Attacking the Vista Heap

Ben Hawkes

/

LATERAL

A

The Heap

* The “heap” describes:

— areas of memory (as in RAM) used by an
application dynamically

— implementation of structures and algorithms
for managing memory

Windows API: HeapAlloc, HeapFree

Heap Vulns E |

» Application uses heap memory incorrectly
» Results in corruption

 Heap memory can be placed in to an
inconsistent state

Heap Exploit

* An “exploit” places the heap in to a state
designed to give the attacker arbitrary
code execution

 An HTTP request responds with a
command shell instead of a response...
because we exploited a remote heap
overflow in IIS 6

Intro-clusion 1

« Heap vulnerabilities are harder to find

* Programmers don’t suck quite as much as
they used to

« CLAIM: Proportionally, vulnerability
research in this area is decreasing

Intro-clusion 2

* Heap exploits are harder to write than ever
» Application specific attacks are the future

« CLAIM: Complex heap implementation
attacks should still be considered

Intro-clusion 3

* Now is a good time to start learning and
looking for these bugs

» History repeats itself.

 CLAIM: The decline of memory corruption
research will coincide with the increase of
memory corruption bugs

Heap Chunk

» HeapAlloc returns a chunk of memory for
use by the application

* It looks like this:

CHECK

SIZE FLAGS SUM

0 2 3 4 6 7

DATA

Heap Chunk

* Or, if the chunk gets freed by HeapFree it
looks like this:

CHECK

SIZE FLAGS SUM

FORWARD LINK BACK LINK

Unlink

« Solar Designer haxed netscape in 2000

* Introduced the “unlink” technique for
writing heap exploits

* Popularized in Phrack 57
—Once upon a free()
—\Vudo malloc tricks

Unlink r |

» Countless exploits using this technique

« But only two with rad names:
—OpenSSL KEY_ ARG a.k.a Slapper
—RPC DCOM a.k.a Blaster

Unlink

« HISTORY: control the fwd/bck links of a
chunk, trigger removal of chunk from free
list:

K = P->BCK

D = P->FWD

D->BCK = BK

K->FWD = FD

G0 M T

Any takers?

Unlink E

 Arbitrary overwrite with an arbitrary value
— pwned!

» Except it was trivially fixed
« S0 how do you write a heap exploit now?

Current Heap Exploitation

» S0 evil haxors now use application specific
techniques:

— Overflow the target application’s data stored
on the heap

— Ensure important structures are allocated
after the overflow

— Profit

Attacking the Application

« But... a vulnerability can only corrupt a
subset of all heap data

* S0... you can't always corrupt an
“Important” structure

Attacking the Application

At the time, unlink was a complex
technigque

* |t exploited underlying heap structures

» History repeats itself

* We can target underlying heap structures
in Vista too

Overflow Summary

* A heap overflow can potentially overwrite:

— Internal heap structures
e Chunk headers
 Bucket structures
« Main heap structure

— Application data
 Application buffers, flags, integers etc.
 Function pointers
« Heap pointers

Attacking the Vista Heap

* The techniques | published in Vegas:
— Overwrite the main heap structure

— Free and then allocate the main heap
structure, overwrite with application

— Off-by-one into apps which do not opt in to
“termination on heap corruption” option

— Overwrite low fragmentation heap’s bucket
structure

— Partial overwrite of LFH heap chunk

Exploit Technigues

 Build up an arsenal of techniques

* Then choose the best technique for the
vulnerabillity

 Let the vulnerability choose the technique,
all options should be considered

hHeap HANDLE payload

Heap HANDLE

» Application requests access to a heap by
calling HeapCreate

 This initializes all heap structures
* Returns a pointer to a heap HANDLE
* Which can then be used by the allocator

HANDLE hHeap = HeapCreate(0,0,0);
LPVOID mem = HeapAlloc(hHeap, 0, 512);

Heap API

stdafu.h " VistaHeapl.cpp | Start Page
(Global 5cope)

