
Writing Secure Software

It’s often claimed that the biggest problem with security is that
practitioners are unclear as to what the problem is. In summar y, it’s
insecure computer software.

The best networ k firewall provides only minimal defense if it permits
access to unreliable software. Moreover, any firewall (either
appliance or program) is written in software.

Similar ly, the strongest encryption algorithms may only permit
attackers to securely communicate with insecure software.

‘‘Using encryption on the Internet is the equivalent of
arranging an armoured card to deliver credit-card infor mation
from someone living in a cardboard box, to someone living on
a par k bench.’’

Gene Spafford

Inter net-enabled applications, including ones developed within
companies, for m the greatest category of secur ity risks.

Each year, at least 80% of security advisories from CERT/CC (the
Computer Emergency Response Team Coordination Center,
www.cer t.org) repor t secur ity vulnerabilities caused by insecure
software.

Moreover, again 80% of all vulnerabilities cannot be addressed
using stronger encryption.

‘‘Adding ever stronger encryption is akin to placing a Yale lock
on a paper bag’’

Br uce Schneier

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 1

Trends In Insecure Software

Not only are the number of (reported) security vulnerabilities
themselves increasing, but so are the number due to insecure
software. There are some clear trends:

• The growth and ubiquity of computer networ king has increased both
the number of avenues for attack, and the ease with which attacks
may be made. Moreover, we obser ve an increasing use of
automated attacks. Clear ly, physical access is no longer a barrier,
and distance is an advantage!

• The dramatic increases in software size and complexity, and the
hyperexponential growth in their interactions. A desktop machine
running a modern operating system (such as Windows-XP with 35
millions LOC) and var ious, 3rd-par ty, applications, cannot help but
have an increasing number of bugs.

• The use of low-level programming languages, such as C/C++, that do
not protect against common low-level attacks is actually on the
increase, not decrease. Moreover, the use of autonomous embedded
devices (with Internet-connectivity) will fuel the use of C/C++ for
some time.

• The trend toward extensible software − applications permit 3rd-party
plugins, operating systems encourage ‘‘on-demand’’ updates over
networ ks, applications support a greater degree of mobile and
scr ipting code,

• Ill-considered approaches to software security often makes software
more vulnerable, and not less. Examples include the use of ‘‘home-
grown’’, secret, encryption algorithms, and ‘‘r ush-to-mar ket’’ solutions
to support new technologies, such as digital certificates and
sandboxed languages − the ‘‘Inter net-time’’ phenomena.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 2



Software Security Through Software Patches

Many software vendors still consider software security to be an add-
on feature.

Software products are rushed to market, and patches or updates
(often at additional cost to customers!) are released after
vulnerabilities are brought to the attention of software vendors.

A wealth of software-engineer ing repor ts show that, in economic
ter ms, finding and removing bugs in software before its release is
orders of magnitude cheaper and more effective than trying to fix
systems after release.

However:

• Developers can only patch security problems which they know
about. Attackers may find problems that are never repor ted to
developers.

• Patches, too, are rushed to market as a result of commercial
pressures, and new vulnerabilities are often introduced, or
exposed, as an consequence.

• Patches attempt to quickly address symptoms, and cannot
(quickly enough) address the underlying causes.

• Patches are often not applied, or not quickly enough. System
administrators may be reluctant to patch ‘‘wor king’’ systems,

• Home-users will typically never see (nor understand) the reasons
nor solutions to vulnerabilities, and patches are often not
cumulative, and hence ver y large.

Secur ity vulnerabilities, if considered properly, are bugs. Why are
they not given due consideration? Perhaps shrink-wrapped
software is the cause? Why do dev elopers have indemnity?

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 3

Open Source .versus. Closed Source

‘‘Today’s secur ity woes are not dominated by the existence of
bugs that might be discovered by open-source developers
studying system source-code.’ ’

Fred Schneider

Despite popular trends toward transparency, including the
OpenSource movement (often sidetracked by the political and
philosophical issues), most software vendors still embrace secrecy
of their software.

This is unsurpr ising, as companies have vast amounts of intellectual
proper ty (the other IP) invested in their software.

However, secrecy is frequently used as an excuse for poor software,
and should not be effective.

While releasing source code certainly assists attackers, not
releasing source code introduces secur ity-by-obscur ity, and
develops a false sense of security that vulnerabilities will not be
detected.

