
Information Security Bulletin, June 2004 Volume 9, Page 165

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

SOFTWARE SECURITY

Overview
You have to ask yourself: why is there so much
bad code? How many times have you heard the
statement to the effect of: “if only the developers
had built these applications with security in
mind, we wouldn’t have these security prob-
lems?” At the same time, the developers may
say: “We built to spec, give us security specifica-
tions and we will make it happen!”

Do developers want to write insecure code? No.
Do security teams want to deploy insecure pro-
grams or be engaged at the zero hour before de-
ployment? No. Who suffers? The business suf-
fers due to poor and late information on how to
manage its risk profile. What is missing from the
current development and security relationship is
a way to engage security in the development
lifecycle at the proper time making security a
participating stakeholder in the software analysis
and design process.

The purpose of this article is to examine specific
ways that the security and development teams
can collaborate while software is being designed
and developed as opposed to only patching soft-
ware once it has been deployed. Software is ex-
tremely malleable in the design and develop-
ment phase, once the architectural layers, tiers,
and distribution models are set and the applica-
tion is deployed, then the cost and complexity of
making changes rises dramatically.

In order to participate in an enterprise software
development process effectively the security
team requires a new tools and techniques. This
article examines analysis and design activities,
which the security team can use to improve the
security in the code built by their enterprise.

Enterprise
Development Process Context
Large enterprises are heterogeneous entities.
They are host to a wide variety of technology,
processes, and skill sets. In this article, we will
seek to focus on elements, which are commonly
used in or adapt well to use in enterprise devel-
opment. Since the security team does not gener-
ally arbitrate the choice of a development meth-
odology, we will not focus on a specific method-
ology; rather we will look at ways to integrate
into development process. We will examine four
phases in a sample hypothetical development
process, which we will call a Secure Development
Process or SDP. SDP is an iterative development
methodology whose constituents bear some re-
semblance to activities and artifacts found in Ra-
tional Unified Process (RUP) and Agile processes.
The four phases in our SDP example process
consist of:

Collaboration in a Secure
Development Process
Part 1

Gunnar Peterson



Volume 9, Page 166 Information Security Bulletin, June 2004

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

- Analysis Phase: this phase is geared towards
problem definition, requirements gathering
and analysis

- Design Phase: this phase consists of iterating
through designs, proof of concept work, and
refining requirements

- Development Phase: this phase is characterized
by programming and unit testing code

- Deployment Phase: the deployment phases pro-
motes the code into production operation

Note that these phases are iterative in nature as
opposed to a waterfall approach. Analysis does
precede other phases, but typically Analysis arti-
facts and activities will be revisited throughout
the development life cycle, i.e after Design pro-
totyping. Design phase activities and artifacts are
likewise updated and refined throughout the de-
velopment process, especially in conjunction
with the Development phase. The phase break-
down in our sample methodology is not to im-
pose a hierarchy or chain of events, but rather to
demonstrate relative areas of focus and engage-
ment over the course of the development
lifecycle. While most applications spend the vast
majority of their lifespan in an operational/main-
tenance state, our focus here will be on securing
the building phases so that the application is in a
more defensible position when it is promoted to
the operational/maintenance status.

Security Architecture: Building a
Shared Understanding of Risk
The Security Architect’s goal is to first build a
shared understanding among disparate stake-
holders so that the team can define a design,
which meets the functional as well as the secu-
rity-focussed requirements. The shared under-
standing is fostered through education, commu-
nication and mentoring.

Shared understanding of security’s definition
and role in the application is a prerequisite to
garnering effective and thorough security re-
quirements. To build the shared understanding
of security in the context of an enterprise devel-
opment project, the Security Architect’s process
flow should include these activities:

- Ensure development staff are well versed in
security mechanisms. Developers need to be
able to participate in the analysis and design of
security mechanisms, so it is necessary for the
developers to be up to speed with security ele-
ments and concepts, for example authentica-
tion, authorization, and secure exception man-
agement. A kick-off seminar at the beginning
of the software development project can be an
effective way to educate development person-
nel.

- Mentor security team on the development pro-
cess, its organization, and technologies. To be
on point with communications, the security

team needs to be proficient in the technolo-
gies, and to understand through the lens of
the development process what analysis and
solution issues are dealt with when and by
whom. Proactive involvement in the develop-
ment process is a key to avoiding the last min-
ute security code review scenario.

- Find allies! A common problem with security
involvement in the development process is
that it frequently becomes an “us against
them” situation. The security team is not for or
against development, it is for protecting the
business’ assets and ensuring secure develop-
ment of features. Where possible the security
team should seek out enterprise architecture
teams, business, and legal teams and harness
their support to help gain adoption of security
mechanisms in the development process. This
paradigm triangulates the communication so
that security is seen more in an organizational
context and less in a group A versus group B
way.

- Get business buy in. The business decides the
resources and time-lines a project is given. Ed-
ucating the business side on the exact nature
of what the security mechanisms are protect-
ing, how they impact time-lines and budgets,
and where they fit into the overall process is
an important part of the early stakeholder en-
gagement process.

SOFTWARE SECURITY

Thinking Iteratively

Modern development processes like XP and
RUP utilize an iterative approach to develop-
ment. That is, the development phases are de-
signed to proceed without waiting for "per-
fect" requirements. The common process is for
the development team to gather an initial set
of requirements, then proceed to design and
build an initial application. The business ana-
lysts and other stakeholders then refine re-
quirements and validate the development
work on an ongoing basis. This approach is in
contrast to a waterfall process where all re-
quirements and features are frozen before de-
velopment begins.

