
How to gain access to a secured website

written by Steinowitz

November 1999

Contents

1 Introduction 2

2 What types of websites are secured? 2

3 Learning more about our target 2
3.1 Using our browser . 3
3.2 Intermezzo: hostnames, IP addresses, protocols and ports 3
3.3 Finding our more using other protocols 4

3.3.1 Telnet . 5
3.3.2 SSH . 5
3.3.3 FTP . 5

4 Server-side protections 6
4.1 Webserver software authorization 6

4.1.1 The .htaccess file . 7
4.1.2 Intermezzo: the UNIX crypt function 8
4.1.3 Gaining access . 8

4.2 CGI protections . 9
4.2.1 CGI programs . 10
4.2.2 Possible techniques . 10

5 Client-side protections 11
5.1 Java applets . 11
5.2 JavaScript protections . 12

6 Tips and tricks 12
6.1 Using CGI . 12
6.2 Using email . 13
6.3 Using a secure proxy server . 13
6.4 Portscanners . 14
6.5 Bruteforcing remote filenames . 14

7 Last words 15

8 Additional resources 15

1

1 Introduction

It happens so often: you’re surfing across the Web and suddenly a box pops
up. This box asks you to enter your user name and password for this particular
part of the website. And if you don’t know have these? Well, NO ACCESS,
DONUT!

That can’t be the intention of the Internet: shouldn’t all information be
freely available for everyone?

I’m not only writing about membership needed for graphical information,
but also for many other types of information.

How do the protections of these secured websites work? And what can we
do to gain access to secured websites? I’ll try to answer both of these questions,
although the first question will be more important. I won’t give you specific
details on all possible ways to gain access, but if you know how these protections
work, it should be easier to eliminate them.

Please remember this document should serve as an introduction to the sub-
ject only. After reading this, you won’t be able to access any secured site you
want. You might be able to hack 1 or 2 sites, but you’ll need to read much more
if you want more.

2 What types of websites are secured?

There are numerous reasons which could lead to securing a website. Actually,
there are so many reasons that I won’t mention them all: I could write a whole
document on that. In most cases, it has to do with a certain membership. I’ll
mention some possible cases.

• Free webbased email services - people are only allowed to see their own
email.

• Company sites - some areas are only accessible for clients and/or employ-
ees.

• Commercial sites - accessible only for those who paid a lot of money for
it.

• Non-commercial sites - even these sites may have member-only or other-
wise private sections.

Reading this, I think we may conclude that websites in all categories we
could think of could be secured for some reason.

3 Learning more about our target

It shouldn’t be necessary to say that it’s first necessary to learn more about
our secured target website. There’s no general approach which will enable you
to access all secured websites. First, it’s necessary to find out what type of
protection we’re dealing with. Since we’re mainly talking about gaining access
to secured websites here, it’s obvious to start with our browser.

2

3.1 Using our browser

Fire up your browser (which should be Netscape Communicator 4.6 or higher)
and surf to your target website: http://www.target.com. Naturally, we then try
to get access to the secured section of the website which we would like to see.
It’s very important to analyse how users are authorized right now, because that
will determine our approach to hacking it.

What kind of protection are we dealing with? Let me explain how you
can recognize the possibilities. These possibilities can be divided in two types:
server-side protections and client-side protections. Server-side protections can
be rather difficult to tackle, client-side protections aren’t much of a problem.

Webserver software I’ll start with the best protection of all: server-side
user authentication by the webserver. Very easy to recognize: a dialog
box pops up which asks you to provide user name and password. Returns
you a ‘user authentication failed’-page if you choose ‘Cancel’.

CGI You’re dealing with a server-side CGI protection if there is a form in a
‘normal’ webpage which requires you to fill in some data, to click on a
button and if the data you provided is then transmitted to the server. You
can check this by looking at the page source: if there’s a tag like <FORM
ACTION=“somename.cgi” METHOD=“POST”>, you know that you’re
dealing with a CGI protection.

