.

Access control lists implemented in BIND version 8 and

9 5 demand mutual authentication to prevent IP spoofing
attacks. In particular, in BIND 8 and 9, it is possible to cre-
ate IP address-based access control lists to queries via the
named address match list acl and the allow-query substate-
ment or the more versatile BIND 9 view mechanism. Access
control lists specify the IP addresses of the resolvers that are
allowed to query the server. Similarly, allow-recursion can
be used to specify which resolver is allowed to send recursive
queries.

Without any mutual authentication mechanism in place,
access control lists are practically useless 6.

Confidentiality. SK-DNSEC can provide confidentiality
for queries or answers, if needed, by including the fields
DNS Req and DNS Ans directly into the symmetric encryp-
tion. DNS is a public service, therefore confidentiality is not
required. However, DNS can be used for purposes other than
DNS. For instance, DNS can be used to exchange private
host keys among authorized users or a DNS-based system
can be used to manage large private domain spaces of corpo-
rations which may have the legitimate need to hide certain
parts of their name space.

Finally, a note about the threat model. Observe that, SK-
DNSSEC requires DNS servers to store locally secret keys
which may be esposed in case the servers are fully compro-
mised, whereas PK-DNSSEC is secure as long as the off-line
signing authority is honest.

The threat scenario outlined in [5] requires that the at-
tacker has complete control of a DNS machine and that the
changes to the corresponding portions of the name tree, re-
sulting from the attack, are accepted as correct by other
machines. Once the attacker is able to impersonate a DNS
server (e.g., secret keys may have been exposed), nothing
can be done to preclude malicious changes to the portion of
the DNS system where the compromised server is authori-
tative.

5. SK-DNSSEC AS PKI
The infrastructure provided by secure DNS is very well

suited to be used as a public-key distribution system. The
properties of DNSSEC make this obvious, as observed in [7]:

• Global real time availability: Any machine connected
to the Internet has easy access to DNS.

• Scalability: The hierarchical organization of DNS al-
lows easy scaling.

• Globally unique names: The hierarchical naming sys-
tem of DNS builds a logical structure for names which
are globally unique.

• Cryptographic binding of name and key: KEY re-
source records facilitate the binding of DNS names to
keys.

In PK-DNSSEC, the association of a domain name with
a public key is done via KEY RRs. The KEY record can
store different kinds of cryptographic keys which can be used

5BIND 4.9 has similar access control mechanisms provided
by secure zone and xfrnets.
6To prevent unauthorized dynamic updates or zone trans-
fers, a TSIG-based mechanism is, in most cases, well ade-
quate.

for several applications other than DNS. In addition, certifi-
cates and related certificate revocation lists can be stored
in CERT RRs [23]. Analogously, SK-DNSSEC could use
KEY RRs or CERT RRs to store public keys and certifi-
cates. Authoritative servers will certify the authenticity of
these public keys by including them into an appropriate field
in DNS Ans.

6. EFFICIENCY
In the following subsections we compare more in detail

a DNS system based on SK-DNSSEC with one based on
PK-DNSSEC in the following scenarios:

1. PK-DNSSEC with SIG RR. For each RRset in the
answer, a pre-calculated SIG RR is included. This
method provides authentication and integrity only for
each RRset since DNS messages are not signed as a
whole.

2. PK-DNSSEC with SIG(0). DNS messages do not con-
tain SIG RRs, but are rather signed as a whole by
SIG(0)-type signatures. The entire message is there-
fore authenticated and its integrity is guaranteed by
public-key cryptographic signatures.

3. SK-DNSSEC. DNS messages are secured by symmet-
ric signatures and encryption which create an authen-
ticated (and, optionally, private) channel between re-
solver and name servers.

It is important to point out that different zones have very
different requirements. The root zone, for example, has a
relatively small number of entries but the root server receives
a huge number of requests per day. Zones such as .com have
many entries and serve a reasonably big number of requests.
Some entries in a zone might be queried very often and some
almost never.

6.1 Size of Stored Information
The amount of data stored in a zone file is directly propor-

tional to the number of delegation points and hosts served
by the authoritative name server. Due to the variable length
of domain names and number of children of each zone, it is
not possible to talk about exact numbers of bytes. In Ta-
ble 3 we show what additional content needs to be stored in
a DNSSEC server compared with a traditional DNS server
and analyze the impact on the zone file. According to [1],
signing a zone file under PK-DNSSEC with SIG RRs in-
creases its size by a factor of seven. In SK-DNSSEC, the
zone file remains substantially unchanged and NXT records
are not needed. A secret key of approximately 128 bits has
to be stored for the parent and for each child node in the
zone file.

6.2 Message Size
The size of DNS messages is an important parameter to

consider when comparing DNSSEC proposals. As the Ta-
ble 4 shows, there might be significant differences.

