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1. Prerequisite knowledge 
 
This guide assumes that the reader is familiar with how the IA32 processors work in 
Protected Mode, with the C programming language, and with AT&T syntax IA32 
assembler programming. It also assumes some knowledge about user mode system 
programming for FreeBSD and some general knowledge about the internal workings 
of the kernel. 
 

2. Information sources 
 
The primary source of information used when writing this guide has been the 
FreeBSD kernel source code itself. The FreeBSD Kernel Cross-Reference at 
http://fxr.watson.org/ has been very valuable for doing easy searches in the kernel 
source code, but the source code snippets in the text comes from the /usr/src 
directory tree on a FreeBSD 4.9 installation. 
 
Also, the book The Design and Implementation of the 4.4 BSD Operating System, by 
McKusick / Bostic / Karels / Quarterman, was very useful as a general kernel 
overview. 
 
The references used for IA32 information are the IA-32 Intel Architecture Software 
Developer’s Manual from Intel, and the book Protected Mode Software Architecture 
by Tom Shanley. 
 

3. The Interrupt Descriptor Table (IDT) 

3.1 The IDT definition 
 
From src/sys/i386/i386/machdep.c 
 
static struct gate_descriptor idt0[NIDT]; 
struct gate_descriptor *idt = &idt0[0]; 
 
The IDT is defined as an NIDT sized array of gate_descriptor structures. The 
constant NIDT is defined in src/sys/i386/include/segments.h and represents the 
maximum number of interrupts in the IDT. The gate_descriptor structure is 
defined in the same file as following 
 
struct gate_descriptor { 
 unsigned gd_looffset:16 ; 
 unsigned gd_selector:16 ; 
 unsigned gd_stkcpy:5 ; 
 unsigned gd_xx:3 ; 
 unsigned gd_type:5 ; 
 unsigned gd_dpl:2 ;  
 unsigned gd_p:1 ; 
 unsigned gd_hioffset:16 ; 
} ; 
 
The gate_descriptor is a general structure which can be used to represent 
interrupt gate descriptors, trap gate descriptors and task gate descriptors. 

http://fxr.watson.org/


3.2 Setting entries in the IDT 
 
Each entry in the IDT is set with the setidt() function, which can be found in the 
file src/sys/i386/i386/machdep.c 
 
void 
setidt(idx, func, typ, dpl, selec) 
 int idx; 
 inthand_t *func; 
 int typ; 
 int dpl; 
 int selec; 
{ 
 struct gate_descriptor *ip; 
 
 ip = idt + idx; 
 ip->gd_looffset = (int)func; 
 ip->gd_selector = selec; 
 ip->gd_stkcpy = 0; 
 ip->gd_xx = 0; 
 ip->gd_type = typ; 
 ip->gd_dpl = dpl; 
 ip->gd_p = 1; 
 ip->gd_hioffset = ((int)func)>>16 ; 
} 
 
As an example we will look at how the interrupt handler for INT 0x80, the syscall 
interrupt, is set. The setidt() call for INT 0x80 can be found in the file 
src/sys/i386/i386/machdep.c 
 
 setidt(0x80, &IDTVEC(int0x80_syscall), 
   SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); 
 
The first parameter is the interrupt number, which is used as an index into the IDT.   
 
To understand the second parameter we need to take a look at what IDTVEC stands 
for. It is defined in the same file as 
 
#define IDTVEC(name) __CONCAT(X,name) 
 
The __CONCAT macro can be found in src/sys/sys/cdefs.h 
 
#define __CONCAT1(x,y) x ## y 
#define __CONCAT(x,y) __CONCAT1(x,y) 
 
As we can see, the parameter &IDTVEC(int0x80_syscall) can be read out as 
&Xint0x80_syscall, which is the address of the interrupt handler. 
 
The third parameter is the constant SDT_SYS386TGT, which means that this gate is 
a trap gate. 
 
The fourth parameter is the constant SEL_UPL, which can be found in the file 
src/sys/i386/include/segments.h 
 
#define SEL_UPL 3 



 
This is the DPL of the trap gate. The value of 3 means that INT 0x80 may only be 
invoked from ring 3, in other words only from user mode. 
 
Finally, we will look at the fifth argument, GSEL(GCODE_SEL, SEL_KPL). The 
macro GSEL can be found in the file src/sys/i386/include/segments.h 
 
#define GSEL(s,r) (((s)<<3) | r) 
 
In the same file we find the constant GCODE_SEL 
 
#define GCODE_SEL 1 
 
We also find the constant SEL_KPL there 
 
#define SEL_KPL 0 
 
As we can see, GSEL(GCODE_SEL, SEL_KPL) can be read out as 
 
(((GCODE_SEL)<<3) | SEL_KPL) 
 
This is the selector for the segment where the interrupt handler resides. The bits 3-15 
of a selector contain the descriptor table index. So in this case the index is 1. As can 
be seen in the section about the GDT later in this guide, this is the index to the kernel 
code segment descriptor.  Next, SEL_KPL, which is a constant meaning kernel 
mode (ring 0), is added to the selector value as the RPL. The RPL represents the 
privilege level of the code that created the selector, in this case the kernel. Finally, 
the table indicator will be 0, meaning that the GDT is to be used. 
 

3.3 A look inside the IDT with KernView 
 
Using the tool KernView from http://vidstrom.net/otools/kernview/ we can look inside 
various memory structures used by the kernel in a running FreeBSD system. The 
following is an excerpt from the output 
 
INT 80h: 

- Trap Gate Descriptor 
- DPL = 3 
- Segment Selector = 8h 
- Offset = c038f3c0h 

 
The entry 0x80 is a trap gate with DPL=3, which corresponds with what we have 
seen earlier in the kernel source code. We also notice that the segment selector is 8. 
This too corresponds with what we could see in the kernel source since the value 
was (((GCODE_SEL)<<3) | SEL_KPL), where GCODE_SEL=1 and SEL_KPL=0. 

http://vidstrom.net/otools/kernview/


3.4 Making the IDT active 
 
From src/sys/i386/i386/machdep.c 
 
struct region_descriptor r_gdt, r_idt; 
 
. . . 
 
 r_idt.rd_limit = sizeof(idt0) - 1; 
 r_idt.rd_base = (int) idt; 
 lidt(&r_idt); 
 
From src/sys/i386/include/segments.h 
 
struct region_descriptor { 
 unsigned rd_limit:16; 
 unsigned rd_base:32 __attribute__ ((packed)); 
}; 
 
The r_idt variable is assigned the IDT limit, which by specification is 1 less than the 
size. It is also assigned the address of the IDT. The address of the r_idt variable is 
passed as a parameter to the lidt() function, which consists of three lines of 
assembler code. 
 