Java applet I’ve seen sites protected with a Java applet quite regular, which
is rather stupid, because Java applets are client-side. It’s easy to rec-
ognize an applet: when you don’t see it’s a Java applet when browsing
the website, you only have to look at the page source. The <APPLET
SRC=appletname.class>-tag is the only way to load a Java applet in a
webpage.

JavaScript Websites protected with JavaScript are the most stupid ones, be-
cause the user has access to all scripts used - it’s also client-side. Also easy
to recognize: view the page source and look at everything which is between
<SCRIPT LANGUAGE=“JavaScript”>- and </SCRIPT>-tags. You’ll
see soon enough if it has something to do with the protection.

That are the four main protection types. You might be able to find one
more, but these are definitely the ones used most.

3.2 Intermezzo: hostnames, IP addresses, protocols and
ports

When you want to become a hacker, it’s very important that you know ev-
erything about networks like the Internet. A couple of terms you should read
about are: hostnames, IP addresses, protocols and ports. It may not always be
necessary to know all about this, but it certainly makes life easier.

hostname Almost every computer connected to the Internet - or any other
similar network - has a unique hostname, like this: name.sub.domain.xx.
xx is the country code of the domain, domain is the domain name, sub
is the subdomain name and name could be something like the computer

3

name. Please note that not all hostnames necessarily match this format,
however, a domain and country code are required.

IP address Every computer connected to the Internet - or any other similar
network - has one unique IP address (some computers even have more).
An IP address looks like this: xxx.xxx.xxx.xxx. Every xxx must be in the
range 0-254 and the first xxx must be at least 1.

DNS DNS stands for Domain Name Service. It would be very annoying if we
would all have to remember the IP addresses of all websites we would like
to visit. Therefore, hostnames exist. When your Internet program tries to
reach an Internet server, he connects to a DNS server and asks this server
what the IP address of a certain hostname is. After that, using the IP
address the DNS returned, your Internet program is able to connect to the
server you originally wanted to connect to. It’s also possible to ‘reverse
lookup’: connect to a DNS server and ask what the hostname of a certain
IP address is.

port All computers have a large number of virtual ports. When you want
to connect to a remote computer, you also have to know which port you
want to connect to. A program can listen to a certain port and accept a
connection from any remote computer trying to connect to that port.

protocol A protocol is a set of rules which should make it possible for comput-
ers to communicate. Without such a protocol, a computer wouldn’t know
when it should receive and transmit data to the other computer. The
HTTP protocol, for example, is used for transmitting webpages. When
you surf over the Web using your browser, this protocol is used. The
webserver software also uses the same protocol and therefore knows which
files to send to the browser. (HTTP = HyperText Transfer Protocol)

Protocols and ports are related to eachother in most cases: when you tell
your browser to surf to a website, it automatically connects to port 80, because
that’s the standard port for the HTTP protocol. And if you are lucky, the
webserver software is listening to this port and answers your browser’s requests.

(Note: it is possible to configure your webserver software in such a way that
it listens to another port, 9000, for example. But this isn’t very useful, since
browsers automatically try to connect to port 80 and if your webserver software
isn’t listening to that port, no connection will be established. More about this
later in this essay.)

I suggest you read more about these if you feel you don’t know enough about
them. . .

3.3 Finding our more using other protocols

In most cases, a webserver is a computer connected to the Internet which hosts
one or more websites. But a server can do much more. While webserver software
is listening to port 80 for connections, many other services can listen to other
ports. A computer connected to the Internet can be webserver, FTP server and
mail server at the same time: the different services each listen to a certain port.
Webserver software listens to port 80, FTP server listens to port 21. (FTP =
File Transfer Protocol)

4

We already used our browser to connect to port 80, but we could try to find
out more about our target server by trying other services a server may have
running.