This is mainly due to the fact that a name server based
on PK-DNSSEC with SIG RR (as currently implemented
in BIND version 9), when queried for a particular resource
record, would return the public-key signature computed over
an entire RRset along with the RRset itself which is needed
to verify the signature. Querying for n different types of RRs

would force a name server to return n public-key signatures
as well as n corresponding RRsets. The message size may
increase notably.

SK-DNSSEC employs very small signatures and only one
signature has to be sent for each query. For instance, when
using a block cipher with 128-bit keys as encryption algo-
rithm and HMAC-MD5 with 128-bit keys as MAC function,
a signature in SK-DNSSEC is only 384 bits long (author-
itative answer). On the other hand, each referral includes
two signatures (one for the symmetric certificate and one
for the actual signature), thus the total space required to
authenticate the message is actually 768 bits.

Assuming that a typical DNS message is 100 bytes (800
bits) long [1], it can be deduced that SK-DNSSEC authorita-
tive answers and referrals would perfectly fit into a 512-byte
UDP datagram!

6.3 Computational Time
In order to measure the time that is needed to perform

cryptographic operations employed by the DNSSEC propos-
als, we have selected the crypto library OpenSSL 0.9.6b 7.
This library is very popular, well written, and free of charge.
In addition, it is available for almost any operating system.
Most importantly, OpenSSL is the standard library used in
BIND starting from the version 9.1. We ran our actual time
measurement experiments on a Redhat 7.0 Linux system us-
ing the gettimeofday() function from the GNU C Library
2.2. The performance tests were run on a Intel Pentium III
800MHz machine with 256MB of RAM.

In Table 5 we show the average time that is needed to per-
form the cryptographic operations used by DNSSEC. The
first column contains the name of the operation, the sec-
ond the key length in bits and the third the length of the
data input in bytes. The forth column contains the aver-
age computational time in microseconds. We took the mean
value of 10, 000 random inputs for each operation. Finally
we normalized each time measurement by the time needed
to compute a HMAC-MD5 on a 500-byte message in the last
column.

It is necessary to assign specific algorithms and make as-
sumptions concerning the message size if we want to com-
pare the time needed for a specific operation. A typical DNS
message is about 100 bytes long (according to [1]) but we
used messages of 500 bytes for our measurements to make
sure we are considering worst-case scenarios.

SK-DNSSEC uses HMAC-MD5 with a 128-bit key as sym-
metric signature algorithm and Blowfish in CBC mode with
128-bit keys. (The implementation of Blowfish is almost
three times faster than the current implementation of AES.)
Therefore, to sign a message or to generate a symmetric
certificate, 3 × 128 bits = 48 bytes need to be encrypted.
Public-key signatures are computed over the hash of the in-
put.

SK-DNSSEC Name Server.

- Authoritative Answers. From the normalized values of
Table 5, it can be deduced that generating authorita-
tive answers in SK-DNSSEC would cost the equivalent
of 1.88 times a single computation of HMAC-MD5 over
a 500-byte message with a key of 128 bits. Indeed,
to generate an authoritative answer, the name server

7For AES, we actually used the OpenSSL developer version.

PK-DNSSEC with SIG RRs PK-DNSSEC with SIG(0) SK-DNSSEC

additional content
types

KEY RRs, NXT RRs,
SIG RRs

KEY RRs shared secrets

additional content at least one SIG RR for every
RRset; one NXT RR for every
domain; at least one public key
for each child domain.

at least one KEY RR for each
child.

a shared secret for the parent
and each child.

Table 3: Comparison of stored information

DNSSEC with SIG RRs DNSSEC with SIG(0) SK-DNSSEC

DNS Request It is not possible to secure a
request in this scenario.

The request as a whole is
signed via a public-key based
signature.

The request as a whole is
signed via a MAC. A symmet-
ric certificate is attached.

DNS Authoritative
Answer

For each RRset there is a SIG
RR in the answer. Since a
typical answer consists of more
than one RRset, several SIG
RRs need to be included.

The answer as a whole is
signed via a public-key based
signature.

The answer as a whole is
signed via a MAC.

DNS Referral
Answer

In addition to the delegation
DNS RRsets (typically more
than one), the KEY RRset
of the child and a SIG RR
for each RRset need to be in-
cluded.

The KEY RRset of the child is
added to the delegation DNS
RRsets and the message as a
whole is signed via a public-key
based signature.

The server returns the dele-
gation DNS RRs signed via a
MAC. The MAC and the key
of the child are then encrypted
and sent along with a symmet-
ric certificate.

