
OllyDbg 2.0 Help
(preliminary, strongly incomplete version)

Table of contents

Table of contents ... 1
Introduction .. 2

Differences between versions 1.10 and 2.00... 2
OllyDbg 2.0 overview ... 2
(No) registration ... 4
Legal part ... 5
Installation .. 6
Support... 6

Assembler and disassembler .. 7
General information ... 7
Disassembling options ... 7
Internally generated names ... 8
Caveats .. 9

Analyser... 10
Procedures... 10
Stack variables... 10
Known functions... 12
Loops ... 12
Switches and cascaded IFs ... 13
Prediction of registers .. 14

Debugging ... 16
Attaching to running processes.. 16
Detaching from the debugging process ... 16
Debugging of child processes.. 17
Breakpoints .. 17
Run trace and profiling... 18
Hit trace.. 21

Search ... 24
Imprecise search patterns.. 24
Sequences of commands .. 25

Apologies ... 27

© squashed bug 2.0

OllyDbg © 2000-2009 Oleh Yuschuk, All Rights Reserved
All brand names and product names used in OllyDbg, accompanying files or in this help are trademarks, registered trademarks, or trade names of their
respective holders. You are free to make excerpts from this file, provided that you mention the source.

Introduction

This guide is not a detailed description of the OllyDbg 2.0. Rather, it highlights some interesting and non-
obvious features of the new debugger.

Differences between versions 1.10 and 2.00

The second version of the 32-bit debugger OllyDbg is redesigned practically from scratch. As a result, it is
faster, more powerful and much more reliable than its predecessor. Well, at least in the future, because
many useful features from the version 1.10 are not yet available in 2.00.

However, version 2.00 already contains many new features that were not available before. Among them:

• New debugging engine, redesigned from scratch, that overcomes many bugs and limitations of the
previous version;

• Full support for SSE instructions, including SSE3 and SSE4. SSE registers are accessed directly,
without code injection;

• Execution of commands in the context of debugger, allowing run trace speed - with conditions and
protocolling! - of up to 1,000,000 commands per second;

• Unlimited number of memory breakpoints;
• Conditional memory and hardware breakpoints;
• Reliable, analysis-independent hit trace;
• Analyser that recognizes the number (and sometimes the meaning) of the arguments of unknown

functions;
• Detaching from debugged process;
• Debugging of child processes;
• Built-in help for integer and FPU commands;
• Option to pause on TLS callback;
• Option to pass unprocessed exceptions to the unhandled exception filter.

OllyDbg 2.0 overview

OllyDbg 2.0 is a 32-bit assembler-level analyzing Degugger with intuitive interface. It is especially useful if
source code is not available or when you experience problems with your compiler.

Requirements . Developed and tested mainly under Windows 2000 and Windows XP, but should work
under any Windows version: 95, 98, ME, NT, 2000, XP, 2003 Server, Vista, Windows 7 and so on. For a
comfortable debugging you will need at least 500-MHz processor. OllyDbg is memory hungry. If you
debug large application with all features enabled, it may allocate 200-300 megabytes for backup and
analysis data.

Supported instruction sets . OllyDbg 2.0 supports all existing 80x86-compatible CPUs: MMX, 3DNow!,
including Athlon extentions, and SSE instructions up to SSSE3 and SSE4.

Configurability . More than 120 options (oh, no! This time it's definitely too much!) control OllyDbg's

behaviour and appearance.

Data formats . Dump windows display data in all common formats: hexadecimal, ASCII, UNICODE, 16-
and 32-bit signed/unsigned/hexadecimal integers, 32/64/80-bit floats, addresses, disassembly (MASM,
IDEAL, HLA or AT&T). It also decodes and comments many Windows-specific structures, including PE
headers, PEB, Thread data blocks and so on.

Help . OllyDbg 2.0 includes built-in help on all 80x86 integer and floating-point commands. If you possess
Windows API help (win32.hlp, not included due to copyright reasons), you can attach it and get instant
help on system API calls.

Startup . You can specify executable file in command line, select it from menu, drag-and-drop file to
OllyDbg, restart last debugged program or attach to already running application. OllyDbg supports just-in-
time debugging and debugging of child processes. You can detach from the debugged process, and it will
continue execution. Installation is not necessary!

Code highlighting . Disassembler can highlight different types of commands (jumps, conditional jumps,
pushes and pops, calls, returns, privileged and invalid) and different operands (general, FPU/SSE or
segment/system registers, memory operands on stack or in other memory, constants). You can create
custom highlighting schemes.

Threads . OllyDbg can debug multithread applications. You can switch from one thread to another,
suspend, resume and kill threads or change their priorities. Threads window displays errors for each
thread (as returned by call to GetLastError).

Analysis . Analyzer is one of the most significant parts of OllyDbg. It recognizes procedures, loops,
switches, tables, constants and strings embedded in code, tricky constructs, calls to API functions,
number of function’s arguments, import sections and so on. It attempts to determine not only the number
of stack arguments in the unknown functions, but even their meaning. Analysis makes binary code much
more readable, facilitates debugging and reduces probability of misinterpretations and crashes. It is not
compiler-oriented and works equally good with any PE program.

Full UNICODE support . All operations available for ASCII strings are also available for UNICODE, and
vice versa. OllyDbg is able to recognize UTF-8 strings.

Names . OllyDbg knows symbolic names of many (currently 7700) constants, like window messages, error
codes or bit fields, and decodes them in calls to known functions.

