
Attacking the Vista Heap

Ben Hawkes

v4

The Heap

• The “heap” describes:

– areas of memory (as in RAM) used by an
application dynamically

– implementation of structures and algorithms
for managing memory

Windows API: HeapAlloc, HeapFree

The Heap

Heap Vulns

• Application uses heap memory incorrectly

• Results in corruption

• Heap memory can be placed in to an

inconsistent state

Heap Exploit

• An “exploit” places the heap in to a state

designed to give the attacker arbitrary

code execution

• An HTTP request responds with a

command shell instead of a response…

because we exploited a remote heap

overflow in IIS 6

Intro-clusion 1

• Heap vulnerabilities are harder to find

• Programmers don’t suck quite as much as

they used to

• CLAIM: Proportionally, vulnerability
research in this area is decreasing

Intro-clusion 2

• Heap exploits are harder to write than ever

• Application specific attacks are the future

• CLAIM: Complex heap implementation

attacks should still be considered

Intro-clusion 3

• Now is a good time to start learning and

looking for these bugs

• History repeats itself.

• CLAIM: The decline of memory corruption
research will coincide with the increase of

memory corruption bugs

Heap Chunk

• HeapAlloc returns a chunk of memory for

use by the application

• It looks like this:

SIZE FLAGS
CHECK

SUM

0 2 3 4 6 7

…

DATA

8

……

Heap Chunk

• Or, if the chunk gets freed by HeapFree it

looks like this:

SIZE FLAGS
CHECK

SUM

0 2 3 4 6 7

…

8

…… FORWARD LINK BACK LINK

Unlink

• Solar Designer haxed netscape in 2000

• Introduced the “unlink” technique for

writing heap exploits

• Popularized in Phrack 57

– Once upon a free()

– Vudo malloc tricks

Unlink

• Countless exploits using this technique

• But only two with rad names:

– OpenSSL KEY_ARG a.k.a Slapper

– RPC DCOM a.k.a Blaster

Unlink

• HISTORY: control the fwd/bck links of a

chunk, trigger removal of chunk from free

list:

BK = P->BCK

FD = P->FWD

FD->BCK = BK

BK->FWD = FD

Any takers?

Unlink

• Arbitrary overwrite with an arbitrary value

– pwned!

• Except it was trivially fixed

• So how do you write a heap exploit now?

Current Heap Exploitation

• So evil haxors now use application specific

techniques:

– Overflow the target application’s data stored
on the heap

– Ensure important structures are allocated
after the overflow

– Profit

Attacking the Application

• But… a vulnerability can only corrupt a

subset of all heap data

• So… you can’t always corrupt an

“important” structure

Attacking the Application

• At the time, unlink was a complex

technique

• It exploited underlying heap structures

• History repeats itself

• We can target underlying heap structures
in Vista too

Overflow Summary

• A heap overflow can potentially overwrite:

– Internal heap structures

• Chunk headers

• Bucket structures

• Main heap structure

– Application data

• Application buffers, flags, integers etc.

• Function pointers

• Heap pointers

Attacking the Vista Heap

• The techniques I published in Vegas:

– Overwrite the main heap structure

– Free and then allocate the main heap

structure, overwrite with application

– Off-by-one into apps which do not opt in to
“termination on heap corruption” option

– Overwrite low fragmentation heap’s bucket
structure

– Partial overwrite of LFH heap chunk

Exploit Techniques

• Build up an arsenal of techniques

• Then choose the best technique for the

vulnerability

• Let the vulnerability choose the technique,

all options should be considered

hHeap HANDLE payload

Heap HANDLE

• Application requests access to a heap by

calling HeapCreate

• This initializes all heap structures

• Returns a pointer to a heap HANDLE

• Which can then be used by the allocator

HANDLE hHeap = HeapCreate(0,0,0);

LPVOID mem = HeapAlloc(hHeap, 0, 512);

