
Fun things to do with a Honeypot 
Alberto Gonzalez and Jason Larsen  

 
 
 
Introduction: 
 
Honeypots are a hot topic in the security research community right now.  Everyone is starting up 
their own honeypot system.  While most of current literature available on them deals with the 
potential gains a honeypot can give you, and how to monitor them, not very many of them deal 
with the mechanics of honeypots themselves. 
 
Most honeypots as deployed from spare parts. Many start as just an extra box someone has lying 
around.  A security savvy technician has slapped an OS on it, checksummed all the files, installed 
an IDS, and set about waiting for the hackers to arrive. These haphazard kinds of honeypots 
ignore some of the most interesting capabilities of honeypots. Honeypots can be used to ensnare 
and beguile potential hackers, entice them to give you more research information, and actively 
defend a production network.  
 
In this paper, you’ll find some cool and fun things to do with honeypots.  We’ll discuss techniques 
that can be used to create an environment that keeps a hackers interested piqued in your 
honeypot, will encourage them to upload new toys, and show you how to extract the maximum 
amount of data from them.  
 
 
Simulated Traffic: 
 
One of the reasons most people don’t see interesting hacker tactics on their honeypot is because 
they’ve neglected to make sure that there is something interesting for the attacker to play with.  If 
you’re going to discover intimate details about the attacker’s modus operandi, you need to make 
your honeypot interesting.  One of the easiest ways to accomplish this is to create simulated 
traffic coming to and from the honeypot. 
 
Replaying interesting traffic on the network can prompt the attacker to investigate other portions 
of your honeypot. Simulated traffic replayed over the wire can include e-mails, passwords, 
hostnames, etc… You want juicy, intriguing traffic to entice the attacker to further investigate your 
machine and or network (honeynet).  
 
Simulated traffic can be used in conjunction with simulated targets.  This allows you to replay 
traffic from those simulated hosts to lure the attacker to further investigate those targets. Such 
traffic could be pop3, samba, ftp, and http traffic coming from the simulated targets.  Traffic from 
services known to have a infamous vulnerability history will definitely prompt the attacker to 
further investigate.  
 
If you want to really see the hacker in action, simulate traffic that looks like someone trading 
MP3s and traffic that looks like someone transferring business documents.  If the attacker spends 
most of his time looking at the MP3 traffic, he’s probably pretty harmless.  If he spends his time 
looking at the documents, he’s much more likely to be dangerous. 
 
Simulated traffic can be used as a kind of referral service among honeypots.  Drop some packets 
on the wire that contain usernames and passwords or contain hints that the choice morsels are 
stored at a different location.  Different breeds of attackers will chase down different leads and 
attack your other honeypots.   
 

  Page 1 of 5 
 

mailto:albertg@cerebro.wwjh.net
mailto:anonpoet@violating.us


 
Simulated Targets 
 
Once an attacker has taken all the trouble to set up shop on your honeypot, he’ll probably want to 
explore the system further.  If your honeypot is typical, there’s not much for an attacker to do 
once he gains root access.  He needs instead to be confronted with a challenge that will 
encourage him to transfer all the other toys in his arsenal so you can have a copy as well. 
 
Providing an attacker with additional targets such as various operating systems and services can 
encourage him to use other programs and scripts.  the targets can be real, but it is safer and 
you’ll get almost as much mileage if they’re simulated.  A good place to start is to put a phantom 
private network up hung off the back of the honeypot. 
 
Most corporate networks are divided into a private internal network and a public DMZ.  It’s a poor 
security practice to find direct links from DMZ machines into the private network, but they are 
often present.  If the attacker takes over the box and finds such a link, He’s probably going to 
want to explore it.  You can create whatever environment you want for him to explore.  It should 
probably include a number of different operating systems running different services. 
 
Hopefully, the attacker will spot a service he has an exploit for and try to take it over.  When the 
attacker transfers down the exploit, you’ll get a copy to add to your library.  The more compelling 
you make the simulated backend network; the more likely you’ll get additional toys. 
 
 
Switching to a vulnerable OS/Service: 
 
“You have an exploit for a Wu-FTP server?  I have one of those.  Here you go.” 
 
Keeping your production servers patched is a must, but keeping your honeypot patched just limits 
the amount of fun you can have with it.  New exploits are generated for old vulnerabilities all the 
time.  If you just ignore those exploits, you’ll miss what’s going on behind the scenes in the root 
kit development, distributed hacking tools, and anything else that requires them to actually get on 
your box. 
 
Nearly everyone that attempts an exploit has useful data to give.  The trick is getting it from them.  
The best way to extract all the data is to let the exploit succeed and watch to see what they do.  
Even if they use an old exploit, they may use a new root kit or start up an IRC session that will 
lead you to the more fertile ground of zero day exploits.  If someone has an exploit and takes time 
out of their busy day to send it at your network, the least you can seemingly do is to oblige them 
with a root shell. 
 