Table 4: Message size

operation key input time norm

Blowfish enc./dec. 128 48 1.7 0.17
Blowfish enc./dec. 128 52 2.0 0.20
AES enc./dec. 128 48 3.8 0.37
AES enc./dec. 128 52 5.0 0.49
HMAC-MD5 128 500 10.2 1.00
HMAC-MD5 128 1000 14.0 1.37
HMAC-SHA1 128 500 16.0 1.57
HMAC-SHA1 128 1000 24.0 2.35
RIPE-MD160 160 500 19.5 1.91
RIPE-MD160 160 1000 30.0 2.94
Create SK authoritat. 128 500 19.2 1.88
Verify SK authoritat. 128 500 10.2 1.0
Create SK referral 128 500 29.9 2.93
Verify SK referral 128 500 11.9 1.17
Create DSA sig. 768 500 2861.6 280.55
Verify DSA sig. 768 500 3492.9 342.44
Create RSA sig. 768 500 5029.7 493.11
Verify RSA sig. 768 500 502.5 49.26
Create DSA sig. 1024 500 4263.6 418.00
Verify DSA sig. 1024 500 5188.6 508.69
Create RSA sig. 1024 500 8741.5 857.01
Verify RSA sig. 1024 500 737.7 72.32

Table 5: Performance comparison

has to open and verify a symmetric certificate which
authenticates 100 bytes of data (0.88) and compute
HMAC-MD5 over the answer (1).

- Referrals. A referral (or delegation answer), instead,
would cost as 2.93 times a single computation of HMAC-
MD5. Indeed, the name server has to open and verify
a symmetric certificate (0.88), compute HMAC-MD5
over the answer (1), encrypt the session keys and the
output of the MAC (0.17), and, finally, create a sym-
metric certificate (0.88).

SK-DNSSEC Resolver.

- Authoritative Answers. Verifying an authoritative an-
swer requires a single HMAC-MD5 computation (1).

- Referrals. Verifying a referral requires decrypting the
keys (0.17) and computing HMAC-MD5 (1) for a total
of 1.17.

6.4 Scalability and Interoperability
According to RFC2931 [27], PK-DNSSEC with SIG(0)

provides stronger security protection than PK-DNSSEC with
SIG RR which in general does not provide protection of the
overall integrity of a response. In particular, PK-DNSSEC
with SIG(0) provides protection for glue records, DNS re-
quests (mutual authentication), and message headers on re-
quests or responses. SK-DNSSEC provides a similar level of
security but at a lower cost. Message authentication codes
are very efficient to compute and verify.

Managing DNS symmetric certificates is easier than it
might be expected. In fact, symmetric cryptographic tech-
niques may not scale well compared with those based on
public-key cryptography. However, this is not the case in
the domain name system given its particular tree structure.
Initially, each DNS server stores only the public key of the
root and successively the root symmetric certificate. Other
symmetric certificates will be cached for efficiency improve-
ments. Furthermore, DNS servers do not store anything
about resolvers as the information they need is given to them
by the parent servers in the DNS tree. If a DNS symmet-
ric certificate of a server is ever lost or compromised, it is
always possible to request a new one starting from the root
server or from the DNS server upstream in the network.

Symmetric certificates are as manageable as public-key
certificates with the exception that DNS symmetric-key cer-
tificate cannot be shared.

However, resolvers are usually configured to share the in-
formation retrieved from the DNS database only with stub
resolvers or name servers acting as such (“DNS forward-
ing”), for which a TSIG-based mechanism would suffice. In
particular, resolvers usually do not share DNS responses (for
which they are not authoritative or can’t provide delegation
nodes) with other name servers nor name servers are con-
figured to query other servers that cannot refer to delegated
subdomains. Hence, in a strictly hierarchical tree structure
(such as in DNS), techniques based on symmetric cryptog-
raphy scale as satisfactorily as those based on public-key
cryptography.

Nevertheless, we would like to design and implement SK-
DNSSEC so that it will interoperate completely with PK-
DNSSEC. In Remark 1 of Section 3.3, we justify such a strat-
egy. The code is being written having this interoperability
issue in mind ([2]). In particular, we plan to investigate the
benefits of a hybrid system where PK-DNSSEC may be used
to protect root and top-level domains whereas SK-DNSEC
could be used to protect the rest of the DNS tree. Employ-
ing SK-DNSSEC in a larger scale, though, would be very
convenient and would give us the opportunity to argue bet-
ter about the load distribution expected on the root and
top-level name servers.

7. CONCLUSION
Secure DNS is a big change but inevitable. The PK-

DNSSEC proposal is an example of dedication and remark-
able work currently coordinated by the IETF. BIND ver-
sion 9 provides already a working and stable framework for
PK-DNSSEC. Despite these efforts, DNSSEC is not widely
deployed yet even though DNS names are routinely used for
authentication. In this paper, we presented a proposal for
DNSSEC that, when properly implemented, offers the high-
est level of security while reducing network traffic. In ad-
dition, it reduces storage requirements and enables efficient
mutual authentication. Hopefully, the results contained in
this paper will stimulate the deployment of DNSSEC and
induce beneficial discussions.