3.3.1 Telnet

Using Telnet could certainly learn us something about the target server. Launch
‘telnet’ and try to connect to the target server. With the Telnet program, you
can connect to any port you would like, but we choose to connect to the standard
telnet port - 23. You’ll now see something like this:

Digital UNIX (target.com) (ttyq6)

login:

You can now try to enter a dummy name and a dummy password, but the
chance that your name and password combination will be correct isn’t very
large, no need to explain that. . .

But we certainly have learned something about our target: our target server
is running UNIX, Digital UNIX if you want to know exactly. Trying this could
also reveal that you’re dealing with a Windows NT server, which makes a great
difference. It’s also possible that you aren’t able to connect like this and that
the connection is immediately closed with an error message. In that case, Telnet
won’t help you, but it was worth trying.

Please note There’s an important difference between the Telnet program,
the Telnet protocol and the Telnet port. The Telnet program is just telnet.exe
which comes with Windows (or any other operating system), the Telnet protocol
is a set of rules about communication between two computers, the Telnet port
is (in most cases) port 23 which is used for Telnet (the protocol!) connections.

3.3.2 SSH

If Telnet refuses all connections, it might be possible that users are only allowed
to use SSH. SSH stands for Secure Shell and does the same as Telnet, but
all data is encrypted before transmission and decrypted afterwards. Besides,
authorization methods available with SSH are much safer than those of Telnet.

To find out if a server supports SSH, just telnet to port 22. If you are able
to connect to this port and you see something like SSH-1.5-1.2.26, this means
that SSH is enabled. It’s good to know that SSH is enabled, but it won’t help
you much, because SSH it too well protected for us. We won’t be able to use
it for our purposes. When you now press enter, the remote host will close the
connection because you didn’t send data the SSH protocol expects. It will say:
Protocol mismatch. and close the connection.

3.3.3 FTP

You probably already know something about FTP, but I’ll explain anyway.
FTP is just another protocol - like HTTP, Telnet and SSH. FTP stands for File
Transfer Protocol and is used to transfer files. FTP server software is listening
to port 21 in a common server.

5

We can use FTP for the same thing as Telnet - we can try to gain more
information about our target. What we first do is launch the Windows ‘telnet’
application and try to open a connection to target.com port 21. If telnet is
unable to establish a connection, target.com is not a FTP server.

On the other hand, if telnet actually is able to connect to port 21, FTP
server software is running. We could try now try to login as a normal user,
but that’s just as useless as trying to login using the Telnet protocol when we
connect to port 23: we don’t know the right username - password combination
and we would have to be very lucky to guess correctly.

But, many FTP servers also allow people to login anonymously and that’s
exactly what we’re going to do. Type USER anonymous, press return and see
what happens. . . If our target server supports anonymous login, you will now
see something like ‘Guest login ok, supply your full email address as password’.
Well, that’s obviously what we’re not going to do. Type something like PASS
noone@nowhere.com and press return again. At this point, you should see some
login messages saying you logged in successfully.

Alright, now that we know that logging in anonymously is allowed, we close
down our Telnet application and launch our favourite FTP client. I prefer
WS FTP, but any FTP client could be used. Use this FTP program to connect
to target.com, make sure that the FTP client logs in anonymously without using
your real email address as password!

Once logged in, you should have a good look at the directory structure at the
target server and see if you can find any files which could help you gaining access
to the website hosted at the very same server. (A file containing all usernames
and passwords would be very useful, for example.) You should also try to
find out how well the server is protected: which directories do you have access
to and which directories can’t you access? And can you reach the directories
where the website is hosted? (If yes, it might be possible to download the whole
site - including protected area. But this would be pretty stupid of the system
administrators. . .)

4 Server-side protections

Since our little exploration with our browser, we know what type of protection
we’re dealing with. It’s now getting type to explain a little more about each of
these protections and how to deal with them.

4.1 Webserver software authorization

Let’s start with the best protection. After that, everything else will be easy,
don’t you think? As I already said, when a box pops up asking you to enter your
username and password and an ‘Authorization failed’ page appears when you
click ‘Cancel’, you know you’re dealing with such a protection. Let’s examine
how a system administrator achieves this.