To build an OS/Service switch, you’ll need a public box, a switching box, and a number of boxes 
with various vulnerable services loaded on them.  To cut down on the amount of real hardware, 
the vulnerable boxes can be replaced with Vmware instances. 
 
The switching box is an inline box with multiple interfaces.  All new traffic is routed to the public 
box by default.  Whenever and exploit is attempted on the public box, the IDS on the switching 
box looks up the OS and revision of attack and switches it over to the appropriate target. 
 
The operating system and services of the public box are what the attacker is going to see when 
he scans the box.  You can use a few tricks to get people to try more exploits.  One is to 
obfuscate the banners.  Instead of having your web server identify itself as Apache, Identify it as 
“Foobar.com front end proxy for Apache 1.3.19 and IIS 5.0”.  Be creative!  The objective is to get 
attackers to throw exploits at the honeypot.  Remember, though, what you are really interested in 
is what he does after the exploit.  

  Page 2 of 5 
 



 
After you are sure that you have extracted all useful data from a particular set of attackers, you 
can use utilities such as Hogwash or Snort-Inline to filter out that particular exploit or that 
particular root kit.  The attacker may respond by changing their root kit or modifying their exploit in 
some way.  The fact that he does and the methods by which this are accomplished are very 
interesting data indeed! 
 
A major difficulty in running such an open honeypot is the recovery time.  After each break-in, you 
need to flush evidence from the previous attacker so that everything is reset for the next one.  
The two most popular methods are using ghost or vmware.  If you opt for ghost, you can simply 
ghost the drive before you put it up on the network and then restore the image as needed.  With 
Vmware, you can keep a copy of the hacked image in an archive and the restart with a clean 
Vmware image. 
 
I’ve seen a few honeypots where the administrators used a file system mounted on a loop back 
interface.  I believe they met with limited success.  There are also some people experimenting 
with user-space Linux.  It looks promising. 
 
 
Traffic Mangling: 
 
Once you’ve got the Wiley hacker attacking your honeypot, it is imperative that you defend 
against the possibility that he might launch an attack on the rest of your network from the 
honeypot, or worse yet, attack a third party network. A good line of defense in this instance is 
traffic mangling.   
 
Traffic mangling requires an inline box running software such as Hogwash.  The inline box can 
replace parts of an exploit with a broken equivalent.  An example of a common mangler is to 
replace all instances of /bin/sh coming from the honeypot with /bin/hs. The attacker’s attempt to 
execute a shell on the remote box will fail. 
 
This particular mangler has provided me with hours of entertainment while I watched the attacker 
download his debugging tools, source code, and favorite traffic analyzers in vain attept to 
discover why his exploits weren’t working.   
 
A good policy is to set up manglers for all the exploits you can get your hands on and then some 
general rules such as replacing all “sam._” with “mas._”.  It’s impossible to stop all outgoing 
exploits with manglers, but it can give you peace of mind that the outside world is relatively 
protected from your compromised honeypot along with hours of fun watching attackers failed 
attempts to continue their attacks elsewhere.  
 
This implementation can be considered a form of data control that every honeypot/net should 
employ. Data control is a defense mechanism to stop attackers from attacking other machines or 
networks on the internet from your honeypot.  
 
 
Connection and Byte limiting: 
 
Connection limiting can be used for both ingress and egress traffic. Connection limiting like traffic 
mangling can provide you many hours of enjoyment watching intruders not understand why they 
can’t have multiple outbound/inbound connections. If you only allow certain number of outbound 
connections and vice versa, these method can be somewhat easier to fingerprint, thus hinting to 
the attacker that he is currently on a honeynet or a system with traffic control.  
 
You can limit n number of connections inbound per x time frame. This would allow you control 
over your honeypot system in an attempt to control inbound recon and exploitation attempts. I 

  Page 3 of 5 
 



have seen multiple compromises happen simultaneously. Egress connection limiting is a must for 
most honeypots.  There are a number of ways you can go about it.  You can restrict the honeypot 
to n simultaneous outbound connections.  This will stop a number of DDOS agents and port 
scanning tools.  This will also limit the damage an attacker can do by attempted port-scans or 
exploits of external hosts.  
 
Network folks and your ISP will take an active interest in your honeypot is if you’re infected with a 
DDOS agent.  Most of the time the network administrator has his pager set to go off when the 
external link hits 100%.  Unfortunately for him, this usually happens at 3 o’clock in the morning.  
 