#include

n

- T |
staHeapl.cp

o
[}
1
Fh
I

i
m
L]
it

)
1

"stdafx.h"

int tmain(int argec, TCHAR* argv[])
| €

LEVOID chunk:
HOANDLE hHeap;

hHeap = HeapCreate (0, 0, 0}:
printf {™\n\nhHeap: %p\n"™, hHeap):
chunk = HeapAlloc (hHeap, 0, 512});
printf {"chunk: %p\n", chunk);
HeapFree (hdeap, 0, chunk);

return 0;

* “Swmain(int arge, _TCHAR *[] argv)

B Command Prompt

hHeap: BET58088
chunk: AA?5A7CE

C:sUszsersshavkessDocuments*Uisual Studio Z2005%Projects*UistaHeaplsdebhugX>

\l_'l

m

Heap API

stdafu.h " VistaHeapl.cpp | Start Page
(Global 5cope)

#include

n

- T |
staHeapl.cp

o
[}
1
Fh
I

i
m
L]
it

)
1

"stdafx.h"

int tmain(int argec, TCHAR* argv[])
| €

LEVOID chunk:
HOANDLE hHeap;

hHeap = HeapCreate (0, 0, 0}:
printf {™\n\nhHeap: %p\n"™, hHeap):
chunk = HeapAlloc (hHeap, 0, 512});
printf {"chunk: %p\n", chunk);
HeapFree (hdeap, 0, chunk);

return 0;

* “Swmain(int arge, _TCHAR *[] argv)

B Command Prompt

hHeap: BET58088
chunk: AA?5A7CE

C:sUszsersshavkessDocuments*Uisual Studio Z2005%Projects*UistaHeaplsdebhugX>

\l_'l

m

Heap API

stdafu.h " VistaHeapl.cpp | Start Page
(Global 5cope)

#include

n

- T |
staHeapl.cp

o
[}
1
Fh
I

i
m
L]
it

)
1

"stdafx.h"

int tmain(int argec, TCHAR* argv[])
| €

LEVOID chunk:
HOANDLE hHeap;

hHeap = HeapCreate (0, 0, 0}:
printf {™\n\nhHeap: %p\n"™, hHeap):
chunk = HeapAlloc (hHeap, 0, 512});
printf {"chunk: %p\n", chunk);
HeapFree (hdeap, 0, chunk);

return 0;

* “Swmain(int arge, _TCHAR *[] argv)

B Command Prompt

hHeap: BET58088
chunk: AA?5A7CE

C:sUszsersshavkessDocuments™Uisual Studio 2005%ProjectsUistaHeaplsdebhug>

\l_'l

m

Heap HANDLE ||

 Heap HANDLE is just a structure at the
beginning of the heap’'s memory area

 Heap HANDLE is ridiculously important

» Central management structure for each
individual heap
— Free lists
— Heap canary
— Flags and tunable options
— Etc...

Heap HANDLE I

» Unfortunately there are no guard pages in
the Vista heap implementation

 Relies on randomization to introduce holes
in the address space

* Heap spray + Heap Overflow
= Heap HANDLE overflow

Heap HANDLE || E |

* Introducing bad ass technical Heap
HANDLE payload:

‘H'x68][0x82828283]['H'x8][0x41414141]
‘H’x4][encodeHook]['H'x92][0x7F6F5FC8]
Ox7F6FO1 48]['H'x16][commitHo0K]

» Total of 212 bytes

Heap HANDLE ||

« Set a Heap HANDLE to this payload,
trigger an allocation on the heap.
 This will give arbitrary EIP:
EIP = encodeHook XOR commitHook

» See the appendix in this slide deck for
more detall

» Payload needs more real life testing
(works in au/nz, but .us, cn, de etc? quite
probably not in this form)

hHeap overflows VI

hHeap overflow requirements:

Control the application to get contiguous
layout with overflow before heap

Suffer through a large heap spray (time!)