It depends on the webserver software and its configuration if it’s possible to
use this technique to secure your website. Therefore, I don’t promise you that
it’ll work on your webserver. On the contrary: this technique doesn’t work on
most normal ISP and free webhosting accounts. If you want to try it yourself,
you should think about downloading and installing the free webserver software

6

Apache (see section 8). It’s the most common webserver software and supports
the technique I’ll describe.

4.1.1 The .htaccess file

In the Apache webserver configuration files, it’s possible to define a filename
for authorization settings. After doing this, each time a website visitor requests
a certain URL, the first thing the webserver does is scan the directory of that
URL (and all higher directories) if there is such an authorization settings file.

The default name for this file is .htaccess. It may seem strange that this file-
name starts with a dot, but that’s because Apache has originally been developed
as UNIX software. Under Windows, it’s possible to give files and directories a
special ‘hidden’ flag. Under UNIX, starting a filename or directoryname with a
dot does exactly the same.

When an authorization settings file is found, the webserver will process the
directives in that file before returning the requested webpage. Please note that
I wrote ‘and all higher directories’: subdirectories of a directory with authoriza-
tion settings automatically have the same access rules.

Alright, let me give an example of this file (which is a normal ASCII file).

deny from all
AuthType Basic
AuthName "*** Secured Membersection ***"
AuthUserFile /home/username/users.pass
require valid-user
satisfy any

It’s possible to set this up a little different, but this is the most common way.
First, you deny access for everyone. After that, you define the authorization
type, a text users will see when the ‘Authorization required’ box pops up and the
full path to the file containing the valid user-password combinations. Finally,
you tell the webserver to satisfy any valid users: return the requested file(s) if
the password is valid.

Since authorization settings are always in the secured directory itself, it’s
impossible to read this using your browser without having access to the secured
webpage as well. On the other hand, as you can see, the userfile can be in any
directory. Therefore, the userfile could be in an unsecured directory, although
this would be rather stupid.

We now know more than enough about this file, the next file we’d like to
examine is the userfile (which can have any filename). On UNIX systems, a
userfile looks like this:

Steinowitz:XDOdblTuGoGJA
DrEaD:CFI65HBCHifxE

As you’ve already noticed, each line is in this format:
username:encryptedpassword. The encryption used here is done by the standard
UNIX crypt function. Both usernames and passwords are case-sensitive. Since
this function isn’t available on Windows systems, some Windows webservers
don’t encrypt the passwords. If we would only have the userfile. . .

7

4.1.2 Intermezzo: the UNIX crypt function

The UNIX crypt function is used by a lot of UNIX software, especially software
which provides Internet services. FTP server software also has userfiles and
which function is used to encrypt the passwords? The standard crypt function!
ISP dialup servers also have large userfiles and which function is used to encrypt
the passwords? You already get it! Of course, there are many exceptions, but
there are many more cases for which this is true. All those files are in the same
format I described above. (There may be more different fields in each line to
store more detailed account information, but the first two are always username
and encrypted password.)

If you have access to a UNIX server using FTP, you should try to get the
file /etc/passwd. Believe me, even anonymous login may give you access to this
file. Find one, open it and you’ll immediately recognize the encryption used.

Since this function is used that much, I don’t even have to mention the fact
that there’ve been many people who studied it. The funny thing about it is
that you can’t retrieve the encrypted text once you’ve encrypted it.

For example, when webserver software needs to check if a password is valid,
it encrypts the password given by the user en compares that to the already
encrypted password in the userfile. No match, no valid password. The webserver
software simply cannot decrypt the password in the userfile.

(If you forget your password, the only way to gain access again is to set a new
password using the crypt function. When you have Telnet access to a UNIX
server, an easy way to add/update users to a userfile is to use the htpasswd
program, if it’s installed.)

