

Security in the Microsoft® .NET Framework
An Analysis by Foundstone, Inc. and CORE Security Technologies

Abstract

This paper presents an overview of the security architecture of Microsoft’s .NET
Framework This paper is based on a long-term, independent security analysis performed
by Foundstone, Inc. and CORE Security Technologies, beginning in the summer of 2000.

Our analysis revealed that, used properly, the .NET Framework gives developers and
administrators granular security control over their applications and resources; provides
developers with an easy-to-use toolset to implement powerful authentication,
authorization, and cryptographic routines; eliminates many of the major security risks
facing applications today due to flawed code (such as buffer overflows); and shifts the
burden from having to make critical security decisions -- such as whether or not to run a
particular application or what resources that application should be able to access -- from
end users to developers and administrators.

In the course of this document, we will explain how the .NET Framework’s evidence-
and role-based security features, code access security, verification process, cryptography
support, isolated storage, and application domains work together to achieve these
outcomes, providing a robust platform for developing and running all types of software
applications, both client- and server-side. We conclude that the .NET Framework can
provide organizations with greater assurance that their applications can resist known
security attacks today and in the future.

 2

Table of Contents

Introduction .. 3

Scope & Objectives ... 3

Background: The Problem of Application Security 4

A Solution: An Architecture for Managing Software Risk……….…4

The Managed Code Paradigm.. 4

.NET Framework Security in Detail…………………………………………5

Evidence-Based Security ... 6
Code Access Security.. 8
The Verification Process... 8
Role-Based Security .. 9
Cryptography ... 11
Application Domains.. 12

Conclusion .. 12

Poor Design and Administration Can Still Lead to Security Risk 13
Security Is Mission-Critical -- To Everything... 13

Resources for Further Reading .. 15

 3

Introduction

From the early stages of the development of the .NET Framework, Foundstone, Inc. and
CORE Security Technologies have assisted Microsoft Corp. with analyzing and assessing
the security of its architecture and implementation.

Our analysis of the .NET Framework began in the summer of 2000, before the first beta
release of the software and continued up through Beta 2. The entire engagement
encompassed over 2,800 hours of rigorous, independent security auditing and testing by a
team of ten experts, during which we had full access to the source code and Microsoft
engineers and became intimately familiar with the security architecture of the .NET
Framework, from design principles to code-level implementation.

The audit followed standard methodologies developed by Foundstone, Inc. and CORE
Security Technologies over many years of experience testing, assessing, and securing
complex software applications for organizations ranging from members of the Fortune
500 to newly-minted startups. We like to say that we have seen "the good, bad and the
ugly” from our perch as security solution providers, and the .NET Framework bore the
brunt of our collective knowledge during our year of exposure to its inner workings.

This white paper focuses on the broad security features of the .NET Framework. It is
based largely on the results of the assessment we performed over the last year and our
continued interaction with the .NET Framework development team. The thoughts and
opinions expressed herein are solely our own independent observations based on rigorous
analysis and testing of many builds of the software. It is our hope that this document will
promote understanding of security in the .NET Framework, and convey our confidence in
that architecture and its implementation.

Scope & Objectives

In this document, we will review many of the common security challenges enterprises
face during the design and development of software solutions, and outline how the .NET
Framework provides a reasonable solution to these issues through its security
architecture.

At all times, we will seek to make the complexities of .NET Framework security
approachable to readers with at least a moderate technical background. We assume at
least a basic familiarity with the .NET Framework, and do not spend inordinate time with
background information on the basic technology involved. We provide many references
for further reading at the end of this document for those seeking more deeply technical
coverage of the .NET Framework.

 4

Background: The Problem of Application Security

Practically no one today questions that many software applications are mission-critical,
especially those that are built using Internet-based technologies. They have evolved from
simple, static, data-manipulation channels into complex, dynamic, transaction-oriented
pillars of corporate commerce.

The ever-increasing complexity and functionality of modern software applications has
driven an unfortunate and alarming counter-trend, however: a growing number of
organizations have fallen victim to assaults against their software from internal and
external interlopers.

A Solution: An Architecture for Managing Software Risk

The managed code architecture of the .NET Framework provides a compelling solution
to the problem of software application security. It transparently controls the behavior of
code even in the most adverse circumstances, so that the risks inherent in all types of
applications – client- and server-side – are greatly reduced. In fact, used appropriately,
we believe that it is one of the best platforms for developing enterprise and Web
applications with strict security requirements.

