
Embedding Covert Channels into TCP/IP

Steven J. Murdoch and Stephen Lewis

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk/users/{sjm217,srl32}/

Abstract. It is commonly believed that steganography within TCP/IP
is easily achieved by embedding data in header fields seemingly filled with
“random” data, such as the IP identifier, TCP initial sequence number
or the least significant bit of the TCP timestamp. We show that this is
not the case; these fields naturally exhibit sufficient structure and non-
uniformity to be efficiently and reliably differentiated from unmodified
ciphertext. Previous work on TCP/IP steganography does not take this
into account and, by examining TCP/IP specifications and open source
implementations, we have developed tests to detect the use of näıve em-
bedding. Finally, we describe reversible transforms that map block cipher
output into TCP ISNs, indistinguishable from those generated by Linux
and OpenBSD. The techniques used can be extended to other operating
systems. A message can thus be hidden in such a way that an attacker
cannot demonstrate its existence without knowledge of a secret key.

1 Introduction

Steganographic covert channels based on modification of network protocol header
values are best understood by considering a scenario with three actors; in keeping
with the existing literature, we shall call them Alice, Bob and Walter. Each actor
has his/her own capabilities and goals. Alice can make arbitrary modifications to
network packets originating from a machine within Walter’s network. She wants
to leak a message to Bob, who can only monitor packets at the egress points of
this network. Alice aims to hide the message from Walter, who can see (but not
modify) any packet leaving his network. This is analogous to a passive warden
within the threat model introduced in [1].

In a practical instantiation of this problem, Alice and Bob may well be the
same person. Consider a machine to which an attacker has unrestricted access for
only a short amount of time, and which lies within a closely monitored network.
The attacker installs a keylogger on the machine, and wishes to leak passwords
to himself in such a way that the owner of the network does not observe that
anything untoward is happening. An attacker might also want to watermark all
transmissions from a particular machine; the steganography described in this
paper can be used for this purpose.

Alice can choose which layer of the protocol stack she wishes to hide her
message in. Each layer has its own characteristics, which indicate the scenarios

Draft for Information Hiding Workshop 2005 (Revision 678: March 28, 2005)

http://www.cl.cam.ac.uk/users/sjm217
http://www.cl.cam.ac.uk/users/srl32/

2 Steven J. Murdoch and Stephen Lewis

in which it can best be used. In [2], the potential for embedding at all layers of
the OSI model is discussed.

At the bottom of the stack, in the Physical and Data-Link layers (e.g. Eth-
ernet), there is some opportunity for embedding data. Physical layer embedding
presents problems, however. It requires low-level control of the hardware, which
Alice may find difficult to obtain. If she chooses to signal to Bob at this layer, she
will find that her messages are stripped out when they reach a device that con-
nects networks at a higher layer (e.g. an IP router). This requires Bob to be on
the same LAN. An example of a steganography system that relies on embedding
at the Physical layer is described in [3].

Alice might also choose to embed data at the Presentation or Application
layers of the network stack (e.g. in Telnet or HTTP/FTP traffic). If, however,
she only has brief access to the machine from which she is leaking data, she
needs to anticipate which applications are likely to be used on it; she can then
modify them to carry her messages in the traffic they generate.

Similarly, the format of files sent over HTTP or FTP (such as JPEG or PDF)
may also be viewed as protocols in which steganographic data can be embedded.
These provide a high-bandwidth channel to Alice, but only if she is confident of
being able to modify these files without arousing suspicion.

The only remaining layers to consider in the OSI model are Network, Trans-
port and Session. TCP and IP (specified in [4] and [5]) fall within these layers,
and are common to the vast majority of Internet applications. A message em-
bedded in these protocols has the advantage that it will survive unchanged on
its journey out of Walter’s network. If Alice designs her embedding correctly, a
message transported can thus be sent without suspicion, and received intact.

In this paper we study a number of previously proposed schemes for embed-
ding data within the TCP and IP protocol headers, thus creating a stegano-
graphic covert channel. We show how the use of these schemes can easily be
detected by a passive warden. The algorithms used in the generation of some
TCP/IP header fields are then looked at in detail, and our alternative method
for embedding data, Lathra, is proposed. We show that a passive warden cannot
detect the use of this method without knowledge of a secret key. Our results will
also be relevant to the field of operating system fingerprinting.