From src/sys/i386/i386/support.s 
 
ENTRY(lidt) 
 movl 4(%esp),%eax 
 lidt (%eax) 
 ret 
 
The ENTRY macro can be found in src/sys/i386/include/asm.h 
 
#define ENTRY(x) _ENTRY(x) 
 
In the same file we can also find 
 
#define _START_ENTRY .text; .p2align 2,0x90 
 
#define _ENTRY(x) _START_ENTRY; \ 
  .globl CNAME(x); .type CNAME(x),@function; CNAME(x): 
 
This means that ENTRY(lidt) can be read out as 
 
.text; .p2align 2,0x90; \ 

.globl CNAME(lidt); .type CNAME(lidt),@function; 
CNAME(lidt): 

 
.p2align 2,0x90; tells the assembler that the instructions should be aligned to a 
32 bit boundary and that the padding possibly needed should be 0x90, that is, NOP 
instructions. 
 
.globl CNAME(lidt); makes lidt a globally visible symbol. 
 
.type CNAME(lidt),@function; makes the symbol a function type symbol. 
 



Now we can take a look at the assembler code 
 
 movl 4(%esp),%eax 
 
This line takes the 32-bit word at ESP+4, which is the address to the r_idt variable, 
and stores it in EAX. The +4 is needed to get past the saved EIP. Then, finally, the 
IDTR is loaded with the value. Our new IDT is now active and the function returns 
 
 lidt (%eax) 
 ret 
 

4. Syscall handling 

4.1 The INT 0x80 interrupt handler 
 
From src/sys/i386/i386/exception.s 
 
 SUPERALIGN_TEXT 
IDTVEC(int0x80_syscall) 
 subl $8,%esp 
 pushal 
 pushl %ds 
 pushl %es 
 pushl %fs 
 mov $KDSEL,%ax   
 mov %ax,%ds 
 mov %ax,%es 
 MOVL_KPSEL_EAX 
 mov %ax,%fs 
 movl $2,TF_ERR(%esp)  
 FAKE_MCOUNT(13*4(%esp)) 
 MPLOCKED incl _cnt+V_SYSCALL 
 call _syscall2 
 MEXITCOUNT 
 cli    
 cmpl    $0,_astpending 
 je doreti_syscall_ret 
#ifdef SMP 
 MP_LOCK 
#endif 
 pushl $0   
 subl $4,%esp  
 movb $1,_intr_nesting_level 
 jmp _doreti 
 
We can find SUPERALIGN_TEXT in src/sys/i386/include/asmacros.h 
 
 #define SUPERALIGN_TEXT .p2align 4,0x90 
 
This tells the assembler that it should align the code at a 16 byte boundary and pad 
with the value 0x90, that is, NOP instructions. 



Next, the code sets up the trap stack frame. We can find the format of it in the file 
src/sys/i386/include/frame.h 
 
struct trapframe { 
 int tf_fs; 
 int tf_es; 
 int tf_ds; 
 int tf_edi; 
 int tf_esi; 
 int tf_ebp; 
 int tf_isp; 
 int tf_ebx; 
 int tf_edx; 
 int tf_ecx; 
 int tf_eax; 
 int tf_trapno; 
 /* below portion defined in 386 hardware */ 
 int tf_err; 
 int tf_eip; 
 int tf_cs; 
 int tf_eflags; 
 /* below only when crossing rings (e.g. user to kernel) */ 
 int tf_esp; 
 int tf_ss; 
}; 
 
When the processor executes the INT 0x80 instruction it first saves some state 
information on the stack before going on to the interrupt handler. Since we are 
dealing with a switch from ring 3 to ring 0, the processor automatically changes the 
stack to the kernel stack. It pushes SS, ESP, EFlags, CS and EIP onto the stack. As 
this trap does not have an error code associated with it, the processor does not push 
it onto the stack. We also do not have a trap number that we need to push onto the 
stack. Thus, we subtract 8 bytes from the stack pointer 
 
 subl $8,%esp 
  
Next we have to push EAX, ECX, EDX, EBX, ESP before the EAX push (referred to 
as ISP, the Initial SP), EBP, ESI and EDI. All this is performed with a single 
instruction 
 
 pushal 
 
Finally, DS, ES and FS are pushed onto the stack 
 
 pushl %ds 
 pushl %es 
 pushl %fs 
 
This concludes the set-up of the trap stack frame and we go on with pointing DS and 
ES to the kernel data segment selector 
 
 mov $KDSEL,%ax   
 mov %ax,%ds 
 mov %ax,%es 
 
The line MOVL_KPSEL_EAX is specific to SMP (Symmetric MultiProcessor) kernels 
so we ignore it in this guide. 
 



Next we also point FS to the kernel data segment selector 
 
 mov %ax,%fs 
 
The following line puts the value 2 into the tf_err field of the trap stack frame 
 
 movl $2,TF_ERR(%esp)  
 
The line FAKE_MCOUNT(13*4(%esp)) has to do with kernel profiling, which is out 
of the scope of this guide. 
 
The line MPLOCKED incl _cnt+V_SYSCALL is specific to SMP (Symmetric 
MultiProcessor) kernels so we ignore it too. 
 