It is a false belief that (poor) code, compiled and only released as
binar ies, remains secret (consider reverse-engineer ing, variously
legal in many countr ies, including Australia).

• An embarrassing vulnerability was found in MS-Frontpage in
Apr il 2000. The constant encryption key ‘‘Netscape engineers
are weenies!’’ was embedded in the released binary, to be
quickly found by inspection of the binary.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 4



Open Source .versus. Closed Source , continued

The alternative approach, full release of source-code for inspection,
is often termed ‘‘the many-eyeballs phenomena’’, the belief that
vulnerabilities will be revealed because many will have pored over,
and fully understood, your code.

‘‘Given enough eyeballs, all bugs are shallow’’
Er ic Raymond, Cathederal and the Bazaar

However, people often falsely trust that open-source projects have
received sufficient security, and are thus more secure.

Far more software is written than read!.

Simply releasing software source code is not a panacea for secure
software. In near ly all cases, only the original software developer
(often solo) is the one with full knowledge of the purpose or
intended wor kings of software.

Other software users do not diligently attempt to understand
software. Moreover, the economics and excitement of free software
dr ives its use, not its inspection.

• A great counter-example comes from Stanford’s Donald Knuth,
who in 1981 offered $2.56 (‘‘256 pennies is one hexadecimal
dollar’’) to the first person to find a bug in his released TeX
source code (or any of his 12 textbooks), and doubles the reward
for each new bug.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 5

Are Open Source projects more secure?

Cer tainly not, but the following observations suggest why there are
far few er vir uses in the Open Source environment:

• The Open Source (and Macintosh environments) have
considerably less market share, making them less ‘‘interesting’’
(less of a target) for virus writers.

• Moder n Open Source applications (even under the Gnome and
KDE managers) have few er inter-application dependencies, and
hence perfor m fe wer actions ‘‘behind the backs of the user’’. In
par ticular, applications store preferences in per-application
locations, rather than a shared location (Registry).

• The available choice of applications are considerably more
fragmented under LINUX than under Windows (e.g. compare the
high uptake of Outlook under Windows with the var iety of LINUX
mail agents).

• The average Open Source user has a higher wor king knowledge
of their platfor m, can anticipate a wider range of problems, and
diagnose a wider range of symptoms.

• And most importantly − ver y fe w mail applications support the
immediate execution of attachments/executables, let alone
without first asking.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 6



Buffer Overflows

By far the most effective solution to understanding software
vulnerabilities is to be aware of the most common sources of error,
and knowing their effects.

By far, the greatest single software security threat is the buffer
overflow, according to CERT/CC accounting for 50% of all major
vulnerabilities in 1999 and growing).

The root cause behind the buffer overflow is that the C/C++
languages provide inadequate run-time memory protection. In
par ticular, there are no bounds-checks on array or pointer
references (although recent enhancements to some compilers are
improving the situation).

#include <stdio.h>

int main(int argc, char *argv[])

{

char buf[BUFSIZ];

gets(buf);

return(0);

}

In function ‘main’:

text+0x17): the ‘gets’ function is dangerous and should not be used.

There are also a number of unsafe str ing operations in the standard
C librar y, including:

strcpy, strcat, sprintf, gets and scanf.

Use of these functions is strongly discouraged, and war nings about
their use are increasingly reported by compilers and linkers:

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 7

Buffer Overflows, continued

Buffer overflows, reading or writing past the end of a fixed memory-
sized block, can cause a number of diverse, and often
unanticipated, program behaviours:

• programs can act in strange ways (but not crash),

• programs can fail completely, but not at the exact point of the
overflow, or (worst of all)

• programs can continue without any (noticeable) effects.

Secur ity vulnerabilities are introduced, depending upon:

• how much data are written past the buffer’s bounds,

• what data, if any, are overwr itten when a buffer is overfilled,

• what data end up replacing the data that gets overwr itten,

• whether the program continues and attempts to read data that
are overwr itten, and

• whether the program continues and attempts to execute data that
are overwr itten.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 8



Buffer Overflows − a simple example

Consider the following simplified, but representative example:

#include <stdio.h>

int main(int argc, char *argv[])

{

char answer[24];

int am_i_chris = (getuid() == 333);

printf("Delete files? ");

gets(answer);

if(am_i_chris)

......

return(0);

}

In this example, presenting any input, via stdin, longer than the size
of answer (24 bytes), will result in the memory treated as the
Boolean am_i_chr is being overwr itten.

