
An Introduction to Hardware-Assisted Virtual Machine (HVM) Rootkits

Michael Myers Stephen Youndt

Crucial Security Crucial Security

http://crucialsecurity.com/

August 7, 2007

Abstract

Since mid-2006, a number of security researchers have
made public claims about a theoretical rootkit tech-
nique based on the hardware-assisted virtualization ca-
pabilities of the most recent x86 processors from AMD
and Intel. The presentations on the topic generated a
great deal of excitement and private research. Un-
til recently, however, there were no publicly-available
source code or implementation details available. This
paper and its associated source code presents a min-
imal hypervisor framework for a rootkit. Supporting
code to insert the hypervisor into a running Windows
XP system is also provided.

1 Introduction

Hypervisor Virtual Machine (HVM) rootkits were first
described in 2006 [1, 2], but few implementation de-
tails were available. Recently, source code for an Intel-
specific implementation of an HVM rootkit was con-
tributed to Rootkit.com [3] and an AMD implementa-
tion followed soon after at BluePillProject.org [4].

In this paper, we provide an introduction and
overview of currently-available knowledge on the topic
of HVM rootkits, as well as implementation details
to complement previously-discussed research on the
method. We will consider the detection techniques
that have been proposed to date and evaluate the vi-
ability of each.

In addition, we will provide the components neces-
sary to create an HVM rootkit on an AMD multi-core
x86 processor. Although not presenting a complete so-
lution, this paper will describe the unique features and
provide sufficient source code for a programmer knowl-
edgeable in contemporary rootkits to begin working
with virtualization technology.

2 AMD Virtualization

In our hypervisor example, only AMD Virtualiza-
tion (AMD-VTM) technology, formerly known by the
code name “Pacifica,” will be implemented. Although
Intel VT-xTM (code-named “Vanderpool”) technol-
ogy is similar, a multi-platform implementation would
require significant additional code and complexity.
Nonetheless, the discussions in this paper should serve
as a road map to implementing similar functionality
on IntelTM hardware.

AMD-V, also referred to as “AMD Secure Virtual
Machine” (SVM) technology in the AMD program-
mer’s manuals [5], is implemented as a set of excep-
tions which intercepts any instructions or CPU events
that may affect the hypervisor or its guests. AMD-V
defines several new instructions, registers and control
flags to implement a more privileged mode, or “ring
minus one.” Previously, ring zero was the most privi-
leged mode implemented in the x86 architecture. Data
structures known as Virtual Machine Control Blocks
(VMCB) allow exceptions to be controlled. VMCBs
are not shared amongst processor cores.

The instructions defined to implement SVM include
those to execute a guest (VMRUN) and manage guest
state information (VMSAVE and VMLOAD). The VMMCALL

instruction allows guests to explicitly communicate
with the hypervisor while STGI and CLGI are used to
control global interrupts. INVLPGA is used to invalidate
entries in the memory controller’s Translation Looka-
side Buffer (TLB) while SKINIT provides the ability
to implement a secure hypervisor loader. In addi-
tion, the MOV instruction has been extended to directly
read and write the CR8 control register (Task Prior-
ity Register), as an SVM-related performance speed-
up. Lastly, enabling SVM affects the behavior of a
number of existing AMD64 instructions. Overall, the
newly defined instructions are used primarily for creat-
ing the hypervisor and switching between a guest and
the host (known as a “world switch”).

The VMCB is described in the AMD64 Architec-

1



ture Programmer’s Manual.[5] The VMCB consists of
two areas. The first area contains control bits includ-
ing the intercept enable mask. This mask determines
which conditions cause a #VMEXIT. The second area
maintains the guest state. This save state area pre-
serves the segment registers and most of the virtual
memory and entry point control registers, but not the
general purpose or floating point registers. Most of the
VMCB (2564 bytes in size) is currently defined as un-
used bytes and is reserved for future expansion. The
VMCB must be allocated as page-aligned contiguous
physical memory.

The central functionality in any AMD-V hypervi-
sor is a loop of VMRUN followed by #VMEXIT process-
ing. The hypervisor initiates guest operation by ex-
ecuting the VMRUN instruction, providing the appro-
priate VMCB. Execution of the guest continues until
an enabled #VMEXIT condition occurs. Control returns
to the hypervisor at the instruction following VMRUN.
The guest state, including the reason for the #VMEXIT,
is placed in the save-state area of the VMCB. The
hypervisor may emulate, deny, or alter the execution
of the intercepted instruction by making changes to
the VMCB. Table 2 shows the logical layout of the
VMCB[5]. Listing 1 is the C language listing for the
VMCB.

The functionality of primary interest in an HVM
rootkit is the set of enabled exception conditions in
the VMCB and the method chosen for handling the
#VMEXIT conditions. Although nearly any operation
can be intercepted by the hypervisor, a minimal AMD-
V hypervisor need only trap execution of the VMRUN

instruction.

3 Intel Virtualization

IntelTM Virtualization Technology for IA-32 proces-
sors is known as VT-x. These extensions are concep-
tually the same as those implemented in AMD-V, but
many of the details differ significantly. Some of these
differences stem from the fact that while the AMD64
memory controller is on-die with the CPU, Intel im-
plementation is on a separate chip.

The primary VT-x data structure is the VMCS. It
fills the same role of the AMD-V VMCB, but has a
completely different structure. The VMCS is of vary-
ing length and indicates that Intel may produce in-
compatible revisions of VT-x since the structure starts
with a revision number and states that software should
not use a VMCS of one revision on a processor of an-
other. Table 3 shows the initial fields of the VMCS.
The VMCS data is made up of varying length sections.
These are described briefly in Table 4.

