
EXPLOITS & MITIGATIONS: EMET

Fermín J. Serna – MSRC Engineering @ Microsoft

Agenda

 Introduction

 Exploits

 Mitigations

 EMET

 V.1.02 (public available)

 Next version (soon to be available)

 QA

Fermín J. Serna – MSRC @ Microsoft

Introduction

 Who am I?

 Security Engineer at MSRC Engineering React (former
SWI).

 Technical background of MSRC for externally reported
security issues: MSo8-67, Aurora IE case …

 HPUX PA-RISC, Solaris SPARC: assembly, shellcode
and exploit lover.

 Published several docs and exploits: Phrack (58-9) HP-
UX PA-RISC exploitation techniques long time ago, …

 Developer of a PAX implementation on win32 long
time ago…

Fermín J. Serna – MSRC @ Microsoft

Exploits

 A bit of history on the windows side…
 Old days were good and easy to write exploits…
 Smash the * for fun and profit: stack, heap, vtable,…

 These days is more difficult but challenges are fun
 Better code…

 Mitigations…

 Mitigations…

 Did I say mitigations?

 No… wait… something is left…

Mitigations!!!

Fermín J. Serna – MSRC @ Microsoft

Exploits

 Stack overflows

Fermín J. Serna – MSRC @ Microsoft

Saved EIP

Saved EBP

Local Variables

Arguments to the
function

0x41414141

0x41414141

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

SEH record

0x41414141

0x41414141

Target a local variable
pointer.

Target saved EBP… two
returns needed

Target saved EIP… one
return needed

Target SEH record

Exploits

 SEH record overwrite

Fermín J. Serna – MSRC @ Microsoft

N H

N H

app!_except_handler4

k32!_except_handler4

0xffffffff

N H 0x7c1408ac

0x414106eb

[jmp +6]

pop eax

pop eax

ret

Exploits

 Heap overflows

 Target heap structures (unlink exploits)

 Target an object vtable

 Any variable/structure at the heap could be
interesting for a write AV.

Fermín J. Serna – MSRC @ Microsoft

Exploits

 C++ touch already freed objects

 Somehow object was deleted but there are
references to it on other objects… (ref counting
bugs)

 Target vtable calls: call [reg+offset]

 Any member variable at the heap could be
interesting for a write AV.

Fermín J. Serna – MSRC @ Microsoft

Exploits

 Return oriented programming

Crash at call [ecx + 100h]

We assume attacker controls content of [ecx-
500h,ecx+500h]

Attacker places at [ecx+100h] some fixed address of:

mov esp, ecx; «some other non-deref ins»; ret

Esp is pointing inside the controlled range

Next ret will grab arguments and saved eip from controlled
range.

Chain of Virtualloc, strcpy, jmp will defeat DEP

Full ASLR breaks ROP!!!!

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 Had been introduced historically in new OS and its
Service Packs.

 XPSP2 was a big security push: /SAFESEH, DEP, /GS,
SAFE Unlinking…

 Server 2k3 SP2: Improved GS

 Vista: User mode ASLR + DEP (big win), heap
structures encoded

 Vista SP1: Kernel mode ASLR + SEHOP (disabled by
default)

 Server 2k8: SEHOP (enabled by default)

Fermín J. Serna – MSRC @ Microsoft

Saved EBP

GS cookie

Saved EIP

Mitigations

 GS (stack cookie)

Fermín J. Serna – MSRC @ Microsoft

Saved EIP

Saved EBP

Local Variables

Arguments to the
function

GS cookie

0x41414141

0x41414141

Local Variables

Arguments to the
function

0x41414141

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

!=

Mitigations

 GS (stack cookie)

 Prevents

 Saved Return address overwrite usage

 Saved EBP overwrite usage

 Local function pointers usage (new /GS)

 Does not prevent

 SEH overwrite usage

 Other local varibles usage

 Weird overwrites MS08-67

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 DEP (Hardware one)
 Processor check check when executing instructions.

 Page’s protection can be RWX (Read, Write and
Executable) + other properties

Logic behind:

if (has_exec_bit((PAGE_PROTECTION(eip))==FALSE)

{

Raise_exception();

}

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 DEP (Hardware one)

 ASLR makes it more robust

 Full ASLR + DEP + no memory leaks = robust
mitigation

 Prevents

 Placing and executing shellcode at writable pages:
recv() buffers, javascript strings, …

 Old type of exploits need to be re-written

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 ASLR
 Randomizes:
 Modules base address

 Heap allocations

 Stack base

 TEB address

 …

 Prevents
 Fixed address assumptions…
 F.i. ROP or return into ntdll for DEP bypass

(Uninformed – technique).

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 ASLR

Fermín J. Serna – MSRC @ Microsoft

app.exe

user32.dll

kernel32.dll

ntdll.dll

app.exe

user32.dll

kernel32.dll

ntdll.dll

app.exe

user32.dll

kernel32.dll

ntdll.dll

Boot 1 Boot 2 Boot 3

process

address

space

Region Entropy

Image 8 bits

Heap 5 bits

Stack 14 bits

Mitigations

 /SAFESEH (also refered as Software DEP)
 When a SEH is called:
 Verifies if SEH record is in executable memory

 Verifies if the SEH function is inside a module

 Also verifies if the function is defined in the module
Safe SEH table located at the PE binary

 If the PE file was not compiled with /SAFESEH it
allows the handler execution
 Attackers are taking advantage of this “app compat”

scenario

64 bits processes SEH works differently…

Fermín J. Serna – MSRC @ Microsoft

Mitigations

 SEHOP

 32 bits OS mitigation

 When an exception happens the SEH chain is
verified.