At a high-level, the .NET Framework gives developers and administrators granular
security control over their applications and resources; provides developers with an easy-
to-use toolset to implement powerful authentication, authorization, and cryptographic
routines; eliminates many of the major security risks facing applications today due to
flawed code (such as buffer overflows); and shifts the burden from having to make
critical security decisions -- such as whether or not to run a particular application or what
resources that application should be able to access -- from end users to developers and
administrators.

The Managed Code Paradigm

Before we discuss in detail how the .NET Framework accomplishes this, it's helpful to
first review the basic components of the Framework itself, including:

• Common language runtime

• Class libraries

• Assemblies

The Common Language Runtime

The common language runtime (CLR) is the engine that runs and "manages" executing
code. Thus, from a security perspective, the CLR enforces the .NET Framework's
restrictions on executing code and prevents it from behaving unexpectedly.

More specifically, the CLR performs "just-in-time" compilation (JIT) when running
managed code. JIT translates managed code into native code before it executes it. Since
the JIT generates the code within the CLR, the CLR is uniquely positioned to ensure its

 5

security, something that can't be done with code executing unprocessed in the native
environment.

The Class Libraries

The .NET Framework class libraries are a collection of reusable classes, or types, that
developers can use to write programs that will execute in the common language runtime.
These implement many important security features, including permissions (i.e., the right
to access one or more system resources),, authentication mechanisms, and cryptographic
protocols and primitives. The large majority of applications could benefit from this
security simply by using these libraries, with no security-specific code required. We will
discuss these features in more detail later in this document.

Assemblies

An assembly is an executable or DLL compiled using one of the .NET Framework's
many language compilers. .NET Framework assemblies can be written in nearly every
major programming language, including Visual Basic, C#, C++, J#, Perl, and COBOL, to
name just a few. Thus, developers may program in the language most appropriate to their
task and skill set, and the same security infrastructure will support them, regardless of
their selection.

Assemblies contain the code that the runtime executes in the form of Microsoft
Intermediate Language (MSIL). We previously discussed how the CLR JITs MSIL to
native code, providing a unique vantage point from which to apply security to executing
code. Assemblies also contain metadata, which the CLR uses to locate and load classes,
lay out instances in memory, resolve method invocations, generate native code, enforce
security, and set runtime context boundaries.

Through assemblies, the CLR and class libraries implement the managed code
architecture of the .NET Framework. The remainder of this document discusses this
managed code architecture in greater detail.

.NET Framework Security in Detail

The security architecture of the .NET Framework is composed of a number of core
elements, including:

• Evidence-based security

• Code access security

• The verification process

• Role-based security

• Cryptography

• Application Domains

Each element is discussed in detail below.

 6

Evidence-Based Security

The key elements of the .NET Framework evidence-based security subsystem include
policy, permissions, and evidence.

Policy

Anyone with any experience in information systems security will tell you that security is
impossible to attain in a vacuum -- it must be driven by policy. All of the .NET
Framework security thus rests ultimately on carefully defined, XML-inscribed policy. In
essence, .NET Framework policy defines what resources code in executing assemblies
may access, preventing software from errantly or maliciously harming the integrity of
data. Policy in the .NET Framework is ubiquitous and well-secured from non-
administrative users. It is installed automatically on every machine, for each user
account, Optionally, it can be deployed across Windows domains via Group Policy.

The basic function of security policy in the .NET Framework is to match permissions to
evidence (we will discuss both of these momentarily). The default security policy
shipped with the .NET Framework was designed by Microsoft, and is intended to create a
safe execution environment for a typical end user. It can also be customized by
sufficiently privileged administrative accounts to address unique needs.

Permissions

Permissions lie at the root of policy. Permissions describe one or more resources and
associated rights, and implement methods for demanding and asserting access. The .NET
Framework includes permissions for the following objects: DataAccess; DNS;
DirectoryServices; FileIO; EventLog; Environment; FileDialog; Registry; Reflection;
Socket; Web; IsolatedStorage; UI; Printing; MessageQueue; and Security – whose
members include AllFlags, Assertion, ControlAppDomain, ControlDomainPolicy,
ControlEvidence, ControlPolicy, ControlPrincipal, ControlThread, Execution,
Infrastructure, NoFlags, RemotingConfiguration, SkipVerification, and UnmanagedCode.
The developer may extend these permissions definitions to include application-defined
resources and methods for verifying access rights. This contrasts with other managed
code architectures like Java 2, where such granular customizations cannot be made as
easily.