Heap API

Heap API

HANDLE hHeap

Heap API

HANDLE hHeap

LPVOID chunk

Heap HANDLE II

• Heap HANDLE is just a structure at the

beginning of the heap’s memory area

• Heap HANDLE is ridiculously important

• Central management structure for each

individual heap

– Free lists

– Heap canary

– Flags and tunable options

– Etc…

Heap HANDLE II

• Unfortunately there are no guard pages in

the Vista heap implementation

• Relies on randomization to introduce holes
in the address space

• Heap spray + Heap Overflow

= Heap HANDLE overflow

Heap HANDLE II

• Introducing bad ass technical Heap

HANDLE payload:

[‘H’x68][0x82828283][‘H’x8][0x41414141]

[‘H’x4][encodeHook][‘H’x92][0x7F6F5FC8]

[0x7F6F0148][‘H’x16][commitHook]

• Total of 212 bytes

Heap HANDLE II

• Set a Heap HANDLE to this payload,

trigger an allocation on the heap.

• This will give arbitrary EIP:

EIP = encodeHook XOR commitHook

• See the appendix in this slide deck for

more detail

• Payload needs more real life testing

(works in au/nz, but .us, cn, de etc? quite

probably not in this form)

hHeap overflows VII

hHeap overflow requirements:

• Control the application to get contiguous

layout with overflow before heap

• Suffer through a large heap spray (time!)

• Know (roughly) the position of the overflow

chunk for alignment of payload

• Large enough overflow. Small overflows

may need to be repeated to hit heap.

Arbitrary Free

Arbitrary Free

• By overflowing heap pointers we can

control the way the heap “works”

– Which chunks will be freed

– And thus where new chunks will be allocated

• Can perform exploits against either the

application or the heap implementation

• CLAIM: Flexibility leads to reliability

Arbitrary Free I

• Assume you can overflow into a pointer

returned from HeapAlloc called X

– i.e. X = HeapAlloc(hHeap, 0, 4096);

• Application will HeapFree X at some point

• So…

Arbitrary Free II - Generic

1. Attacker sets X to point to chunk Y, where

Y is an important chunk for the application

2. Attacker triggers HeapFree on X

3. Chunk Y is freed, application still using it

4. Attacker triggers allocation of size(Y)

5. Allocator returns Y (say into variable Z)

6. Attacker makes application use Z to

overwrite Y

Arbitrary Free III

Arbitrary Free (generic) requirements:

• Control the X pointer

• Know the address of the Y chunk (partial

overwrite, info leak, heap spray)

• Contain any deallocation corruption to Y

• Sufficient control of Z usage

• Ability to leverage control of Y

Vista Arbitrary Free I

• Generic arbitrary free attacks application

• Vista heap implementation is part of the

application…

• So lets attack it!

Vista Arbitrary Free II

• Is there some way to reliably make the

overflowed heap pointer X point to the

“important structure” heap chunk (Y)

required in generic arbitrary free?

• hHeap HANDLE is an important structure..

Vista Arbitrary Free III

• Disturbingly, hHeap HANDLE is also a

valid heap chunk

• Has its own HEAP_ENTRY at offset 0

– Encoded with valid canary

– Containing a correct checksum

– Set up by HeapCreate

• Known location relative to all heap

pointers in the first segment

Vista Arbitrary Free IV

• Partial overwrite of heap pointer e.g.

X = 0x00B8A228

0x00B8XXXX

0x00B80008 = Y

• Then trigger HeapFree on X

Vista Arbitrary Free V

• Trigger allocations of size <= 1400

• Eventually HeapAlloc will return… the

hHeap HANDLE (Z)

• Use application to write payload described

earlier

Vista Arbitrary Free VI

Vista Arbitrary Free requirements:

• X points to a chunk in first 64kb of some

heap (usually)