Known functions . OllyDbg recognizes by name more than 2200 frequently used Windows API functions
and decodes their arguments. You can add your own descriptions. You may set logging breakpoint on a
known or guessed function and protocol arguments to the log.

Calls . OllyDbg can backtrace nested calls on the stack even when debugging information is unavailable
and procedures use non-standard prologs and epilogs.

Stack . In the Stack window, OllyDbg uses heuristics to recognize return addresses and stack frames.
Notice however that they can be remnants from the previous calls. If program is paused on the known
function, stack window decodes arguments of known and guessed functions. Stack also traces and
displays the chain of SE handlers.

Search . Plenty of possibilities! Search for command (exact or imprecise) or sequence of commands, for
constant, binary or text string (not necessarily contiguous), for all commands that reference address,
constant or address range, for all jumps to selected location, for all referenced text strings, for all
intermodular calls, for masked binary sequence in the whole allocated memory and so on. If multiple
locations are found, you can quickly navigate between them.

Breakpoints . OllyDbg supports all common kinds of breakpoints: INT3, memory and hardware. You may

specify number of passes and set conditions for pause. Breakpoints may conditionally protocol data to the
log. Number of INT3 and memory breakpoints is unlimited: in the extreme case of hit trace, OllyDbg
sometimes sets more than 100000 INT3 breakpoints. On a fast CPU, OllyDbg can process up to 20-30
thousand breakpoints per second.

Watches . Watch is an expression evaluated each time the program pauses. You can use registers,
constants, address expressions, boolean and algebraical operations of any complexity.

Execution . You can execute program step-by-step, either entering subroutines or executing them at once.
You can run program till next return, to the specified location, or backtrace it from the deeply nested
system API call back to the user code. When application runs, you keep full control over it. For example,
you can view memory, set breakpoints and even modify code "on-the-fly". At any time, you can pause or
restart the debugged program.

Hit trace . Hit trace shows which commands or procedures were executed so far, allowing you to test all
branches of your code. Hit trace starts from the actual location and sets INT3 breakpoints on all branches
that were not traced so far. The breakpoints are removed when command is reached (hit).

Run trace . Run trace executes program in the step-by-step mode and protocols execution to the large
circular buffer. Run trace is fast: when fast command emulation is enabled, OllyDbg traces up to 1 million
commands per second! Run trace protocols registers (except for SSE), flags, contents of accessed
memory, thread errors and - for the case that your code is self-modifying - the original commands. You
may specify the condition to stop run trace, like address range, expression or command. You can save run
trace to the file and compare two independent runs. Run trace allows to backtrack and analyse history of
execution in details, millions and millions of commands.

Profiling . Profiler calculates how many times some instruction is listed in the run trace buffer. With
profiler, you know which part of the code takes most of execution time.

Patching . Built-in assembler automatically selects the shortest possible code. Binary editor shows data
simultaneously in ASCII, UNICODE and hexadecimal form. Old good copy-and-paste is also available.
Automatical backup allows to undo changes. You can copy modifications directly to executable file,
OllyDbg will even adjust fixups.

UDD. OllyDbg saves all program- and module-related information to the individual file and restores it when
module is reloaded. This information includes labels, comments, breakpoints, watches, analysis data,
conditions and so on.

Customization . You can specify custom fonts, colour and highlighting schemes.

And much more ! This list is far from complete, there are many features that make OllyDbg 2.0 the
friendly debugger.

(No) registration

OllyDbg 2.00 is Copyright (C) 2000-2009 Oleh Yuschuk. It is a closed-source freeware. For you as a user
this means that you can use OllyDbg for free, whether for private purposes or commercially, according to
the license agreement. Registration is not necessary. I have introduced it for the first version just to see
how popular my program is. The results were above any expectations. I was overwhelmed with the
registration forms, and this had noticeable negative influence on my productivity. Therefore: there is no
registration for the OllyDbg 2.00.

However, if you are professor or teacher and use OllyDbg for educational purposes , I would be very glad
if you contact me (Ollydbg@t-online.de), especially if you have ideas how to make my product more
student-friendly or better suited for the educational process.

Legal part

Trademark information. All brand names and product names used in OllyDbg, accompanying files or in
this help are trademarks, registered trademarks, or trade names of their respective holders. They are used
for identification purposes only.

License Agreement. This License Agreement ("Agreement") accompanies the OllyDbg version 2.00 and
related files ("Software"). By using the Software, you agree to be bound by all of the terms and conditions
of the Agreement.

The Software is distributed "as is", without warranty of any kind, expressed or implied, including, but not
limited to warranty of fitness for any particular purpose. In no event will the Author be liable to you for any
special, incidental, indirect, consequential or any other damages caused by the use, misuse, or the
inability to use of the Software, including any lost profits or lost savings, even if Author has been advised
of the possibility of such damages.

The Software is owned by Oleh Yuschuk ("Author") and is Copyright (c) 2000-2009 Oleh Yuschuk. You
are allowed to use this software for free. You may install the Software on any number of storage devices,
like hard disks, memory sticks etc. and are allowed to make any number of backup copies of this
Software.

You are not allowed to modify, decompile, disassemble or reverse engineer the Software except and only
to the extent that such activity is expressly permitted by applicable law. You are not allowed to distribute or
use any parts of the Software separately. You may make and distribute copies of this Software provided
that a) the copy contains all files from the original distribution and these files remain unchanged; b) if you
distribute any other files together with the Software, they must be clearly marked as such and the
conditions of their use cannot be more restrictive than conditions of this Agreement; and c) you collect no
fee (except for transport media, like CD), even if your distribution contains additional files.