Finally, we call the _syscall2 function 
 
 call _syscall2 
 
This function is actually called syscall2 as can be seen by looking at the #define in 
the file src/sys/i386/include/asnames.h 
 
#define _syscall2   syscall2 
 

4.2 Syscall dispatching 
 
The syscall2() function is a bit too long to be included in its completeness here, so we 
will only look at the most interesting parts of it. No code has been changed from the 
original except where specifically marked. Lines that have been cut away are marked 
by three dots. 
 
void 
syscall2(frame) 
 struct trapframe frame; 
{ 
 caddr_t params; 
 int i; 
 struct sysent *callp; 
 struct proc *p = curproc; 
 register_t orig_tf_eflags; 
 u_quad_t sticks; 
 int error; 
 int narg; 
 int args[8]; 
 int have_mplock = 0; 
 u_int code; 
 
. . . 
 

params = (caddr_t)frame.tf_esp + sizeof(int); 
 code = frame.tf_eax; 
 
. . . 
 
 callp = &p->p_sysent->sv_table[code]; 
 
 narg = callp->sy_narg & SYF_ARGMASK; 



 
 /* Error handling has been cut away from the two lines below */ 
 

i = narg * sizeof(int); 
 

copyin(params, (caddr_t)args, (u_int)i); 
 
. . . 
 
 p->p_retval[0] = 0; 
 
. . . 
 
 error = (*callp->sy_call)(p, args); 
 
 switch (error) { 
 case 0: 
 
. . . 
 
  frame.tf_eax = p->p_retval[0]; 
 
. . . 
 
  break; 
 
. . . 
 
 default: 
bad: 
 
. . . 
 
  frame.tf_eax = error; 
 
. . . 
 
  break; 
 } 
 
. . . 
 
} 
 
First we retrieve the value of ESP before INT 0x80 was issued. This value can be 
found in the trap stack frame. Since the processor pushed the value of SS onto the 
stack before it pushed ESP we need to add 32 bits (PUSHL pushed SS as a 32 bit 
value) to get to the parameters 
 

params = (caddr_t)frame.tf_esp + sizeof(int); 
 

The syscall number was put in EAX before invoking INT 0x80 
 
 code = frame.tf_eax; 
 



How the syscall table is constructed is outside the scope of this guide, but the 
following code puts the address of the syscall function in callp and the number of 
arguments the syscall takes in narg 
 
 callp = &p->p_sysent->sv_table[code]; 
 
 narg = callp->sy_narg & SYF_ARGMASK; 
 
Next, the parameters are copied from user space to kernel space 
 

copyin(params, (caddr_t)args, (u_int)i); 
 
The copyin() function is a well-know kernel library function that we will look at in 
more detail in the next section. 
 
We will go through most of the code that follows pretty quickly. The most interesting 
line is the following 
 
 error = (*callp->sy_call)(p, args); 
 
The line calls the function that handles the syscall in question with the process 
pointer and the arguments as parameters. As an example of how a syscall function 
can look we take the open syscall 
 
static int patched_open(struct proc *p, struct open_args *uap); 
 
Finally, we note that the return value of the syscall, the error code, is left to the issuer 
in the EAX register. 
 

4.3 The copyin() function 
 
The copyin() function is a well-known kernel library function used to copy data 
from user space to kernel space, and it is documented in section 9 of the man pages 
where the following function prototype can be found 
 
int copyin(const void *uaddr, void *kaddr, size_t len); 
 
From src/sys/i386/i386/support.s 
 
ENTRY(copyin) 
 MEXITCOUNT 
 jmp *_copyin_vector 
 
The ENTRY macro has been covered earlier in this text so we will skip it here. We will 
also skip MEXITCOUNT since it has to do with profiling, which is outside the scope of 
this guide. 
 
_copyin_vector: 
 .long _generic_copyin 
 
From src/sys/i386/include/asnames.h 
 
#define _generic_copyin   generic_copyin 
 



Back in src/sys/i386/i386/support.s we take a look at generic_copyin with error 
handling and a few other things stripped out. At the places where code lines have 
been cut out three dots have been inserted. 
 
ENTRY(generic_copyin) 
 
. . . 
 
 pushl %esi 
 pushl %edi 
 movl 12(%esp),%esi   
 movl 16(%esp),%edi    
 movl 20(%esp),%ecx   
 
. . . 
 
 movb %cl,%al 
 shrl $2,%ecx    
 cld 
 rep 
 movsl 
 movb %al,%cl 
 andb $3,%cl    
 rep 
 movsb 
 
. . . 
 
 popl %edi 
 popl %esi 
 
. . . 
 
 ret 
 
First of all the values in ESI and EDI are saved on the stack and they are restored 
before the function returns. 
 
Next, the parameters are collected 
 
 movl 12(%esp),%esi    
 movl 16(%esp),%edi   
 movl 20(%esp),%ecx   
 
Since ESI and EDI have been pushed onto the stack together with EIP, we have to 
start collecting the parameters 12 bytes up. 
 
The actual copying is pretty straightforward and will not be explained in detail here. 



5. The Global Descriptor Table (GDT) 

5.1 The GDT definition 
 
The GDT is defined in src/sys/i386/i386/machdep.c 
 
union descriptor gdt[NGDT * MAXCPU];  
 
From src/sys/i386/include/segments.h 
 
union descriptor { 
 struct segment_descriptor sd; 
 struct gate_descriptor gd; 
}; 
 
struct segment_descriptor { 
 unsigned sd_lolimit:16 ; 
 unsigned sd_lobase:24 __attribute__ ((packed)); 
 unsigned sd_type:5 ;  
 unsigned sd_dpl:2 ; 
 unsigned sd_p:1 ;   
 unsigned sd_hilimit:4 ;   
 unsigned sd_xx:2 ;  
 unsigned sd_def32:1 ;  
 unsigned sd_gran:1 ; 
 unsigned sd_hibase:8 ;  
} ; 
 
struct gate_descriptor { 
 unsigned gd_looffset:16 ; 
 unsigned gd_selector:16 ; 
 unsigned gd_stkcpy:5 ; 
 unsigned gd_xx:3 ; 
 unsigned gd_type:5 ; 
 unsigned gd_dpl:2 ;  
 unsigned gd_p:1 ; 
 unsigned gd_hioffset:16 ; 
} ; 
 
As is well known, a GDT can contain code, data and task segment descriptors, as 
well as call and task gate descriptors. The segment_descriptor structure can be 
used to represent code, data and task segment descriptors. The gate_descriptor 
structure can be used to represent call and task gate descriptors. 