Developers have some ability to control how their code reacts relative to permissions
granted by policy by embedding permission requests within assemblies. There are three
types of permission requests: Minimal, Optional, and Refuse. If policy does not grant an
assembly everything listed in the “Minimal” set, the assembly will fail to load and will
not run. Using the “Refuse” request, developers can explicitly decline access to
resources that the application might otherwise be able to access but which it does not
require in order to run. This means that developers can limit the scope of their
application’s permission set beyond even what the administrator-defined policies would
allow. To the extent code can refuse permissions, it is exonerated for being involved in
security problems that might arise involving those same permissions. This is a very

 7

granular capability compared to current managed code architectures like Java 2, and it
allows code to be designed to run with least privilege.

Isolated Storage

Of all the permissions covered by evidence-based security, the IsolatedStorage
permission is worth particular mention. This provides support for a special file storage
mechanism that is built on top of the underlying file system, but ensures that different
application’s repositories are kept isolated from each other and specific file system
characteristics are not revealed (such as path names, available drives, and so on). Using
isolated storage, semi-trusted assemblies that are not granted the FileIO permission can
still be allowed to locally store application-specific data. Thanks to the strict isolation
and limited accessibility of these storage areas, however, they do so in a way that does
not risk compromising the local file system or machine itself. This is particularly useful
for running semi-trusted code (e.g. Internet applications), while granting the powerful
functionality of local storage capabilities.

Evidence

At runtime, the CLR determines which permissions can be assigned to a particular
assembly by evaluating that assembly’s evidence. Evidence can come from a variety of
sources resident within an assembly, or it can be gathered from the local execution
environment. Sources of evidence include:

• Cryptographically sealed namespaces (strong names)

• Software publisher identity (Authenticode®)

• Code origin (URL, site, Internet Explorer Zone)

Putting It All Together: Policy, Permissions, and Evidence in Action

So far, we have described each of the major components of the .NET Framework's
evidence-based security model separately. It's important to note, however, that these
components work together fluidly to provide an execution environment much different
from what we are used to currently when we launch executables. With the .NET
Framework, few security decisions have to be made at runtime by the user. The .NET
Framework is already transparently ensuring that the code end users run enforces the
design principles for the security of the application, ahead of time, relieving the end user
from making important security decisions which he or she is most likely not qualified to
make.

From the developer perspective, nearly all of the work involved is handled behind-the-
scenes. As long as sufficient permissions1 and properly configured policies cover all the
resources involved, and as long as the developer uses managed code to access them, all of
the required evidence-checking and policy enforcement is handled transparently.

1 Remember, the minimal, optional, and refuse permission requests are strictly supplementary.

 8

Code Access Security

Code access security (CAS) is the enforcement engine that ensures assembly code does
not exceed its granted permissions while executing on a computer system. As managed
code assemblies are loaded for execution, they are associated with a corresponding set of
permissions. If a method in an assembly needs permission to access a resource, the code
providing access to that resource will demand the appropriate permission object. When
this occurs, a stack walk is initiated. This checks that each assembly in the call-chain has
the demanded permission granted to it, not just the immediate caller. If any of the callers
fail this test, a security exception is generated and the requested operation is not
performed. Stack walking prevents “luring attacks” in which untrustworthy code attempts
to "trick" code in another assembly, with greater access rights, to call a protected object
and bypass security restrictions.

When using .NET Framework class libraries on resources for which policies and
permissions are already defined, this work is all handled behind the scenes. There are
two mechanisms by which developers can actively force permissions checks: imperative
and declarative. Imperative checks are simply runtime method calls to the core security
engine requesting a demand or to override portions of the stack walk operation.
Declarative security checks are essentially the same. However they are expressed as
custom attributes that are evaluated at compile time and embedded in metadata.
Declarative checks cover the same operations as imperative, plus they allow for a few
additional checks that are implemented strictly at JIT-time.