Know (roughly) the position of the overflow
chunk for alignment of payload

Large enough overflow. Small overflows
may need to be repeated to hit heap.

Arbitrary Free

Arbitrary Free

» By overflowing heap pointers we can
control the way the heap “works”

— Which chunks will be freed
— And thus where new chunks will be allocated

« Can perform exploits against either the
application or the heap implementation

« CLAIM: Flexibility leads to reliability

Arbitrary Free |

* Assume you can overflow into a pointer
returned from HeapAlloc called X

—i.e. X = HeapAlloc(hHeap, 0, 4096);

» Application will HeapFree X at some point
* S0...

Arbitrary Free |l - Generic

1.

S A A

Attacker sets X to point to chunk Y, where
Y Is an important chunk for the application

Attacker triggers HeapFree on X

Chunk Y is freed, application still using it
Attacker triggers allocation of size(Y)
Allocator returns Y (say into variable Z)

Attacker makes application use Z to
overwrite Y

Arbitrary Free Il

Arbitrary Free (generic) requirements:
« Control the X pointer

* Know the address of the Y chunk (partial
overwrite, info leak, heap spray)

« Contain any deallocation corruption to Y
 Sufficient control of Z usage
* Ability to leverage control of Y

Vista Arbitrary Free |

» Generic arbitrary free attacks application

 Vista heap implementation is part of the
application...

¢ So lets attack it!

Vista Arbitrary Free |l

* |Is there some way to reliably make the
overflowed heap pointer X point to the
“Important structure” heap chunk (YY)
required in generic arbitrary free?

 hHeap HANDLE is an important structure..

Vista Arbitrary Free Il

 Disturbingly, hHeap HANDLE is also a
valid heap chunk

« Has its own HEAP ENTRY at offset O
— Encoded with valid canary
— Containing a correct checksum
— Set up by HeapCreate

« Known location relative to all heap
pointers in the first segment

Vista Arbitrary Free IV E |

 Partial overwrite of heap pointer e.g.

X = 0x00B8A228

0X00B8XXXX

0x00B80008 _Y
* Then trigger HeapFree on X

Vista Arbitrary Free V

 Trigger allocations of size <= 1400

» Eventually HeapAlloc will return... the
h—Ieap HANDLE ()

PR Al | v

24
Igf E® Command Prompt
'd
al \HE \U vz haukez Do ntexlizwal Studio 2005%Projectss~Heapl@debug>*Heapld
3 Create d he p at: EEEBEEBE

GF Ty g 1 g arbitrary free
T Hll ating 1@24 hyt .. 89280008

vz hawkesz Do ntexlUizwal Studie 2005-FrojectssHeapl@~dehug>

» Use application to write payload described
earlier

Vista Arbitrary Free VI

Vista Arbitrary Free requirements:

» X points to a chunk in first 64kb of some
heap (usually)

 Sufficient control of Z usage

NOTE: all other segments start with valid
heap entry too... hmm

Securing the Heap

Vista Heap Changes

* List integrity checks

* Encoded heap entry headers
» Checksum in headers
 Randomized heap base
 Fail on corruption

* Low Fragmentation Heap

Securing the Heap | - Specific

« Add guard pages, remove functions
pointers from hHeap HANDLE

 Remove internal use of RtlpAllocateHeap,
replace with guarded mappings

« Ensure checksum is always validated
before any use of chunk headers

Securing the Heap |l - Generic

« Add randomization to segments and large
chunks

 Increase the amount of address entropy
* |ncrease the size of the checksum

* Encode all of the chunk

* Reduce use of list operations

Securing the Heap Il - Theory

* Remove all meta-data structures from
anywhere contiguous to any data

« Still have canaries between chunks, but
not encoding anything (just for integrity)

« Smaller segments, more guard pages

* Introduce true non-determinism to
allocator patterns (i.e. internally randomize
where a chunk can go, while still ensuring
some locality)

Food for T-ght -

« Fundamentally this type of bug will be a
problem for a long long time

» Because our computers fundamentally
handle memory corruption badly

Rant On

* The application sees a large block of
available virtual memory

* It is the application’s job to decide how this
will be segregated

* This is fundamentally wrong

 Should users decide how to set their file
permissions? DAC vs MAC

Rant Off

* We need an architecture that allows
efficient segregation of memory at a byte
level (as opposed to page level)

« Make the system handle data segregation

 But this is not going to happen any time
soon (if ever)

Rant Off

 What about C#, Java etc?