If the 25th character presented to answer in non-null (i.e. non-zero),
then the rest of the program may be tricked into undertaking a
different execution. The vulnerability is easily exposed:

• par ticularly, if the naive check of the user-id remains in
production code,

• if an attacker has access to the source code,
• if an attacker chooses to reverse-engineer the code, and
• if an attacker can determine where in memory cer tain variables

reside, they can ‘‘set’’ them to almost any desired value.

As we now focus on a limited number of processor architectures
and operating systems, buffer overflow attacks are often crafted for
these common platfor ms.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 9

Stack Overflows

‘‘On many C implementations it is possible to corrupt the
execution stack by writing past the end of an array declared
auto in a routine. Code that does this is said to smash the
stack, and can cause return from the routine to jump to a
random address. This can produce some of the most
insidious data-dependent bugs known to mankind.’’

aleph1@underground.org

Far more interesting, and far less of a challenge to attackers, are
stack-overflows, because there is always something critical to
secur ity on a process’s stack − the process’s retur n address. An
attacker’s agenda for a stack overflow is:

• find a stack-allocated (automatic) buffer that we can overflow that
allows us to overwr ite the return address in a run-time stack
frame,

• place hostile executable code in memory to which we can jump
when the function we are attacking returns,

• wr ite over the return address on the stack with a value that
causes the program to jump to the hostile code.

The objective is to inject executable instructions into the memory of
the process, and force their execution. Under LINUX the objective is
to emit the instructions for execl("/bin/sh","sh",0), which on
an Intel processor looks like:

u_char execshell[] =

"\xeb\x24\x5e\x8d\x1e\x89\x5e\x0b\x33\xd2\x89\x56\x07\x89\x56\x0f"

"\xb8\x1b\x56\x34\x12\x35\x10\x56\x34\x12\x8d\x4e\x0b\x8b\xd1\xcd"

"\x80\x33\xc0\x40\xcd\x80\xe8\xd7\xff\xff\xff/bin/sh";

The details of stack-smashing are complicated, but are now well
automated − see .../units/231.317/reading/smashstack.txt

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 10



Stack Overflows, continued

There remain a few challenges for the attacker, par ticularly if
attacking the standard C string functions, such as gets, because
these functions return whenever a NULL byte is seen, and the zero-
byte or integer zero is ver y frequently seen in instruction
sequences. No problem for the dedicated attacker; generate code
for:

void exploit()

{

char *s = "/bin/sh";

execl(s, s, 0xff ˆ 0xff);

}

Once an attacker can force the execution of another program,
typically a shell or command interpreter, they can then issue almost
any other command.

In particular, if stack-overflow attacks are made against setuid-root
programs, the attacker easily gains root privilege on a machine.

Stack overflow attacks may be perfor med in a number of ways:

• by an author ized user, who is (legally) logged in already,
• by an attacker the networ k, who has already compromised a

standard user’s account, or
• by an attacker, over a networ k, sending the special overflowing

input (instructions) over a socket connection to a vulnerable
program.

The infamous attacks of the 1980’s against the standard UNIX email
agent, sendmail, first exploited stack-overflow vulnerabilities.

It’s about time that these common vulnerabilities were fixed!

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 11

Race Conditions

Perhaps second only to buffer overflows in providing software
secur ity vulnerabilities, are race conditions.

By naive definition, a race condition occurs when assumptions are
made about how software executes and interacts in a time-
dependent manner.

They are only possible in software environments where multiple
threads of control or operating system processes (or even
asynchronous event processing) interact. When the for m of
interaction in unanticipated, a security vulnerability may be exposed.

Race conditions are one of the few occasions where a seemingly
deter ministic program can behave in a ser iously non-deter ministic
way.

Like buffer overflows, they are an increasing threat, this time
because we are writing more multi-threaded, interacting, software.

The condition occurs when an assumption is believed to hold true
for a longer period of time than it actually does − the time during
which violating the assumption leads to incorrect behaviour, is
ter med the window of vulnerability.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 12



Race Conditions − a trivial example

Consider the following code from a Java ser vlet:

public class Counter extends HttpServlet {

int count = 0;

public void doGet(HttpServletRequest in,

HttpServeletResponse out)

throws ServetException, IOException {

.....