The crypt function itself is very easy to use: it only requires two parameters.
The first one is the text to encrypt. The second one is called the hash and must
be two characters. These characters are used to encrypt the first parameter.
It’s easy to get to know which hash was used, since the first two characters of
the encrypted password are the hash.

If you want to know exactly how the function works, you should get yourself
an open source UNIX/Linux distribution. The function is always available in
these distributions and since it’s open source, you can have a good look at the
source code.

4.1.3 Gaining access

We now know a lot about how this protection works, but we still don’t have
access to the secured webpage. I’ll mention three possible ways to gain access,
althought I won’t mention the details. They’re general approaches, not detailed
step-by-step tutorials. If you want to know more, you’ll have to search the
Internet for more information, since I won’t tell you. All I’ll do is give you a
couple of URLs in the resources section (section 8).

• Find a program which bruteforces all (or many) possible username-password
combinations. All you need is such a program, the target URL, a (fast)
Internet connection and (a lot of) time. Note that the system administra-
tor might notice that you’ve been requesting the same secured page many
times. Therefore, you should use a secure proxy server. (See section 6.3.)

8

• Use (anonymous) FTP to gain access to the webserver and see if you can
get the userfile (or other interesting files, the secured section itself for
example). Use a program which bruteforces these userfiles. Also takes a
lot of time, but you don’t need to be online all the time because you have
the userfile on your own computer.

• Find another way to gain access to the server and retrieve the userfile or
modify/remove the authorization settings file to gain access. If you know
more about hacking, you might be able to use Telnet for this.

None of these solutions is very easy to accomplish. If you haven’t much
experience with these kind of things, you might want to find other websites
using other protections first.

4.2 CGI protections

The last subsection covered a very specific way to secure a website. It’s a very
straight method: you either do it like the manual says or you don’t do it at all.
This subsection, on the contrary, covers a very broad range of ways to secure
your website. There is no convention or rule which says: when using CGI
to protect your website, you should use the function secureWebsite, simply
because there is no such function. If you want to use CGI for securing your
website, you’ll have to provide all necessary features yourself.

It may seem that this is more difficult to handle than webserver software
authorization, because every CGI protection is different. But that isn’t true,
simply because webserver software is in full control - CGI programs aren’t. As
a matter of fact, CGI programs are controlled by the webserver software.

When a browser submits a form to a CGI program, a new instance of the
CGI program is started by the webserver software and this CGI program is able
to ‘read’ the data supplied by the browser. (And the browser got it from the
user, who provided the data in input fields like textboxes and checkboxes.)

After reading this data, the CGI program (which runs on the server, I’ll
mention this once again because it’s very important) processes the data and
does whatever the coder wanted it to do. The CGI program could read and
write files and databases on the webserver, it could modify webpages (HTML-
files) and so on. Before terminating, the CGI program is obliged to return
something.

HTML code The CGI program could return a webpage like any other. For
example: search engines (which are CGI programs) return webpages con-
taining X hits. When you click the ‘next’ button, a new instance of the
CGI program is started and the program returns the next X hits.

Picture A CGI program could also return a picture. In most cases, this is a
GIF file, because it’s easy to manipulate GIF images with CGI programs,
but it could also be another filetype. Example: graphical counters.

URL Redirecting a browser using CGI programs is easy, provide a new URL
(which can be a webpage, a file or any other URL) and the browser will
go there.

Plain text Hardly ever used, but it’s possible. One would rather return HTML
instead of plain text.

9

4.2.1 CGI programs

A CGI program can be written in almost any language, as long as it’s possible
to run it on the webserver. Therefore, it depends on the operating system of the
webserver in which programming language CGI programs are coded. Languages
often used for CGI purposes and supported by both UNIX and Windows NT
servers are C and Perl.

If you’d like to do some CGI coding yourself and you haven’t got much
experience with C or C++, you should learn Perl, because that’s much easier
to learn.