2 Threat Model

We have thus far assumed that the steganography can only be prevented by de-
tection, not by attempting to remove any hidden information. This is known as
the passive warden threat model. An active warden can modify traffic regardless
of suspicion. As is shown in [6], an active warden can remove most, if not all,
TCP/IP level steganography, and lower layer steganography will have already
been removed by routing. He will, however, have difficulty removing steganog-
raphy at higher layers (e.g. in JPEG images) without damaging the carrier.

In many scenarios it may be infeasible for a warden to be active: the kind
of filtering necessary to remove TCP/IP steganography can increase network

Embedding Covert Channels into TCP/IP 3

latency, and might require a filtering router that can store large amounts of
state. The warden may also wish to avoid the users being aware that the use of
steganography is suspected.

In this paper, we assume that our attacker, Alice, operates in an environ-
ment with a passive warden and an unreliable network (permitting packet loss,
duplication and reordering) and requires a TCP/IP based covert channel giving

– indistinguishability : Walter (a passive warden) should be unable to detect
the presence of the data hidden in packets leaving Alice’s machine; and

– reliability : she desires some indication of whether her messages to Bob have
indeed arrived, so she can retransmit them if necessary.

3 Overview of TCP/IP Based Steganography

A common failing of existing proposals is the production of output from a dif-
ferent distribution to that which would be generated by unmodified TCP/IP
implementations. In some cases, it is even outside the relevant specifications.
For this reason, to design steganographic techniques or to detect their use, it is
necessary to be familiar with the applicable standards and the details of their
implementation. This section gives an overview of the TCP/IP standards and
related work from a steganographic encoding perspective.

The basic TCP/IP protocol suite is specified in [4] and [5]. There are ex-
tensions to it (e.g. the TCP Extensions for High Performance [7]) that specify
additional header options; these also give some scope for steganographic coding.

IP itself does not aim to provide any reliability guarantees, but rather allows
client protocols on a host to transport blocks of data (datagrams) from a source
to a destination, both specified by fixed length addresses. One noteworthy feature
of IP for our purposes is that it allows fragmentation and reassembly of long
datagrams, requiring certain extra header fields.

TCP, on the other hand, does aim to provide a reliable channel to its clients.
It has a stream oriented interface, and keeps its reliability properties even within
networks exhibiting packet loss, reordering and duplication. Its features for im-
plementing reliability and flow control give scope for steganographic coding.

The TCP/IP header can serve as a carrier for a steganographic covert channel
if a header field can take one of a set of values, each of which appears plausible
to our passive warden. The warden should not be able to distinguish whether the
header was generated by an unmodified TCP/IP stack or by a steganographic
encoding mechanism. In this section we examine which header fields have more
than one plausible value, and look at the amount of entropy available in each of
them for use by a steganographic coding scheme.

TCP/IP steganography exploits the fact that few headers are altered in tran-
sit. As mentioned above, IP packets can be fragmented, but (unless we are hiding
data in the fragmentation-related headers) no information is lost. The time-to-
live field in the IP header is decremented each time the packet passes through a
router, but the initial values used by IP stacks are well known, so this field gives
little scope for steganography.

4 Steven J. Murdoch and Stephen Lewis

Figure 1 illustrates the base TCP/IP headers. The fields shown in italics are
those that may be used to embed steganographic data. We now consider each of
these fields in turn, assessing their potential for use as steganographic carriers.

0 3 4 7 8 15 16 18 19 23 24 31

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

IP

.
.
.

Source Port Destination Port

Sequence Number

Acknowledgement Number

Offset Reserved Flags Window

Checksum Urgent Pointer

Options (including timestamp) Padding

TCP

Fig. 1. Basic TCP/IP header structure

3.1 Type of Service

The eight Type of Service (ToS) bits in the IP header are use to indicate quality
of service parameters to routers on a packet’s path. They are now rarely used
with their original semantics (as defined in [5]); they have been reused as, for
example, the ‘DS field’ in [8].

There is potential for using the bits in this field as a steganographic carrier,
as described in [2], because many networks never use them. However, this would
be easily detected by the warden in our threat model, as the field is set to zero
in almost all default operating system configurations.

3.2 IP Identification

As described in [5], the IP Identification field (IP ID) is ‘an identifying value
assigned by the sender to aid in assembling the fragments of a datagram’, and
is allocated 16 bits of the IP header. Because the IP ID is used to distinguish
fragments making up one packet from fragments making up another, the only
constraints on its value are uniqueness over the length of time that fragments of
a packet might reasonably remain in a network, and unpredictability.