++count;

out.println(count + "hits");

}

}

This simple code has a race condition, because the multithreaded
ser vlet (programmer) assumes that the value of count will be the
same when printed, as it was just after it was incremented. Another
ser vlet thread could increment count, just before ‘‘our’’ printing.

Even the attempt:

out.print(++count + "hits");

won’t correct the vulnerability, because the method call and the
ev aluation of its arguments are not atomic operations.

Instead, we must constrain all accesses to count, while keeping
such periods as short as possible:

synchronized(this) {

my_count = ++count;

}

out.print(my_count + "hits");

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 13

Time-of-check .versus. Time-of-use

Not every race condition occurs in multithreaded programs. More
frequently, vulnerabilities are exposed in single-threaded programs
because the programmer expects there to be no interaction with
other programs.

However, if an attacker can introduce an unexpected interaction
(from another program), the resulting race condition may give the
attacker the privileges of the original program.

Multiple processes typically interact via shared data, and the best
example of such sharing is via the file-system. File-based race
conditions are the most commonly observed secur ity-threatening
problems, and they follow a typical pattern:

• a check is perfor med on the property of a resource, such as the
existence of a file, access permissions, or its size,

• the result of the check needs be true at the time some following
code (which assumes the result still valid) is executed,

• however, between the check and the executed code, the
‘‘conditions’’ of the check changes.

if(access(filename, W_OK) == 0) {

f = fopen(filename, "w+");

write_file_file(f);

}

else

fprintf(stderr, "could not write\n");

Between the time-of-check and the time-of-use, the file referenced
by filename may have changed!

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 14



Time-of-check .versus. Time-of-use, continued

access() deter mines if the indicated file may be accessed in the
indicated way, by the real UID of the process.

A ‘‘text editor’’ that needs to run as root may need to perfor m this
check, to bypass the permissions it has when running set-uid root,
i.e. we do not wish to check based on its effective UID.

The window of vulnerability here is between the calls to access()
and fopen(), which assume they are considering the same file.

Using the above code, an attacker may be able to have the editor
edit a bogus file, resulting in an important file being overwr itten −
/etc/passwd being a common target.

The easiest attack, here, is to use a symbolic link file, which creates
a file that looks like any other file, but simply points to a ‘‘real’’ file.
The attacker creates a dummy file (with his permissions), and then
creates a symbolic link to it:

$ touch dummy

$ ln -s dummy pointer

Now, the attacker tells the text-editor program to edit the file
pointer. The attacker’s goal is to perfor m a command sequence,
such as the following, all within the window of vulnerability:

$ rm pointer; ln -s /etc/passwd pointer

If successful, the attack will overwr ite the system password file.

Impossible? The attacker writes a C program to spawn the editor,
perfor m the file-manipulation commands, and checks to see if the
real password file was overwr itten. Repeat until done.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 15

Av oiding the Window of Vulnerability

The previous problem has been introduced because the check of
the file’s attr ibutes has been perfor med on a file that ‘‘may change’’.

We must avoid system-call and librar y function calls which use file
names (aliases) as parameters. Even the standard librar y
functions, which can only be composed of multiple system calls,
often have windows of vulnerability between checking a file and
accessing it.

Instead, a file-descr iptor or file-handle to an already opened file
should be used. Before perfor ming a stat on an existing file, open
the file and perfor m an fstat using the returned file-descriptor.

To dev elop ver y secure code, we need develop sequences of code
to replace many of the standard techniques. For example, to open
an arbitrar y file, we can:

• before opening the file, call lstat on its filename (which checks
the attributes of any possible link, not the file to which it may
point), saving the stat str ucture,

• open the filename (which may have been a link),
• fstat the resulting file-descriptor, saving its stat str ucture,
• compare the fields of the two stat str uctures, the st_mode, the

st_inode, and the st_dev, to ensure that the file (or its link)
have not changed.

It is possible to build ver y paranoid code sequences to reduce the
possibility of symlink attacks. Most programming language librar ies
should consider this for their future standards.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 16



Securely Accessing Temporar y Files

Creating temporar y files in a shared space such as /tmp is a
common practice.

However, the use of temporar y files are subject to the same symlink
attacks as standard files, but with the added problems that attackers
may be able to guess your program’s temporar y file names.

Consider the standard function mktemp:

strcpy(filename, "/tmp/XXXXXX");

mktemp(filename);

fd = fopen(filename, O_RDWR, 0600);

The problem is that while mktemp generates a ‘‘random’’ filename,
guaranteed not to exist, it does not actually create the file − hence a
race condition.