The instructions that make up the VT-x extensions
include VMPTRLD and VMPTRST which respectively load
to and save from the current-VMCS pointer. The
VMCLEAR instruction ensures that data for the VMCS
specified are copied to the VMCS region in mem-
ory and initializes parts of the VMCS region. The
VMWRITE and VMREAD instructions copy components
of the VMCS to and from the contents of a register
operand. VMCALL is used in non-root operation to allow
the guest to interact with the HVM. The VMLAUNCH in-
struction begins execution of a guest, while VMRESUME

continues execution of the current guest. VMXON and
VMXOFF enable and disable HVM operations on the cur-
rent core.

A minimal Intel VT-x hypervisor must implement
exit handling for CPUID, INVD, and MOV from
CR3. The hypervisor must also handle exits for
instructions introduced with VT-x. These include
VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRST, VMREAD, VMRESUME, VMWRITE,
VMXOFF, and VMXON. In addition there are re-
quired exits that the chipset implements.

4 Rootkits

The first rootkits were collections of user-mode pro-
grams for UNIX and UNIX-like operating systems that
replaced key system binaries in order to present a false
view of the system to administrators and other users
[6]. They generally filtered out processes, files and
network connection information whose presence would
betray the existence of malicious software running on
the system. Although initially effective, these rootkits
were generally trivial to detect by using alternate user
mode tools to retrieve the same information.

As user-mode detection techniques evolved, rootkit
authors moved to using shared libraries and kernel
modules. This allowed the rootkits to generalize, af-
fecting the system view of not only chosen programs,
but all programs on the system that use the subverted
library or system service. Kernel-mode rootkits are the
most prevalent kind today, most likely because they
are well-situated to hide from both user-mode pro-
grams and system-level security services. User-mode
and shared library rootkits may see a resurgence, how-
ever, in light of Microsoft Windows VistaTM’s driver-
signing requirement and kernel patch protection. Re-
gardless of whether they are implemented in a shared
library or as a device driver, contemporary rootkits do
their work by hooking or rewriting selected services
that provide information about the current state of
the system (i.e. processes, files, and network objects).
The only real drawback of user-mode rootkits is that

2



they are vulnerable to detection by other services run-
ning in kernel mode.

HVM rootkits, theoretically at least, are not vul-
nerable to any action the operating system can take
since the rootkit runs in a more privileged state than
the OS. A hypervisor need not even exist in memory
that is accessible to the operating system. When a hy-
pervisor bootstraps itself, it makes any instructions or
memory accesses which could betray its existence more
privileged than the operating system. When these in-
structions occur, the processor traps to the hypervisor,
allowing it to modify the results. Thus, the hypervisor
need not make any changes to the operating system to
hide its own presence. The hypervisor can, however,
make any such changes with impunity and make them
undetectable by the operating system.

In 2006, two researchers (Dino Dai Zovi and Joanna
Rutkowska) worked in parallel (but not collabora-
tively) on proving the concept of an HVM rootkit.
They presented within hours of each other at the 2006
Black Hat Briefings in Las Vegas; Zovi presented a
skeleton framework for an HVM rootkit implemented
with Intel VT, and Rutkowska presented similar mate-
rials for an HVM rootkit implemented with AMD-V.
Neither presented source code, but both claimed to
have working prototypes named Vitriol and Blue Pill,
respectively. Of the two, only Rutkowska claimed to
have designed a fully undetectable rootkit, and that
claim became the center of controversy within the re-
search community due to lack of proof made available
and inability to test her claims.

Researchers interested in creating their own HVM
rootkits had to start more or less from scratch. For
nearly a year after the Black Hat presentations, there
still were not any publicly-available HVM examples
to build upon, except in the code contributed to the
Xen project by engineers from Intel and AMD. The
Xen code, unfortunately, is far more complex than
what is required to implement an HVM rootkit. Xen
is designed to support multiple guest VMs and mul-
tiple CPU architectures and abstracts architecture-
specific virtualization schemes with its own set of
meta-structures. The AMD and Intel virtualization
technology documentation is complete as a specifica-
tion, but it is far from being a roadmap to implemen-
tation.

Unlike the typical hypervisor which loads before it
starts its guest VM, an HVM rootkit loads into an
already loaded operating system and turns it into its
guest VM. Therefore the rootkit must initialize the
hypervisor functionality and dynamically take over as
host, turning the running operating system into a
guest. This process has been repeatedly referred to
as “forking” or “migrating” the OS to a guest state,

but these terms are misleading. The hypervisor and
OS do not run concurrently (as they would if they were
“forked” in the UNIX sense) nor does the OS need to
be altered or moved in any way (“migrated”). The
process of installing an HVM hypervisor in a running
OS is more like that of installing a “shim,” in the soft-
ware engineering sense of the word. A shim is a piece
of code between two layers, in this case between the
CPU and all other software running on the system.

5 Prerequisites

As mentioned in Section 2, an AMD-V hypervisor ini-
tiates guest execution with VMRUN. The VMRUN instruc-
tion must be issued in ring-0, i.e. from a kernel-mode
driver. An HVM rootkit, then, must begin with a
driver. But when the hypervisor is installed, that
driver would now be in the “guest” and may reveal
the presence of the hypervisor to the guest. Rather
than hiding the driver in the normal manner of rootk-
its, we have chosen to have the driver allocate a non-
paged memory region for containing the hypervisor,
copy the hypervisor code there, and then unload the
driver from the kernel. Therefore the driver that in-
stalls the hypervisor must act only as a loader for the
hypervisor and not as a container for it. After the hy-
pervisor is installed, the driver file on disk could even
be deleted, perhaps from the driver’s unload routine.