IP IDs that are unique within a given time window are necessary to ensure
that fragments of different packets are not reassembled into one packet on the
receiving host. Unpredictability prevents ‘idle scanning’ [9], whereby an attacker
can portscan a host without ever sending a packet directly to it.

A scheme for embedding data in this field is described in [10]. It uses a
pseudorandom sequence, generated by a Toral Automorphism System, to ensure

Embedding Covert Channels into TCP/IP 5

that the modified field is random. However this can be detected since IP ID fields
are not random, as shown in Section 5.1.

3.3 IP Flags

IP packets include two flags, Do Not Fragment (DF), indicating that the packet
should be discarded if it cannot be sent without fragmentation, and More Frag-
ments (MF) which is 0 if the packet contains the last fragment, or if a packet has
not been fragmented. In [10] the use of the DF bit for steganographic signalling
is proposed. If this is used on packets smaller than the maximum segment size
the DF flag has no effect on the packets’ behaviour. However, the normal state
of DF can be predicted from the packet’s context, so the warden would detect
the use of this technique.

3.4 IP Fragment Offset

When IP packets are fragmented, the individual fragments contain an offset
field; this allows the receiving host to reconstruct the fragments in the cor-
rect positions in its receive buffers. Information can be transmitted covertly by
merely modulating the size of the fragments originated by a host, and thus the
fragment offsets. As with the IP identification and ToS fields, this method of
steganographic encoding is easily detected. In environments where path MTU
discovery [11] is routinely used, fragmented packets are unusual. Fragmentation
of a packet on the source host would certainly arouse suspicion.

3.5 IP Options

IP packets very rarely contain ‘options’, so their steganographic potential is
limited. In [2] the use of the IP Timestamp option is described (not to be confused
with the TCP Timestamp discussed in Section 3.7), but in addition to being
easily detectable, packets with this option present can travel at most 20 hops,
so it is of little use in the open Internet.

3.6 TCP Sequence Number

TCP sequence numbers support the reliability features provided by TCP (and
to some extent, the flow control features). Each octet of data transmitted over
a TCP stream is assigned a sequence number. In TCP, a connection (defined
by a pair of sockets) can be reused, and hence the host must be able to detect
whether a segment is from a current or previous incarnation of a connection.

When a connection is established, both hosts must choose an initial sequence
number (ISN). Careful design of the algorithm for generating these initial se-
quence numbers ensures that overlap in sequence number space between different
incarnations of a connection is prevented.

There are other properties required of the algorithm used for initial sequence
number generation. For a given connection, the ISNs used must be hard to

6 Steven J. Murdoch and Stephen Lewis

guess for those not involved in the connection [12]. To allow a connection in the
TIME WAIT state to be restarted, the sequence numbers for a given socket pair
should also be monotonically increasing.

A prototype implementation of steganography using TCP ISNs (and also the
IP ID), Covert TCP, is described in [13]. It simply replaces the chosen field with
the data to be sent, so can be detected either by observing that the field does
not meet the required overlap and uniqueness constraints, or by comparing the
data observed with statistical patterns of suspected plaintext.

A passive warden using a Support Vector Machine (SVM) is presented in [14].
It is designed to detect the use of Covert TCP within the IP ID and TCP ISN.
A SVM is a machine learning technique that is suitable for automatically iden-
tifying features which are not well understood. In the case of IP IDs and ISNs,
the algorithm for generating them is well understood and precisely described
in source code, so it is not necessary to use a machine learning technique. The
SVM can only identify simple features, so it cannot detect the complex structure
present in these fields and their interdependencies.

The design and implementation of Nushu, an improvement to Covert TCP for
Linux 2.4, is described in [15]. Nushu uses TCP ISNs for encoding information
and encrypts outgoing ISNs to hide the use of steganography, however it still
may be detected. Firstly, the output will not exhibit the structure of TCP ISNs
expected from Linux. Secondly, a flaw in the use of DES for encryption allows
the recovery of statistical information on the plaintext. These techniques will be
further discussed in Section 5.3.

3.7 TCP Timestamp

The TCP timestamp option allows a host to accurately measure the round trip
time of a path, and also mitigates problems associated with sequence number
wrap-around in networks with large bandwidth × delay products. For our pur-
poses, it is only necessary to understand the constraints on the values of TCP
timestamps; more details about the features based on them can be found in [7].