5.2 Setting up the descriptors in the GDT 
 
The descriptors to be inserted into the GDT are defined as follows in the file 
src/sys/i386/i386/machdep.c 
 
struct soft_segment_descriptor gdt_segs[] = { 
/* GNULL_SEL 0 Null Descriptor */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
/* GCODE_SEL 1 Code Descriptor for kernel */ 
{ 0x0,   /* segment base address  */ 
 0xfffff,  /* length - all address space */ 
 SDT_MEMERA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GDATA_SEL 2 Data Descriptor for kernel */ 
{ 0x0,   /* segment base address  */ 
 0xfffff,  /* length - all address space */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */ 
{ 0x0,   /* segment base address  */ 
 0xfffff,  /* length - all address space */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GPROC0_SEL 4 Proc 0 Tss Descriptor */ 
{ 
 0x0,   /* segment base address */ 
 sizeof(struct i386tss)-1,/* length - all address space */ 
 SDT_SYS386TSS,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* unused - default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 



/* GLDT_SEL 5 LDT Descriptor */ 
{ (int) ldt,  /* segment base address  */ 
 sizeof(ldt)-1,  /* length - all address space */ 
 SDT_SYSLDT,  /* segment type */ 
 SEL_UPL,  /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* unused - default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
/* GUSERLDT_SEL 6 User LDT Descriptor per process */ 
{ (int) ldt,  /* segment base address  */ 
 (512 * sizeof(union descriptor)-1),  /* length */ 
 SDT_SYSLDT,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* unused - default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
/* GTGATE_SEL 7 Null Descriptor - Placeholder */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length - all address space */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 
in GDT */ 
{ 0x400,   /* segment base address */ 
 0xfffff,  /* length */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GPANIC_SEL 9 Panic Tss Descriptor */ 
{ (int) &dblfault_tss, /* segment base address  */ 
 sizeof(struct i386tss)-1,/* length - all address space */ 
 SDT_SYS386TSS,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* unused - default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */ 
{ 0,   /* segment base address (overwritten)  */ 
 0xfffff,  /* length */ 
 SDT_MEMERA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 



/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */ 
{ 0,   /* segment base address (overwritten)  */ 
 0xfffff,  /* length */ 
 SDT_MEMERA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */ 
{ 0,   /* segment base address (overwritten) */ 
 0xfffff,  /* length */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */ 
{ 0,   /* segment base address (overwritten) */ 
 0xfffff,  /* length */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */ 
{ 0,   /* segment base address (overwritten) */ 
 0xfffff,  /* length */ 
 SDT_MEMRWA,  /* segment type */ 
 0,   /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
}; 
 
The soft_segment_descriptor from src/sys/i386/include/segments.h 
 
struct soft_segment_descriptor { 
 unsigned ssd_base ;  
 unsigned ssd_limit ;  
 unsigned ssd_type:5 ;  
 unsigned ssd_dpl:2 ;  
 unsigned ssd_p:1 ;  
 unsigned ssd_xx:4 ; 
 unsigned ssd_xx1:2 ;   
 unsigned ssd_def32:1 ;   
 unsigned ssd_gran:1 ;  
}; 
 



The code that actually sets up the GDT is only a few lines long when stripped down 
to the central parts 
 
From src/sys/i386/i386/machdep.c 
 
 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1); 
 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1); 
 
 . . . 
 
 gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1); 
 gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss; 
 
 for (x = 0; x < NGDT; x++) { 
 
. . . 
 
  ssdtosd(&gdt_segs[x], &gdt[x].sd); 
 } 
 
 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; 
 r_gdt.rd_base =  (int) gdt; 
 lgdt(&r_gdt); 
 
 
First we need to understand what atop(0 - 1) stands for. The (0 - 1) part 
evaluates to –1, which is represented as 32 bits of only 1’s. Next we take a look at 
the atop macro in src/sys/i386/include/param.h 
 
#define atop(x)  ((x) >> PAGE_SHIFT) 
 
#define PAGE_SHIFT 12 
 
The limit granularity is set to 1 in all the segment descriptors, that is, 4096 byte 
pages. So we have to shift the value of (0 – 1) 12 positions to the right to get the 
limit in pages. What this means is that the segments cover the whole address space. 
 
The for loop inserts the descriptors into the GDT. We will not study the copy 
function ssdtosd any closer since it is pretty straightforward. 
 

5.3 Making the GDT active 
 
The last few lines of code are similar to the ones that activate the IDT 
 
 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; 
 r_gdt.rd_base =  (int) gdt; 
 lgdt(&r_gdt); 
 
We already know how the ENTRY macro works. 
 