This Agreement covers only the actual version 2.00 of the OllyDbg. All other versions are covered by
similar but separate License Agreements.

Fair use. Many software manufacturers explicitly disallow you any attempts of disassembling,
decompilation, reverse engineering or modification of their programs. This restriction also covers all third-
party dynamic-link libraries your application may use, including system libraries. If you have any doubts,
contact the owner of copyright. The so called „fair use" clause can be misleading. You may want to
discuss whether it applies in your case with competent lawyer. Please don't use OllyDbg for illegal
purposes!

Your privacy and security. The following statements apply to versions 1.00 - 2.00 at the moment when I
upload corresponding archives (containing OllyDbg.exe and support files) to Internet ("original OllyDbg").
They do not apply to any third-party plugins.

I guarantee that original OllyDbg:

- never tries to spy processes other than being debugged, or act as a network client or server, or
send any data to any other computer by any means (except for remote files specified by user), or act
as a Trojan Horse of any kind;

- neither reads nor modifies the system Registry unless explicitly requested, and these requested
modifications are limited to the following 6 keys (OllyDbg 2.0: currently only the last two):

HKEY_CLASSES_ROOT\exefile\shell\Open with OllyDbg
HKEY_CLASSES_ROOT\exefile\shell\Open with OllyDbg\command
HKEY_CLASSES_ROOT\dllfile\shell\Open with OllyDbg
HKEY_CLASSES_ROOT\dllfile\shell\Open with OllyDbg\command

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug\Debugger
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug\Auto

- does not create, rewrite or modify any files in system directories;

- does not modify, unless explicitly requested, any executable file or DLL on any computer, including
OllyDbg itself;

- logs your debugging activities only on your explicit request (except for the File History kept in
ollydbg.ini and *.udd files with debug information). Even more, I guarantee that without your
allowance OllyDbg will create or modify files only in the directory where it resides and in the working
directories specified in the Options dialog;

- (last but by no means least) contains no apparent or hidden „nag" screens forcing you to register
this shareware, nor any features that limit the functionality of OllyDbg after any period of time.

Beware of viruses . Although I've checked the original archive with several virus scanners, please do not
assume that your distribution of OllyDbg is free from viruses or Trojan horses camouflaged as OllyDbg or
support routine. I accept no responsibility for damages of any kind caused to your computer(s) by any
virus or Trojan horse attached to any of the files included into archive, or to archive as a whole, or for
damages resulting from the modifications applied to OllyDbg by third persons.

Installation

OllyDbg requires no installation. Simply create new folder and unpack Odbg200.zip to this folder. If
necessary, drag-and-drop ollydbg.exe to the desktop to create shortcut.

If you are a hardcore user and run OllyDbg on Windows NT 4.0, you will need psapi.dll. This library is not
included.

Some very, very old versions of Windows 95 do not include API functions VirtualQueryEx and
VirtualProtectEx. These functions are very important for debugging. If OllyDbg reports that functions are
absent, normal debugging is hardly possible. Please upgrade your OS.

Support

The available support is limited to the Internet page http://www.ollydbg.de. From here you will be able also
to download bugfixes and new versions. If you have problems, send email to Ollydbg@t-online.de. Usually
I answer within a week. Unless you explicitly disallow this, I reserve the right to place excerpts from
your emails on my Internet site .

Full source code is available but will cost you some money. This is a „clean-room" implementation that
contains no third-party code. You can order either the whole source code or its parts like Disassembler,
Assembler or Analyzer. To get more information, send me a mail. By the way, I plan to release
Disassembler 2.0 under GPL v3.

Description of .udd file format is available on request. It is free.

Assembler and disassembler

General information

OllyDbg 2.0 supports all 80x86 commands, FPU, MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3 and SSE4
extensions. Please note following peculiarities and deviations from Intel's standard:

• REP RET (AMD branch prediction bugfix) is supported;
• Multibyte NOPs (like NOP [EAX]) are supported. However, Assembler always attempts to select the

shortest possible form, therefore it's hard to set the required NOP length;
• FWAIT is always decoded separately from the following FPU command;
• No-operand forms of binary FPU commands are not supported, use two-operand forms (FADDP

ST(1),ST instead of FADDP);
• LFENCE: only form with E8 is accepted (0F AE E8);
• MFENCE: only form with F0 is accepted (0F AE F0);
• SFENCE: only form with F8 is accepted (0F AE F8);
• PINSRW: register is decoded as 16-bit (only low 16 bits are used anyway);
• PEXTRW: memory operand is not allowed, according to Intel;
• SMSW: register is decoded as 16-bit (only low 16 bits are used anyway);
• INSERTPS: source XMM register is commented only as a low float, whereas command may use any

float;
• Some FPU, MMX and SSE commands accept either register only or memory only in ModRM byte. If

counterpart is not defined, Disassembler reports it as an unknown command. Integer commands, like
LES, report in this case invalid operands.

• SSE4 commands that use register XMM0 as a third operand are available both in 2- and in 3-operand
formats, but Disassembler will show only the full 3-operand form;

• Assembler accepts CBW, CWD, CDQ, CWDE with explicit AL/AX/EAX as operand. Disassembler,
however, uses only implicit no-operand form.