C programs can be written on any computer, but the source code should
then be uploaded to the webserver and compiled using Telnet if you want it
to be a CGI program. Perl programs, however, don’t require to be compiled,
because Perl is a scripting language and Perl interprets the scripts when started.

CGI programs end with the extension .cgi most of the times, but this isn’t
required by all webservers. It depends on the configuration. Most large search
engines and similar services don’t use this extension.

A well-configured webserver doesn’t give website visitors the possibility to
actually see a CGI program: whenever a CGI program is requested, the web-
server executes the program and sends the output of the program to the website
visitor. Therefore, you don’t see the source code of the Perl script, neither do
you see the compiled C program.

A stupid CGI programmer who codes in C, however, could upload the source
code to the webserver, compile the program. . . and leave the source code where
it is! So if you know the name of a CGI program and you think it could be
written in C, you could try the following:

CGI program: http://www.target.com/lamer/myprogram.cgi
Source code: http://www.target.com/lamer/myprogram.c ???

You’re rather lucky when myprogram.cgi is a security program and you get
the source using this trick. Or, to say it a little different: the webmaster is very
stupid!

4.2.2 Possible techniques

What I’ll do now is mention some techniques a CGI coder could use to prevent
unauthorized website visitors from accessing his secured section. You’ll see that
it can be fairly easy to evade such protections sometimes.

Redirection One way is to check the username and password by looking them
up in a database (which can be a normal textfile) and then redirecting the
user depending on the result of that. If the password is incorrect, the user
is redirected to a ‘wrong password’ page and if the password is correct,
the user is redirected to the secured webpage (a normal HTML file). If
this is the only technique used, it’s easy to access the secured webpage:
all you have to know is the URL of the secured webpage. More on this in
section 6.5.

More CGI programs Another way is to make CGI programs of all secured
pages. If you do it this way, you can ask for username and password once

10

and pass them on to each new secured page subsequently visited (which
are all CGI programs). The password can now be checked by each CGI
program before returning the contents of the secured page.

One CGI program It may sound a little strange, but it’s possible to combine
a whole section of a website with one CGI script. This makes it easier to
validate username and password, because you only need to pass them on
to the same program (contrary to the previous possibility I mentioned).
On the other hand, it’s very annoying if you have to put many different
pages into one CGI program: it becomes harder to oversee the source
code. Therefore, one would rather put the contents of the secured pages
in different datafiles which the CGI programs will read and return to the
user. And that will make it easier for us to access them: all we need to
know are the names of those datafiles.

Cookies It’s also possible to set a cookie when a username-password com-
bination is valid. All secured pages should then request the cookie and
check the contents (which should be a certain code) to see if the user is
authorized. Checking these cookies could be done with JavaScript, but
this isn’t a very safe way, which we’ll see later. CGI programs are needed
again to do it more secure.

I think these are the most common techniques used to secure a website using
CGI programs and I must say that the webserver software technique is much
better. One positive point of CGI techniques is that it’s possible to use the
UNIX crypt function with the most common CGI programming languages.

5 Client-side protections

I already said that client-side aren’t very good protections, so I won’t spend too
much time on this section.

5.1 Java applets

Most Java applet protections are useless, because they don’t provide any secu-
rity. There are only a few things you should know about Java. . .

First of all, Java source code is first compiled (by its author) to byte code.
This results in .class-files consisting of byte code. These files can be implemented
in websites with the <APPLET>-tag I described earlier. When your browser
loads the applet, the byte code is interpreted by the Java Virtual Machine
installed on your computer (which depends on the platform!). After that, the
result of this (= machine code) is executed by the processor.

Very interesting to know is that byte code can be decompiled. So all we
need are 1) the .class-files of the applet used to protect a website, 2) a Java
decompiler and 3) enough Java knowledge to understand the Java source code
of the applet.

• The .class-files used by the applet can be easily found: after downloading
them, your browser automatically saves them in its ‘cache’ or ‘temporary
internet files’ directory. Look for them in those directories and copy them
to another directory.