• Sufficient control of Z usage

NOTE: all other segments start with valid

heap entry too… hmm

Securing the Heap

Vista Heap Changes

• List integrity checks

• Encoded heap entry headers

• Checksum in headers

• Randomized heap base

• Fail on corruption

• Low Fragmentation Heap

Securing the Heap I - Specific

• Add guard pages, remove functions

pointers from hHeap HANDLE

• Remove internal use of RtlpAllocateHeap,
replace with guarded mappings

• Ensure checksum is always validated

before any use of chunk headers

Securing the Heap II - Generic

• Add randomization to segments and large

chunks

• Increase the amount of address entropy

• Increase the size of the checksum

• Encode all of the chunk

• Reduce use of list operations

Securing the Heap III - Theory

• Remove all meta-data structures from

anywhere contiguous to any data

• Still have canaries between chunks, but
not encoding anything (just for integrity)

• Smaller segments, more guard pages

• Introduce true non-determinism to

allocator patterns (i.e. internally randomize

where a chunk can go, while still ensuring
some locality)

Food for Thought

• Fundamentally this type of bug will be a

problem for a long long time

• Because our computers fundamentally
handle memory corruption badly

Rant On

• The application sees a large block of

available virtual memory

• It is the application’s job to decide how this
will be segregated

• This is fundamentally wrong

• Should users decide how to set their file

permissions? DAC vs MAC

Rant Off

• We need an architecture that allows

efficient segregation of memory at a byte

level (as opposed to page level)

• Make the system handle data segregation

• But this is not going to happen any time

soon (if ever)

Rant Off

• What about C#, Java etc?

• The underlying architecture for their virtual

machines is still the same monolithic
beast…

• But it is an improvement in terms of attack

surface

Summary

• Heap vulnerabilities are hard to exploit

• Sometimes even impossible

• But we can usually win if we are

determined

• This seems like arcane knowledge

• But these bugs are here for the long term,

so its worth learning (for money + fame…)

Greetz

+ caddis and the rux crew, booyah!

+ von d, ratu and crew

+ the circle of lost hackers

+ duke, mercy, nemo, dme, cyfa, scott,

moby, zilvio, antic0de, pipes, si, delphic,

metl, hntr, sham, core, kaixin, …

Appendix
1 – page 54 – hHeap overflow

2 – page 76 - Adjusted Double free
3 – page 82 – Heap Termination
4 – page 90 – Information Leak
5 – page 94 – Low Frag Heap

Appendix 1
hHeap overflows

ASLR

HeapCreate:

randPad = (RtlpHeapGenerateRandomValue64() & 0x1F) << 16;

totalSize = dwMaximumSize + randPad;

…

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,

&totalSize, MEM_RESERVE, rwProt);

…

RtlpSecMemFreeVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr,

&randPad, MEM_RELEASE);

…

hHeap = (HANDLE) allocAddr + randPad;

1

2

3

4

Segment Allocation

RtlpExtendHeap:

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,

&hHeap->segmentReserve, MEM_RESERVE, rwProt);

…

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,

&segmentCommit, MEM_COMMIT, rwProt);

…

return allocAddr;

1

2

3

Large Chunk Allocation

RtlpAllocateHeap (large chunk):

dwSize += BASE_STRUCT_SIZE;

…

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &baseAddr, 0,

&dwSize, MEM_COMMIT, rwProt);

…

hHeap->largeTotal += dwSize;

…

chunk = (LPVOID) baseAddr + BASE_STRUCT_SIZE + HEAP_ENTRY_SIZE;

…

return chunk;

1

2

3

Heap Spray I

• Heap base randomized, segments and

large chunks not

• Linearly allocated in first available region

• But still affected by random heap base

• Heap spray used to position data statically

– Spray small chunks within a single heap

– Or allocate large chunk(s)

Heap Spray II – the stats

• Say NtAllocateVirtualMemory gives

consecutive allocations X

• Every heap base can lie anywhere from X
to X + 0x1F0000 (~2MB range)

