
SecurityFocus HOME Infocus: Examining a Public Exploit, Part 2 http://www.securityfocus.com/infocus/1801

1 of 5 17-09-2004 16:41

Examining a Public Exploit, Part 2
by Don Parker
last updated September 15, 2004

1. A Recap of Part 1

The first part of this article series set out to
create an environment that allowed readers

to examine a public exploit as it was sent
across the network. The purpose of this
exercise is to help the reader understand the

complex world of intrusion detection and
low-level packet analysis, so that he can

better secure his network.

In part one we setup a lab environment using
two machines and a set of tools which

included Snort, Snortsnarf, Tcpdump, and
libpcap (or windump and winpcap for Windows

environments). Once the lab was setup, we built an exploit using publicly available source
code, and then sent this binary from one test machine to the other. This action triggered an
alert with our IDS, Snort, and prompted us to do some low level packet analysis to see

what was going on.

With the necessary tools and machines in place, and with our exploit having triggered
numerous alerts as shown below, there was only time to discuss the first alert, which

turned out to be a false positive (a false alarm). Now we will continue our analysis and
analyze the final four alerts that were generated in Snort.

Readers are encouraged to review part one of this article series, to understand how this
was generated with snortsnarf, before continuing on.

Priority Signature (click for sig info)
#
Alerts

#
Sources

#
Dests

1 WEB-PHP viewtopic.php access [sid] [BUGTRAQ] 3 1 2

1
NETBIOS DCERPC ISystemActivator bind attempt
[sid] [C V E]

1 1 1

2 TFTP Get [sid] 3 1 1

2 ATTACK-RESPONSES directory l isting [sid] 3 1 1

2 ATTACK-RESPONSES 403 Forbidden [sid] 1 1 1

Table 1: IDS alerts generated in part one of this article

2. Continuing the analysis

2.1 "NETBIOS DCERPC ISystemActivator bind attempt" alarm

First I click on the [sid] summary for this alarm as generated in the snortsnarf output, and
I see that there is only one source and one destination address for this. Though I am

familiar with this alarm I go to the Snort homepage to read quickly once again through the
alert's description. Then I can build my bpf filter to isolate all traffic between these two
addresses. Though I know that this attack will use TCP as its transport protocol, I still put

in "IP" in my bpf filter. If you recall, I do this because I do not want to miss any possible
ICMP traffic that may have passed between these two addresses, not to mention any

possible UDP for that matter. You are far better off to cast a wide open net, ie., a wide open
bpf filter in this case, and then start to tighten it up as you go along. Doing it that way you
are more likely to not miss any potential key information such as ICMP echo request

packets, or other such lead up activity prior to the attack.

C:\ windump.exe -r log_file -nXvSs 0 ip and host 192.168.1.100 and host
192.168.1.101 > dcerpc

To quickly describe what the above does, I am telling "windump.exe" to read from the
binary log file called "log_file" and look for any packet with a valid IP header in it which

also contains the IP addresses as noted above. Additionally, the command is also to dump
the findings of the bpf filter to a text file decrpc. If we were pressed for time we could put in
a bitmask telling windump to give us only PSH/ACK packets. This would result in only

getting packets which have a payload. That way, we could quickly see if there truly was
exploit code pushed across. Should you wish to write such a bpf filter and bitmask it would

look like the one below:

C:\ windump.exe -4 log_file -nXvSs 0 ip and host 1921.68.1.100 and host 192.168.1.101 and
tcp[13] = 24 > dcerpc_pshack

In this case however I don't tack on a bitmask and the resulting file is bigger then the

SecurityFocus HOME Infocus: Examining a Public Exploit, Part 2 http://www.securityfocus.com/infocus/1801

2 of 5 17-09-2004 16:41

In this case however I don't tack on a bitmask and the resulting file is bigger then the
earlier ones so I open it up using Microsoft Word and simply do a find for the string noted
on the Snort website "A001 0000 0000 0000 C000 0000". I find a hit in the first few

packets of my file "dcerpc".

14:02:07.555843 IP (tos 0x0, ttl 64, id 3301, len 124)
192.168.1.100.1075 > 192.168.1.101.135: P [tcp sum ok]
2869004824:2869004896(72) ack 1636075803 win 5840 <nop,nop,timestamp
5000143 0> (DF)
0x0000 4500 007c 0ce5 4000 4006 a97d c0a8 0164 E..|..@.@..}...d
0x0010 c0a8 0165 0433 0087 ab01 8a18 6184 891b ...e.3......a...
0x0020 8018 16d0 220b 0000 0101 080a 004c 4bcf "........LK.
0x0030 0000 0000 0500 0b03 1000 0000 4800 0000 H...
0x0040 7f00 0000 d016 d016 0000 0000 0100 0000
0x0050 0100 0100 a001 0000 0000 0000 c000 0000
0x0060 0000 0046 0000 0000 045d 888a eb1c c911 ...F.....]......
0x0070 9fe8 0800 2b10 4860 0200 0000 +.H`....