Acknowledgments. The first author would like to
thank Aniello Del Sorbo, Steve Kent, and Hilarie Orman
for helpful discussions on DNS and DNSSEC. Many thanks
to the anonymous referees for their insightful comments.

The SK-DNSSEC system is being developed at the Johns
Hopkins University Information Security Institute.

8. REFERENCES
[1] Paul Albitz and Cricket Liu, DNS and BIND, 4th Edition

O’Reilly, 2001.
[2] G. Ateniese and A. Del Sorbo, “Design and Implementation

Issues in SK-DNSSEC”, Manuscript in preparation 2001.
Available on www.cs.jhu.edu/∼ateniese/skdnssec.html.

[3] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash
functions for message authentication”. In Advances in
Cryptology - Crypto 1996 Proceedings, LNCS Vol. 1109, N.
Koblitz ed, Springer-Verlag, 1996.

[4] M. Bellare and C. Namprempre, “Authenticated
Encryption: Relations among notions and analysis of the
generic composition paradigm”, In Advances in Cryptology -
Asiacrypt 2000 Proceedings, LNCS Vol. 1976, T. Okamoto
ed, Springer-Verlag, 2000.

[5] Steven M. Bellovin, “Using the Domain Name System for
System Break-Ins”, Proceedings of the Fifth Usenix Unix
Security Symposium, pp. 199–208, June 1995.

[6] D. Davis and R. Swick, “Network Security via Private-Key
Certificates”, USENIX 3rd Security Symposium
Proceedings, (Baltimore; Sept. ’92). Also in ACM Operating
Systems Review, v. 24, n. 4 (Oct. 1990).

[7] James M. Galvin, “Public Key Distribution with Secure
DNS”, in 6th USENIX UNIX Security Symposium, July
1996.

[8] Information and statistics about F.root-servers.net,
www.isc.org/services/public/F-root-server.html

[9] Hugo Krawczyk, “The order of encryption and
authentication for protecting communications (Or: how
secure is SSL?)”. To appear in the proceedings of CRYPTO
2001.

[10] B. Clifford Neuman and Theodore Ts’o. Kerberos: An
Authentication Service for Computer Networks, IEEE
Communications, 32(9):33-38. September 1994.

[11] RSA Security site defaced. ZDNet 2000.
www.zdnet.com/zdnn/stories/news/0,4586,2437384,00.html

[12] Secure Network Time Protocol (stime),
www.ietf.org/html.charters/stime-charter.html

[13] Eastlake, D., “Bigger Domain Name System UDP Replies”,
Internet Draft, www.ietf.org/proceedings/98aug/I-D/draft-
ietf-dnsind-udp-size-02.txt

[14] Lottor, M., “Domain Administrators Operations Guide”,
RFC 1033, November 1987.

[15] Mockapetris, P., “Domain Names - Concepts and
Facilities”, RFC 1034, November 1987.

[16] Mockapetris, P., “Domain Names - Implementation and
Specifications”, RFC 1035, November 1987.

[17] J. Kohl, C. Neuman, “The Kerberos Network
Authentication Service (V5)”, RFC 1510, September 1993.

[18] Eastlake, D. and C. Kaufman, “Domain Name System
Security Extensions”, RFC 2065, January 1997.

[19] H. Krawczyk, M. Bellare, R. Canetti, “HMAC:
Keyed-Hashing for Message Authentication”, RFC 2104,
February 1997.

[20] Eastlake, D., “Domain Name System Security Extensions”,
RFC 2535, March 1999.

[21] EastLake, D., “DSA KEYs and SIGs in the Domain Name
System (DNS)”, RFC 2536, March 1999.

[22] Eastlake, D., “RSA/MD5 KEYs and SIGs in the Domain
Name System (DNS)”, RFC 2537, March 1999.

[23] Eastlake, D., Gudmundsson, O., “Storing Certificates in
the Domain Name System (DNS)”, RFC 2538, March 1999.

[24] Eastlake, D., “Storage of Diffie-Hellman Keys in the
Domain Name System (DNS)”, RFC 2539, March 1999.

[25] Vixie, P., Gudmundsson, O., Eastlake, D. and B.
Wellington, “Secret Key Transaction Signatures for DNS
(TSIG)”, RFC 2845, May 2000.

[26] Eastlake, D., “Secret Key Establishment for DNS (TKEY
RR)”, RFC 2930, September 2000.

[27] Eastlake, D., “DNS Request and Transaction Signatures
(SIG(0)s)”, RFC 2931, September 2000.