Our code requires the Windows DDK to compile
(available online from Microsoft). We supply a Vi-
sual Studio 2005 project for convenience (compatible
with the freeware Visual C++ Express). The project
includes the source for a user-mode executable that
checks your system for AMD-V support, registers and
loads the driver, then unregisters and unloads the
driver.

6 Implementation

The following steps are required to install an HVM
rootkit under AMD-V:

(a) load a driver (requires administrator privilege);

(b) turn on the flag enabling AMD-V functionality;

(c) allocate non-paged contiguous physical memory
space for a VMCB structure;

(d) allocate a non-paged area in kernel memory and
copy the hypervisor code there;

(e) allocate a non-paged contiguous physical memory
space for a host save area, and store the phys-
ical address to this area in the VM HSAVE PA
register;

3



(f) initialize the control area of the VMCB with a
set of intercept conditions that will cause execu-
tion to transfer out of the guest and back to the
hypervisor;

(g) initialize the guest area of the VMCB with the
entire current state of the operating system, in
order to seamlessly turn the current state into a
guest VM;

(h) transfer execution to the hypervisor code outside
the driver;

(i) issue a VMRUN instruction from the hypervisor to
“launch” the operating system, thereby perform-
ing the seamless switch to guest mode;

(j) transfer execution back to the driver, and unload
the driver.

In our implementation of the technique, driver
code begins execution, like all Windows kernel-mode
drivers, in its DriverEntry() routine. Because
multi-core and multi-CPU support is desired, the
next step is to iterate across all CPUs in the sys-
tem and perform the hypervisor setup steps on each
of them in turn. In order to do this, we to
use a constant set by the Windows kernel called
KeNumberProcessors and an undocumented kernel
API called KeSetAffinityThread() to immediately
reschedule the current thread onto the processor/core
specified. A routine we define called EnableAMDV()

performs the steps to enable AMD-V functionality on
each processor/core: read the Model-Specific Regis-
ter (MSR) called “VM CR” and check for the bit
signifying that AMD-V has been disabled in the
BIOS (bit 4). If it is clear, EnableAMDV() pro-
ceeds to set the appropriate bit in the Extended
Features MSR to turn on AMD-V functionality
(EFER.SVME). Next, a region of physically con-
tiguous, page-aligned, non-pageable memory is al-
located by the routine AllocateVMCB() using two
kernel APIs: MmAllocateContiguousMemory() and
MmProbeAndLockPages(). The next routine to be
called is StartHypervisor(), which allocates another
region of memory for holding the hypervisor code (de-
fined by the routine HypervisorCode()), by calling
our routine CopyHypervisorCodeToMemory(). Only
one instance of the hypervisor is necessary, even if
there are multiple processors/cores in the system.
Next, the host-state save area is allocated, and its
physical address is written to the required location,
the VM HSAVE PA MSR. Whenever physical ad-
dresses of data are required, we use the kernel API
MmGetPhysicalAddress(). The chosen set of inter-
cepts to be implemented by the hypervisor is written

into the appropriate field of the VMCB, as is the ad-
dress where guest execution should begin.

Finally, StartHypervisor() calls the
HypervisorCode() routine so that the hypervi-
sor can actually begin. In order to ensure exclusivity
on each CPU, the processor’s IRQ priority level
(IRQL) is raised to DISPATCH LEVEL (high prior-
ity) and the CLGI instruction is executed to disable
global interrupts. Then we fill in the all of the initial
guest’s state with the current values of the host (copy
the values of all of the current registers into the
corresponding locations in the VMCB guest state
save area), load the physical address of the VMCB
into EAX, and call VMRUN. Execution begins in
guest mode now, at the end of the HypervisorCode()

routine, which returns back to the driver code. The
driver code proceeds to switch CPU cores and load
hypervisors on the other processors/cores in the same
fashion. When all processors/cores have entered guest
mode, the driver is free to unload and go away.

The preceding discussion is a complete description
of how to implement an HVM hypervisor using AMD-
V. However, to go one step further and create an HVM
rootkit, methods by which the hypervisor may be de-
tected or attacked must be taken into account. There
are many avenues of attack which the HVM rootkit
must defend. These include, but may not be limited
to,

(a) emulating all of the AMD-V feature extensions,

(b) emulating access to all AMD-V related MSRs,

(c) intercepting I/O to off-CPU local timers to cheat
timing analysis,

(d) “rewinding” the TSC counter after emulating in-
structions (again to cheat timing analysis),

(e) implementing Shadow Paging or using the Nested
Page Table feature of AMD-V to avoid detection
by advanced page table caching (TLB) analysis,

(f) using External Access Protection to cloak the
memory region containing the hypervisor as seen
by peripheral devices with DMA access to system
memory,

(g) intercepting access by the guest OS’s software to
the memory region containing the hypervisor,

(h) detecting “anomalous detector behavior” that
cannot be defeated, and having an unload/reload
scheme to dodge such detection.