ENTRY(lgdt) 
 
The actual loading of the GDTR is straightforward. 
 
 movl 4(%esp),%eax 
 lgdt (%eax) 



 
The processor instruction prefetch queue is flushed with a short jump, that is, the 
processor stops executing the “old” instructions in the prefetch queue and reloads it 
with fresh instructions from memory 
 
 jmp 1f 
 nop 
1: 
 
The data and stack segment selector registers are reloaded 
 
 movl $KDSEL,%eax 
 mov %ax,%ds 
 mov %ax,%es 
 mov %ax,%gs 
 mov %ax,%ss 
 
. . . 
 
 mov %ax,%fs 
 
The return EIP is moved into EAX and then pushed onto the stack 
 
 movl (%esp),%eax 
 pushl %eax 
 
The kernel code segment selector is pushed onto the stack 
 
 movl $KCSEL,4(%esp) 
 
We return and at the same time reload the CS register with the new code selector 
 
 lret 
 

5.4 A look inside the GDT with KernView 
 
As with the IDT we use KernView to look inside the GDT of a running FreeBSD 
system. The following is output concerning the GDT 
 
GDT Base = c04aac00, GDT Limit = 77 
 
Entry number 1h: 
  - Code Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Execute and Read 
  - Non Conforming 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 



Entry number 2h: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 
Entry number 3h: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 
Entry number 4h: 
  - Task State Segment (TSS) Descriptor 
  - Task is Busy 
  - Granularity: Bytes 
  - DPL = 0 
  - Segment Size = 67h 
  - Base Address = c04707c4h 
 
Entry number 5h: 
  - Local Descriptor Table (LDT) Descriptor 
  - Granularity: Bytes 
  - DPL = 3 
  - Segment Size = 87h 
  - Base Address = c04aacc0h 
 
Entry number 6h: 
  - Local Descriptor Table (LDT) Descriptor 
  - Granularity: Bytes 
  - DPL = 0 
  - Segment Size = fffh 
  - Base Address = c04aacc0h 
 
Entry number 8h: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 400h 
 



Entry number 9h: 
  - Task State Segment (TSS) Descriptor 
  - Task is Not Busy 
  - Granularity: Bytes 
  - DPL = 0 
  - Segment Size = 67h 
  - Base Address = c04a28a0h 
 
Entry number ah: 
  - Code Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Execute and Read 
  - Non Conforming 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 
Entry number bh: 
  - Code Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Execute and Read 
  - Non Conforming 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 
Entry number ch: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 
Entry number dh: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
  - Base Address = 0h 
 



Entry number eh: 
  - Data Segment Descriptor 
  - Granularity: Pages 
  - Accessed 
  - Read and Write 
  - Expand Up 
  - DPL = 0 
  - Segment Size = fffffh 
 - Base Address = 0h   

 
The first thing we notice is that there is no segment descriptor with index 0, even 
though it was added by the kernel as we could see earlier. KernView does not 
display it since it serves no purpose except for letting programs store a zero value in 
a data segment selector register without causing an exception. 
 
KernView also prints the values of various segment selector registers, among others 
 
  - CS = 8h 
  - SS = 10h 
  - DS = 10h 
 
We begin with looking at the CS value. The table indicator bit is 0, which stands for 
the GDT. The descriptor table index is 1. As we can see in section 5.2, this is the 
kernel code segment descriptor. 
 
Next we look at the SS and DS values. These also have a table indicator bit that is 0, 
but they have a descriptor table index of 2. Once again looking in section 5.2 we can 
see that this is the kernel data segment descriptor. 



5.5 Segment selector values in an ordinary user mode program 
 
With a short ordinary user mode program we print the values of CS, SS and DS 
 
#include <stdio.h> 
 
int main(void) 
{ 
 unsigned long temp; 
 
 __asm__( 
  "mov %%cs, %0;" 
  :"=r"(temp) 
  : 
 ); 
 printf("  - CS = %lxh\n", temp); 
 __asm__( 
  "mov %%ss, %0;" 
  :"=r"(temp) 
  : 
 ); 
 printf("  - SS = %lxh\n", temp); 
 __asm__( 
  "mov %%ds, %0;" 
  :"=r"(temp) 
  : 
 ); 
 printf("  - DS = %lxh\n", temp); 
 __asm__( 
  "mov %%es, %0;" 
  :"=r"(temp) 
  : 
 ); 
} 
 
The following was printed by the program 
 
  - CS = 1fh 
  - SS = 2fh 
 - DS = 2fh 

 
The table indicator in both cases is 1, which is the LDT. The descriptor table index for 
CS is 3 and for SS/DS it is 5. Obviously we need to take a look at how the kernel 
uses the LDT to understand memory addressing in user mode programs. Looking at 
the listing in section 5.2 we can see that there is only one LDT segment descriptor in 
the GDT with a DPL of 3, and that is entry number 5.  
 



We run another short user mode program to determine the value in LDTR. 
 
#include <stdio.h> 
 
int main(void) 
{ 
 unsigned short temp; 
 
 __asm__( 
  "sldt %0;" 
  :"=m"(temp) 
  : 
 ); 
 printf(" - (LDTR) LDT Selector = %xh\n", temp); 
} 
 

- (LDTR) LDT Selector = 28h 
 
The LDTR has a table indicator of 0 (the GDT) and a descriptor table index of 5. This 
corresponds with what we observed earlier. 
 
As is well known, when the processor performs a hardware supported task switch it 
updates the LDTR with the LDT segment selector value from the tasks TSS (Task 
State Segment). Since we could only see one LDT segment descriptor in the GDT 
we can conclude that the FreeBSD kernel does not fully utilize hardware supported 
task switching. Next we will look at how its soft task switching is implemented. 
 

6. Task switching 

6.1 The cpu_switch() function 
 
The cpu_switch() function is responsible for saving the context of the running 
process and letting a new process run. We will look at the function from top to bottom 
and with only the SMP handling and the FPU state save code stripped out. 
 
From src/sys/i386/i386/swtch.s 
 
ENTRY(cpu_switch) 
 
First we check if we have been executing another process or not. If not we do not 
have to save process state before going on to the new process 
  
 movl _curproc,%ecx 

testl %ecx,%ecx 
 je sw1 
 



The following lines of code are a little bit harder to figure out 
 
. . . 
 
 movl P_VMSPACE(%ecx), %edx 
 
. . . 
 
 xorl %eax, %eax 
 
 btrl %eax, VM_PMAP+PM_ACTIVE(%edx) 
 
 
From src/sys/i386/i386/genassym.c 
 
ASSYM(P_VMSPACE, offsetof(struct proc, p_vmspace)); 
 
ASSYM(VM_PMAP, offsetof(struct vmspace, vm_pmap)); 
 
ASSYM(PM_ACTIVE, offsetof(struct pmap, pm_active)); 
 
In other words, P_VMSPACE represents the offset of the p_vmspace member in the 
proc structure, and VM_PMAP represents the offset of the vm_pmap member in the 
vmspace structure. Finally, PM_ACTIVE is the offset of the pm_active member in 
the pmap structure. 
 