This is only a partial match on the signature shown at the Snort homepage, however.
Realizing that this is a high threat alarm, if it is indeed valid, I decide to do a bit more

research. Looking further at the ASCII content of the packet I use the "F.X.N.B.F.X" and
the "MEOW MARB port 135" strings to Google with. Several good hits come back, and one

especially from DShield. By verifying the information in that link I am able to positively say
that what we found is a true instance of this alarm. As we now realize, this is not good --
someone has now gained full access to the computer with IP address 192.168.1.101. This

could also account for the other alarms we saw on the index page in our snfout.alert.ids
directory, as was noted in Table 1, above.

At this point I would like to point out how important it is for intrusion detection analysts to

try and "game out", or actually use these exploits in a lab environment so that they can
see exactly how they look. I have seen how the exploit used in this article looks and works

in my home lab, and I can definitively say that this is indeed the RPC DCOM exploit
MS03-026.

To be able to truly defend your networks you must also know how to attack them. How can

you recognize certain strings which are indicative of a specific attack if you have not
recreated it yourself? Of course, it is impossible to study all of the exploit code out there,

but it is important to try and keep learning -- this is what will separate the average
intrusion detection analyst from a very good one.

2.2 "TFTP Get" alarm

We will now move on to investigate the "TFTP Get" alarm and try to ascertain its validity.
Also we will see if it ties into the "NETBIOS DCERPC" alarm that we have just looked at.
Before moving on to the actual analysis of the packets in question, we can already believe

it is rather likely that it will be a positive alarm. Why? Using the TFTP protocol is a favorite
means of transferring files back and forth on compromised machines by malicious hackers.

All you need to do this transfer is a TFTP server which is both simple to get and easy to
use. Also, you need a TFTP client on the system you are transferring files to and from.
Note that Microsoft win32 has a built in TFTP client. If you have never seen or used TFTP

and you are using a Windows based machine, simply bring up a DOS prompt and type in
"tftp". TFTP is a very neat protocol which you may want to spend some time studying it.

One of the main attributes of TFTP is its speed. It uses UDP as its transport protocol
instead of TCP, which is used by FTP. You may recall that a standard TCP header is 20
bytes while a standard UDP header is only 8 bytes. Having 12 fewer bytes makes a big

difference in speed. If you are a malicious hacker, speed is often of the essence if you are
ferrying files to or from a compromised computer.

Let's now look at the packets that actually triggered the "TFTP Get" signature. By having
looked at the TFTP protocol briefly, we now know that it used UDP as its transport protocol.
How does this help us? Well, it helps us build a far more accurate bpf filter. We can tell

windump or tcpdump that instead of us wanting all packets containing a valid IP header, we
want only those packets that contain a valid UDP header. This should cut down on the size

of the file as it will no longer any TCP headers. Let's refine our bpf filter to look as follows:

c:\ windump.exe -r log_file -nXvSs 0 udp and host 192.168.1.100 and host
192.168.1.101 > tftp

Contained in the text file "tftp" is the actual TFTP traffic we are seeing, consisting of the
requests to the malicious hackers machine made from the compromised machine
192.168.1.101. Seen below is a snippet of the packets contained in the "tftp" file:

14:02:33.701513 IP (tos 0x0, ttl 128, id 4694, len 47)
192.168.1.101.1331 > 192.168.1.100.69: [udp sum ok] 19 RRQ
"evil_file1"
0x0000 4500 002f 1256 0000 8011 a44e c0a8 0165 E../.V.....N...e

SecurityFocus HOME Infocus: Examining a Public Exploit, Part 2 http://www.securityfocus.com/infocus/1801

3 of 5 17-09-2004 16:41

0x0010 c0a8 0164 0533 0045 001b afe6 0001 6576 ...d.3.E......ev
0x0020 696c 5f66 696c 6531 006f 6374 6574 00 il_file1.octet.

As we can see in the above file, 192.168.1.101 is requesting the file evil_file1 from the
malicious hacker's machine, 192.168.1.100.

14:02:33.702853 IP (tos 0x0, ttl 64, id 3417, len 123)
192.168.1.100.1024 > 192.168.1.101.1331: [udp sum ok] udp 95 (DF)
0x0000 4500 007b 0d59 4000 4011 a8ff c0a8 0164 E..{.Y@.@......d
0x0010 c0a8 0165 0400 0533 0067 d8d7 0003 0001 ...e...3.g......
0x0020 5468 6973 2069 7320 7468 6520 6669 7273 This.is.the.firs
0x0030 7420 6269 6e61 7279 2074 6861 7420 7468 t.binary.that.th
0x0040 6520 6861 636b 6572 2074 7261 6e73 6665 e.hacker.transfe
0x0050 7272 6564 206f 7665 7220 746f 2079 6f75 rred.over.to.you
0x0060 7220 6e6f 7720 636f 6d70 726f 6d69 7365 r.now.compromise
0x0070 6420 6d61 6368 696e 650a 0a d.machine..