Disassembling options

OllyDbg supports four different decoding modes: MASM, Ideal, HLA and AT&T.

It's not necessary to represent MASM - this is the de facto standard of the programming. Ideal mode,
introduced by Borland, is very similar to MASM but differently decodes memory addresses. High Level
Assembly language, created by Randall Hyde, uses yet another, functional syntax where first operand is a
source and arguments are operands are taken into the brackets. AT&T is popular among the Linux
programmers.

Example of MASM syntax:

Example of Ideal syntax:

Example of HLA syntax:

Example of AT&T syntax:

Assembler will recognize any syntax, except for AT&T: currently it is only for disassembly.

HLA is a public domain software, you can download it together with documentation and sources from
http://webster.cs.ucr.edu.

Other code display options are more or less self-explaining.

Internally generated names

Names created by Analyser are usually taken into the triangular brackets, like <ModuleEntryPoint> or
<STRUCT IMAGE_DATA_DIRECTORY>.

On the previous examples, you may see the call to API function FreeLibrary():

CALL <JMP.&KERNEL32.FreeLibrary>

What does it mean? Prefix JMP means that this call does not lead directly to FreeLibrary(), but to the
jump to this function:

Jump itself is indirect, it uses contents of the doubleword where loader has placed the address of the
import:

Now it is clear. If memory location contains imported address of some API function, analyser uses C
notation to form the name of this location: &module.function, in our case &KERNEL32.FreeLibrary.

Indirect jump to imported address is JMP [<&KERNEL32.FreeLibrary>], and call to indirect jump is CALL
[<JMP.&KERNEL32.FreeLibrary>]. You can't use internal names in expressions and commands.

Caveats

All constants in the OllyDbg are hexadecimal by default. If you want to specify decimal constant, follow it
with the point:

MOV EAX,1000. translates to MOV EAX,3E8

Hexadecimal constant may begin with a letter (A-F). But symbolic labels have higher priority. Assume that
you have defined label ABCD at address 0x00401017. In this case,

MOV EAX,ABC translates to MOV EAX,0ABC

MOV EAX,ABCD translates to MOV EAX,401017

To avoid ambiguity, precede hexadecimal constants with 0 or 0x.

There are only few exceptions to this rule. Indices of arguments and local variables are decimal. For
example, ARG.10 is the address of the tenth call argument with offset 1010·4=4010=0x28. To memorize
this rule, note that ARG and index are separated with a decimal point.

Ordinals are also in decimal. COMCTL32.#332 means export with ordinal 33210.

Analyser

OllyDbg is an analysing debugger. For each module (executable file or DLL) it attempts to separate code
from data, recognize procedures, locate embedded strings and switch tables, determine loops and
switches, find function calls and decode their arguments, and even predict value of registers during the
execution.

This task is not simple. Some of the existing compilers are highly optimizing and use different tricks to
accelerate the code. It’s impossible to take them all into account. Therefore the analyser is not limited to
some particular compiler and tries to use generic rules that work equally good with any code.

How is it possible at all? OllyDbg makes 12 passes through the program, each time gathering information
that will be used on the next steps. For example, on the first pass it disassembles every possible address
within the code sections and checks whether this can be the first byte of the command. Valid command
can not start on fixup, it can’t be jump to the non-existing memory etc. Additionally it counts all found calls
to every destination. Of course, many of these calls are artefacts, but it's unlikely that two wrong calls will
point to the same command, and almost impossible that there are three of them. So if there are three or
more calls to the same address, the analyser is sure that this address is entry point of some frequently
used subroutine. On the second pass OllyDbg uses found entries as starting points for the code walk and
determines other entries, and so on. In this way I locate commands that are 99.9% sure. Some bytes,
however, are not in this chain. I probe them with 20 highly efficient heuristical methods. They are not as
reliable, and analyser can make errors. But their number decreases with each release.

Procedures

Procedure, from the Analyzer's point of view, is a contiguous piece of code where, starting from the entry
point, one can reach, at least theoretically, all other commands (except for NOPs or similar spaceholders
that fill alignment gaps). Strict procedure has exactly one entry point and at least one return. If you select
fuzzy mode, any more or less consistent piece of code will be considered separate procedure.

Modern compilers perform global code optimizations that may split procedure in several parts. In such
case fuzzy mode is especially useful. The probability of misinterpretation, however, is rather high.

Procedures are marked by long fat parenthesis in the dump column. Dollar sign $ to the right marks call
destinations, sign "greater than" > - jump destinations, point • – other analysed commands. Three
procedures on the picture below implement writing to the memory at address 0 (NULL pointer), INT3 and
division by zero in the test application:

Stack variables

Usually call to the function with several stack arguments looks like this (assuming all doubleword
arguments):

...
PUSH argument3

PUSH argument2
PUSH argument1
CALL F
...

Called function creates new stack frame (not always!) and allocates N doublewords of local memory on
the stack:

F: PUSH EBP
MOV EBP,ESP
SUB ESP,N*4
...

After these two sequences are executed, stack will have the following layout:

(unused memory)
ESP-> local N [LOCAL.N]

... ...
local 2 [LOCAL.2]
local 1 [LOCAL.1]

EBP-> Old EBP [LOCAL.0]
Return address [RETADDR]
argument1 [ARG.1]
argument2 [ARG.2]
argument3 [ARG.3]
...

