
How to scan/exploit a ssl based webserver.
by xxradar.

http://www.radarhack.com
mailto:xxradar@radarhack.com.

Version 1.0 21-09-2003

1. Introduction
Sometimes late at night, playing with openssl and connecting to https
servers, just before you fall a sleep, you find a https server running
an older version of IIS. I actually found web banking applications
running IIS4.0 on WINNT4.0 not so long ago, using 40 bit encryption of
course. Most of time we forget that must application exploits work as
well against http as https based servers. The trouble is that most
tools do not use ssl to scan or exploit. If still interested, read on.

2. Setting up an http to https proxy on win32.
The first example shows how we can use 'stunnel' to proxy http to https
and use our favorite vulnerability scanner.
To obtain 'stunnel' visit http://www.stunnel.org.

The latest release requires a stunnel.conf file. This is a working
example file.

#Stunnel server configuration file

#up this number to 7 to get full log details
#leave it at 3 to just get critical error messages
debug=7
output=.\output.log

client = yes #puts stunnel in client mode

[stunnel]
accept=80
connect=443 # or use ‘server_to_scan’:443

I used connect=192.168.10.65:443 (the server to attack). Then start
stunnel.

C:\stunnel>stunnel

The http to https proxy is running!

3. Scanning for known vulnerabilities.
Now simply point your favorite vulnerability scanner to 'localhost'
port 80 and hit the start button.

4. Exploiting the https server.
I used my favorite demo tool IISkoei to exploit, it's old but fancy :-).
Make sure that the host you attack is your own local IP address on port
80, and NOT 127.0.0.1, because the attacked server needs this IP
address to spawn the reverse shell.

5. Setting up an http to https proxy on Linux
You can use stunnel also on Linux, but I played around with another
powerful tool, called socat. Socat is available at
http://www.dest-unreach.org/socat/. This tool is described as a 'multi
purpose relay'. Read the EXAMPLE file of the distribution to see how
powerful it is. Although I found less info on ssl relaying, after a
couple trial and errors, here it is.

[root@localhost root]# socat TCP4-LISTEN:80,fork,su=nobody OPENSSL:192.168.10.65:443

Point your scanner/exploit to the 'localhost' port 80 and off you go.
(Whisker supports https native, but this is just to demonstrate)

[root@localhost whisker-2.1]# perl whisker.pl -h http://127.0.0.1
…..

--

Beginning scan against http://127.0.0.1

--

Whisker is currently crawling the website; please be patient.

--
Title: Server banner
Id: 100
Severity: Informational

The server returned the following banner:
 Microsoft-IIS/5.0

--

Whisker is done crawling the website.

--
Title: Server banner
Id: 100
Severity: Informational

The server returned the following banner:
 Microsoft-IIS/5.0

--
Title: Server OPTIONS results
Id: 109
Severity: Informational

The server responded to an OPTIONS query with the following public methods:
OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH,
LOCK, UNLOCK, SEARCH
The allowed methods for '/' are:
OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH,
LOCK, UNLOCK, SEARCH

--
Title: Server patch level
Id: 111
Severity: Informational

Testing indicates server patch level to be at or after the following level:
Native Win2K or Win2K SP1
...

A nice feature of socat is that you can try to bypass 'bad' packet
filters by using 'known' lower port numbers. You have to run it as root
in this case.

[root@localhost root]# socat TCP4-LISTEN:80,fork,su=root,reuseaddr
OPENSSL:192.168.10.65:443,sourceport=20

Note that as well with stunnel as socat, you can connect remotely to
the proxies and use your tool of choice on any platform.

6. Conclusion
With a little bit of fantasy you can as easily exploit an https as an
http server. The good thing is, that there is probably more
interesting and confidential info to find then elsewhere.

Please use this info in a test environment and for
educational use, and NOT to hack into somebody else his
servers!!!