Moreover (still), the method of replacing the values of XXXXXX is far
from random − the first five X’s are replaced with the process’s PID,
and the final X with the first available ’a’, ’b’, ’c’, .... These are easily
guessable.

Instead, we should replace such uses with:

strcpy(filename, "/tmp/XXXXXX");

fd = mkstemp(filename);

The file is opened with the O_EXCL flag, guaranteeing that when
mkstemp retur ns successfully we are the only user.

Better still, would be for our application to generate its own
temporar y director y name, and place its own temporar y files
therein. And never close and re-open a shared temporar y file!

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 17

Randomness and Non-Determinism

A fair ly common source of software vulnerability is the misuse of
random number generators.

An attacker, with often little effor t, can determine or predict the
stream of random numbers that software is using (or will use), and
use that knowledge to launch an attack.

Random numbers are used in a wide var iety of applications,
including session-keys for cryptographic streams, and the ‘‘random’’
names of temporar y files and directories.

Without access to physical devices to provide randomness,
software must generate streams of random number themselves −
the use of pseudo-random number generators, PRNGs.

Most (common) software simply employs the standard random-
number generation facilities from common languages, such as C
and Java, and assumes that their random or rand functions
provide enough randomness that the numbers cannot be guessed.

However, the determinism of software makes the generation
difficult. The most common PRNGs employ linear congruential
generation:

Xn+1 = (a Xn + b) mod c

where the three constants, a, b, and c (usually prime numbers), fully
define the sequence of random numbers.

Such generators typically produce 32-bit numbers, and for any a, b,
and c the sequences are deterministic. Attackers, knowing exactly
which functions (and hence a, b, and c) are employed can typically
‘‘break’’ the stream in a few seconds of brute-force comparison.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 18



Randomness and Non-Determinism, continued

Often, the problem is not simply with the simplicity of the PRNG
function itself (and there are now many more complex ones
available) but with the genuine randomness, or amount of entropy,
in the initial seeds to PRNGs.

Often, applications will choose ver y simple seeds, ones that may
simply be determined from the process’s runtime environment.
Typical examples include the process’s PID, its PPID, or the time of
the process’s creation.

The downfall of the first implementations of SSL in Netscape’s
navigator browser, was the naive combination of PID, PPID, and
time used to generate a session key for each SSL session.

Software that requests ver y long (once-off) passphrases, or just
asks you to type characters for ten seconds, do not really care what
you type, but use the inter-key timings to generate some entropy.

fp = fopen("/dev/random", "r");

want = 64;

i = 0;

while(want > 0) {

fread(&ints[i++], sizeof(int), 1, fp);

--want;

}

fclose(fp);

Both LINUX and Windows now provide access to system-calls or
pseudo devices that generate streams of pseudo-random numbers,
based on some hardware character istics, such as the number of
device interrupts over a recent interval.

Computer and Networ k Secur ity (IT317) 2004 Wr iting Secure Software (Week 10), page 19

Security aspects of web browsers and servers

It is often argued that the introduction of web browsers and servers
has not really introduced any new types of security problems, just
repeated the problems of olde, but now on a global scale.

Here we examine some security problems exposed by browsers
and servers.

The Common Gateway Interface (CGI)

The resource named in a browser’s HTTP request may refer to a
program. HTTP does not specify how the server deter mines this,
but it is considered good practice to limit their location to special
director ies containing only programs (and not data).

It is just historical convention that /cgi-bin/ is a directory alias
containing executable programs, typically written in scripting
languages such as Per l, Python, Tcl, or maybe C/C++.

The only infor mation available to a CGI program must come from
the client’s request (text) stream. Pr imar ily, this means the resource
name in the first request line, and the MIME header lines that follow.

There are two conventions for passing input to CGI programs:

• in the ‘‘CGI’’ convention, the query str ing is passed as the first
command line parameter to the program.

• in HTML ‘‘For ms’’, the query str ing contains a
sequence of var name=value pairs separated by "&", as in
"Name=Latham&Occupation=Aspirant".

Of note, all URLs requested from a website are typically logged.
Clear ly, passwords should not be transmitted this way!

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 20



Security problems with CGI scripts

Common Gateway Interface (CGI) scripts introduce problems as
each script potentially exposes a new, or repeated, opportunity for
exploitable bugs.