11

• A Java decompiler. Well, search for it on the web. A very good one is
called JAD. You should be able to find it.

• Java knowledge. Sorry, that’s one thing you’ll have to do yourself. But
even if you never coded in Java, just have a look at the source code: in
some occasions, Java knowledge is hardly required.

Use your Java decompiler to decompile the .class-files to files containing the
Java source code, read them carefully and you’ll know what to do.

There is one exception on this: it’s possible that the Java applet sends data
back to the server and that the server subsequently sends data to the applet
again. If you’re dealing with such a protection, it’s not fully client-side anymore.
Part of the protection (probably the most important part) is located on the
server and it depends on the source code what you should do in this case.

5.2 JavaScript protections

In the previous subsection, you needed more than just knowledge. In this subsec-
tion, all you need is JavaScript knowledge. Open the HTML-file your protection
is in, look at the JavaScript and try to find out how you can gain access. Learn
how to reverse!

It’s possible that (part of) the JavaScript code is locate in a separate file
with the extension js. When that’s the case, you’ll notice this when reading
through the HTML source code. I don’t need to explain that you need this file
if you want to know how the protection works.

Sometimes, a JavaScript protection works like this: you provide a username
and password. With this username and password, some JavaScript functions
calculate the filename of the secured website you want to visit and change the
location of your browser to a new URL using this filename. In this case, you
can’t see what the correct username - password combination is: when you enter
a wrong combination, you’ll be redirected to a non-existing URL and you’ll get
the famous 404 error message. You’ll have to do some bruteforcing here, see
‘Bruteforcing remote filenames’ (section 6.5).

6 Tips and tricks

In this section, I’ll mention some tips you could use to your benefit. It would
take me too much time to explain every little detail of all these things. If you
think it would be very useful or if you want to learn more about it for other
reasons, search the Web for more info on it. Believe me, it’s easy to find a lot
of information on each of these subjects.

6.1 Using CGI

I already explained what CGI is and what webdevelopers do with it, but there’s
more. In certain cases, you could abuse it in very nasty ways. Generally, there
are two ways to do this.

• The first way to do this is without writing your own scripts. When pro-
grammers write bad CGI programs, you can abuse this by providing other

12

input for the scripts then expected. In many cases, input from the webuser
isn’t validated very well. And under normal circumstances, this doesn’t
really matter. But this gives us the opportunity to make CGI scripts ex-
ecute more commands then normal (in some cases, we can even view the
password file). This could really help us with gaining access to a secured
website. And there are some other possibilities. . .

• The second and last way to do this is to learn writing CGI programs
yourself. When you know CGI, you could write programs posting the same
data all over and over again and you could do other things automatically
which would otherwise take a lot of time.

Search for CGI, Perl, C, exploits and such terms. If you want to do such
things, I highly recommend you to learn how to code CGI programs yourself.

6.2 Using email

Some mailboxes are used for tasks which have to be done very often and in
most cases, programmers write certain ‘bots’ which automatically answer all
incoming mail for these mailboxes.

One example are the forgot pw mailboxes (don’t remember the name ex-
actly) used by free email services like Hotmail and Yahoo. When you forget
your password, you got to the website of the email service, you submit a cer-
tain form, the data is passed on to a CGI program and this sends a message
to the forgot pw mailbox. The automatic reply contains the password of the
right account. When you know in which format this CGI program sends the
message to the forgot pw address, you can simulate this and get any passwords
you want! Of course, this is only an example and since it was posted on several
messageboards, I think email services will all have corrected this now.

Use your imagination if you want to benefit from this approach.

6.3 Using a secure proxy server

When you use a (secure) proxy server, you don’t connect to the remote host
immediately, but you connect to the proxy server. After that, the proxy server
connects to the remote host and returns to you what you wanted.

The reason that these proxy servers exist is to improve the speed at which
you can retrieve pages often visited pages. Proxy servers have a cache contain-
ing often requested files, which makes it unnecessary to connect to the remote
host for all files asked for: files still in the cache can be returned to the user
immediately.