ARG.1 marks the address of the first function argument on the stack, [ARG.1] - its contents, ARG.2 -
address of the second argument and so on. LOCAL.0 is the address of the doubleword immediately
preceding return address. If called function creates standard stack frame, then [LOCAL.0] contains
preserved old ESP value and local data begins with LOCAL.1, otherwise local data begins with LOCAL.0.
Note that ARGs and LOCALs have decimal indices - an exception justified by the point in the notation.

Some subroutines tamper with the return address on the stack. If OllyDbg detects access to this location,
it marks it as [RETADDR].

When subroutine uses standard stack frame, register EBP serves as a frame pointer. LOCAL.1 is then
simply a EBP-4, LOCAL.2 is EBP-8, ARG.1 is EBP+8 etc. Modern optimizing compilers prefer to use EBP
as a general-purpose register and address arguments and locals over ESP. Of course, they must keep
trace of all ESP modifications. Have a look at the following code:

F: MOV EAX,[ESP+8] ; ESP=RETADDR
PUSH ESI ; ESP=RETADDR
MOV ESI,[ESP+8] ; ESP=RETADDR-4

When procedure is called (address F:), ESP points to the return address on the stack. Two doublewords
below is the second argument, ARG.2. Command PUSH decrements ESP by 4. Therefore the last line
accesses now ARG.1. The code is equivalent to:

F: MOV EAX,[ARG.2]
PUSH ESI
MOV ESI,[ARG.1]

Of course, analyser makes this for you. Keeping trace of ESP, however, takes plenty of memory. If
memory is low, you may turn off the ESP trace for system DLLs. As a negative effect, stack walk will get
unreliable.

Some compilers do not push each argument separately. Instead, they allocate memory on the stack (SUB
ESP,nnn) and then write arguments using ESP as index. First doubleword argument is [ESP], second -
[ESP+4] and so on.

This sample program was translated with MinGW (gcc).

int main() {
 MessageBox(NULL,"I'm a little, little code in a b ig, big world...",
 "Hello, world",MB_OK);
 return 0;
}

Note that the order of arguments for MessageBox() is (hOwner, Text, Caption, Type). MinGW has
changed this order. Still, OllyDbg 2 was able to recognize the arguments.

Known functions

OllyDbg contains descriptions of more than 2200 standard API functions from the following libraries:

• KERNEL32.DLL
• GDI32.DLL
• USER32.DLL
• NTDLL.DLL
• VERSION.DLL
• ADVAPI32.DLL
• SHLWAPI.DLL
• COMDLG32.DLL
• MSVCRT.DLL

It also knows more than 7700 symbolic constants, grouped into 480 types, and can decode them in the
code:

You can use known constants in assembler commands and arithmetic expressions. For example, CMP
EAX,WM_PAINT is a valid command that compiles to 83F8 0F.

Loops

Loop is a closed continuous sequence of commands where last command is a jump to the first. Loop must

have single entry point and unlimited number of exits. Loops correspond to the high-level operators do,
while and for. OllyDbg recognizes nested loops of any complexity. Loops are marked by parenthesis in the
disassembly. If entry is not the first command in the loop, OllyDbg marks it with a small triangle.

Below is the main loop of the threads created by the test application, together with the C code. Selected
command is loop exit. Long red arrow shows its destination:

 ...
 while (1) {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 if (msg.message==WM_QUIT) break;
 };
 if (GetTickCount()>t+100) {
 u++; t=GetTickCount();
 sprintf(s,"Thread %i count %u",threadindex,u) ;
 SetWindowText(hw,s);
 };
 Sleep(1);
 };
 return threadindex;

Note that sprintf() called at address 00401AC1 is a library function used by compiler and is not known as
such. But there are other calls somewhere in the code, so analyser was able to decide that its second
parameter is a format string, and has decoded the remaining parameters correspondingly.

Switches and cascaded IFs

To implement a switch, many compilers load switch variable into some register and then subtract parts of
it, like in the following sequence:

MOV EDX,<switch variable>
SUB EDX,100
JB DEFAULTCASE
JE CASE100 ; Case 100

DEC EDX
JNE DEFAULTCASE
... ; Case 101

This sequence may also include one- and two-stage switch tables, direct comparisons, optimizations and
other stuff. If you are deep enough in the tree of comparisons and jumps, it's very hard to say which case
is it. OllyDbg does it for you. It marks all cases, including default, and even attempts to suggest the
meaning of cases, like 'A', WM_PAINT or EXCEPTION_ACCESS_VIOLATION. If sequence of commands
doesn't modify register (i.e. consists only of comparisons), then this is probably not a switch, but a
cascaded if operator:

if (i==100) {...}
else if (i==101) {...}
else if (i==102) {...}

Prediction of registers

Look at this code snippet:

Analyser recognized that procedure at address 004012C0 is similar to printf: its first argument is a format
string. (In fact, this function displays error messages). Such procedures may have variable number of
arguments and use C-style conventions for the parameters, namely that arguments are remove from the
stack by the calling program. Command ADD ESP,8 after the call does exactly this: it removes 8 bytes of
data, or two doublewords frof the stack. The first doubleword is the pointer to format string. Therefore this
call must have one additional parameter. Format string indicates the same: it expects one pointer to the
string.

String address is the second argument in the call. By stating <%s> => OFFSET LOCAL.148 Ollydbg tells
you the following: register EDX at the moment of PUSH EDX will contain address of the local variable 148
(148.-th doubleword preceding return address). Indeed, previous command (LEA EAX,[LOCAL.148])
loads this address to EDX.