CGI scripts need be written with the same care and attention given
to traditional Internet servers themselves, because, in fact, they are
miniature servers. Unfor tunately, for many Web authors, CGI
scr ipts are their first encounter with networ k programming.

In general, CGI scripts present two major security problems:

• They may intentionally, or unintentionally, leak infor mation about
the host system, which may assist attackers.

• Scr ipts that process remote user input, such as the contents of
an HTML web-for m, may be vulnerable to attacks in which the
remote user tricks them into executing commands.

Consider a basic script which attempts to email a requested file to a
remote user. A too common technique is to obtain the requires
filename and email address from web-for m variables:

mail $EMAILADDR < $FILENAME

where EMAILADDR and FILENAME are extracted from a CGI’s input
parameters, and the whole script is sent to a shell for simple
execution (because it’s too hard to do properly, quickly).

This wor ks well, until:

• the remote user requests a critical file, such as /etc/passwd,
or

• the remote user requests ‘‘okfile ; rm -rf / &’’

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 21

Security problems with CGI scripts, continued

A common technique is to run a site’s web-ser ver ‘‘as’’ a user
account with ver y fe w pr ivileges − LINUX systems often choose the
nobody account.

If a web-ser ver is attacked by exploiting a CGI script, the nobody
account can still email a password file to a remote site, list internal
host names and their addresses, etc.

A fur ther problem with CGI scripts is that many standard scripts,
distr ibuted with free web-ser vers, have been known to introduce site
vulnerabilities.

While these are usually corrected before the next distr ibution,
attackers will frequently ‘‘scan’’ a web-ser ver looking for a weak CGI
scr ipt.

Examining a typical web-ser ver’s logfile, or error file will reveal
hundreds of such scans per day:

[Mon Oct 4 14:41:34 2004] [error] [client 138.89.75.153]

script not found or unable to stat:

/home/www/cgi-bin/formmail.cgi

A well publicised case in late 1998 was a CGI script on
hotmail.com. A flawed CGI script permitted unauthorized
individuals to break into user’s e-mail accounts and read their mail.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 22



Web cookies

Cookies extend the Hyper-Text Transfer Protocol (HTTP) to allow a
web-ser ver to store infor mation on the client for later retrieval.
Using cookies allows state infor mation to be maintained, making it
easier to create services such as online shopping and site
customisation for an individual.

Whereas a user would previously have to login on every visit,
cookies provide session persistence, and allow this process to be
transparent to the user.

Cookies were first introduced by Netscape in 1996 (with Navigator
1.1), and their specification has remained relatively unchanged.
RFC 2109 attempts to for malise the cookie specification.

A cookie is simply a small piece of text (up to 4KB), stored as a
name=value pair.

Cookie are ‘‘created’’ when a web-ser ver sends a Set-cookie
HTTP MIME header attached to a response for an HTML document
or GIF image. For example:

Set-Cookie: ID=12345; expires=31-Oct-2004 14:12:40 GMT;

domain=www.example.com; path=/; secure

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 23

Web cookies, continued

Once set, it is up to the user’s browser to return it whenever a
matching document is accessed.

For a cookie to be returned, the URL of the document must match
the hostname (or domain) and path of the cookie, and the cookie
must not have expired.

Only the name=value pair of the cookie is returned by the browser,
in HTTP request header. From our example, the following HTTP
header is added:

Cookie: ID=12345

This is added to any document requested from the machine
www.example.com, and our example requires future requests to
arr ive via a secure HTTPS connection.

Keep in mind that a client has full access to the cookie, may read it,
and possibly modify it before it is returned.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 24



Are cookies a security concern?

In short no; cookies are only small pieces of data that are not
executed by the browser, or the client’s machine.

Despite popular media articles, cookies cannot read your disk files,
scan your email, nor (by themselves) transmit your credit card
details.

However, it’s generally the pr ivacy aspects of cookies that raise the
most discussion.

The most familiar example of cookies eroding privacy is with banner
adver tisement companies such as Doubleclick.com Companies
often attach cookies to their images (send them in the same
response).

Whenever a  user visits a page containing a banner from that
company, the cookie is returned with the address of the page being
viewed (in the HTTP_REFERRER field). By examining what pages a
user accesses and when, the banner company is able to build up an
online profile of the user.