But there’s a far more important reason for using a proxy server: it strongly
increases your anonymity while surfing! There’s been written quite a lot on
anonymity on the Internet and it all comes down to the fact that you are not
anonymous unless you use a good proxy server.

How this works? Well, you don’t connect to the remote hosts anymore, but
the proxy server does! So your hostname and IP address can’t be logged at the
remote host, only the hostname and IP address of the proxy server.

See the ‘Additional resources’ section (8) for a nice ‘public proxy’ site you
should visit.

13

6.4 Portscanners

A portscanner is a program which scans ports, but that won’t surprise you.
There are many portscanners and they all work a little different, but the most
important about it is that you can supply a hostname or IP address (or a range
of IP addresses) and a range of ports. After doing that, the portscanner will try
to connect to each of these ports and let you know if it could connect or that it
couldn’t.

Doing this, it’s easy to see which IP addresses are running a FTP server
(connected to port 21!) or a webserver (connected to port 80!). But there’s
more. I already said that these ports are just a standard, it’s easy to configure
webserver software in such a way that it listens to port 300. Well, we’ll notice
when we do a portscan from port 1 to 500 (for example). When the portscanner
tries to connect to port 300, it connects and when you check the text the server
returns, you will notice it contains ‘HTTP’. And wasn’t that the protocol used
by WWW-servers?? Exactly! We immediately launch our browser (Netscape,
in my case) and visit the url http://www.target.com:300/ It could be that we’ve
found a hidden website...

Search for sites on hacking and you’ll find many portscanners. I only gave
an example of what you could use it for. There are many other possibilities:
learn more about networking and use your imagination.

6.5 Bruteforcing remote filenames

One of the easiest ways to hide a part of a website for the normal visitor is to give
the files certain names and don’t let people know what these names are. If you
have a normal website at http://www.target.com, it’s easy to make a subdirec-
tory and put another, hidden website there: http://www.target.com/hiddenwebsite/
If you don’t link to it, your visitors won’t know about it unless you tell them!

And, naturally, the same counts for filenames: noone would try
http://www.target.com/anotherwebsite.html if you wouldn’t link to it and you
wouldn’t tell anyone.

But, there is a way to get to know where these hidden files are. The most
obvious way is to hack yourself into the server, go to the webserver directory and
have a good look at the filenames there. The other way is simply to bruteforce
it: try all possibilities. You understand that you shouldn’t do this yourself,
because it’d take way too much time. Write a program which does it or search
the web for a program which does it for you.

Note: You wouldn’t do this when you don’t know if there is a hidden website
like I described, because even when a program does the job for you, it takes quite
some time.

14

7 Last words

I hope you enjoyed reading this essay as much as I enjoyed writing it. Further-
more, I hope you learned something. And don’t forget: I’m not writing this for
money, but I do ask something for it in return. I ask you to do the same as I
do: share your knowledge with everyone who wants to know!

Steinowitz
switz@newmail.net
http://dread99.cjb.net

8 Additional resources

• Apache (webserver software)
http://www.apache.org

• Public proxy servers list
http://freebooks.hypermart.net/proxy/proxies.htm

• Anonymizer (surfing the web anonymous)
http://www.anonymizer.com

• AltaVista (search engine)
http://www.altavista.net

• Perl
http://www.perl.org

• EliteSys (secured website bruteforcer)
http://web.idirect.com/ elitesys/index.html

• HackerLair
http://www.hackerzlair.org

• HackersWeb
http://www.hackersweb.com

• HackPalace
http://www.hackpalace.com/usa/

• L0pht
http://www.l0pht.com

• RootShell
http://rootshell.com

• United Hackers Association
http://www.uha1.com

Disclaimer notice

I wrote this document for educational purposes only. I am not responsible for
anyone abusing the knowledge I shared with others by writing this.

15