 Last SEH record points to
ntdll!FinalExceptionHandler? (SEHOP without ASLR
= no sense)

 Yes? chain is not corrupted

 No? chain is corrupted and could lead to untrusted
code execution… stop the process!

Fermín J. Serna – MSRC @ Microsoft

Exploits

 SEHOP operation record overwrite

Fermín J. Serna – MSRC @ Microsoft

N H

N H

app!_except_handler4

k32!_except_handler4

N H
ntdll!FinalExceptionHandle

r

N H app!_main+0x1c

0x41414141

Can’t reach validation frame!

Valid SEH Chain Invalid SEH Chain

?

EMET

 Purpose of EMET:

 Break current exploitation techniques, exploits
and shellcodes

 Bring to older OS current mitigations

 Per process opt-in

 Test potential future OS mitiations

 Some of the mitigations can by bypassed.

 Yes ,we know… but they will break exploits as they
are publicly developed currently.

Fermín J. Serna – MSRC @ Microsoft

EMET

 v1.02

 Free (with limited support)

 Published on November

 Mitigations:

 Enable DEP per process

 SEHOP (similar but no the same)

 Common memory pages pre-allocation

Fermín J. Serna – MSRC @ Microsoft

EMET

 DEP per process

 Easy one… enable DEP if SetProcessDepPolicy()
exists in the system

 API available at XPSP3 +, Vista SP1+ and 2k8/Win7

Fermín J. Serna – MSRC @ Microsoft

EMET

 SEHOP

 Similar to the OS SEHOP version

 OS version final «handler» is
ntdll!FinalExceptionHandler

 EMET’s version final «record» is at a random
offset of a random page.

 A Vector Exception Handler (VEH) validates the
exception chain before any SEH is executed

 Works downlevel!

Fermín J. Serna – MSRC @ Microsoft

EMET

 Common memory pages pre-allocation

 Common browser exloits rely on fixed addresses
to be allocated… 0x0c0c0c0c, 0x0d0d0d0d, …

 Pages address can be added at the registry

 Pre-allocate them as PAGE_NOACCESS so a heap
spray cannot get them

 NULL allocation in case a new technique for
allocating it comes into play

Fermín J. Serna – MSRC @ Microsoft

EMET

 Next version…

 Available soon

 Potential new mitigations in next version:

 EAT Hardware breakpoint mitigation

 Stack pivot mitigation

 Mandatory ASLR

 Some can be circunvented… we know how to do
it… but breaks a lot of currnet shellcodes/exploits


Fermín J. Serna – MSRC @ Microsoft

EMET

 EAT hardware breakpoint mitigation
 Metasploit’s and most shellcodes do:
 Go to the TEB fs:[0]

 Grab a pointer to the PEB TEB[30] – fs:[30]

 Go the Ldr structures at the PEB
 Linked list of loaded modules

 Contains name and image base

 Loop through all modules looking for specific
exported functions at the Export Addess Table (EAT)

 Once found go to EAT.AddressOffunctions[offset]
for the address of the required function

Fermín J. Serna – MSRC @ Microsoft

EMET

 EAT hardware breakpoint mitigation
 X86 has 4 debug registers… acting as data

breakpoints

 On windows 4 per thread since they are saved
when OS switch to other tasks

 Place a 4 byte read data breakpoint at:
 Kernel32!EAT.AddressOffunctions

 Ntdll!EAT.AddressOfFunctions

 A VEH will monitor accesses to these: single step
exception
 Is eip inside a module? 

Fermín J. Serna – MSRC @ Microsoft

EMET

 Stack pivot mitigation

 Hook some interesting functions:
NtAllocateVirtualMemory,
NtProtectVirtualMemory, LdrLoadDll,
NtSetInformationProcess, …

 At the hook check:

 Is esp inside the bounds defined at the TEB:
StackBase, StackLimit?

 Mitigates all aurora exploits I have seen

Fermín J. Serna – MSRC @ Microsoft

EMET

 Mandatory ASLR

 ASLR aware modules contains DYNAMIC BASE
on its Dll Characteristics at the PE Header.

 Hook ntdll!LdrLoadDll, check if the module is
ASLR aware.

 Yes? Allow the dll load

 No? Allocate a page at its imagebase and let the OS
figure out if it can relocate it

 Only works for dll loads after EMET has been
loaded and not for imports…

Fermín J. Serna – MSRC @ Microsoft

Greetings
Fermín J. Serna – MSRC @ Microsoft

 Thank you guys!

 MSRC/MSEC (former SWI): Andrew Roths,
Matt Miller, Damian Hasse and Ken
Johnson.

Questions

Now or...

Twitter: fjserna

http://zhodiac.hispahack.com

Fermín J. Serna – MSRC @ Microsoft