Symbol => in comments means "predicted to be equal to". For example, PUSH ECX will push address of
the displayed format string... Wait! Operator at 0040960B just adds 0x1D37 to ESI. But where ESI is
defined?

If you look through the procedure, you will be able to restore the structure of the code:

...
MOV ESI,OFFSET Ot.0045E7EC ; Here ESI is defined
...
PUSH ESI
... ; Inlined strcpy()
POP ESI
...
CALL Ot.xxx
...
CALL OT.yyy
...
LEA EDX,[LOCAL.148] ; Our code
PUSH EDX
LEA ECX,[ESI+1D37]
PUSH ECX
CALL Ot.004012C0
ADD ESP,8
...

At the beginning, program loads ESI with the address of static data block. This operation is not very
meaningfull here but would make more sense in the multithreaded applications that use thread local
storage. Pair PUSH ESI/POP ESI preserves value of ESI from modification by inlined strcpy(): it uses
MOVS. But then you see two calls to unknown functions xxx and yyy. Why analyser is sure that they leave
ESI unchanged? Well, either analyser determined this directly from the code of xxx and yyy, or you told it
by selecting corresponding analysis option. All API function and many separately compiled procedures
use stdcall convention: functions should preserve registers EBX, EBP, ESI and EDI.

Debugging

Attaching to running processes

You can attach OllyDbg to the running process, provided that you have sufficient privileges. From the
main menu, select File | Attach... and choose process from the list of running processes.
If main thread is suspended (for example, application was created as CREATE_SUSPENDED), OllyDbg
will automatically resume it. For different reasons, this is not possible under Windows 2000. Attempt to
attach to the suspended application will result in crash.
While attaching, Windows creates new thread in the contents of the Debuggee. This thread executes
DbgBreakPoint(), thus giving Debugger the chance to make all necessary preparations. The thread is
marked as temporary by the OllyDbg. Under Windows 2000, OllyDbg is unable to recognize this thread as
temporary and reports it as an ordinary thread.

Attaching to running process is controlled by the following options:

When attaching to application, make first pause at: System breakpoint - asks OllyDbg to pause
application on the system breakpoint in the temporary thread;
When attaching to application, make first pause at: Application code - asks to pause application in
the main thread at the location that was executing at the moment of attaching. Usually this is ntdll.dll;
When attaching to application, make first pause at: No pause - application should continue execution.

Detaching from the debugging process

Under Windows XP and higher OS versions, you can detach from the running process. From the main
menu, select File | Detach . OllyDbg automatically removes all breakpoints, but does not resume threads
that were suspended by you. Don't forget to do it manually!

Debugging of child processes

OllyDbg is a single-process debugger. To debug child processes, it launches new instances of itself, so
that each child gets its own copy of the OllyDbg. This is possible only under Windows XP or higher
Windows versions, and only if parent process was started by OllyDbg.

Due to the limitations of the Windows, debugging of grandchildren is not supported. That is, if you debug
process A and it spawns process B, B will be passed to the OllyDbg. If now B spawns process C,
debugger will get no notification and C will run free. Of course, you can attach to the C later.

Debugging of child processes is controlled by the option Debugging events | Debug child processes .

Breakpoints

OllyDbg supports the following types of breakpoints:

- INT3 breakpoints on code execution;
- Memory breakpoints on memory access, write to memory or code execution;
- Hardware breakpoints on memory access, write to memory or code execution.

Additionally, you can set breakpoint on access to memory block (not available for DOS-based Windows
versions). They will be discussed elsewhere.

Number of INT3 and memory breakpoints is unlimited. Note that Windows protects memory only in chunks
of 4096 bytes. Therefore, if memory breakpoint is set within the memory block with frequently accessed
variables, OllyDbg will get many false breakpoints, which may significantly slow down the speed of
execution. In some cases, run trace with allowed emulation of the commands may be faster! For details,
see chapter "Run trace and profiling". Caveat: avoid setting memory breakpoints on the stack. If address
from the protected memory block is passed to the system, system call will fail, terminating the application
or influencing its operation. This is possible with memory breakpoints on data, too, but with significantly
lower probability.

Number of hardware breakpoints is limited to 4 by the CPU.

Simple breakpoint pauses execution each time the command is executed or memory is accessed. You
may also set conditional logging breakpoints with many additional options. The picture below represents
hardware breakpoint on the call to PeekMessageA() at address 0x0040191B in the main loop of the test
application and corresponding protocol. Each time the breakpoint is hit, the parameters of the call are
saved to the log. We want to pause application when received message is WM_LBUTTONDOWN. First
parameter in the call is the pointer to the structure MSGA. It is pushed last and therefore has address
[DWORD ESP], or simply [ESP]. Message identifier is the second element of the structure, doubleword at
address [ESP]+4. Its contents, [[ESP]+4] is compared with the constant WM_LBUTTONDDOWN. If they
are equal, execution will be paused:

Run trace and profiling

Run trace is the way to execute and protocol the debugged application command by command. In this
way, one can locate the most frequently executed pieces of code, detect jumps to nowhere or just
backtrace program execution that precedes some event.

In its simplest form, run trace sets breakpoint on the next command and continues execution. This
method, however, is very slow. Windows need up to hundred microseconds to pause application and pass
debugging event to debugger. This limits run trace to 10-30 thousand commands per second.