» The underlying architecture for their virtual
machines is still the same monolithic
beast...

« But itis an improvement in terms of attack
surface

Summary

» Heap vulnerabilities are hard to exploit
« Sometimes even impossible

» But we can usually win if we are
determined

» This seems like arcane knowledge

» But these bugs are here for the long term,
so its worth learning (for money + fame...)

Greetz

A I=1COM _
+ caddis and the rux crew, booyah!

e
LATEEAL‘SEQURlTY + vOn d, ratu and crew
i |

+ the circle of lost hackers

+ duke, mercy, nemo, dme, cyfa, scott,
moby, zilvio, anticOde, pipes, si, delphic,
metl, hntr, sham, core, kaixin, ...

Appendix
1 — page 54 — hHeap overflow
2 —page 76 - Adjusted Double free
3 — page 82 — Heap Termination
4 — page 90 — Information Leak
5 —page 94 — Low Frag Heap

Appendix 1
hHeap overflows

ASLR

HeapCreate:

1 randPad = (RtlpHeapGenerateRandomValue64() & Ox1lF) << 16;

totalSize = dwMaximumSize + randPad;

2 NtAllocateVirtualMemory (INVALID HANDLE VALUE, &allocAddr, O,
&totalSize, MEM RESERVE, rwProt);

3 RtlpSecMemFreeVirtualMemory (INVALID HANDLE VALUE, &allocAddr,
&randPad, MEM RELEASE) ;

4 hHeap = (HANDLE) allocAddr + randPad;

Segment-ation

RtlpExtendHeap:

1 NtAllocateVirtualMemory (INVALID HANDLE VALUE, &allocAddr, O,
&hHeap—->segmentReserve, MEM RESERVE, rwProt);

2 NtAllocateVirtualMemory (INVALID HANDLE VALUE, &allocAddr, O,
&segmentCommit, MEM COMMIT, rwProt);

3 return allocAddr;

Large Ch-\llocation -

RtlpAllocateHeap (large chunk):

1 dwSize += BASE_STRUCT_SIZE;

2 NtAllocateVirtualMemory (INVALID HANDLE_ VALUE, &baseAddr, O,
&dwSize, MEM COMMIT, rwProt);

hHeap—>largeTotal += dwSize;

3 chunk = (LPVOID) baseAddr + BASE_STRUCT_SIZE + HEAP_ENTRY SIZE;

return chunk;

Heap Spray |

» Heap base randomized, segments and
arge chunks not

 Linearly allocated in first available region
 But still affected by random heap base

» Heap spray used to position data statically
— Spray small chunks within a single heap
— Or allocate large chunk(s)

Heap Spray Il — the stats

« Say NtAllocateVirtualMemory gives
consecutive allocations X

* Every heap base can lie anywhere from X
to X + Ox1FO000 (~2MB range)

» Segment reserve size ~ 16MB
» Large chunk >=512KB

Heap Spray Il — the theory

* For target application, find average Y of
last reserved page across all heaps

« Y = function of the amount of committed
and reserved heap pages’

« Spray amount Z, with Z > ~16MB
* Y + (Z/2) => your data w/ probability ~= 1

1. with variability approaching 2MB (more when early)

Guarding hHeap

* Notice lack of guard pages

» Consider a heap spray filling the entire
32-bit address space (<2GB)

« Segments will readjust size to fill smaller
holes

 Left with: large contiguous writable block
of committed memory

hHeap overflows |

» Overflow in contiguous space can
overwrite potentially everything on a heap
— Application data from different heaps
— Segment, chunk and bucket headers
—hHeap HANDLEsS

hHeap ov’ws | -

» Overflow in contiguous space can
overwrite potentially everything on a heap
— Application data from different heaps
— Segment, chunk and bucket headers
—hHeap HANDLEs

hHeap overtlows |l

« Goal 1: get overflow chunk positioned
before some hHeap HANDLE

» Goal 2: Craft payload to overwrite
commitHook...