This would typically include the pages the user visits, the
adver tisements that have been given to the user in the past, and
which adver tisements (if any) the user has clicked.

A special case of using cookies are web-bugs, simply cookies
associated with 1x1 transparent GIF images, embedded on web-
pages where adver tising would seem inappropriate. As with
adver tisements, companies will pay websites small amounts of
money to distr ibute their web-bugs.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 25

Security aspects of cookies

While cookies themselves are harmless character strings, and may
erode the privacy of web users, it is their actual use or contents that
may expose a client’s infor mation to eavesdroppers, or per mit an
attacking client additional access rights to a web-ser ver.

As a rule, a cookie should not actually contain state data between
client and server, but should be used to index the data, typically in a
database on the server machine.

Moreover, an untr usted system-administrator on the server could
simply log all cookies returned to the web-ser ver.

Extremely poor examples, often cited, include web-ser vers
embedding names, passwords, and shopping-cart totals in cookies,
with weak enshrouding of the contents.

Solution: a common requirement to keep a string on a client’s
machine in a for m that can’t be read. We (the server’s owner) can
keep a symmetric encryption key on our web-ser ver to encrypt the
cookie before sending it to the client; decrypting the cookie when it
is returned.

A good practice is also to send and retrieve an additional cookie
which is a digital signature of the data cookie. This helps the server
detect tampering with the cookie.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 26



Browser cookie implementation issues

Given the power that cookies provide, it was perhaps inevitable that
browser bugs would appear. One such problem is deciding upon
the domains for which a cookie can be set. This feature was
intended to allow two sites within a domain (for example
www.bigbucks.com and images.bigbucks.com) to access the
same cookie. How ever, deciding what constitutes a domain is
problematic.

A domain for a cookie is specified starting with a dot, to indicate that
it needs only to match the end of the hostname rather than being an
exact match to the entire name. Continuing the example above ,
specifying domain=.bigbucks.com would match both
www.bigbucks.com and images.bigbucks.com.

Clear ly this example is perfectly valid, but if unchecked it could be
possible to specify cookies matching the entire .com top-level
domain. We now have the specification:

Any domain that falls within one of the 7 top level domains ("COM",
"EDU", "NET", "ORG", "GOV", "MIL", and "INT") only
require 2 dots. Other domains require at least 3.

An exploit became known mid-2000 which showed how it was
possible to access any cookie stored on a user’s machine running
any version of Internet Explorer up to and including version 5.0.

Explorer treated the URL www.test.com%2F.amazon.com as if it
comes from amazon.com, even though %2F is equivalent to the /
character. By embedding a URL like this in a page, a malicious
webmaster could access personal infor mation either from the
cookie itself or by impersonating the user at a site like amazon.com
that stores personal infor mation.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 27

Automatic Directory Listings

Some ‘‘out-of-the-box’’ web-ser ver configurations permit full
director y browsing in the absence of files such as index.html, or
always prepend files such as README to the beginning of any
director y listings.

The automatic directory listings provided by the Apache, MS-IIS,
and Netscape servers, for example, are convenient, but have the
potential to provide an attacker with access to sensitive infor mation.

For example, automatic directory listings do tr y to hide certain files,
perhaps ones with critical extensions such as .cgi or those with
cer tain file-per missions.

However, consider

• text-editors’ automatic backup files containing the source code to
CGI scripts,

• source-code control logs,

• symbolic links, once created for your convenience and not
removed,

• director ies containing temporar y files, etc.

Of course, even tur ning off automatic directory listings doesn’t
prevent attackers fetching files whose URLs and names they can
guess.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 28



Ser ver-Side Includes

SSIs (Server-Side Includes) are directives that may be placed in
HTML pages, to be evaluated on the web-ser ver while the pages
are being served.

SSIs add dynamically generated content to an existing HTML page,
without having to serve the entire page via a CGI program, or
module (such as PHP).

Typically, files with the extension of .shtml are considered
(configured) to contain SSI requests.

Examples include:

• repor ting today’s date:
Today is <!--#echo var="DATE_LOCAL" -->

• repor ting a file’s modification time:
This page modified <!--#flastmod file="index.html" -->

• or running general programs:
<!--#include virtual="/cgi-bin/counter.sh" -->

<!--#exec cmd="ls" -->

Secur ity problems introduced by Ser ver Side Includes include:

• denial-of-ser vice attacks, where an incorrectly (lazily) configured
ser ver parses all pages looking for SSIs, and

• modified access privileges, for users local to the web server
itself. SSI-enabled files can execute any CGI script or program
under the permissions of the user and group of the web-ser ver
itself. Thus any user-wr itten scr ipt can run with these privileges.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 29

Protecting Local Files from Remote Clients

An important security aspect of common web-ser vers is their
definition of default file access.