The timestamp option consists of two 32 bit fields, TS Value and TS Echo
Reply. The TS Value field is set based on the ‘timestamp clock’ of the sender,
and it is into this field that hidden data can be embedded. The only constraints
on the timestamp clock are that its tick frequency be between 1Hz and 1 kHz,
and that it be strictly monotonic.

A covert channel based on modulating the least significant bit of the TCP
timestamps transmitted by a host, devcc, is described in [16]. The scheme works
by incrementing the timestamp associated with a packet (and delaying it accord-
ingly) in order to transmit a ‘1’ bit of ciphertext. The use of TCP timestamps is
not universal, but it is deployed as standard on newer versions of Linux and other
Unix-like operating systems, so the observation of timestamps from an operat-
ing system which does not support them would be suspicious. As described in
Section 5.3, the distribution of values in the timestamp field is modified from the
expected one in a detectable manner by the use of this covert channel technique.

Embedding Covert Channels into TCP/IP 7

3.8 Packet Order

In addition to the content of the packet, the ordering of packets can be used to
carry information, as is described in [10]. This relies on being used on an IPSec
network to recover the original order, limiting its applicability. Since packets are
seldom reordered by the transmitting host, a warden who is close to Alice will
undoubtedly notice the unusually large amount of re-ordering.

4 IP ID and TCP ISN Implementations

The passive warden considered in this paper has knowledge of both the TCP/IP
standards and particular implementations. He can check whether the values he
observes could have been generated by an unmodified operating system, or even
by the operating system he knows to be installed on the originating host.

Two fields which are commonly used to embed steganographic data are the
IP ID and TCP ISN. A sufficiently precise description of their generation cannot
be found within the public literature, so details of the implementation are in-
cluded here. Due to their construction, these fields contain some structure, but
as mentioned in Section 3.2 and 3.6, they must also be partially unpredictable.
This is achieved by having randomly generated, per-host, secrets and by the use
of cryptographic functions. We assume that the warden is aware of the imple-
mentation, but does not have access to these secrets and is not able to exploit
vulnerabilities in the cryptographic primitives.

4.1 Linux

The Linux 2.0 ISN generator (shown in Figure 2) is based on RFC1948 [17].
It uses SHA-1 to hash a block of 16 32-bit words, with words 9–11 set to the
source and destination IP address and port, and the remaining 13 words filled
with a cryptographically secure, random secret, initialised on boot. Rather than
using the values defined in the SHA-1 standard for the initial state, the first 5
words of the block are used. To obtain the ISN, the second word of the hash is
selected and the current time (in microseconds) added. This achieves the goals
of RFC1948, but calculation of a SHA-1 hash is slow, and hence this algorithm
causes a significant delay in the TCP connection establishment process.

The algorithm used in Linux 2.2 (shown on the left in Figure 3) was modified
to reduce the time needed to calculate each ISN. Rather than using SHA-1, a
reduced block-size variant of MD4 was used, which reads 8 32-bit blocks per
iteration, rather than the 16 in the original, and so it also reduces the steps per
round from 16 to 8. This is used in a similar way to SHA-1 in Linux 2.0, except
the reuse of random data is avoided. Since even the full size MD4 algorithm is
known to be insecure, the random data is rekeyed every 300 seconds (5 minutes)
to limit the impact of secret compromise. To avoid this resulting in repeated
ISNs, after the hash is calculated, the most significant byte is replaced with a
counter incremented on rekeying and initialised to the current time divided by
300. Finally, as with Linux 2.0, the time in microseconds is added.

8 Steven J. Murdoch and Stephen Lewis

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �� �

� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �

� � �
� � �
� � �
� � �

Random data

Block

State

SHA-1

Sequence number

S. Port D. Port

Src IP Dst IP

+
Time (µs)

Fig. 2. Linux 2.0 ISN generator

Early versions of Linux 2.4 contained the same ISN generator as Linux 2.2.
It was also used (up to the hashing step) with a different secret to initialise the
per-destination counters for IP IDs. A global counter previously had been used
but this was vulnerable to idle scanning. In later versions of Linux 2.4 and in
Linux 2.6 the algorithm was changed slightly, as shown on the right of Figure 3,
mainly to improve performance on multiprocessor systems. The difference from
a detection perspective is that the rekey counter is initialised to zero on boot.
The use of MD4 is changed, and the same secret is used for both ISN and IP ID
generation but using this for detection would require exploiting a vulnerability
in MD4.