To accelerate run trace, OllyDbg can emulate commands internally, without passing control to the

debuggee. The emulation is currently limited to the 55 frequently used integer commands, like MOV, ADD,
CALL or conditional jumps. If command is not known or cannot be emulated (like SYSENTER), OllyDbg
passes it to the application. Still, execution speed reaches 300-600 thousand, in simple loops up to one
million commands per second. In many cases, this is sufficient for the "almost real-time" behaviour of
Windows applications.

Each traced command is protocolled to the large circular buffer. The protocol includes address, contents
of the integer registers and flags. If you need, you may save command code, FPU registes and contents
of the accessed memory. Note however that each additional option reduces the number of the commands
in the buffer. For example, if buffer is 256 MB large and all extras are turned off, it keeps up to 16.7 million
commands, and with extras on - only 7 to 10 million.

Probably the most interesting feature of the run trace is its ability to pause execution when some event
occurs (command Trace|Set condition... from the main menu):

Option "EIP points to modified command" can be used to find entry point of the program packed by self-
extractor. (By the way, hit trace in this case is much faster). When you start run or hit trace and option is
active, Ollydbg compares actual command code with the backup copy abd pauses when they differ. Of
course, backup copy must exist. The simplest way to assure it is to activate Options|Debugging
options|Auto backup user code.

Pause on access to memory range can be implemented with memory breakpoints. Note however that
80x86 CPU protects memory only in 4096-byte chunks. If memory breakpoint is set on the small part of
the actively used memory block, execution will cause large number of false debugging events. To recover,
OllyDbg must remove memory protection, execute single command that caused exception and restore
memory breakpoint again. This requires plenty of time. If command emulation is actvated, run trace may
be significantly - up to 20 times - faster than memory breakpoint.

Condition is any valid expression, for example EAX==0 or ([BYTE 450002] & 0x80)!=0. Registers are
taken from the actual thread. The evaluation of conditional expressions is very quick and has only minor
influence on the run trace speed.

If you need to know how frequently each traced command was executed, choose Comments | Show
profile in the Disassembler, or Profile selected module or Global profile in the Run trace. In the first
case, Comments column will show how many times this command is present in the trace data:

In the two remaining cases Profile window will list traced commands, sorted by their frequency:

As you can see, snippet at address 0040FF93 in module Test was executed most frequently.

Run trace is controlled by the following set of options:

Allow fast command emulation - allows OllyDbg to emulate some frequently used CPU commands
internally, thus accelerating the debugging. Emulation is currently not compatible with the hardware

breakpoints. If some hardware breakpoint is active, emulation is disabled;

Size of run trace buffer - allocates memory for the circular buffer with run trace data. As a rule of thumb,
one megabyte keeps 30000 - 60000 commands;

Don't enter system DLLs - requests OllyDbg to execute calls to Windows API functions at once, in the
trace-over mode. Note that if API functions call user-space callbacks, they will not be traced, too;

Always trace over string commands - requests OllyDbg to trace over string commands, like REP
MOVSB. If this option is deactivated, each MOVSB iteration will be protocolled separately;

Remember commands - saves copy of the traced command to the trace buffer. Only necessary if
debugged application uses self-modified code;

Remember memory - saves actual contents of the addressed memory operands to the trace buffer;

Remember FPU registers - saves floating-point registers to the trace buffer;

Synchronize CPU and run trace - moves CPU selection and updates CPU registers each time you
change selection in the Run trace protocol.

Hit trace

The sense of debugging is to find and remove all bugs from the debugged application. To approach this
ideal, you need to execute every subroutine and every branch, otherwise latent errors are
preprogrammed. But how do you know whether particular piece of code was executed? Hit trace will give
you the answer.

It starts from the actual location. OllyDbg sets INT3 breakpoints on all branches that were not traced so
far. After trace breakpoint is reached, it removes it and marks command as hit. This allows to check at a
glance whether some branch of code was executed. Here is an example: code at 004011CB was never
executed.

Hit tracing is astoundingly fast, after short startup period application runs with almost full speed. Problems
may occur with indirect branches and calls, like CALL [0x405000] or JMP [0x123456+EAX*4]. In this case
you have two options: either to check the destination each time, or use analysis results to guess the set of
possible destinations. The first way is more reliable, the second is significantly faster. If you are in doubt,
use the first option.

Some malware and antivirus programs place the pieces of the code in the kernel memory (usually
0x80000000 and above). OllyDbg is unable to set INT3 breakpoints and continues in the step-by-step
execution mode until the user memory is reached.

Hit trace is controlled by the following set of options:

Set breakpoints on known callbacks - if active, OllyDbg sets trace breakpoint on all known callback
functions when hit trace starts, so that calls from Windows API functions, like SendMessage(), can be
traced;

When indirect or table-based jump or call is hit: C heck destination each time / Use analysis data to
guess destinations - controls tracing of indirect jumps and calls. The first option assures reliable hit
trace, the second makes it faster;

When next destination is analysed as data: Continue hit trace / Pause hit trace - this situation may
happen either when Analyser erroneously recognized valid code as data, or if debugged program is self-
modified or creates code on-the-fly. In the second case, be careful: INT3 breakpoint may have disastrous
effects on the execution!

When next destination is outside the code section: Continue hit trace / Pause hit trace / Trace code

command by command - if debugged program creates code on-the fly or loads it dynamically from the
disc, setting INT3 breakpoints on it may lead to crash. Step-by-step tracing is the safest, but also the
slowest option.