When we begin, ECX contains the address of the proc structure of the currently 
running process. The following line puts the address of the p_vmspace member into 
the EDX register 
 
 movl P_VMSPACE(%ecx), %edx 
 
Next, EAX is zeroed 
 
 xorl %eax, %eax 
 
Then we perform a bit test and reset instruction, of which we only use the reset part 
 
 btrl %eax, VM_PMAP+PM_ACTIVE(%edx) 
 
The zero in EAX means that we work with bit 0 in VM_PMAP+PM_ACTIVE(%edx). 
But what does that last part stand for? VM_PMAP makes sure that we get to the 
vm_pmap member of the p_vmspace pointed to by the EDX register. Then, 
PM_ACTIVE gets us to the pm_active member of that member. So we reset bit 0 of 
pm_active. This marks the private physical map as not being active on any CPU of 
the system. 
 
Now we can go on with the next instruction 
 
 movl P_ADDR(%ecx),%edx 



From src/sys/i386/i386/genassym.c 
 
ASSYM(P_ADDR, offsetof(struct proc, p_addr)); 
 
Thus, the address of the member p_addr of proc structure of the currently running 
process is put in the EDX register. This member is a pointer to the user structure of 
the process in question. For each process the kernel keeps two structures, the proc 
structure and the user structure. From the beginning the proc structure stored 
everything about a process that needed to be accessible even when it was paged 
out. The user structure contained those things that were allowed to be paged out. 
Nowadays the division is not that strict. Anyway, the user structure contains the 
Process Control Block (PCB), which in turn contains the execution state of the 
process. This is where we will store the values of the various processor registers. 
Before moving on to that code, we take a look at both of the structures 
 
From src/sys/sys/user.h 
 
struct user { 
 struct pcb u_pcb; 
 struct sigacts u_sigacts; 
 struct pstats u_stats;  
 struct kinfo_proc u_kproc;  
 struct md_coredump u_md;  
}; 
 
From src/sys/i386/include/pcb.h with SMP code removed 
 
struct pcb { 
 int pcb_cr3; 
 int pcb_edi; 
 int pcb_esi; 
 int pcb_ebp; 
 int pcb_esp; 
 int pcb_ebx; 
 int pcb_eip; 
 
 int     pcb_dr0; 
 int     pcb_dr1; 
 int     pcb_dr2; 
 int     pcb_dr3; 
 int     pcb_dr6; 
 int     pcb_dr7; 
 
#ifdef USER_LDT 
 struct pcb_ldt *pcb_ldt; 
#else 
 struct pcb_ldt *pcb_ldt_dontuse; 
#endif 
 union savefpu pcb_save; 
 u_char pcb_flags; 
 caddr_t pcb_onfault;  
 u_long pcb_mpnest_dontuse; 
 int pcb_gs; 
 struct pcb_ext *pcb_ext;  
 u_long __pcb_spare[3]; 
}; 
 



There is really not much to say about the following code. It simply saves the process 
register context into the PCB 
 
 movl (%esp),%eax    
 movl %eax,PCB_EIP(%edx) 
 movl %ebx,PCB_EBX(%edx) 
 movl %esp,PCB_ESP(%edx) 
 movl %ebp,PCB_EBP(%edx) 
 movl %esi,PCB_ESI(%edx) 
 movl %edi,PCB_EDI(%edx) 
 movl %gs,PCB_GS(%edx) 
 
 movb    PCB_FLAGS(%edx),%al 
 andb    $PCB_DBREGS,%al 
 jz      1f                           
 movl    %dr7,%eax                        
 movl    %eax,PCB_DR7(%edx) 
 andl    $0x0000fc00, %eax      
 movl    %eax,%dr7 
 movl    %dr6,%eax 
 movl    %eax,PCB_DR6(%edx) 
 movl    %dr3,%eax 
 movl    %eax,PCB_DR3(%edx) 
 movl    %dr2,%eax 
 movl    %eax,PCB_DR2(%edx) 
 movl    %dr1,%eax 
 movl    %eax,PCB_DR1(%edx) 
 movl    %dr0,%eax 
 movl    %eax,PCB_DR0(%edx) 
1: 
 
. . .  
 
 
Finally, we set the current process to 0, meaning that we are not executing any user 
mode process at the moment 
 
 movl $0,_curproc    
 
We are done working with the formerly current process and now we go on with 
selecting a new process to run. The code used to select a new process is out of the 
scope of this guide so we skip it 
 
sw1: 
 cli 
 
. . . 
 
sw1a: 
 call _chooseproc    
 testl %eax,%eax 
 CROSSJUMP(je, _idle, jne)   
 movl %eax,%ecx 
 
 xorl %eax,%eax 
 andl $~AST_RESCHED,_astpending 
 
. . . 
 



The address of the proc structure of the new process has been stored in ECX. 
 
 movl P_ADDR(%ecx),%edx 
 
. . . 
 
If the page table directory base address for the new process to run is the same as is 
already in CR3, then skip setting a new one 
 
 movl %cr3,%ebx 
 cmpl PCB_CR3(%edx),%ebx 
 je 4f 
 
. . . 
 