4.2 OpenBSD

The algorithm used for ISN generation in OpenBSD was introduced in December
2000; Figure 4 shows its operation. It is initialised by keying a block cipher with
1024 bits of random data and setting the most significant bit of the generated
ISNs to be zero. It is rekeyed every 2 hours, or every time 30,000 connections,
whichever is sooner. On rekeying, the MSB of the generated ISNs is toggled: this
prevents collisions between ISNs generated in adjacent rekey intervals.

When a new TCP connection is made, the ISN is generated as follows:

– The MSB set to either ‘1’ or ‘0’, depending on whether the operating system
is in an ‘odd’ or ‘even’ rekey interval.

– The next 15 bits are set to the output of a custom block cipher run in counter
mode; the counter is updated each time an ISN is generated.

– The next bit is always zero.
– The final 15 bits are generated by an RC4 based pseudorandom number

generator (PRNG).

The result of running the block cipher in counter mode is that a different
pseudorandom sequence is defined in each rekey interval. The 15-bit values in

Embedding Covert Channels into TCP/IP 9

� � � � � � � �� � � � � � � �
� � � � � � � �
� �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �� �� �

� �
� �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � �
� � �

� � �� � �
� � �� � �

32 bits32 bits

Random data identical for IP ID and ISN

Random data used for IP ID only

StateState

S. Port D. Port S. Port D. Port

Time (µs)

BlockBlock

Linux 2.2 and Early Linux 2.4 Late Linux 2.4 and Linux 2.6

Src IPSrc IP Dst IP Dst IP

Sequence number

Initial IP ID (Linux 2.4–2.6)

For ISN

For IP ID

Time (s) /300 (Linux 2.2/Early Linux 2.4)
Rekey counter (Late Linux 2.4/2.6)

R-MD4 R-MD4

Dst IPDst IP

+

Fig. 3. Linux 2.2–2.6 ISN generator and Linux 2.4–2.6 IP ID generator

this sequence are then inserted into the ISNs, followed by a zero bit: this ensures
that no two ISNs within a given rekey interval are closer together than 215 octets.
The scheme thus satisfies all of the constraints described in Section 3.6 apart
from per socket pair monotonicity.

The IP ID algorithm in OpenBSD uses a linear congruential generator, de-
scribed in [18], rekeyed every 3 minutes (or after 30,000 IDs have been generated,
whichever is sooner). It uses the same MSB-toggling mechanism as the sequence
number generator to prevent collisions between rekey intervals.

� � � � � �� � � � � �
� � � � � �� � � � � � � � � � � � �� � � � � � �

� � � � � �� � � � � ����������� 		

�� ���� �� ���� ����

� �� �
� �� � 15 bits

15 bits

1024 bits

0

32 bits

Rekey counter mod 2

Counter

Block cipher

RC4 pseudorandom

Key

Random data

Sequence number

Fig. 4. OpenBSD ISN generator

10 Steven J. Murdoch and Stephen Lewis

5 Detection of TCP/IP Steganography

As described above, each operating system exhibits well defined characteristics
in generated TCP/IP fields. These can be used to identify any anomalies that
may indicate the use of steganography. We have therefore defined a suite of
tests which may be applied to network traces and used to identify whether the
results are consistent with known operating systems (and in particular with the
operating system believed to be installed on the source host).

5.1 IP ID Characteristics

1. Sequential Global IP ID. Some operating systems, particularly older ones
(e.g. Linux <2.4), use a global counter for the IP ID. If connections to
different hosts have sequentially increasing IP IDs then it is likely that this
strategy is in use.

2. Sequential Per-host IP ID. Others (e.g. Linux ≥2.4) use a per-host counter.
The warden can test whether connections to different hosts use apparently
unrelated IP IDs, but connections to the same host have a sequentially in-
creasing IP ID.

3. IP ID MSB Toggle. OpenBSD toggles the most significant bit of the IP ID
every rekey interval (3 minutes or 30,000 IP IDs), so the MSB is be examined
to check if it meets this pattern.

4. IP ID Permutation. Within a rekey interval, the OpenBSD IP ID is non-
repeating; the presence of any duplicates eliminates the possibility that this
strategy is in use.

5.2 TCP ISN Characteristics

5. Rekey Timer. In Linux 2.2 (and early 2.4) the most significant byte of
the ISN is initialised to the current time since the epoch, divided by 300.
The system time in microseconds is then added. The rekey timer can be
recovered by subtracting the host time, in microseconds, from each ISN and
verifying that the top byte increases by one every 5 minutes. This requires
a clock synchronised to 8 seconds accuracy (223/1,000,000). This seems a
reasonable assumption as many systems use NTP synchronisation. The host
time can even be queried directly, for example by using the daytime service,
or indirectly, by observing patterns in the ISNs.