Under certain circumstances, code may need to call a permission’s assert method in order
to limit subsequent stack walks to this code’s stack frame. This will allow it to access
certain resources even when the method’s callers do not have proper permissions. For
example, the code providing file access will typically demand its callers have the FileIO
permission, but then assert the Unmanaged code permission to access the underlying
Windows file system. This technique should be used sparingly and is only available to
highly trusted code granted the Assertion permission. Note that the assertion operation is
fine-grained and only applies to the permission asserted

Code access security thus sets an extraordinarily high bar for intruders to surmount when
attempting to abuse the behavior of running code.

The Verification Process

There is one final step in ensuring the runtime safety of managed code. This is known as
the verification process. During JIT compilation, the CLR verifies all managed code to
ensure memory type safety. This eliminates the risk of code executing or provoking
“unexpected” actions that could bypass the common application flow and circumvent
security checks.

The verification process prevents common errors from occurring, such as using an integer
as a pointer to access arbitrary memory locations, treating an object as a different type to
allow the reading of private state or memory outside the object boundary, accessing a

 9

private field or method from outside its class, accessing a freshly created object before it
has been initialized to cause incorrect operation or to access residual information in
memory. Buffer overflows (supplying parameters that exceed the size expected by the
called method), referring to memory containing anything other than defined variables or
method entry points, referencing stack locations outside the allocated stack frame (invalid
references), and transferring execution to arbitrary locations within a process are also
prevented by the verification process. These common programming mistakes underlie a
significant majority of today’s security vulnerabilities, and no longer pose a threat within
the type safe, managed environment provided by the .NET Framework. This in itself is
probably one of the most compelling outcomes of designing applications using the .NET
Framework.

A Note on Unmanaged Code

Code that runs outside the control of the CLR is referred to as “unmanaged" code.
Unmanaged code by definition is not constrained by the security measures of the CLR,
and is thus capable of obtaining unauthorized access to resources in the native
environment via traditional attacks. .

Fortunately, most applications never will need to call native code directly. The .NET
Framework class libraries implement managed code wrappers for many unmanaged code
methods (i.e. Win32 API calls). These managed code wrappers take care of verifying the
caller permissions and parameters and call the appropriate unmanaged code.

Role-Based Security

Up to this point, our discussion has been focused on how the security of the .NET
Framework's code execution model relies heavily on evidence read from within an
assembly or the local environment. Role-Based Security defines the way the .NET
Framework establishes identity, and permits or denies that identity to access resources.
These two processes are frequently referred to as authentication and authorization, the
linchpins of secure application design for Web applications.

Authentication

Role-Based Security gives developers the freedom to construct highly customized
authentication scenarios for their applications. All of the most common authentication
routines are available to .NET Framework-based applications via a diverse range of
authentication providers. These are code routines that verify credentials, create the
proper Identity and Principal object, and attach it to the request’s context. Once the user
identity is determined, authorization decisions can be made when accessing resources.
Authentication providers can also offer other functionality, such as cookie generation for
session state maintenance. Authentication providers supported by the .NET Framework
include:

• Forms-based (Cookie) Authentication: Using this provider causes unauthenticated
requests to be redirected to a specified HTML form using client side redirection. The
user can then supply logon credentials, and post the form back to the server. If the
application authenticates the request (using application-specific logic), ASP.NET

 10

issues a cookie that contains the credentials or a key for reacquiring the client
identity. Subsequent request are issued with the cookie in the request headers, which
means that subsequent manual authentications are unnecessary. The credentials can
be custom checked against different sources, such as a SQL database or a Microsoft
Exchange directory. This authentication module is often used when you want to
present the user with a logon page.

• Passport Authentication: This is a centralized authentication service provided by
Microsoft that offers a single logon facility and membership services for participating
sites. ASP.NET, in conjunction with the Microsoft Passport Software Development
Kit (SDK), provides functionality similar to Forms Authentication for Passport users.

• IIS: Microsoft’s IIS server provides several built-in authentication mechanisms.
These can be used to provide authenticated identities to IIS-hosted applications. If
there are corresponding Windows accounts, IIS can also provide automatic account
mapping based on the authenticated identity. Supported authentication mechanisms
include Basic Authentication, NTLM, Kerberos, Digest Authentication, and X.509
Certificates (with SSL).

• Windows Authentication: Windows supports a number of authentication
mechanisms that can be used by applications via the SSPI subsystems. These include
Kerberos, NTLM, and X509 Certificates.

Developers can additionally write custom authentication and authorization code (for
example, by combining IIS Anonymous authentication with ASP.NET’s Form
Authentication provider), or use one of the standard authentication modules already
available in the ASP.NET Framework (by combining IIS NTLM or Kerberos
authentication with ASP.NET’s Windows authentication provider). Authentication
providers can be configured per application and per virtual directory.