Noted above is the actual transfer of the file evil_file1 . This file could actually contain
anything from flat ASCII to a binary package. The survey kits, or root kits often used by

malicious hackers are as varied as the hackers are themselves. What is transferred over
the network will largely depend on their aim -- perhaps using the now-compromised box as
a jumping point to further probe and attack the internal network. But there are also many

other possibilities. It is this long list of possibilities of what a malicious hacker can now do
to your computer which will force most people to completely format the hard drive and

reinstall.

You may never find all of the potential malware that was copied over onto the computer. It
can be hidden in the most obscure places and lay dormant. We now have proof that exploit

code was sent to our machine. Unless you are willing to gamble on the security of your
network, at this point you would do well to simply format the drive and reinstall all of the
packages which were on it. After all, this is why we are all diligent about keeping backups.

2.3 "Attack Responses directory listing" alert

We now have only two remaining alarms to check out, "Attack Responses directory listing"

and "Attack Responses 403 Forbidden". We will look at the "directory listing" one first. As
we can see via our snortsnarf output, this alert was triggered three times by 192.168.101.

The first packet that triggered this alert has a timestamp of 14:02:13.164600. We can

now quickly go to that specific packet and take a look at it. Bearing in mind that the binary
file itself could be quite large in real life, we should really create a bpf filter. This filter
should give us only the contents of the conversation between the two IP addresses as

noted in this alarm:

C:\ windump.exe -r log_file -nXvSs 0 ip and host 192.168.1.100 and
192.168.1.101 > responses

If you wanted to only do a quick and dirty analysis, then I would simply tack on a bitmask
at the end of the bpf filter to show you only the PSH/ACK packets. You may remember that

in the PSH/ACK packets is where the actual payload or data will be transferred. By cutting
out only the PSH/ACK we are not going to see all of the other packets such as SYN and

SYN/ACK, amongst other flag combinations. To see just the PSH/ACK packets alone
please see the bpf filter as displayed below:

C:\ windump.exe -r log_file -nXvSs 0 ip and host 192.168.1.100 and host 192.168.1.101
and tcp[13] = 24 > psh_responses

The above filter will drop all packets between 192.168.1.100 and 192.168.1.101 with the
PSH/ACK flags set to the text file called psh_responses . It will allow us to quickly scan the

packets to see what was sent between these two IP addresses. This is a good way to look
at things quickly, but as mentioned earlier in the article you should really cast a wider net

to begin with. Once you have an overall feel for what is going on in your log file, you can
then narrow your search via a bitmask or fine tune your bpf filter.

By looking at the file that contains only PSH/ACK packets, we can see that the attacker

did a directory listing, which is followed by the listing of the directory itself. Continuing
through the remaining occurrences of this alarm we can see the same directory listing done

for each instance.

We have determined that this alarm is indeed a true occurrence, and not a false positive.
Let's move on to the final alarm.

2.4 "Attack Responses 403 Forbidden" alarm

There is one remaining alarm, the "Attack Response 403 Forbidden". The source address
for this alarm is 199.60.115.193. I don't recognize this IP address so I use the embedded

hyperlink for ARIN to resolve this for me. It resolves to an electronics retail store.

Now we will build a bpf filter such as the one indicated above, with the same bitmask, so it

SecurityFocus HOME Infocus: Examining a Public Exploit, Part 2 http://www.securityfocus.com/infocus/1801

4 of 5 17-09-2004 16:41

Now we will build a bpf filter such as the one indicated above, with the same bitmask, so it
gives us only the PSH/ACK packets. It only takes several seconds to do this. If you are

following along, you will then note that the resulting file is still quite large. It would be a
pain to go to the specific packet with the timestamp in question. How can we narrow down

our bpf filter and bitmask even further so it gives us only what we want?

In the snortsnarf output for this alarm, we can see that only the "ACK" flag is set. The ACK
flag has a decimal value of 16 in the 13th byte offset from zero in the TCP header. with that

in mind we build a new bitmask of tcp[13] = 16 and just tack that onto the same bpf filter
and get windump to process it. Looking at this new file we note that it is still rather large

and unwieldy. Once again, how do we prune the results of this to a manageable size? Let's
go back and look at the packet that actually fired off this alarm signature:

[**] [1:1201:7] ATTACK-RESPONSES 403 Forbidden [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/25-14:04:41.410107 199.60.115.193:80 -> 192.168.1.101:1337
TCP TTL:107 TOS:0x0 ID:44337 IpLen:20 DgmLen:1500 DF
A* Seq: 0xAF842A90 Ack: 0x63D099C8 Win: 0xFC67 TcpLen: 20

I would now include more information in our filter to further prune the output file. It would

seem logical to perhaps take the destination address of 192.168.1.101 and use the
ephemeral port of 1337 to further filter the output. It would not make sense to use the
source address of 199.60.115.193, server port 80, because this is what may be handing

back all of the requested resources. With this train of thought in mind, let's build our new
and improved bpf/bitmask:

C:\ windump.exe -r log_file -nXvSs 0 ip and src host 199.60.115.193 and dst host
192.168.1.101 and dst port 1337 and tcp[13] = 16 > new_output

Once windump has finished generating this file output we can see that the resulting file is

much smaller. It is therefore far more manageable for analysis purposes. Now we can go
and check the actual packet that triggered this final alert, which has a timestamp of

14:04:41.410107.

I open my output file from the refined bpf/bitmask filter and note that the very first packet
in that file is indeed the packet which triggered the alert. Very nice! As you can see it

really pays off to know how to write complex filters. You might otherwise have been
swimming through a rather large sea of packets just to get to the one of interest.

What happened is that the IP address of 192.168.1.101 requested a resource from the

web server at 199.60.115.193, for which it is not allowed access. That is what HTTP error
code 403 means, unauthorized. Now that I have tracked this alarm down and found out

what it is about, I am not overly concerned. Were it the other way around I would be more
interested in what exactly was going on.

3. Wrapping it up

This concludes the analysis part of the article. Hopefully you now realize the value of

writing proper filters to help you in your analysis. Whether those filters are Ethereal,
tcdump/windump, or other protocol analyzer filters, I would still counsel you to use a tool

such as windump, or tcpdump as it forces you to keep your skills up. Protocol analyzers will
give you all the answers you need, with little to no effort on your part. However that is not
always a good thing, as knowing TCP/IP at a granular level is absolutely essential to truly

examine an exploit.

3.1 Building a home lab, and a methodology

To help aid in your analysis, here are my personal recommendations for what you would

want in a small home lab, and what your analysis methodology should be. I used to think
that a computer lab was a large mass of computers. While it can be that, normally for

people learning about intrusion detection, exploits and the link, by wishing to further their
knowledge you do not need much more than two or three computers and a switch and/or
router.

I would recommend three computers, and they need not be high end ones for that matter
either. Several Pentium IIIs or their equivalent are quite adequate to run Win2K XP/2003.

On these computers I would set up a dual or triple boot environment to maximize the
computer assets. After all, you may as well run as many operating systems as you can on
one computer. Not everyone likes to use VMWare and it also has its shares of quirks; a

machine needs a lot of RAM to run VMWare and it does not always run well on all
computers. Lastly most Linksys, DLink or other personal routers also do double duty as a

switch. This allows you to target one of your lab machines from another lab machine with
exploit code, or you can use an automated tool. To sum up, I would have one main machine
which would be for personal use, along with two dedicated lab machines, and all

interconnected via a router/switch.

Finally, it is very important that you approach every packet trace (via a log file) with the
same set of steps. Why? By using a common methodology you are far less likely to miss

SecurityFocus HOME Infocus: Examining a Public Exploit, Part 2 http://www.securityfocus.com/infocus/1801

5 of 5 17-09-2004 16:41

same set of steps. Why? By using a common methodology you are far less likely to miss

some critical clue in the packets that you are analyzing. Many people, when analyzing a log
file, go immediately to the ASCII content of it. In other words, they look at what is on the

right hand side of the viewable packet. This can be a potentially fatal mistake when
analyzing a possible attack. Not every exploit will have "/bin/sh" or other telltale sign in
the ASCII content. You must get into the habit of approaching your analysis in a logical

order. For instance, start at the timestamp and work your way from right to left. Then work
your way through the header metrics, and after which look at the hex content. Once this is

done, look at the ASCII content for any further possible correlation. And then finally, after
all that is done I would then take an overall look at the offending IP addresses in question.
Are there any nuggets of info such as repeating TCP sequence numbers and so on? By

using a standardized approach to packet analysis you are far less likely to miss something,
which could be key to your investigation.

4. Conclusion

I sincerely hope that this article series has given you an insight into packet analysis.
Should you wish to contact me over the contents of this article, please feel free to do so.
Remember that this was just a high level overview and not a detailed analysis. It will help

to serve as a good starting point should this field of endeavor be of interest to you.

About the author

Don Parker Don Parker is an Intrusion Detection Specialist who holds the GCIA
certification. He works as an independent consultant and instructor. He also provides

other computer security services of a highly specialized nature.