Search

Imprecise search patterns

When searching for command or sequence of commands, you can specify imprecise Assembler patterns
that match many different instructions. For example, MOV EAX,ANY will match MOV EAX,ECX; MOV
EAX,12345; MOV EAX,[FS:0] and many other commands.

Imprecise patterns use following keywords:

Keyword Matches

R8 Any 8-bit register (AL,BL, CL, DL, AH, BH, CH, DH)
R16 Any 16-bit register (AX, BX, CX, DX, SP, BP, SI, DI)
R32 Any 32-bit register (EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI)
SEG Any segment register (ES, CS, SS, DS, FS, GS)
FPUREG Any FPU register (ST0..ST7)
MMXREG Any MMX register (MM0..MM7)
SSEREG Any SSE register (XMM0..XMM7)
CRREG Any control register (CR0..CR7)
DRREG Any debug register (DR0..DR7)
CONST Any constant
ANY Any register, constant or memory operand

You can freely combine these keywords in memory addresses, like in the following examples:

Memory address Matches

[CONST] Any fixed memory location, like [400000]
[R32] Memory locations with address residing in register, like [ESI]
[R32+1000] Sum of any 32-bit register and constant 1000, like [EBP+1000]
[R32+CONST] Sum of any 32-bit register and any offset, like [EAX-4] or [EBP+8]
[ANY] Any memory operand, like [ESI] or [FS:EAX*8+ESI+1234]

If you are searching for the sequence of commands, it's important to emphasize the interaction of the
commands in a sequence. Suppose that you are looking for all comparisons of two memory operands.
80x86 has no such instruction (except CMPS, but it's slow and requires lengthy preparations). Therefore
compiler will generate the following code:

MOV EAX,[location 1]
CMP EAX,[location 2]

However, it is possible that compiler will choose ECX instead of EAX, or any other register. To take into
account all such cases, OllyDbg has special depending registers:

Register Meaning

RA, RB All instances of 32-bit register RA in the command or sequence must
reference the same register; the same for RB; but RA and RB must be
different

R8A, R8B Same as above, but R8A and R8B are 8-bit registers
R16A, R16B Same as above, but R16A and R16B are 16-bit registers
R32A, R32B Same as RA, RB

For example, search for XOR RA,RA will find all commands that use XOR to zero 32-bit register, whereas
XOR RA,RB will exclude such cases. Correct sequence for the mentioned example is

MOV RA,[CONST]
CMP RA,[CONST]

There are also several imprecise commands:

Command Matches

JCC Any conditional jump (JB, JNE, JAE...)
SETCC Any conditional set byte command (SETB, SETNE...)
CMOVCC Any conditional move command (CMOVB, CMOVNE...)
FCMOVCC Any conditional floating-point move (FCMOVB, FCMOVE...)

Examples:

Pattern Found commands

MOV R32,ANY MOV EBX,EAX
MOV EAX,ECX
MOV EAX,[DWORD 4591DB]
MOV EDX,[DWORD EBP+8]
MOV EDX,[DWORD EAX*4+EDX]
MOV EAX,004011BC

ADD R8,CONST ADD AL,30
ADD CL,0E0
ADD DL,7

XOR ANY,ANY XOR EAX,EAX
XOR AX,SI
XOR AL,01
XOR ESI,00000088
XOR [DWORD EBX+4],00000002
XOR ECX,[DWORD EBP-12C]

MOV EAX,[ESI+CONST] MOV EAX,[DWORD ESI+0A0]
MOV EAX,[DWORD ESI+18]
MOV EAX,[DWORD ESI-30]

Note that in the last line, [DWORD ESI-30] is equivalent to [DWORD ESI+0FFFFFFD0].

Sequences of commands

OllyDbg can search for a sequence of commands. Suppose that you want to find all comparisons of two
memory locations, as mentioned above. You specify your search pattern as

MOV RA,[CONST]
CMP RA,[CONST]

However, there is a problem. Optimizing compiler may place several other commands between MOV and
CMP that do not use regisetr RA. What to do? For OllyDbg, this is not a problem. Just check Allow
intermediate commands in the search dialog:

If intermediate commands have no influence on the specified commands (this also includes modification of
flags), they will be allowed. For example,

MOV EAX,[123456]
XOR EDI,EAX
CMP EAX,[12345A]

is allowed (XOR EDI,EAX leaves contents of EAX unchanged), whereas

MOV EAX,[123456]
XOR EAX,EDI
CMP EAX,[12345A]

does not match the sequence because EAX will no longer contain [123456]. Another case is shown below:

If there is a jump to CMP or intermediate command, EAX may contain different value, so usually such
sequences are invalid. But if you want to take such cases into account, check Allow jumps from outside .

Apologies
"We apologize for inconveniences"

Douglas Adams

I'm not a native English speaker. Please forgive me all the grammatical errors. I would be very pleased if
you let me know about especially unhappy phrases and suggest replacement.

I apologize for my semantical errors in the C code. They usually result in a window reporting that
processor exceptionally dislikes command or data at some address. Of course, I can only blame my
otherwise excellent compiler because it did literally what I wrote, not what I meant. Please forgive him and
send me this address together with the version of OllyDbg and brief explanation.

I apologize also for inconveniences. If you miss some very useful function, please send me a mail, but
don't expect too much.