6. Rekey Counter. In Linux 2.6 (and late 2.4) the MSB of the ISN is set to
the time since system startup (in seconds) divided by 300. The system time
in microseconds is added, as before, and hence the rekey counter can be
recovered using the same method as in Test 5.

7. ISN MSB Toggle. As with the IP ID, OpenBSD toggles the MSB of the
generated ISN every rekey interval (2 hours or 30,000 IP IDs).

8. ISN Permutation. Bits 16 to 30 within OpenBSD ISNs are non-repeating
within a rekey interval.

9. Zero bit 15. All ISNs generated by OpenBSD will have bit 15 cleared.

Embedding Covert Channels into TCP/IP 11

10. Full TCP Collisions. In Linux 2.0–2.6, and other RFC1948 inspired sys-
tems, the hash used for ISN generation is based on the socket pair, and
it is possible that collisions will be encountered. For Linux 2.0 there is no
rekeying, so all 32 bits will be identical after subtracting the time.

11. Partial TCP Collisions. For Linux 2.2–2.6 it would be expected that colli-
sions within a rekey period will have the same least significant 24 bits, after
subtracting the time.

5.3 Explicit Steganography Detection

12. Nushu Cryptography As covered in Section 3.6, Nushu encrypts data before
including it in the ISN field. This will result in a distribution unlike that
normally generated by Linux and so will be detected by the other TCP tests.
However due to a flaw in the way that encryption is used, Nushu also exhibits
characteristics of its own which may be exploited. The encryption operates by
DES encrypting the IV (source port⊕ destination port, source IP address⊕
destination IP address) with a shared key, then xoring the first 32 bits of
the resulting keystream with the hidden data. When IV collisions occur,
the ISNs can be xored to remove the key-stream; the result is the xor of
two plaintexts. If these plaintexts are the same, as is the case when data is
not being sent, the result would be zero, and in other cases redundancy in
encoding would be apparent.

13. TCP Timestamp The scheme used in devcc, described in [16], can be de-
tected using the methods outlined in [19]. If a low bandwidth TCP connec-
tion is being used to leak information, a randomness test can be applied to
the least significant bits of the timestamps in the TCP packets. (For exam-
ples of such tests, see [20].) If ‘too much’ randomness is detected in the LSBs,
it can be deduced that a steganographic covert channel is in use.
For a high bandwidth TCP connection (where segment transmission rate �
timestamp update rate), a warden can merely calculate the ratio of the num-
ber of distinct timestamp values seen to the difference between the start and
end timestamp values. If the covert channel described in [16] is in use, this
ratio will be close to 0.75; if not, it will be very close to 1.

14. Other Anomalies Features which would indicate the use of steganography
include: unusual flags (e.g. DF when not expected, ToS set), excessive frag-
mentation, use of IP options, non-zero padding, unexpected TCP options
(e.g. timestamps from operating systems which do not generate them), ex-
cessive re-ordering.

5.4 Accuracy

Table 1 shows which tests detect which operating systems. All of these tests
(except Test 13) are defined based directly on the implementation and make no
assumptions about the probabilistic effects. Hence, they will not suffer from false
negatives. False positives are possible, so in this section we consider the number
of packets required to avoid these.

12 Steven J. Murdoch and Stephen Lewis

Table 1. Expected results of tests on unmodified operating systems and
TCP/IP steganography systems. A matching test is indicated by “•”. The last
three columns are tests for the presence of steganography, the others test for
the absence. Nushu and devcc were written for early Linux 2.4 and are as-
sumed to share the characteristics of all fields which are not explicitly modi-
fied. Covert TCP creates all fields itself. Our improved TCP/IP steganography
scheme, Lathra, is described in Section 6

Software Tests
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linux 2.0 • •
Linux 2.2 • • •

Early Linux 2.4 • • •
Late Linux 2.4/2.6 • • •

OpenBSD • • • • •

Covert TCP

Nushu • •
devcc • • • • •

Lathra/Linux • • •
Lathra/OpenBSD • • • • •

IP ID. Test 1 will reach an error probability of 1/216 after only 2 packets and
Test 2 will also for 2 packets directed to the same host within a rekey interval.
The probability of error in Test 3 halves with every packet. From the “birthday
paradox”, after around 181 packets a collision would be expected which would
match Test 4.