In the next section we will discuss in detail the reasons
for the rootkit needing each of these defenses. The of-
ficial AMD documentation makes no mention of any

4



“hypervisor present” bit flag, but unofficial documen-
tation at Sandpile.org claims that when a hypervisor is
present and CPUID function 8000 000A is called, that
RAX bit 8 is set to 1 [7]. We were not able to con-
firm this from any other source, nor in testing on first-
generation AMD-V capable processors.

7 Detection

One might be tempted to suggest that rootkits are only
expected to hide from less security-savvy portions of
the population in order to be successful. However,
contemporary kernel-mode rootkits are already suffi-
ciently hidden from a casual investigation. The goal
of an HVM hypervisor should be to avoid detection
even under expert analysis.

There are two primary approaches to hiding the ex-
istence of a hypervisor. The first is to emulate a less
capable CPU, i.e. one without the AMD-V instruc-
tions. The second is to emulate the AMD-V instruc-
tions in the hypervisor.

The first approach is by far the easier to implement,
but makes the rootkit considerably less stealthy. In-
complete emulation of the target system will be imme-
diately obvious to a user expecting a processor with
virtualization functionality. Xen 3.1.0, contrary to
some claims [8], takes this simpler approach.

The second, and preferred method is to completely
emulate all instructions intercepted by the hypervisor.
This would in theory allow any hypervisor, including
the rootkit itself, to execute in the guest exactly as
it would directly on the hardware. An HVM rootkit
should give the appearance of full AMD-V function-
ality. In order to support nested hypervisors in this
fashion, it is only necessary to intercept and emulate
the VMRUN instruction. The “BluePill” rootkit takes
this approach [1].

In our code, the simpler approach was taken – it
does not attempt to support nested hypervisors. For
the sake of discussion, we will nevertheless consider all
of the theoretical measures and countermeasures for
detecting a “complete” HVM rootkit.

Current research indicates that performance of cur-
rent hardware-supported virtualization is significantly
worse than that implemented completely in software
[9, 10, 11]. If a user is familiar with the normal op-
eration of his system, the difference will be noticed.
The more limited virtualization necessary for a sim-
ple rootkit will, under most circumstances, have much
smaller performance impact on the system. We can
also assume that hardware implementations will only
get better (e.g. with Intel moving to an on-die mem-
ory controller [12] and the industry adopting IOMMU

to virtualize peripheral devices [13]) such that perfor-
mance will eventually be nearly indistinguishable from
native execution of the operating system.

Even so, there is and always will be a measurable
performance hit incurred whenever a hypervisor in-
tercepts any instruction. In tests we performed with
an AMD Athlon64 X2 4000+ processor, the difference
between the time required to perform a RDMSR EFER

natively and with a hypervisor interception was pro-
found. Native execution took only 50 processor cycles,
while intercepted and emulated execution took around
10,000 cycles.

Checking a local time stamp before and after the
execution of certain instructions suspected to be
hypervisor-intercepted seems like an obvious attack.
However, because successful virtualization has histor-
ically depended on a coherent and predictable time
stamp counter (TSC), both AMD and Intel imple-
mented methods by which the hypervisor can account
for trap-related delays. The hypervisor can trap on
the RDTSC instruction, or simply use a “TSC Offset”
feature. In practice, though, this feature is not reliable
enough to use as a hypervisor stealth mechanism. An
HVM rootkit needs to read the TSC before and after
emulating any instruction, and manually “fix up” the
value in the TSC as seen by the guest.

Yet another problem that complicates any attempt
to use TSC-based timing measurements as a detec-
tion scheme is the power/heat-saving features of mod-
ern CPUs. Modern CPUs, especially those designed
for laptop use, can dynamically vary their clock speed
to meet the current processing load. A 2GHz AMD
processor might scale down to a mere 800MHz when
AMD Cool N’ QuietTM is enabled and supported by
the motherboard. This is a documented cause for TSC
unreliability [14]. Dynamic clocking is not an feature
unique to AMD processors. Many chips have an unre-
liable TSC when features like speed-stepping, various
power modes, and multiple processors or cores are ac-
tive [15]. Alternate types of local system hardware
timers may work in place of TSC for timing-analysis
based HVM rootkit detection schemes. VMWare has
written a white-paper specifically on the challenges of
virtualizing hardware timers for VM guests, and it may
be of help when studying this issue [16]. A detector
could make use of any of the various timers present
on the system to do timing-analysis detection, and an
HVM rootkit would need to intercept access to all of
those timers in order to maintain hidden. No rootkit
to date is capable of this, but it is perhaps theoretically
possible through interception of the I/O instructions
used to access these off-CPU timers.

VMWare engineer Keith Adams and Symantec re-
searcher Peter Ferrie have both independently pro-

5



posed another class of detection method based on pro-
filing resource usage by the hypervisor [17, 8]. With
the assumption that an HVM rootkit must intercept
the CPUID instruction, and that doing so will inher-
ently flush part or all of the TLB, a virtualized guest
could detect this change made to the TLB. Normal
execution of the CPUID instruction does not flush the
TLB. The guest detects a change to the TLB by mea-
suring the time required to access a certain page of
memory, with and without first explicitly flushing the
TLB. This produces a known difference: the difference
between accessing a cached page table entry (PTE)
and accessing the same PTE when it is not already
cached in the TLB. Then the guest executes a CPUID

instruction. If a subsequent attempt to access the
same PTEs (that ought be cached) takes the amount
of time to access a non-cached page, then it is known
that the TLB has been flushed during the CPUID in-
struction and this would indicate the presence of an
HVM hypervisor. Using Intel VT, an HVM rootkit
cannot avoid this detection scheme since CPUID gen-
erates an exit unconditionally. However, when using
AMD-V, the CPUID instruction does not indicate the
presence of a hypervisor, and thus it need not be inter-
cepted. This does not mean the TLB profiling method
will not work against an AMD-V rootkit, it just means
the detector must choose a different instruction as the
test case, such as RDMSR EFER.