Get the page table directory base address for the new process to run from its PCB 
and put it in CR3 
 
 movl PCB_CR3(%edx),%ebx 
 movl %ebx,%cr3 
4: 
 
 xorl %esi, %esi 
 
Is there a PCB extension present? This means that each process has its own TSS 
 
 cmpl $0, PCB_EXT(%edx)   
 je 1f 
 
The _private_tss variable is a flag that indicates the use of a private TSS, and 
the next line of code sets bit 0 
 
 btsl %esi, _private_tss  
 
The following instruction retrieves the address of the TSS descriptor stored in the 
extended PCB. PCB_EXT gets us to the extended PCB structure and the TSS 
descriptor is the first member so we do not need any additional offset to get to it 
 
 movl PCB_EXT(%edx), %edi  
 jmp 2f 
 
There is no PCB extension present so the process has to use a shared TSS. Load 
the address of the PCB into EBX 
 
1: 
 
 movl %edx, %ebx  
 
From src/sys/i386/include/param.h 
 
#define UPAGES 3 
 
This is the number of pages that the u-area uses, so the following line adds the 
number of bytes in the pages that the u-area uses minus 2 bytes 
 
 addl $(UPAGES * PAGE_SIZE - 16), %ebx 
 



This value is then used in the following line 
 
 movl %ebx, _common_tss + TSS_ESP0 
 
 
TSS_ESP0 stands for the offset of the member tss_esp in the structure i386tss. 
ESP0 is the ring 0 stack pointer. 
 
Reset bit 0 of _private_tss, that is, reset the flag to show that we do not use a 
private TSS  
 
 btrl %esi, _private_tss 
 jae 3f 
 
Put the address of the common TSS descriptor into EDI 
 
 movl $_common_tssd, %edi 
 
2: 
 
Put the TSS descriptor into the GDT 
 
 movl _tss_gdt, %ebx   
 movl 0(%edi), %eax 
 movl %eax, 0(%ebx) 
 movl 4(%edi), %eax 
 movl %eax, 4(%ebx) 
 
GPROC0_SEL is a constant with the value 4, so the following line creates a segment 
selector that points out descriptor number 4 in the GDT 
 
 movl $GPROC0_SEL*8, %esi  
 
Load it into the task register 
 
 ltr %si 
 
This marks the private physical map as being active on any CPU of the system. We 
have already studied the opposite earlier in this section 
 
3: 
 movl P_VMSPACE(%ecx), %ebx 
 
 xorl %eax, %eax 
 
 btsl %eax, VM_PMAP+PM_ACTIVE(%ebx) 
 
We restore various processor registers 
 
 movl PCB_EBX(%edx),%ebx 
 movl PCB_ESP(%edx),%esp 
 movl PCB_EBP(%edx),%ebp 
 movl PCB_ESI(%edx),%esi 
 movl PCB_EDI(%edx),%edi 
 movl PCB_EIP(%edx),%eax 
 movl %eax,(%esp) 
 
. . . 
 



We also set a couple of variables to new values 
 
 movl %edx, _curpcb 
 movl %ecx, _curproc  
 
. . . 
 
If the kernel has been compiled with options USER_LDT, a process can get and 
set its own LDT. The i386_get_ldt() system call returns the list of descriptors in 
the LDT. The i386_set_ldt() system call puts a list of descriptors into the LDT. 
 
#ifdef USER_LDT 
 
Check if the process has a user LDT set or not 
 
 cmpl $0, PCB_USERLDT(%edx) 
 jnz 1f 
 
It did not have a user LDT so set the default one 
 
 movl __default_ldt,%eax 
 
If the current LDT is the same as the default we do not have to load the LDTR 
 
 cmpl _currentldt,%eax 
 je 2f 
 
Load the LDTR and set the current LDT 
 
 lldt __default_ldt 
 movl %eax,_currentldt 
 jmp 2f 
 
The process already had a user LDT, so we have to insert a LDT descriptor into the 
GDT. The function for doing that is very simple and inserts the LDT descriptor at 
position GUSERLDT_SEL, which is defined as 6. If we go back to section 5.4 we see 
in the KernView output that position 6 is a LDT descriptor. There are only two LDT 
descriptors in the GDT, and we have already looked at the other one in section 5.5. 
 
1: pushl %edx 
 call _set_user_ldt 
 popl %edx 
2: 
#endif 
 
 .globl cpu_switch_load_gs 
cpu_switch_load_gs: 
 



Next we restore various processor registers and return, which starts the new process 
 
 movl PCB_GS(%edx),%gs 
 
 movb    PCB_FLAGS(%edx),%al 
 andb    $PCB_DBREGS,%al 
 jz      1f                               
 movl    PCB_DR6(%edx),%eax   
 
 movl    %eax,%dr6 
 movl    PCB_DR3(%edx),%eax 
 movl    %eax,%dr3 
 movl    PCB_DR2(%edx),%eax 
 movl    %eax,%dr2 
 movl    PCB_DR1(%edx),%eax 
 movl    %eax,%dr1 
 movl    PCB_DR0(%edx),%eax 
 movl    %eax,%dr0 
 movl %dr7,%eax               
 
 andl    $0x0000fc00,%eax          
 
 pushl   %ebx 
 movl    PCB_DR7(%edx),%ebx 
 andl $~0x0000fc00,%ebx 
 orl     %ebx,%eax 
 popl %ebx 
 movl    %eax,%dr7 
1: 
 
 sti 
 ret 
 

7. Virtual paging 

7.1 The page fault handler 
 
From src/sys/i386/i386/machdep.c 
 
 setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL, 
GSEL(GCODE_SEL, SEL_KPL)); 
 
This line of code is quite similar to the one that set the INT 0x80 entry in the IDT, so 
we will skip many of the details this time. 
 
The parameter &IDTVEC(page) can be read out as &Xpage, which is the address of 
the page fault handler. 
 
The third parameter is the constant SDT_SYS386IGT, meaning that this gate is an 
interrupt gate. 
 
The fourth parameter is the constant SEL_KPL, which means that the page fault 
handler may only be invoked from any ring. 
 



The fifth argument, GSEL(GCODE_SEL, SEL_KPL) is the selector for the segment 
where the page fault handler resides. The descriptor table index in this case is 1. As 
can be seen in the section about the GDT, this is the index to the kernel code 
segment descriptor. The table indicator will be 0, meaning that the GDT is to be 
used. 
 