* Encoded function pointer located in hHeap
HANDLE, called when heap extended

* Result: arbitrary code execution on next
HeapAlloc

hHeap overilows |V

« Pattern 1:
— Spray some fixed amount X
— Trigger creation of new heap in application
— Spray remaining address space

— Overflow from initial heap spray area X (may
need to free some of X first, to make room for
overflow chunk)

— Trigger allocation on new heap

hHeap overflows V

e Pattern 2:

— Trigger creation of new heaps continuously
until failure

— Overflow into one or many of the new heaps
— Trigger allocation on all newly created heaps

hHeap overflows VI

» Pattern 3:
— Spray the entire range

— 3" to last segment allocated is directly before
hHeap of heap being sprayed

— Last 3 segments are size 0x10000, so take
chunk from ~150kb back from failure

— Free it, and use as overflow chunk
— Trigger allocation

nHeap payload e 3

hHeap (X

0 68

. . heapOptions, set the two bits In
0x10000001 (others don’t matter):
avoid interceptor’, trigger
RtlpAllocateHeap?, avoid debug
heap?, remove serialization*

Offsets relative from .text segment base of ntdll.dll 6.0.6001.18000 (i.e. Vista SP1):
1. 6F3E7 2. 648DC 3. 8CC70 4. 677E5

hHeaIO IOE’-3| -

hHeap (X

0

. . heapCanary, set to pass checksum

inegrity test on freeEntry element’
(more later)

Set to 0x41414141

1. 678ES5

hHeaIO IO- -

hHeap (X

0

. . encodeHook, used to encode
function pointer later in payload
i.e. becomes half of EIP by XOR

hHeaIO IOE-3| -
I | BN N E

. . freeEntry, must point to readable
memory such that:

0

- freeEntry->ent_0 == NULL; (Next pointer)
- freeEntry->ent_18 points to readable memory Y
- Y has known constant value at offset -8

(i.e. *(Y-8) constant)

hHeap pa.d -
I | BN N E

. . freeEntry, one good candidate is
Ox7F6F5FC8
» Mysterious static read-only mapping

Y-8 value points to sprayed or overflowed
heap area... set equal to heapCanary

 Or just set up another heap spray

0

nHeap payloac e |
I | BN N E

. . ucrEntry, must point to readable
memory such that:

0

- ucrkEntry->ent_0 == NULL,; (Next pointer)
- ucrkEntry->ent_18 points to readable memory Y
- Y->Blink readable, with Y->Blink->ent_14 small

nHeap payloac E
I | BN N E

. . ucrEntry, one good candidate is
Ox7F6F0148

0

« Again, alternative is just to use some
crafted heap spray address

nHeap payload R

hHeap (X
. . - F B

208

| £ | commitHook, function pointer used
by RtlpFindAndCommitPages, XOR
with encodeHook to set arbitrary EIP

Appendix 2
Adjusted double free

Adjusted Double Free |

* Application specific double free attacks

» As opposed to UNLINK double free

* Order of free/allocation pattern changes

 Traditionally: free free alloc write alloc

» Adjusted: free alloc free alloc write
(Which is not always possible)

Adjusted [-Jle Free ll -

free alloc free alloc write

1. Free chunk X

2. Before second free, allocate X for
application, into Y

3. Free chunk X... which now releases Y

4. Allocate X for application, into Z

Adjusted Double Free Il

* At this point: Application has Y and Z, both
with equal address X

» But used for different purposes, so...