Building upon the idea of trying to indirectly ob-
serve the hypervisor’s cache usage, Adams suggested
another TLB profiling approach that does not re-
quire the use of a timer. He suggested a detector
which directly edited Page Table Entries (PTEs) to
invalidate the TLB’s cached copies, then executed an
HVM-intercepted instruction, then attempted to ac-
cess the memory locations that were known to have
been cached in the TLB directly beforehand. It would
be apparent whether the memory locations were ac-
cessed using the mappings cached in the TLB, or the
ones in the actual Page Table. If it were the former, the
detector could assume that the TLB had been flushed
and refilled, signing the presence of an HVM hypervi-
sor.

HVM rootkit proponents have pointed out that
AMD-V, unlike Intel VT, supports a feature whereby
every TLB entry is tagged with an Address Space Iden-
tifier (ASID) marking whether it is an entry from the
host or from the guest. The purpose of this is to allow
the hypervisor to avoid flushing the guest’s TLB dur-
ing any intercepted instruction. However, it is a per-
formance feature, not a stealth feature. It will not en-
tirely prevent alterations to the TLB, and does not en-
able an HVM rootkit to fully hide from TLB-profiling
detection.

It has also been suggested that the Nested Page Ta-
bles feature of an upcoming revision of AMD-V may
defeat TLB profiling-based detection [18]. The HVM
rootkit would use Nested Page Tables to monitor ac-
cesses to the page table entries for detector-like be-
havior. If such anomalous behavior were observed, the
rootkit would unload and return some time later.

Another detection scheme that has been suggested
is to exploit buggy behavior (“errata”) specific to cer-
tain CPU models [19]. Most modern x86 processors
have known and documented errata, which is any be-
havior that deviates from the processor architecture
specification. If an HVM hypervisor is not designed
to accurately emulate the bugs in the native behav-
ior of the CPU it is running on, an HVM hypervi-
sor detector could test for these inconsistencies. One
such example is AMD Erratum 140, which documents
that VMCB.TSC OFFSET is not added to the times-
tamp counter when it’s being read via MSR 0x10. As
a detection scheme, this approach is unattractive to
some because it relies on processor model-specific bugs
rather than a generically applicable technique.

The simplest and yet most effective detection
method is also one of the most recent [20]. A multi-
core processor, as most of today’s systems contain, al-
lows for true concurrent execution of two threads. An
HVM rootkit detector can use this capability to exe-
cute a simple loop counter in a thread on one CPU
core, while on another CPU core a second thread at-
tempts an instruction that would be intercepted by
an HVM hypervisor. The threads are synchronized to
start and stop at the same time, thus the timer thread
is able to reliably measure the execution time of the
instruction thread. Results will vary greatly between
a system with and one without a hypervisor present.

At this stage, the practical detectability of HVM
rootkits is still hotly contested. The trend is clear,
however. Researchers are continually suggesting new
detection methods, and the code required in the HVM
rootkit to evade each one is successively layering more
and more complexity into the rootkit’s design. Para-
doxically, the more complicated an HVM rootkit must
be to avoid known detection schemes, the more pres-
ence it has within the system to have to work to hide.
With that said, the popular consensus has been that
HVM rootkits will eventually become too difficult or
costly to implement, or even that they are ultimately
unfeasible. One might point to the fact that there are
no known HVM rootkits in the wild. But neither are
there any HVM rootkit detectors to find them if there
were.

Proponents of the HVM rootkit threat make the
point that it is not enough to simply detect the pres-
ence of an HVM hypervisor. If we cannot ascertain

6



anything about the nature of the hypervisor, then we
cannot make any decisions on behalf of the user. With
the increasing adoption and utilization of HVM tech-
nology for legitimate purposes, simply knowing that it
is being actively used on a particular system may not
be useful information at all.

8 Prevention

Regardless of the effectiveness of HVM rootkit detec-
tion schemes, we ought to consider how to prevent the
rootkit’s installation in the first place. Obviously, most
of the effort in defending against HVM rootkits should
be in preventing malicious code from executing at all,
specifically code with administrator privileges required
to stage a rootkit installation. However, assuming ma-
licious code does execute with administrator privilege
and enter the kernel, there are still two preventative
practices that should defend against an HVM rootkit
installation.

The first method is to preemptively load a pro-
tective hypervisor which denies any subsequent at-
tempts to load other (potentially malicious) hypervi-
sors. The preventative hypervisor need only intercept
VMRUN, since hiding its presence is not one of its goals.

The second method is a brand new security feature
that has only very recently been introduced by AMD,
likely in response to the concerns raised in the secu-
rity research community. In the July 2007 revision of
the AMD64 Programmer’s Manual, AMD documents
a “revision 2” of the SVM architecture, which has the
ability to lock the SVM Enable flag, and optionally, to
provide a 64-bit key to unlock it again. If a key is not
set before the lock is activated, the SVM Enable flag
cannot be changed without a processor reset. We were
not able to obtain a processor supporting this feature
at the time we wrote this paper, but expect such CPUs
to be widely available soon.

Either one of these methods ought to provide full
protection against unwanted HVM hypervisors. If the
lock and key method is used, however, one should
be aware of the importance of securing the key value
against access by malicious software on the local ma-
chine.