Now we look in src/sys/i386/i386/exception.s 
 
IDTVEC(page) 
 TRAP(T_PAGEFLT) 
 
In the same file we find 
 
#define TRAP(a)  pushl $(a) ; jmp _alltraps 
 
We also find 
 
 SUPERALIGN_TEXT 
 .globl _alltraps 
 .type _alltraps,@function 
_alltraps: 
 pushal 
 pushl %ds 
 pushl %es 
 pushl %fs 
 
. . . 
 
 mov $KDSEL,%ax 
 mov %ax,%ds 
 mov %ax,%es 
 MOVL_KPSEL_EAX 
 mov %ax,%fs 
 
. . . 
 
 movl _cpl,%ebx  
 call _trap 
 
. . . 
 
Since we have already studied this type of code before, we move on straight to the 
_trap() function. In src/sys/i386/include/asnames.h we find 
 
#define _trap    trap 
 



Moving on to src/sys/i386/i386/trap.c we find the following 
 
void 
trap(frame) 
 struct trapframe frame; 
{ 
 
. . . 
 
 if (frame.tf_trapno == T_PAGEFLT) { 
  eva = rcr2(); 
  
. . . 
 
  switch (type) { 
  case T_PAGEFLT:   /* page fault */ 
   (void) trap_pfault(&frame, FALSE, eva); 
   return; 
 
. . . 
 
The trap() function is long and most of it has nothing to do with page faults, so we 
just notice that the variable eva is loaded with the value in the CR2 register (page 
fault linear address), then we go on to the trap_pfault function. 
 
From src/sys/i386/i386/trap.c 
 
int 
trap_pfault(frame, usermode, eva) 
 struct trapframe *frame; 
 int usermode; 
 vm_offset_t eva; 
{ 
 
. . . 
 
 struct proc *p = curproc; 
 
. . . 
 
 va = trunc_page(eva); 
 
. . . 
 
   vm = p->p_vmspace; 
 
. . . 
 
  map = &vm->vm_map; 
  rv = vm_fault(map, va, ftype, 
         (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY 
            : VM_FAULT_NORMAL); 
 
The trap_pfault() function contains a lot of code, most of which has been cut out 
above, but since this guide is not about memory management we stop here. The 
vm_fault() function is the one that is responsible for loading the paged out page 
from disk into the primary memory. 
 



7.2 Virtual paging and task switching 
 
When the kernel switches between processes it has to make sure that each process 
has its own page directory so the process address spaces are completely separated. 
Here we repeat a few lines of code from the section about task switching to take a 
look at how it is handled. 
 
From src/sys/i386/i386/swtch.s 
 
If the page table directory base address for the new process to run is the same as is 
already in CR3, then skip setting a new one 
 
 movl %cr3,%ebx 
 cmpl PCB_CR3(%edx),%ebx 
 je 4f 
 
. . . 
 
Get the page table directory base address for the new process to run from its PCB 
and put it in CR3 
 
 movl PCB_CR3(%edx),%ebx 
 movl %ebx,%cr3 
 

8 The Local Descriptor Table (LDT) 

8.1 A quick glance at the LDT 
 
From src/sys/i386/i386/machdep.c 
 
union descriptor ldt[NLDT]; 
 
. . . 
 
static struct soft_segment_descriptor ldt_segs[] = { 
 /* Null Descriptor - overwritten by call gate */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length - all address space */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
 /* Null Descriptor - overwritten by call gate */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length - all address space */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 



 /* Null Descriptor - overwritten by call gate */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length - all address space */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
 /* Code Descriptor for user */ 
{ 0x0,   /* segment base address  */ 
 0xfffff,  /* length - all address space */ 
 SDT_MEMERA,  /* segment type */ 
 SEL_UPL,  /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
 /* Null Descriptor - overwritten by call gate */ 
{ 0x0,   /* segment base address  */ 
 0x0,   /* length - all address space */ 
 0,   /* segment type */ 
 0,   /* segment descriptor priority level */ 
 0,   /* segment descriptor present */ 
 0, 0, 
 0,   /* default 32 vs 16 bit size */ 
 0     /* limit granularity (byte/page units)*/ }, 
 /* Data Descriptor for user */ 
{ 0x0,   /* segment base address  */ 
 0xfffff,  /* length - all address space */ 
 SDT_MEMRWA,  /* segment type */ 
 SEL_UPL,  /* segment descriptor priority level */ 
 1,   /* segment descriptor present */ 
 0, 0, 
 1,   /* default 32 vs 16 bit size */ 
 1     /* limit granularity (byte/page units)*/ }, 
}; 
 
 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1); 
 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1); 
 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++) 
  ssdtosd(&ldt_segs[x], &ldt[x].sd); 
 
 _default_ldt = GSEL(GLDT_SEL, SEL_KPL); 
 lldt(_default_ldt); 
#ifdef USER_LDT 
 currentldt = _default_ldt; 
#endif 
 
The principle of this code is the same as we looked at in the section about the GDT.  
 
From src/sys/i386/include/segments.h 
 
#define LUCODE_SEL 3 
 
#define LUDATA_SEL 5 
 
As we can see, at index 3 is the user mode code segment descriptor and at index 5 
is the user mode stack and data segment descriptor. This corresponds with what we 
observed in section 5.5 



 
In section 7.1 we looked at how the LDT is handled by the FreeBSD kernel’s soft task 
switching. 
 

9. Miscellaneous  

9.1 The uiomove() function 
 
Device drivers use the uiomove() function to copy data between user space and 
kernel space. The function is located in src/sys/kern/kern_subr.c 
 
int 
uiomove(cp, n, uio) 
 register caddr_t cp; 
 register int n; 
 register struct uio *uio; 
{ 
 
. . . 
 
  switch (uio->uio_segflg) { 
 
  case UIO_USERSPACE: 
  case UIO_USERISPACE: 
 
. . . 
 
   if (uio->uio_rw == UIO_READ) 
    error = copyout(cp, iov->iov_base, cnt); 
   else 
    error = copyin(iov->iov_base, cp, cnt); 
   if (error) 
    break; 
   break; 
 
Obviously this function uses the copyout() and copyin() functions. For a 
description of how the copyin() function works, see section 4.3. 
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