• Segment reserve size ~ 16MB

• Large chunk >= 512KB

Heap Spray III – the theory

• For target application, find average Y of

last reserved page across all heaps

• Y = function of the amount of committed
and reserved heap pages1

• Spray amount Z, with Z > ~16MB

• Y + (Z/2) => your data w/ probability ~= 1

1. with variability approaching 2MB (more when early)

Guarding hHeap

• Notice lack of guard pages

• Consider a heap spray filling the entire

32-bit address space (<2GB)

• Segments will readjust size to fill smaller

holes

• Left with: large contiguous writable block

of committed memory

hHeap overflows I

• Overflow in contiguous space can

overwrite potentially everything on a heap

– Application data from different heaps

– Segment, chunk and bucket headers

– hHeap HANDLEs

hHeap overflows I

• Overflow in contiguous space can

overwrite potentially everything on a heap

– Application data from different heaps

– Segment, chunk and bucket headers

– hHeap HANDLEs

hHeap overflows III

• Goal 1: get overflow chunk positioned

before some hHeap HANDLE

• Goal 2: Craft payload to overwrite
commitHook…

• Encoded function pointer located in hHeap

HANDLE, called when heap extended

• Result: arbitrary code execution on next

HeapAlloc

hHeap overflows IV

• Pattern 1:

– Spray some fixed amount X

– Trigger creation of new heap in application

– Spray remaining address space

– Overflow from initial heap spray area X (may
need to free some of X first, to make room for
overflow chunk)

– Trigger allocation on new heap

hHeap overflows V

• Pattern 2:

– Trigger creation of new heaps continuously
until failure

– Overflow into one or many of the new heaps

– Trigger allocation on all newly created heaps

hHeap overflows VI

• Pattern 3:

– Spray the entire range

– 3rd to last segment allocated is directly before

hHeap of heap being sprayed

– Last 3 segments are size 0x10000, so take
chunk from ~150kb back from failure

– Free it, and use as overflow chunk

– Trigger allocation

hHeap payload

• heapOptions, set the two bits in

0x10000001 (others don’t matter):

avoid interceptor1, trigger

RtlpAllocateHeap2, avoid debug

heap3, remove serialization4

hHeap (X)

0

… A

A

68

…

Offsets relative from .text segment base of ntdll.dll 6.0.6001.18000 (i.e. Vista SP1):

1. 6F3E7 2. 648DC 3. 8CC70 4. 677E5

hHeap payload

• heapCanary, set to pass checksum

inegrity test on freeEntry element1

(more later)

Set to 0x41414141

hHeap (X)

0

… A

68

…

1. 678E5

B

B

80

…

hHeap payload

• encodeHook, used to encode

function pointer later in payload

i.e. becomes half of EIP by XOR

hHeap (X)

0

… A

68

… B

80

… C

C

88

…

hHeap payload

• freeEntry, must point to readable

memory such that:

- freeEntry->ent_0 == NULL; (Next pointer)

- freeEntry->ent_18 points to readable memory Y

- Y has known constant value at offset -8

(i.e. *(Y-8) constant)

hHeap (X)

0

… A

68

… B

80

… C

88

… D

184

D

E …

hHeap payload

• freeEntry, one good candidate is

0x7F6F5FC8

• Mysterious static read-only mapping

• Y-8 value points to sprayed or overflowed

heap area… set equal to heapCanary

• Or just set up another heap spray

hHeap (X)

0

… A

68

… B

80

… C

88

… D

184

D

E …

hHeap payload

• ucrEntry, must point to readable

memory such that:

- ucrEntry->ent_0 == NULL; (Next pointer)

- ucrEntry->ent_18 points to readable memory Y

- Y->Blink readable, with Y->Blink->ent_14 small

hHeap (X)

0

… A

68

… B

80

… C

88

… ED

184

E

…

hHeap payload

• ucrEntry, one good candidate is

0x7F6F0148

• Again, alternative is just to use some

crafted heap spray address

hHeap (X)