9 Memory forensics

If detection of an HVM rootkit is difficult and imprac-
tical, actually procuring a forensic copy of an active
HVM rootkit may very well be impossible. The HVM
rootkit only needs to exist in RAM, meaning a foren-
sic examiner is tasked with obtaining a copy of all of
physical memory in order to search for the presence

of an HVM hypervisor. There are two common ap-
proaches to imaging physical memory. One approach
is to run software on the local system which accesses
physical memory through an operating system hard-
ware interface layer. In this case, an HVM hypervisor
is able to intercept and control access to the physical
memory by way of its exception conditions. It could
present the pages of memory containing its hypervi-
sor code to appear to contain all zeros or all ones,
for instance. This subversion of memory would go
unnoticed by the forensic capture process. The sec-
ond approach to imaging physical memory is to take
advantage of the abilities of certain hardware periph-
eral devices that can perform Direct Memory Access
(DMA), that is, devices which can read and write sys-
tem memory without intervention by the CPU. Nor-
mally, this would be the most reliable and forensically
sound method for capturing the contents of physical
memory. However, AMD-V introduces a feature to se-
cure the system memory against any unwanted access
from DMA devices. It is called External Access Pro-
tection (EAP), and it allows the hypervisor to define
“Device Exclusion Vectors,” or maps of memory which
should be secured against DMA access by certain de-
vices on the system. EAP is implemented in and per-
formed by the Northbridge host bridge controller, and
is set up by way of a pair of control registers in PCI
configuration space, DEV OP and DEV DATA. The
use of this feature is documented in the AMD64 Ar-
chitecture Programmer’s Manual [5].

Note that a similar technique was first introduced
by researcher Joanna Rutkowska at a presentation at
Black Hat Briefings DC 2007 [21]. Rutkowska’s tech-
nique is more general; it does not require an HVM
hypervisor nor the EAP feature to implement, but
it works similarly by programming the memory con-
troller to present a different view of memory as seen
from DMA device access than by local system software
access. However, without the HVM hypervisor’s abil-
ity to secure access to the memory controller, a clever
forensic DMA device could undo (re-program) the sub-
verted state of the memory controller and achieve
unimpeded access to the true values of system memory
[22]. No such “clever” forensic device yet exists, how-
ever. Also, it is not clear whether evidence gathered
via such an approach is legally admissible in a court
of law, because the approach requires tampering with
the contents of memory in order to image it.

10 Other uses

The concept of an undetectable HVM hypervisor is
worrisome, and naturally we should be concerned with

7



the potential that it is a technology that will be used
against the user. It has been demonstrated how an
HVM rootkit can be used to hide evidence of a secu-
rity breach from its owner. In the same manner, digital
rights management (DRM) seems a natural applica-
tion for the technology to hide cryptographic secrets
from reverse engineers.

Obviously though, there are benign uses for HVM
hypervisors, even when implemented as the HVM
rootkit is, loadable in a running OS. For one, it
could be used as an undetectable debugger to aid
in malware analysis. There are many powerful anti-
debugger techniques [23] that malware authors can
employ to frustrate or even defeat reverse engineering
of their executables. A debugger implemented with
the use of an HVM hypervisor to trap execution, and
a hypervisor-guest control scheme, using VMMCALL
perhaps, would give reverse engineers a powerful time-
saving tool. Another use for an HVM hypervisor, men-
tioned previously, is as a security monitor to prevent
subsequent attempts to load unwanted hypervisors.
The concept might be extended to monitor and/or log
access to other resources on the system. This leads to
a third use of an undetectable HVM hypervisor, which
is as a honeypot, i.e. a system set up to lure malicious
attackers and monitor and study their behavior [24].

8



11 Terminology and Operation

Table 1: Comparison of common terms

AMD Intel Description

VMCB VMCS Data structure describing the behavior of
the hypervisor and the guest and host save
state areas

IOPM Input/Output permissions map
MSRPM Model Specific Register permissions map
RAX current-VMCS Register containing physical address of

current VM control data structure

VM CR VM HSAVE PA VM control register.
EFER.SVME := 1
CR4.VMXE := 1
VMXON

IA32 FEATURE CONTROL.bit 5 := 1 Enable VM feature on processor.

MOV RAX, vmcb pa
VMRUN RAX

MOV RAX, vmcs pa
VMPTRLD
VMLAUNCH

Load VM control structure and start a
guest.

VMSAVE VMWRITE Write guest state information to hypervi-
sor “save-state” area.

VMLOAD VMREAD Read guest state information from hyper-
visor “save-state” area.

VMMCALL VMCALL Explicitly exit to hypervisor.

AMD-VTM VT-xTM Official trade names for virtualization
technology

Pacifica Vanderpool Development code names for virtualiza-
tion technology

#VMEXIT VM exit Event causing return to hypervisor
SVM VMX Generic term used for extensions associ-

ated with virtual machines.
guest non-root The cpu mode for operating systems run-

ning under a hypervisor
host root The cpu mode for a hypervisor when

HVM is enabled.

9



Table 2: Logical layout of the VMCB[5]

Offset Bits Description

000h 0–15 Intercept reads of CR015.
16–31 Intercept writes of CR015.

004h 0–15 Intercept reads of DR015.
16–31 Intercept writes of DR015.

008h 0–31 Intercept exception vectors 031.
00Ch 0 Intercept INTR.