The number of bytes transferred per second in-bound or outbound can be limited; this method 
would be employed to stop the DDOS situation discussed above. This could halt some exploit 
attempts (e.g.: FreeBSD telnetd exploit). Unlike connection limiting, byte limiting is somewhat 
harder to fingerprint. A more elegant approach is to set the TCP window size in each packet to a 
small number. Although any of these methods will help, you should probably have a general 
purpose “kill the honeypot if you see this” process running somewhere. 
 
 
Bait-n-Switch: 
 
The most basic, but among the most useful concepts a honeypot can be used for is to divert 
hackers from attacking your production network.  This is commonly known as the bait-and-switch 
method.  Bait-and-Switch consists of a production machine, the bait-and-switch machine, and a 
honeypot. 
 
A Bait-n-Switch honeypot is comprised of three machines: your real web server, which can be an 
exact mirror of your web server minus all the sensitive data, and a BNS box.  Both the Honeypot 
and the Production web server are plugged directly into the BNS box.  The BNS box runs an 
Intrusion Detection System.  When the IDS alert’s that someone is an attacker, it starts 
redirecting the attacker’s packets to the Honeypot instead of the production machine. 
 
On most networks having two machines with the same IP address is a bothersome, problematic 
occurrence, but that actually works in your favor with a BNS style honeypot.  If the honeypot has 
the same IP and MAC address as the production server, the attacker may not notice that he’s 
been switched.  If he does not notice, you will get to see all the fun things he has planned for your 
production server.  If he does notice that he no longer has access to the production server, he 
may instead quit and go away.  
 
One current implementation of this approach is The Bait N Switch Project from Violating 
Networks. This method has defensive and research capabilities rolled into one system. Research 
comes into play when the attacker is switched and targeting the compromised honeypot 
(assuming the attack was successful). You have successfully defended your production machine 
and now have further research information on the attacker. 
 
 
Honeypots and the law: 
 
Whenever the topic of honeypots comes up, invariably there is someone who wants to debate the 
legalities of this or that.  We’re not lawyers, but here are some things you should think about 
when those inevitable discussions come up. 
 

1) Entrapment is not a crime.  It only applies to law enforcement and is only used as a 
defense to keep from going to jail.  A normal citizen can’t entrap anyone even if he really 
wants to. 

 

  Page 4 of 5 
 

http://www.violating.us/projects/baitnswitch


  Page 5 of 5 
 

2) Trials generally have a bunch of people just like you in a jury box.  If you’re just trying to 
protect your networks, they will understand that.  The legal system isn’t quite that messed 
up.  

 
3) Most of the time, the lawyers only get involved when there’s enough money to make it 

worth their time.  The FBI and other law enforcement generally functions the same way. 
 

4) Unless you’re prosecuting them, the chances of an attacker bringing any sort of legal 
action against you is near zero. 

 
5) I've port scanned someone I don't know at least once a day for the last five years.  I 

haven't seen the inside of a court room yet. 
 
 
Conclusions: 
  
Honeypots are a serious research endeavor, but you can garner some entertainment from them.  
Your fun will translate into interesting stuff for the attacker to play with.  The attacker is more likely 
to spend time and intellectual effort with an interesting site than with one that is boring and 
unchallenging.  He probably already has all the credit card numbers and free porn he wants, but 
he may be willing to send you a few more exploits for the chance to read about the affair you’re 
having, or better yet planted fake marketing plans, emails of problems with product development, 
and mock ups of product specifications. 
 
There’s no rule that says the network topology has to be anything conventional when you’re 
setting up your honeypot.  Once someone logs in, you can present fictitious new hosts, traffic, 
subnets and, if you want to get fancy use vLANS, they don’t have to exist.   After all, they are only 
packets; you can craft requests and replies as well as any hacker. 
 
A honeypot is an illusion that you weave for the attacker.  Your illusion can be as creative as you 
want it to be.  A good illusion will net zero day exploits, root kits, and loads of information on how 
attackers work.  When developing a honeypot, challenge yourself and have fun with it. 
 
 
About the Authors: 
 
Jason Larsen is the Network Security Architect for the Idaho National Engineering and 
Environmental Laboratories, a DOE nuclear research lab in central Idaho. He is also the main 
developer of the Hogwash inline packet scrubber.  He’s also been published on a number of 
online security journals as well as medical journals.  
 
Alberto Gonzalez is a Traffic/Intrusion Analyst with EDS out in Northern Virginia. He is also 
Founder of Violating Networks. He contributes to various open source projects including The Bait 
N Switch Honeypot and Hogwash. He is currently in the process of getting his GCIA certification 
from SANS. 

http://www.violating.us/

	Simulated Traffic:
	Simulated Targets
	Switching to a vulnerable OS/Service:
	Connection and Byte limiting:
	Honeypots and the law:
	Conclusions:

