
Internet Explorer Vulnerabilities 
In this tutorial i'm going to write Internet Explorer Vulnerabilities With 
Exploits and complete information about them . 
 
Internet Explorer Cross-Site Scripting in Unparsable XML Files 
 
Overview: 
Internet Explorer automatically attempts to parse any XML file requested individually by the 
browser. When the parsing process is successful, a dynamic tree of the various XML 
elements is presented. However, when a parsing error occurs Internet Explorer displays the 
parse error along with the URL of the requested XML file.  
 
Description: 
We have found that in some cases the displayed URL is not filtered appropriately, and may 
cause HTML that was passed in the querystring of the URL to be rendered by the browser. 
This creates a classic cross-site scripting attack in almost any XML file that MSXML fails to 
read. Practically, this means that leaving XML files on your server that can't be parsed 
correctly by Internet Explorer and MSXML is exposing the site to a global Cross-Site 
Scripting attack.  
 
We have been able to reproduce this problem in various setups, but we couldn't pinpoint the 
vulnerable component reliably enough. It is most likely an MSXML issue, and not a flaw in 
Internet Explorer itself.  
Exploit: 
This sample shows the basic URL for injecting content:  
 
http://host.with.unparsable.xml.file/flaw.xml?<script>alert(document.cookie)</script> 
Solution: 
Microsoft was notified on 20-Feb-2003. They reported that they were able to reproduce this 
flaw on IE6 Gold, and no other version. Our research showed different, yet inconsistent 
results . 
 
Microsoft Internet Explorer Buffer Overflow in Processing '.MHT' Web Archives Lets 
Remote Users Execute Arbitrary Code 
 
A buffer overflow vulnerability was reported in the Microsoft Internet Explorer browser in the 
processing of malformed '.mht' web archive pages. A remote user can cause arbitrary code 
to be executed on the target user's system.  
 
Canon System Solutions reported that a remote user can embed executable content within a 
web archive and, using a malformed MIME header, cause the content to be executed when 
the archive is loaded on a target user's browser. The code will run with the privileges of the 
target user. 
 
If the MIME header structure and the accompanying Base64-encoded text is properly crafted 
(i.e., properly malformed), 4 bytes of memory can be overwritten, according to the report. 
 
A demonstration exploit is provided: 
 
MIME-Version: 1.0 
------=_NextPart_000_0000_01C2E1F4.0D559EA0 
Content-Location:file:///tomatell.exe 
Content-Transfer-Encoding: base64 



 
 
Internet Explorer Script Injection to Custom HTTP Errors in Local Zone 
 
Overview: 
Internet Explorer ships with various internal HTML resource files. The majority of these files 
are meant to handle custom HTTP errors in web sites (also called "Friendly HTTP error 
messages"). They all use the same basic pieces of code, with minor changes to the actual 
content of each resource.  
 
One of the main functions included in the resources is a method to extract the real URL from 
the resource URL hash. For example, if "site.com" generated a 404 HTTP error, the following 
URL will be internally requested by IE: 
res://shdoclc.dll/404_HTTP.htm#http://site.com/file.html.  
 
The function takes the part after the # sign and attempts to extract the domain of the site, 
in order to embed it in the content of the custom message.  
 
Description: 
We found that the above-mentioned parsing procedure has a flaw in it that may cause 
arbitrary script commands to be executed in the Local Zone. Leading to potential arbitrary 
commands execution, local file reading and other severe consequences.  
 
However, Exploiting this procedure requires user-interaction. The user must click the URL 
presented to it by the resource for the malicious code to execute.  
 
Here is the vulnerable function, precisely as it appears in the resources:  
 
 
function Homepage(){  
// in real bits, urls get returned to our script like this:  
// res://shdocvw.dll/http_404.htm#http://www.DocURL.com/bar.htm  
 
 
//For testing use DocURL = 
"res://shdocvw.dll/http_404.htm#https://www.microsoft.com/bar.htm"  
DocURL = document.location.href;  
 
 
//this is where the http or https will be, as found by searching for :// but skipping the res://  
protocolIndex=DocURL.indexOf("://",4);  
 
 
//this finds the ending slash for the domain server  
serverIndex=DocURL.indexOf("/",protocolIndex + 3);  
 
 
//for the href, we need a valid URL to the domain. We search for the # symbol to find the 
begining  
//of the true URL, and add 1 to skip it - this is the BeginURL value. We use serverIndex as 
the end marker.  
//urlresult=DocURL.substring(protocolIndex - 4,serverIndex);  
BeginURL=DocURL.indexOf("#",1) + 1;  
if (protocolIndex - BeginURL > 7)  



urlresult=""  
 
 
urlresult=DocURL.substring(BeginURL,serverIndex);  
 
 
//for display, we need to skip after http://, and go to the next slash  
displayresult=DocURL.substring(protocolIndex + 3 ,serverIndex);  
 
 
// Security precaution: must filter out "urlResult" and "displayresult"  
forbiddenChars = new RegExp("[<>\'\"]", "g"); // Global search/replace  
urlresult = urlresult.replace(forbiddenChars, "");  
displayresult = displayresult.replace(forbiddenChars, "");  
 
 
document.write('<A target=_top HREF="' + urlresult + '">' + displayresult + "</a>");  
 
 
}  
 
 
The comments in this function teach us that Microsoft had indeed attempted to protect this 
resource from being exploited in this way, but unfortunately failed to do so. A specially 
crafted value appended after the # sign can fool this function to write a "javascript:" URL in 
the displayed link.  
Exploit and Demonstration:  
This URL will cause the resource to output a "javascript:" link to the document, which will 
execute when the user clicks on it:  
 
res://shdoclc.dll/HTTP_501.htm#javascript:%2f*://*%2falert(location.href)/  
 
Copy and paste the above URL in your browser, then click the red link in order to test it.  
Solution:  
Microsoft was notified on 20-Feb-2003. They were able to reproduce this on IE6 Gold and all 
versions below it. We managed to reproduce it on all versions, including IE6 SP1, with no 
exceptions.  
 
They plan to fix this flaw in a future service pack. 
 

IE - Outlook - MS SHLWAPI Render Vulnerabilities 
 
 
One: 
Malicious htm file can freeze IE with 100% CPU usage:  
Construct the file freeze.htm:  
c:\>perl -e "print qq'\xFF\xFE'; print qq'\r\n' x 30000" > freeze.htm  
 
After opening freeze.htm IE will hang with 100% CPU usage until IEXPLORE.EXE process is 
not killed. Two bytes (0xff 0xfe) at the beginning of the file mean that the encoding is 
unicode. So the internal unicode representation of the CR LF sequence will look like 
0D0A0D0A but not 000D000A (if the file was a plain ASCII).  
 



Tested on IE 6.0 with all fixes, other versions expected to be vulnerable aswell.  
 
Two: 
A bug was reported on the 23 of this month where a html file could contain code such as: 
 
-------------------- 
<html>  
<form>  
<input type crash>  
</form>  
</html>  
-------------------- 
 
that would crash IE, Outlook, Frontpage and most Microsoft programs with the following 
error:  
"Unhandled exception in iexplore.exe (SHLWAPI.DLL): 0xC0000005: Access Violation"  
(It's a null pointer overwrite, so it's not easly exploitable... ) 
 
In addition to this, it also seems to crash explorer.exe when the .html file containing the 
code is copied into any folder !! It may work since windows is trying to create a view in 
Windows explorer. Indeed, it doesn't work when the file is copied in the desktop. 
 
 

 
Internet Explorer Object Type Property Overflow 
 
Description: 
The "Object" tag is used to insert objects such as ActiveX components into HTML pages. The 
"Type" property of the "Object" tag is used to set or retrieve the MIME type of the object. 
Typical valid MIME types include "plain/text" or "application/hta", "audio/x-mpeg", etc. A 
buffer overflow has been discovered in the "Type" property of the "Object" tag. While there 
is buffer checking in place, the buffer checking can be overcome by using a special 
character. From there, the exploitation is a simple, stack-based overflow that allows the 
remote attacker to run code of his/her choice on the target system.  
 
This attack may be utilized wherever IE parses HTML, so this vulnerability, affects 
newsgroups, mailing lists, or websites.  
 
 
Note:  
Due to the popularity and prevalence of ActiveX on the Internet, users running Windows 
2003 "Enhanced Security Configuration" Mode may have chosen to re-activate the ability to 
view active content for all websites instead of continually adding websites to the "Internet" 
or "Trusted" zones on a per-site basis. These users should be aware that they are at risk for 
this vulnerability and should apply the necessary patch.  
 
 
Technical Description:  
This example was designed for Windows 2000 with .Net Framework and the latest IE.  
 
Cooler Than Centra Spike 
 
Give or take a few '/' characters depending on the system. The issue is relatively simple and 



interesting: the '/' character is changed into '_/_' (three characters) after the string is 
checked for proper buffer size. Because of this expansion, we are able to overrun the bounds 
of the buffer. This allows us to take control of key registers so as to run code that we 
specify, which will be available at the EDX register. At this point a JMP EDX is called, and 
from there the payload can be executed.  
 
This issue was discovered by using the same automated testing tool with which we found the 
Shockwave, MSN Chat, and PNG issues. Additional time was saved through "eVe", a 
proprietary vulnerability tracing tool which allows for the viewing of checked and unchecked 
buffers as they are processed in memory.  
 
 
Patch :  
Microsoft was notified and has released a patch for this vulnerability. The patch is available 
at:  
http://www.microsoft.com/technet/security/bulletin/MS03-020.asp 
 

Internet Explorer Plugin.ocx Heap Overflow 
 
There is an exploitable heap overflow vulnerability in Microsoft's ActiveX control, Plugin.ocx. 
By default, plugin.ocx is marked safe for scripting, and as such, if an IE user were to visit a 
malicious web page, the overflow could be triggered allowing for a "remote" compromise of 
the user's machine. Alternatively, an attacker could send their target a specially crafted e-
mail, loaded with an exploit to take advantage of this vulnerability. The problem arises by 
passing an overly long string to the Load method of the control. 
 
 

By : Ehsan Omidvar 

ehsan_omidvar@mail.com 