* Make either Y or Z hold some important
structure

 And ensure the other is attacker controlled

» Writing into this chunk changes important
structure

Adjusted Double Free IV

* Devil is in the application specific details

» Local vs global double free, only a subset
IS ever exploitable

 Important structure usually must be
initialized before being overwritten

Adjusted Double Free V

Adjusted Double Free requirements:

* Double free with interleaved allocation

« While also giving a meaningful allocation
 Sufficient control of one chunks usage

* Ability to leverage control of the other

Bonus:
« ASLR doesn’t matter

Appendix 3
Heap Termination

Heap termination |~

BOOL SetHeapOptions () {
HMODULE hLib = LoadLibrary(L"kernel32.d11l");
if (hLib == NULL) return FALSE;

typedef BOOL (WINAPI *HSI)
(HANDLE, HEAP_INFORMATION_CLASS ,PVOID, SIZE_T);
HSTI pHsi = (HSI)GetProcAddress (hLib, "HeapSetInformation");
if (!pHsi) |
FreelLibrary (hLib) ;
return FALSE;

#ifndef HeapEnableTerminationOnCorruption
define HeapEnableTerminationOnCorruption (HEAP_INFORMATION_CLASS)1

#endif
BOOL fRet = (pHsi) (NULL,HeapEnableTerminationOnCorruption, NULL, O)
? TRUE
FALSE;

if (hLib) FreelLibrary (hLib);

return fRet;

/= Windows Vista ISV Security - Windows Internet Explorer

ﬁﬁ"? é.f,(:? [amndows\.-'staIS\.-‘Security [_‘

= EB @-;@Pagev@molsv

Cj * |il http://msdn.microsoft.com/en-us/ibrary/bb430720.aspx v |"'1‘ K| | Google |'P:ﬂv

¥

Unit=d States - English w | Microscft.com « | Welcome | Sign In
L Search MSDN with Live Seardh L
ernppe e O
Library 0
‘4 Printer Friendly Version <k Add To Favorites (7 Send Click to Rate and Give Feedback sririririy

MSDN Library .
Importance and Priority of Defenses

The following table outlines the relative importance of these defenses and the priority with which ISVs should support
each defense.

Defense Priority
Address space layout randomization opt-in | Critical
DEP opt-in Critical

/GS stack-based buffer overrun detection | High

/SafeSEH exception handler protection High
Stack randomization testing Moderate
Heap randomization testing Moderate

Heap corruption detection

How to Test l'l Q_\ bk, .-

Once any code and design changes have been made, it is important to verify that the operating system is configured
correctly, and the application has the appropriate code changes.

C++ Compiler Use

Verify that the version of the compiler is 13.10 or later. Version 14.00 or later is highly recommended, as this is the

-

£

Done & Internet ®100% -~

Heap termination Il|

* Must opt-in to heap termination on
corruption with HeapSetinformation

» Windows executables basically always do
— ntdll!RtlpDisableBreakOnFailureCookie ==

» So just quickly, for all the 3" party stuff
that doesn't...

Off-by-one I e 3

« Say you have off-by-one or small overflow
on some heap. Not exploitable?

T —

Off-by-one il e

* Modify free chunk’s size value to
something larger

T —

* Envelope interesting data in free chunk
» Must be precise with new size value

Off-by—on. -

 Trigger allocations of the new size,
HeapAlloc will eventually return free chunk

T —

« Checksum will fail, but heap continues...