Authorization

Once identity is established reliably using one of these well-known methods, access to
resources can be authorized through a similarly extensible and flexible architecture.
ASP.NET provides two different methods of authorization to application code:

• File Authorization, where the request location is mapped to the physical file, denying
or granting access by matching the file’s ACLs with the identity making the request2

• URL Authorization, where access can be granted or revoked specifically by mapping
users and roles to pieces of the URI namespace, including the request method (GET,
HEAD, POST, etc.)

For example, to restrict access to the URL "http://servername.com/adminpage.aspx" to
users in the role “Admin," one could perform the following runtime role checks in code:
if(HTTPContext.IsCallerInRole(“Admin”){ … })

2 File authorization is used only in conjunction with Windows Authentication, since other authentication
mechanisms typically do not set a per-user Windows access token

 11

Principal and Identity

The .NET Framework provides a rich and robust object model for identity using its
Principal and Identity concepts. A Principal represents the security context under which
the code is running while an Identity represents the identity of the user associated with
that security context. Normally, an Identity will be created after a user’s successful
authentication and attached to a Principal that will in turn be associated with an execution
context. Code running in a specific context can then query the Principal about the Identity
role(s), allowing or denying permissions according to role membership.

This architecture is flexible enough to permit custom definitions of roles, identities, and
principals. For example, it is possible to map identities to username/password pairs stored
in a database or text file. Implementing the GenericPrincipal object allows for these
highly customized, platform-independent authorization scenarios.

Alternatively, .NET Framework can leverage the traditional Windows security subsystem
via the WindowsPrincipal object, allowing the easy mapping of roles to existing
Windows user accounts and groups.

Of course, the .NET Framework is capable of performing impersonation of client
requests to access resources. Impersonation remains one of the key differentiators
between Windows-based authorization architectures and competitive solutions like UNIX
and Linux, and allows solutions architects to keep identity tied to one user account
throughout the flow of an application, rather than periodically handing off control to the
process under which the application runs.

Impersonation in ASP.NET can be implemented in two different ways:

• Per-request impersonation, which means that an application can run with the
privileges of the identity making the request. This helps in reducing the impact of
possible security breaches while improving auditing capabilities.

• Application-level impersonation, where the worker process running the application
does so using the identity of a user specified in the configuration, diminishing the
impact of application compromise by isolating and protecting other applications
sharing the same server and system (i.e. application compromise doesn’t necessarily
leads to system compromise)3.

Impersonation gives ASP.NET applications granularity and flexibility when accessing
resources, homogeneously across the .NET Framework.

Cryptography

Similar to the ready availability of simple authentication and authorization features
within the .NET Framework, cryptographic primitives are also easily accessible to
developers via stream-based managed code libraries for encryption, digital signatures,

3 It should be noted that credentials are stored in configuration in cleartext; a more appropriate way to
achieve this is to configure the anonymous account or to call into a ServicedComponent running as a fixed
identity in a COM+ server application

 12

hashing, and random number generation. Wrappers for most CryptoAPI functionality are
also available. Algorithm support includes:

• RSA and DSA public key (asymmetric) encryption

• DES, TripleDES, and RC2 private key (symmetric) encryption

• MD5 and SHA1 hashing

Besides the supported primitives, the .NET Framework supports encryption by means of
cryptographic streaming objects based on the implemented primitives and various
feedback modes. It also supports digital signatures, message authentication codes
(MACs)/keyed hash, pseudo-random number generators (PRNGs), and authentication
mechanisms. New or pre-standard primitives as SHA-256 or XMLDSIG are already
supported. ASP.NET includes well-integrated support for signing and encrypting cookie
content addressing long-standing sensitive issues of Web application security.

The ready availability and more than complete breadth of such libraries will hopefully
drive more widespread reliance on the cryptography to fortify the security of everyday
applications. Based on our own experiences, we can confidently state that well-
implemented cryptography dramatically increases the security of many aspects of a given
application.

Application Domains

Finally, the .NET Framework offers a compelling new way to segregate portions of
applications through what is known as application domains. Usually, operating systems
provide this isolation by running each application in a separate process, each one having
a different address space, preventing them from directly interfering with each other.
Unfortunately for highly loaded servers, processes are expensive in terms of system
performance, and it may be prohibitive to run an individual process for each user that is
accessing the server.