Most servers take a per missive attitude to file distribution, allowing
any document in the document root to be transferred unless it is
specifically forbidden.

Unless steps are made to change it, if the server can find its way to
a file through normal URL mapping rules, it ser ves them to clients.

Consider a poorly configured web-ser ver, or one with which an
intr uder has modified the configuration. An intr uder (as root) simply
running the command:

root> cd / ; ln -s / WWW

Allows them to later browse the readable parts of the whole file
system with the basic URL http://machine.com/ In general,
such casual web-browsing would not be considered suspect, or
quickly identified.

The configuration of modern web-ser vers permits browsing to be
per mitting or denied on a per-directory basis:

<Directory />

Order Deny,Allow

Deny from all

</Directory>

<Directory /home/*/*/WWW>

Order Deny,Allow

Allow from all

</Directory>

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 30



Constrained Access with .htaccess

Configuration controls and commands must per mit fine granular ity
of access control to pages and data that reside on the server.

This can generally be perfor med from either system-wide or per-
director y configuration files, often named .htaccess

Examples include:

• Restr iction of the HTTP operations that may be perfor med:

<Limit GET POST>

require valid-user

</Limit>

• Restr iction by IP address, subnet, or domain .

order deny,allow

deny from all

allow from .uwa.edu.au

allow from 138.65.2

Subject to the traditional problems with IP-address or domain-name
spoofing, unless a web-ser ver is run behind a firewall (perhaps in a
DMZ) that makes some effor t to detect and reject spoofing.

Restr iction by IP address can be ‘‘confused’’ if clients frequently visit
via a web-proxy machine, in which case access must be permitted
from the proxy (the client’s IP address cannot be determined). In
this case, trust is shift to the proxy’s settings, to ensure that it will
only proxy for trusted clients.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 31

User-Authentication with .htaccess

Access to directories (and their subdirectories) may also be
constrained to certain user-names and group members.

<Directory /fullpathname/directory>

AuthUserFile /WWW/secure/.htpasswd

AuthGroupFile /dev/null

AuthName ByPassword

AuthType Basic

A ser ver can further strengthen the limitations of a shared password
file by using the require directive, as with:

require user chris

require group staff

</Directory>

However, because modern web-ser vers try to disassociate
themselves from their host operating system, the lists of users and
groups are not ‘‘real’’ ones, but ones that must be maintained by
additional programs:

htpasswd -c .htpasswd username

Adding password for username.

New password:

(not echoed) password

Re-type new password:

(not echoed) password

Fur thermore, unlike an operating system’s login session, in which
the password is passed over the Internet just once, a browser sends
these passwords every time (unencrypted) it fetches a protected
document.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 32



Web-ser ver Logging and Privacy

All requests for web-ser ved documents may be logged by the Web
ser ver. Typical details include the client’s hostname (or IP on a
harr ied ser ver), date and time, HTTP request, URL, size and
response code:

csse2722 - - [01/Oct/2004:11:33:19] "GET /run/help317?a=162...

Clients’ names are also logged if .htaccess authentication was used
to access a URL.

As most web-client requests arrive from individual machines, if not
through a proxy, web logfiles invade users’ privacy. Some servers
may log the URL being viewed (your referer page) at the time you
requested the new URL. Of course, all of these access details are
only kept for statistics generation and debugging.

However, there exist several vulnerabilities:

• some sites may leave the logs open for casual viewing by local
users,

• the logfiles are created and owned by the same userid as the
web-ser ver itself. This permits a successful attacker to view or
tr uncate the logs.

• the contents of queries using the HTTP GET request appear in
the server log files because the query is submitted as part of the
URL (queries using POST are not so logged)

Although web logfiles can only log requests made to a web-ser ver
web proxies also log requests made of them, with ver y similar
details. The web-browsing habits of individuals from within a
company, including the popular pastimes of job-hunting and bird-
watching, may be tracked.

Computer and Networ k Secur ity (IT317) 2004 Secur ity Aspects of the WWW (Week 10), page 33