 Application still using interesting data, but
can be overwritten using new allocation

Off-by-one IV

Off-by-one overflow requirements:

* Not opted-in for termination on heap
corruption

 Position off-by-one chunk next to an
appropriate envelope chunk

* Know exact sizes of free and interesting
chunks

« Sufficient control of returned chunk to
control interesting data

Appendix 4
Information Leak

Vista Chunks

« Every chunk has a header
» 8 bytes, called HEAP_ENTRY

CHECK
SUM

SIZE FLAGS

DATA

Vista Chunks

« Every chunk has a header

» 8 bytes, called HEAP_ENTRY

SIZE

FLAGS

CHECK
SUM

FORWARD LINK

BACK LINK

Canary leak

e | eak of a chunk header of known size and
state gives leak of heap wide canary value

C1=L1"K1
C2 =12 "K2
C3 =L3 " K3
C4 =14 "K1rK2MK3

« Can then use overflow to change size,
allocated/free, flags, FWD/BCK links etc

Appendix 5
Low Fragmentation Heap

LFH bucket overflow |

» LFH bucket allocated internally using
RtlAllocateHeap when LFH created

RtlpAllocateHeap
RtlpPerformHeapMaintenance
RtlpActivateLowFragmentationHeap
RtlpExtendListLookup
RtlAllocateHeap (sz 0x3D14)

LFH bucketoverflow Il

» LFH bucket created relatively
deterministically, i.e. easy to find

* Force overflow chunk to be allocated
before LFH bucket

LFH bucketoverflow Il

» LFH bucket created relatively
deterministically, i.e. easy to find

* Force overflow chunk to be allocated
before LFH bucket

« Overflow first 24 bytes (or more)
 Trigger alloc request of size R >= 1024

L FH bucket overflow I

 RtlAllocateHeap also used internally by
_FH allocator’

 Uses LFH bucket structure to decide
ocation of hHeap...

« GOAL.: trigger internal LFH allocation with
arbitrary hHeap

« Can then use previous payload

1. RtlpAllocateUserBlock from RtlpLowFragHeapAllocFromContext

LFH bucketoverfow IV

« Setent 14, ent 20 of LFHBucket to
control X

X=ent 20 + ((R + 8)/8 —ent_14)*4

e Set X->ent 4t0Y

LFH bucket overflow V

* Y is used as LFH context
* Point Y to an “empty” context:

Y offset value
0 Zero
218 ... 25C Zero
-A0..-A4 Zero
-B0..-B4 Zero
-DC hHeap

LFH bucket overflow V

* Y is used as LFH context
» Point Y to an “empty” context:

(Y-100) offset | value

100 Zero
318 ... 35C Zero
60..64 Zero
50..54 Zero

24 hHeap

LFH bucket overflow VI

LFH bucket overflow requirements:

Position overflow chunk before some LFH
bucket

Find an appropriate X value

Craft or find an appropriate fake LFH
context (Y)

Form a correct hHeap payload at the
location decided by Y

Reliably trigger R-allocation after overflow

LFH headeroverflow |

* Given an overflow that can write NULL
bytes, what do we gain?

LFH header overflow |

« Given an overflow that can write NULL
bytes, what do we gain?

« Small overflow envelope technique on
LFH chunks even with a terminating
heap

LF

H header overflow Il

LFH_HEAP_ENTRY:

CONTEXT

INDEX

FLAGS

0

4

6

7

» RtlpLowFragHeapFree uses INDEX to

determine adjusted location of chunk

before checksum test

* Only when FLAGS == 5 and
CONTEXT == 0x0000002

LFH header overfow I~

LFH_HEAP_ENTRY:

P+0 P+4 P+6 P+7
P'= P — (X * 8)

» P’ must point to valid LFH_HEAP_ENTRY
* One byte gives range of 2040 bytes

LFH header overflow IV

LFH Chunk layout:

» Target chunk and overflow chunk
combined must be less than 2040 bytes

LFH headeroverfow V..

LFH Chunk layout:

e

« Overflow some “freeable” LFH chunk

* Free the overflowed chunk

 Actually frees target chunk...

» So reallocate target chunk and overwrite

L FH header overflow VI

LFH header overflow requirements:
* Ability to write NULL bytes in overflow
- Small target and overflow chunk on LFH

« Some allocation pattern that gives
required layout

* Ability to leverage reallocated target chunk