0

… A

68

… B

80

… C

88

… D

184

E

E …

hHeap payload

• commitHook, function pointer used

by RtlpFindAndCommitPages, XOR

with encodeHook to set arbitrary EIP

hHeap (X)

…

80

…

88

…

184

…

208

B C D E F

F

…

Appendix 2
Adjusted double free

Adjusted Double Free I

• Application specific double free attacks

• As opposed to UNLINK double free

• Order of free/allocation pattern changes

• Traditionally: free free alloc write alloc

• Adjusted: free alloc free alloc write

(Which is not always possible)

Adjusted Double Free II

free alloc free alloc write

1. Free chunk X

2. Before second free, allocate X for

application, into Y

3. Free chunk X… which now releases Y

4. Allocate X for application, into Z

Adjusted Double Free III

• At this point: Application has Y and Z, both

with equal address X

• But used for different purposes, so…

• Make either Y or Z hold some important

structure

• And ensure the other is attacker controlled

• Writing into this chunk changes important

structure

Adjusted Double Free IV

• Devil is in the application specific details

• Local vs global double free, only a subset

is ever exploitable

• Important structure usually must be

initialized before being overwritten

Adjusted Double Free V

Adjusted Double Free requirements:

• Double free with interleaved allocation

• While also giving a meaningful allocation

• Sufficient control of one chunks usage

• Ability to leverage control of the other

Bonus:

• ASLR doesn’t matter

Appendix 3
Heap Termination

Heap termination I

BOOL SetHeapOptions() {

HMODULE hLib = LoadLibrary(L"kernel32.dll");

if (hLib == NULL) return FALSE;

typedef BOOL (WINAPI *HSI)

(HANDLE, HEAP_INFORMATION_CLASS ,PVOID, SIZE_T);

HSI pHsi = (HSI)GetProcAddress(hLib,"HeapSetInformation");

if (!pHsi) {

FreeLibrary(hLib);

return FALSE;

}

#ifndef HeapEnableTerminationOnCorruption

define HeapEnableTerminationOnCorruption (HEAP_INFORMATION_CLASS)1

#endif

BOOL fRet = (pHsi)(NULL,HeapEnableTerminationOnCorruption,NULL,0)

? TRUE

: FALSE;

if (hLib) FreeLibrary(hLib);

return fRet;

}

Heap termination II

Heap termination III

• Must opt-in to heap termination on

corruption with HeapSetInformation

• Windows executables basically always do

– ntdll!RtlpDisableBreakOnFailureCookie == 0

• So just quickly, for all the 3rd party stuff

that doesn’t…

Off-by-one I

• Say you have off-by-one or small overflow

on some heap. Not exploitable?

off-by-one chunk free chunk interesting data

FLAGS
CHECK

SUM
… DATASIZE

Off-by-one II

• Modify free chunk’s size value to

something larger

• Envelope interesting data in free chunk

• Must be precise with new size value

off-by-one chunk free chunk interesting data

FLAGS
CHECK

SUM
… DATASIZE

Off-by-one III

• Trigger allocations of the new size,

HeapAlloc will eventually return free chunk

• Checksum will fail, but heap continues…

• Application still using interesting data, but

can be overwritten using new allocation

off-by-one chunk free chunk interesting data

FLAGS
CHECK

SUM
… DATASIZE

Off-by-one IV

Off-by-one overflow requirements:

• Not opted-in for termination on heap

corruption

• Position off-by-one chunk next to an

appropriate envelope chunk

• Know exact sizes of free and interesting

chunks

• Sufficient control of returned chunk to

control interesting data

Appendix 4
Information Leak

Vista Chunks

• Every chunk has a header

• 8 bytes, called HEAP_ENTRY

SIZE FLAGS
CHECK

SUM

0 2 3 4 6 7

DATA

8

…

…

…

Vista Chunks

• Every chunk has a header

• 8 bytes, called HEAP_ENTRY

SIZE FLAGS
CHECK

SUM

0 2 3 4 6 7

8

…

…

… FORWARD LINK BACK LINK

Canary leak

• Leak of a chunk header of known size and

state gives leak of heap wide canary value

C1 = L1 ^ K1

C2 = L2 ^ K2

C3 = L3 ^ K3

C4 = L4 ^ K1 ^ K2 ^ K3

• Can then use overflow to change size,

allocated/free, flags, FWD/BCK links etc

Appendix 5
Low Fragmentation Heap

LFH bucket overflow I

• LFH bucket allocated internally using

RtlAllocateHeap when LFH created

RtlpAllocateHeap

RtlpPerformHeapMaintenance

RtlpActivateLowFragmentationHeap

RtlpExtendListLookup

RtlAllocateHeap (sz 0x3D14)

LFH bucket overflow II

• LFH bucket created relatively

deterministically, i.e. easy to find

• Force overflow chunk to be allocated
before LFH bucket

overflow chunk LFH bucket

LFH bucket overflow II

• LFH bucket created relatively

deterministically, i.e. easy to find

• Force overflow chunk to be allocated
before LFH bucket

• Overflow first 24 bytes (or more)

• Trigger alloc request of size R >= 1024

LFH bucketoverflow chunk

LFH bucket overflow III

• RtlAllocateHeap also used internally by

LFH allocator1

• Uses LFH bucket structure to decide
location of hHeap…

• GOAL: trigger internal LFH allocation with

arbitrary hHeap

• Can then use previous payload

1. RtlpAllocateUserBlock from RtlpLowFragHeapAllocFromContext

LFH bucket overflow IV

• Set ent_14, ent_20 of LFHBucket to

control X

X = ent_20 + ((R + 8)/8 – ent_14)*4

• Set X->ent_4 to Y

LFH bucket overflow V

hHeap-DC

Zero-B0..-B4

Zero-A0..-A4

Zero218 … 25C

Zero0

valueY offset

• Y is used as LFH context

• Point Y to an “empty” context:

LFH bucket overflow V

hHeap24

Zero50..54

Zero60..64

Zero318 … 35C

Zero100

value(Y-100) offset

• Y is used as LFH context

• Point Y to an “empty” context:

LFH bucket overflow VI

LFH bucket overflow requirements:

• Position overflow chunk before some LFH

bucket

• Find an appropriate X value

• Craft or find an appropriate fake LFH

context (Y)

• Form a correct hHeap payload at the

location decided by Y

• Reliably trigger R-allocation after overflow

LFH header overflow I

• Given an overflow that can write NULL

bytes, what do we gain?

LFH header overflow I

• Given an overflow that can write NULL

bytes, what do we gain?

• Small overflow envelope technique on

LFH chunks even with a terminating

heap

LFH header overflow II

LFH_HEAP_ENTRY:

• RtlpLowFragHeapFree uses INDEX to

determine adjusted location of chunk
before checksum test

• Only when FLAGS == 5 and

CONTEXT == 0x0000002

CONTEXT INDEX FLAGS

0 4 6 7

LFH header overflow III

LFH_HEAP_ENTRY:

P’ = P – (X * 8)

• P’ must point to valid LFH_HEAP_ENTRY

• One byte gives range of 2040 bytes

X 0x05

P+0 P+4 P+6 P+7

0x02 0x00 0x00 0x00 0x41 0x41

LFH header overflow IV

LFH Chunk layout:

• Target chunk and overflow chunk

combined must be less than 2040 bytes

target chunk overflow chunk freeable chunk

LFH header overflow V

LFH Chunk layout:

• Overflow some “freeable” LFH chunk

• Free the overflowed chunk

• Actually frees target chunk…

• So reallocate target chunk and overwrite

target chunk overflow chunk freeable chunk

LFH header overflow VI

LFH header overflow requirements:

• Ability to write NULL bytes in overflow

• Small target and overflow chunk on LFH

• Some allocation pattern that gives

required layout

• Ability to leverage reallocated target chunk