TCP ISN. Test 5 needs one packet to achieve a 1/28 error probability and
Test 6 needs 2 packets to get the same. Test 7 halves the error probability with
every SYN packet. As with the equivalent IP ID check, Test 8 needs around 181
SYN packets within a rekey interval. Tests 10–12 depend on the randomness
of the source port selection, but on a heavily loaded machine, our experiments
show these collisions occur approximately every 1,000 SYN packets for a fixed
destination port.

Steganography. Test 12 also depends on port selection randomness but our
experiments show collisions every 1,000 SYN packets, even with random port se-
lection. Test 13 relies on observation of consecutive TCP timestamps: if n times-
tamps are seen without discontinuity, the probability that the devcc scheme is
in use is 1/2n−1. The accuracy of Test 14 depends on the steganography being
used, but for näıve implementations only one packet is needed.

6 Detection-Resistant TCP Steganography Schemes

Our aim in this section is to develop a robust scheme, Lathra, for using the TCP
ISNs generated by OpenBSD and Linux as a steganographic carrier. We achieve

Embedding Covert Channels into TCP/IP 13

this by following the implementation of the real ISN generator, so OpenBSD and
Linux are discussed as separate cases.

6.1 OpenBSD

The MSB of our output must exactly mimic the output of the real OpenBSD
TCP stack: it must toggle every 2 hours (or 30,000 connections). The next 15
bits, when extracted in turn from each ISN generated within a rekey interval,
must resemble a pseudorandom sequence. We therefore need a scheme that codes
arbitrary data into a pseudorandom sequence of integers between 0 and 215. The
data must still be recoverable even if some elements of this sequence are never
seen by the recipient, Bob.

The functions in Figure 5 encode (and decode) the integer n as a permutation
of the sequence (0, 1, 2, . . . ,m), with x-times redundancy (i.e. Bob only needs to
receive one in x ISNs transmitted by Alice). In order to remove patterns in our
permutation, Alice must choose a key, K, for each rekey interval, and transmit
it to Bob in, for example, the least significant 15 bits of the first ISN.

These functions allow us to code the 16 most significant bits of the ISN.
The 17th bit must be a zero, and we can code data into the remaining 15 bits
using a block cipher with a preshared key. The output of the block cipher is
analogous to the RC4 based PRNG in the genuine ISN generator. In order to
ensure freshness, a hash of the other TCP and IP header fields is xored with the
data to be encoded before the encryption step.

6.2 Linux

Simply encoding the data within the least significant 24 bits of the ISN could be
detected by the warden, since after subtracting the time he would be left with a
non-uniform distribution. Instead we mirror the actual ISN generation process
as closely as possible. If we assume that Alice and Bob have clocks synchronised
to 0.1 seconds, Alice embeds the 6-bit encrypted message in bits 17–23 of the
hash and pads the rest with random data. Then Alice adds the rekey counter and
time as normal. Bob simply needs to subtract the time to recover the message.

To ensure reliability, Alice can check if she receives an ACK for each ISN and
resend if not, then use a standard reliability protocol, for example that used in
Nushu, to reassemble the data. So that the data cannot be differentiated from
random numbers, it must be encrypted. To achieve freshness, while allowing each
packet to be decrypted independently, the plaintext is xored with a hash of the
TCP/IP header, excluding the ISN and other fields which may change during
transport, then encrypted with a variable length block cipher. Also, due the the
RFC1948 based design, if Alice encounters a packet with the same source and
destination IP address and port as one already used, within a rekey interval, this
must be skipped.

14 Steven J. Murdoch and Stephen Lewis

Permutation-Code(m, n, x)
1 base← m
2 output symbols← (0, 1, 2, . . . , m)
3 while n 6= 0
4 do index← n mod base
5 n← bn/basec
6 for i← 0 to x− 1
7 do output Encipher(output symbols[index] + i×m, K)
8 output symbols← output symbols \ output symbols[index]
9 base← base− 1

Permutation-Decode(m, x)
1 base← m
2 multiplicand = 1
3 input symbols← (0, 1, 2, . . . , m)
4 n← 0
5 while input symbol
6 do symbol← Decipher(symbol, K)
7 symbol← symbol mod m
8 if seen symbol
9 then skip

10 n← n + Index-Of(symbol in input symbols)×multiplicand
11 input symbols← input symbols \ symbol
12 multiplicand← multiplicand× base
13 base← base− 1
14 return n

Fig. 5. OpenBSD permutation coding and decoding functions

7 Conclusion

In this paper, we have provided an overview of the opportunities for using
TCP/IP header fields as a carrier for a steganographic covert channel. A detailed
description of the ISN and IP ID generation schemes in Linux and OpenBSD
was presented, and a number of previously proposed schemes for TCP/IP-based
steganography were described.