1 Intercept NMI.
2 Intercept SMI.
3 Intercept INIT.
4 Intercept VINTR.
5 Intercept CR0 writes other than CR0.TS or CR0.MP.
6 Intercept reads of IDTR.
7 Intercept reads of GDTR.
8 Intercept reads of LDTR.
9 Intercept reads of TR.

10 Intercept writes of IDTR.
11 Intercept writes of GDTR.
12 Intercept writes of LDTR.
13 Intercept writes of TR.
14 Intercept RDTSC.
15 Intercept RDPMC.
16 Intercept PUSHF.
17 Intercept POPF.
18 Intercept CPUID.
19 Intercept RSM.
20 Intercept IRET.
21 Intercept INTn (software interrupt).
22 Intercept INVD.
23 Intercept PAUSE.
24 Intercept HLT.
25 Intercept INVLPG.
26 Intercept INVLPGA.
27 IOIO PROT–Intercept IN/OUT accesses to selected ports.
28 MSR PROT–intercept RDMSR or WRMSR accesses to selected MSRs.
29 Intercept task switches.
30 FERR FREEZE: intercept processor freezing during legacy FERR handling.
31 Intercept shutdown events.

010h 0 Intercept VMRUN.
1 Intercept VMMCALL.
2 Intercept VMLOAD.
3 Intercept VMSAVE.
4 Intercept STGI.
5 Intercept CLGI.
6 Intercept SKINIT.
7 Intercept RDTSCP.
8 Intercept ICEBP.

9–31 RESERVED, MBZ
014h-03Fh all RESERVED, MBZ

040h 0–63 IOPM BASE PA–Physical base address of IOPM (bits 11:0 are ignored).
048h 0–63 MSRPM BASE PA–Physical base address of MSRPM (bits 11:0 are ignored).
050h 0–63 TSC OFFSET–To be added in RDTSC and RDTSCP.

10



Table 2: Logical layout of the VMCB (continued)

Offset Bits Description

058h 0–31 Guest ASID.
32–39 TLB CONTROL (0–Do nothing, 1–Flush TLB on VMRUN, Others-Reserved)
40–63 RESERVED, MBZ

060h 0–7 V TPR–The virtual TPR for the guest;
currently bits 3:0 are used for a 4-bit virtual TPR value; bits 7:4 are MBZ.

8 V IRQ–If nonzero, virtual INTR is pending.
9–15 RESERVED, MBZ

16–19 V INTR PRIO–Priority for virtual interrupt.
20 V IGN TPR–If nonzero, the current virtual interrupts ignores the (virtual) TPR.

21–23 RESERVED, MBZ
24 V INTR MASKING–Virtualize masking of INTR interrupts.

25–31 RESERVED, MBZ
32–39 V INTR VECTOR–Vector to use for this interrupt.
40–63 RESERVED, MBZ

068h 0 INTERRUPT SHADOW–Guest is in an interrupt shadow;
1–63 RESERVED, MBZ

070h 0–63 EXITCODE
078h 063 EXITINFO1
080h 063 EXITINFO2
088h 063 EXITINTINFO
090h 0 NP ENA–Enable nested paging.

163 RESERVED, MBZ
098h–0A7h RESERVED. MBZ

0A8h 063 EVENTINJ–Event injection.
0B0h 063 H CR3–Host-level CR3 to use for nested paging.

0B4h–3FFh RESERVED, MBZ

11



Table 3: Intel VMCS Region [25]

Byte Contents

0 VMCS revision identifier
4 VMX-abort indicator
8 VMCS data (implementation-specific format)

Table 4: Data Region in VMCS [25]

Section Description

guest-state area Guest processor saved on VM exits and
loaded upon VM entry. This includes
guest registers and other ancillary data
such as interrupt state.

host-state area CPU state is loaded on VM exit. This
includes segment registers, descriptor ta-
ble registers, as well as system call table
information.

VM-execution control fields Control processor behavior in non-root
operation. This includes bit-maps for
which guest execution conditions cause a
VM exit such as interrupts, reserved in-
structions and register accesses.

VM-exit control fields Controls how certain VM exits occur.
This contains information on guest ad-
dress space size and whether interrupts
are acknowledged on exit.

VM-entry control fields Determine mode of operation for the guest
after VM entry. This includes controls for
the loading and saving of model specific
registers and for the injection of excep-
tions into the guest environment.

VM-exit information fields This area recieves information on the
cause and nature of a VM exit.

12



Listing 1: Amd-v.h – definition of VMCB

#pragma pack (1) // In GCC , use __attribute__ ((packed))
typedef struct
{

u32 interceptCR0 ;
u32 interceptDR0 ;
u32 interceptExceptionVectors;
u32 interceptsGeneralPurpose1;
u32 interceptsGeneralPurpose2;

u8 reserved_space_01 [44];
u64 iopmBasePA ;
u64 msrpmBasePA ;
u64 tscOffset ;
u32 guestASID ;
u8 tlbControl ;
u8 reserved_space_02 [3];
vintr_t vintr;

u64 interruptShadow ;
u64 exitcode ;
u64 exitinfo1 ;
u64 exitinfo2 ;
u64 exitintinfo ;

u64 np_enable ;
u8 reserved_space_03 [16];