Thanks to the type-safety of verified managed code (which ensures, among other things,
that the code cannot access or jump to arbitrary addresses in memory), the CLR is able to
provide a great level of isolation within the process boundary. A single process can
contain several application domains, with different evidence-based trust levels and
associated principals, without danger of any kind of malicious interference between them.
Code running in one domain cannot directly affect other applications in the same process,
or access other application resources. All managed code is loaded into a single
application domain and run according to that domain’s security policy.

All in all, application domains are a tremendous boon for Application Service Providers
and IT departments hosting networked applications. They offer powerful security control
at a fraction of the resource costs of existing solutions.

Conclusion

There is a lot more detail we'd like to cover about the security of the .NET architecture,
but we'd need several more whitepapers. We conclude with two parting thoughts.

 13

Poor Design and Administration Can Still Lead to Security Risk

As we have shown throughout this paper, the .NET Framework transparently implements
a great deal of security infrastructure via the key components of its security architecture.
However, it still does not eliminate the need to thoughtfully design an application with
security in mind. As with any application development environment, when implementing
code that involves custom permission objects, authorization mechanisms, or any security-
relevant functionality, the developer must be familiar with the .NET Framework’s
security architecture in order to ensure that the design principles are enforced.

In particular, unsafe usage of permission’s security assert method must be avoided. We
recommend strategically consolidating and unifying permission demands or asserts
within an application to improve security and code auditing capabilities.

Another potentially sensitive design concern arises when implementing additional
cryptographic functionality within the .NET Framework. Special care must be taken at
these junctures, as design or implementation errors here may expose not only a new
component’s security, but also the security of other components that rely on common
cryptographic elements. For example, one could design an application using cookie
authentication in a manner that would make it feasible for outside parties to run chosen-
plaintext cryptographic attacks against the authentication mechanism.

Besides application design, deployment and administration are critical to security. The
networks and systems on which .NET Framework-based applications run are still
potentially vulnerable, and must be secured according to best practices (strong account
management policies, disable unnecessary services, regularly install patches, and so on).
No managed code paradigm can account for sloppy system administration. Although the
.NET Framework transparently eliminates many common code-level errors, it is
powerless to prevent issues arising from inappropriately assigned account privileges,
misconfigured resource access control lists, and similar errors in configuration.

Furthermore, as we have shown, unmanaged code continues to operate outside of the
constraints of the .NET Framework security model, and can still be hazardous.
Applications architects who rely on unmanaged code cannot enjoy the full security
benefits provided by the managed environment. As a general rule, unmanaged code
should be avoided, to be used only as a last resort, and subject to a thorough security
review. Indiscriminate and improper calls to unmanaged code is one of the biggest
potential points of failure in terms of the overall security of a .NET Framework
application.

Security Is Mission-Critical -- To Everything

Security is but one part of the overall story of the .NET Framework, but a critically
important one. As we have discussed in this paper, security is mission-critical to all
networked systems today, and .NET Framework can, if used correctly, provide
developers, administrators, and end users with much-needed assurance that their
applications are resistant to common attacks, now and in the future. The .NET
Framework delivers this assurance through novel approaches to managing software
behavior, including evidence- and role-based security features.

 14

We at Foundstone and CORE hope that this brief exploration of the .NET Framework
security architecture has been informative and helpful to those of you who will design
and build the next generation of software. Based on our own analysis and extended
interactions with the .NET Framework architects at Microsoft, we are confident that
application security can improve as the migration towards the .NET Framework
continues, and also in the resources and motivation of the .NET Framework team to
address security with the utmost priority as the computing technology continues to
evolve.

 15

Resources for Further Reading

MSDN .NET Developer Center http://msdn.microsoft.com/net

GotDotNet Community http://www.gotdotnet.com/

Visual Studio.NET http://msdn.microsoft.com/vstudio/nextgen/default.as
p

.NET Framework Reference http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/cpguidnf/html/cpframeworkref_start.asp

Main ASP.NET Site http://www.asp.net/

MSDN's ASP.NET Site http://msdn.microsoft.com/net/aspnet

IBuySpy Developer Solutions
Site by Vertigo Software

http://ibuyspy.com/

Foundstone http://www.foundstone.com

CORE Security Technologies http://www.corest.com