We have shown that a passive warden can easily detect use of these schemes
because the modified headers that they produce can easily be distinguished from
those generated by a genuine TCP/IP stack.

Finally, we have outlined two schemes for encoding data with ISNs generated
by OpenBSD and Linux. Both schemes generate ISNs that are indistinguishable
from those generated by a genuine TCP stack, except by those with knowledge
of a shared secret key.

Acknowledgments: Thanks are due to Joanna Rutkowska, George Danezis and Richard

Clayton for their helpful contributions.

Embedding Covert Channels into TCP/IP 15

References

1. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In Chaum,
D., ed.: Crypto ’83. Advances in Cryptography, Plenum Press (1983) 51–67

2. Handel, T., Sandford, M.: Hiding data in the OSI network model. In Anderson,
R., ed.: Information Hiding. Volume 1174 of Lecture Notes in Computer Science.,
Springer-Verlag (1996) 23–38

3. Szczypiorski, K.: HICCUPS: Hidden communication system for corrupted net-
works. In: International Multi-Conference on Advanced Computer Systems. (2003)
31–40 http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf.

4. Postel, J.: STD7: Transmission control protocol. IETF (1981)
5. Postel, J.: STD5: Internet protocol. IETF (1981)
6. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in Inter-

net traffic with active wardens. In Petitcolas, F., ed.: Information Hiding. Volume
2578 of Lecture Notes in Computer Science., Springer-Verlag (2002) 18–35

7. Jacobson, V., Braden, R., Borman, D.: RFC1323: TCP extensions for high perfor-
mance. IETF (1992)

8. Nichols, K., Blake, S., Baker, F., Black, D.: RFC2474: Definition of the differenti-
ated services field (DS field) in the IPv4 and IPv6 headers. IETF (1998)

9. Fyodor: Nmap: free security scanner (1998) http://www.insecure.org/nmap/.
10. Ahsan, K., Kundur, D.: Practical data hiding in TCP/IP. In: ACM Workshop on

Multimedia and Security. (2002) http://ee.tamu.edu/~deepa/pdf/acm02.pdf.
11. Mogul, J., Deering, S.: RFC1191: Path MTU discovery. IETF (1990)
12. Bellovin, S.M.: Security problems in the TCP/IP protocol suite. Computer Com-

munication Review 19 (1989) 32–48
13. Rowland, C.H.: Covert channels in the TCP/IP protocol suite. First Monday 2

(1997) http://www.firstmonday.org/issues/issue2_5/rowland/.
14. Sohn, T., Seo, J., Moon, J.: A study on the covert channel detection of TCP/IP

header using support vector machine. In Perner, P., Qing, S., Gollmann, D., Zhou,
J., eds.: Information and Communications Security. Volume 2836 of Lecture Notes
in Computer Science., Springer-Verlag (2003) 313–324

15. Rutkowska, J.: The implementation of passive covert channels in the Linux kernel.
In: Chaos Communication Congress, Chaos Computer Club e.V. (2004) http:

//www.ccc.de/congress/2004/fahrplan/event/176.en.html.
16. Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R.: Covert messaging in TCP. In

Dingledine, R., Syverson, P., eds.: Privacy Enhancing Technologies. Volume 2482
of Lecture Notes in Computer Science., Springer-Verlag (2002) 194–208

17. Bellovin, S.: RFC1948: Defending against sequence number attacks. IETF (1996)
18. de Raadt, T., Hallqvist, N., Grabowski, A., D. Keromytis, A., Provos, N.: Cryp-

tography in OpenBSD: An overview. In: USENIX Annual Technical Conference
(FREENIX Track). (1999) 93–102

19. Hintz, A.: Covert channels in TCP and IP headers. Presentation at DEFCON 10
(2002) http://guh.nu/projects/cc/.

20. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for the
validation of random number generators and pseudo random number generators
for cryptographic applications. Technical Report 800-22, NIST (2001)

http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf
http://www.insecure.org/nmap/
http://ee.tamu.edu/~deepa/pdf/acm02.pdf
http://www.firstmonday.org/issues/issue2_5/rowland/
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html
http://guh.nu/projects/cc/