eventinj_t eventinj ;
u64 host_level_cr3 ;
u8 reserved_space_04 [840];
segment_selector_t es;
segment_selector_t cs;
segment_selector_t ss;
segment_selector_t ds;
segment_selector_t fs;
segment_selector_t gs;
segment_selector_t gdtr;
segment_selector_t ldtr;
segment_selector_t idtr;
segment_selector_t tr;
u64 reserved_space_05 [5];
u8 reserved_space_06 [3];
u8 cpl;
u32 reserved_space_07 ;
u64 efer; // offset 1024 + 0xD0
u64 reserved_space_08 [14];
u64 cr4; // loffset 1024 + 0x148
u64 cr3;
u64 cr0;
u64 dr7;
u64 dr6;
u64 rflags;
u64 rip;
u64 reserved_space_09 [11];
u64 rsp;
u64 reserved_space_10 [3];
u64 rax;
u64 star;
u64 lstar;
u64 cstar;
u64 sfmask;
u64 kernel_gs_base ;
u64 sysenter_cs ;
u64 sysenter_esp ;
u64 sysenter_eip ;
u64 cr2;
u64 pdpe0;
u64 pdpe1;
u64 pdpe2;
u64 pdpe3;
u64 guest_pat ; //used only if nested paging is enabled
u64 reserved_space_11 [50];
u64 reserved_space_12 [128];
u64 reserved_space_13 [128];

} amdv_vmcb_t ;

13



References

[1] J. Rutkowska, Subverting VistaTM Kernel for Fun and Profit. [Online]. Available: http://blackhat.com/
presentations/bh-usa-06/BH-US-06-Rutkowska.pdf

[2] D. A. D. Zovi, Hardware Virtualization Rootkits. [Online]. Available: http://www.theta44.org/software/
HVM Rootkits ddz bh-usa-06.pdf

[3] S. Embleton, Hooking CPUID – A Virtual Machine Monitor Rootkit Framework. [Online]. Available:
http://rootkit.com/newsread.php?newsid=758

[4] J. Rutkowska and A. Tereshkin, Blue Pill Project. [Online]. Available: http://bluepillproject.org/

[5] AMD64 Architecture Programmer’s Manual Volume 2: System Programming. [Online]. Available:
http://www.amd.com/us-en/assets/content type/white papers and tech docs/24593.pdf

[6] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel.

[7] IA-32 architecture – CPUID. [Online]. Available: http://www.sandpile.org/ia32/cpuid.htm

[8] P. Ferrie, Attacks on Virtual Machine Emulators. [Online]. Available: http://www.symantec.com/avcenter/
reference/Virtual Machine Threats.pdf

[9] K. Adams and O. Agesen, A Comparison of Software and Hardware Techniques for x86 Virtualization. [Online].
Available: http://www.vmware.com/pdfs/asplos235 adams.pdf

[10] J. Munro, Virtual Machines & VMware, Part II. [Online]. Available: http://www.extremetech.com/article2/0,
1697,1156372,00.asp

[11] A. Kivity, Subject: [ANNOUNCE] kvm-22 release. [Online]. Available: http://lkml.org/lkml/2007/5/6/39

[12] Intel Developer Forum Day 1 News Disclosures From Beijing. [Online]. Available: http://www.intel.com/
pressroom/archive/releases/20070416supp.htm

[13] AMD I/O Virtualization Technology (IOMMU) Specification. [Online]. Available: http://www.amd.com/
us-en/assets/content type/white papers and tech docs/34434.pdf

[14] Microsoft Knowledge Base Article 895980 - Programs that use the QueryPerformanceCounter function
may perform poorly in Windows Server 2003 and in Windows XP. [Online]. Available: http:
//support.microsoft.com/kb/895980/

[15] Linux kernel development discussion [patch 13/19] GTOD: Mark TSC unusable for highres timers. [Online].
Available: http://readlist.com/lists/vger.kernel.org/linux-kernel/55/277594.html

[16] Timekeeping in VMWare Virtual Machines. [Online]. Available: http://www.vmware.com/pdf/vmware
timekeeping.pdf

[17] K. Adams, Blue Pill Detection in Two Easy Steps. [Online]. Available: http://x86vmm.blogspot.com/2007/
07/bluepill-detection-in-two-easy-steps.html

[18] J. Rutkowska and A. Tereshkin, IsGameOver(), anyone? [Online]. Available: http://bluepillproject.org/stuff/
IsGameOver.ppt

[19] T. Garfinkel and K. Adams, Compatibility is Not Transparency: VMM Detection Myths and Realities.
[Online]. Available: http://www.cs.cmu.edu/∼jfrankli/hotos07/vmm detection hotos07.pdf

[20] E. Barbosa, Detecting Blue Pill. [Online]. Available: http://rapidshare.com/files/42452008/detection.rar.html

[21] J. Rutkowska, Beyond the CPU: Defeating Hardware Based RAM Acquisition Tools (Part I: the
AMD case). [Online]. Available: http://blackhat.com/presentations/bh-dc-07/Rutkowska/Presentation/
bh-dc-07-Rutkowska-up.pdf

14



[22] T. Ptacek, Rutkowska Concedes: Clever Forensics Devices Can Beat DMA Tricks. [Online]. Available:
http://www.matasano.com/log/870/rutkowska-concedes-clever-forensics-can-beat-DMA-tricks

[23] N. Lawson, Anti-debugger techniques are overrated. [Online]. Available: http://rdist.root.org/2007/04/19/
anti-debugger-techniques-are-overrated

[24] Honeypot (computing) - Wikipedia, the free encyclopedia. [Online]. Available: http://en.wikipedia.org/wiki/
Honeypot (computing)

[25] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3B: System Programming Guide.
[Online]. Available: http://www.intel.com/design/processor/manuals/253669.pdf

15