Since in reality requirements generally evolve
over time even in a waterfall process, iterative
development reflects a practical way to deal
with this. It is worth noting that the mind set
required for iterative development is different
from the "classic" IT security mind set which
tends be driven more by policy definition and
compliance than ongoing tradeoff analysis in
a development life cycle.



Information Security Bulletin, June 2004 Volume 9, Page 167

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

SOFTWARE SECURITY

Integrating Security into the Enterprise
Development Process
No widely adopted enterprise development pro-
cess has security as a first principle. Enterprise
development processes are typically designed to
navigate the space between business-requested
features, programming, timing, and budgetary
realities. These two factors are then rounded out
by a variety of “ility”-type requirements like
scalability, performance, and security. The result
for the Security Architect is that they must work
to bend existing process artifacts to a security
viewpoint and create new artifacts, which advo-
cate more clearly for security goals.

A pragmatic way for the security architect to ap-
proach the software development life cycle is to
first look at what already exists in the process,
which can be leveraged for security purposes.
Once the sum total of these existing artifacts and
activities are gapped against the security pro-
gram’s goals additional activities and artifacts are
then defined to supplement the process. Wher-
ever possible the security team should leverage
existing development artifacts and activities, this
aids in gaining adoption. However, some secu-
rity concepts, for example threat modelling, will
not be supported in the default development
process, so additional activities will need to be
synthesized into the development process.

In summary, the integration of security into the
development process begins by finding what al-
ready exists in the development process and
how it can be leveraged for security’s goals and
by whom. Then a top down architectural view is

used to identify and address gaps between the
existing process inventory and the security
team’s policies and goals.

While enterprise software development pro-
cesses do not contain everything that the secu-
rity team requires, they are an excellent point of
leverage to drive security mechanisms and goals.
Utilized well, the development process provides
a solid foundation from which the security team
can base further security initiatives. At the same
time, Table 1 shows that for the security team to
participate as a partner in the development pro-
cess, there is a sharp up-tick in their workload.

Analysis Phase
“A problem, properly stated, is a problem on its way
to being solved,” Buckminster Fuller

The Analysis Phase consists of pulling together
and analysing requirements. The requirements
define what the system is supposed to do, and
on whose behalf. During analysis activities the
development team concentrates on the “what”
rather than the “how”. The Analysis Phase is
comprised of identifying the business goals of
the system and understanding the problem
space at a detailed level so that design may be-
gin, and that code may later be validated against
the inception criteria. Typically, code is not de-
veloped in this phase, but prototype and proof
of concept work may start at this early stage.
The artifacts that emerge from the analysis activ-
ities drive much of the future priorities and re-
sources. This point underscores the need for the

Phase Activity
Standard Software Development
Process Artifact

Security-specific artifact

Analysis Use Case Misuse Case

Functional and non-functional
requirements

Glossary

Design Object modelling Threat Model

Design Patterns Data Classification

Security Integration Design

Coding Unit Tests Unit Hacks

Code Development Countermeasure and detection development

Deployment Build and configuration Security Baseline

Operational processes Response processes

Integration to Overall Security Architecture

Table 1 – Software Development Activities and Artifacts



Volume 9, Page 168 Information Security Bulletin, June 2004

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

security team to get involved early on in the de-
velopment project.

Several artifacts in the Analysis Phase, properly
utilized, can be beneficial to clarifying security
goals and role. The main standard artifacts in the
Analysis Phase and their security implications in-
clude:

Use Cases
Use Cases provide a well-defined format to doc-
ument application requirements within a certain
context. Use Case documents define the major
pieces of functionality, the system’s behaviours,
the overall flow (and alternate flows), the system
boundaries, the Pre and Post Conditions of the
system, and its Actors.

Use Cases do not explicitly deal with Non-
functional requirements. Security is typically
classed as a Non-functional requirement, but
there are several reasons why it is valuable for
the security team to participate in the Use Case
process. Reviewing Use Cases is one way for the
Security team to identify security risks. Under-
standing the various states within the applica-
tion flows, and the Pre and Post Conditions of
the Use Case can illuminate ways for the Secu-
rity team to refine their architecture.

Perhaps the most valuable aspect of the Use
Case format is that they are designed to be inclu-
sive. Many security problems emerge from the
stovepipe view of development where commu-
nication gaps occur between business, develop-
ment and security groups. Use Cases provide a
way to understand and manage the relative
tradeoffs each group must consider to work to-
wards a solution, which can balance the needs of
all the stakeholders.

Each Use Case is a text document, Use Case dia-
grams can be drawn to show contextual relation-
ships between Use Cases, boundaries and actors.
Since Use Cases are designed to be simple they
are an inclusive way to build a common under-
standing of what the application is supposed to
do (and from a security point of view: not do).
While a full description of the Use Case format is
out of scope for this article, there are several
points in Use Cases, which are worth paying ex-
tra attention to for the Security Architect.

- Pre-Conditions: describes the state that the sys-
tem is required to be in before action starts in
the Use Case. In particular, assumptions
concerning authentication, authorization, and
key access should be defined in this area

- Post-Conditions: details the state(s) which the
system can be in at the end of execution. The
security implications for Post-Conditions in-
clude ensuring that the application properly
cleans up after itself, for example closing con-
nections and releasing resources. Additionally,
the fail open versus fail closed question can be
answered in the Post-Condition section

- Alternate Flows: show the possible alternate
flows the application can take on account of
abnormal behaviour, i.e. an exception. Excep-
tion handling and management are of great in-
terest from a security standpoint. Each excep-
tion case and its post-conditions should be ex-
amined from a security perspective to ensure
that the system reverts to a known good state
and that the user session is reset as appropri-
ate

- Actors: Actors are analogous to users. Use
Cases are more user-centric than standard re-
quirements. They define not only what the
system does, but what it does based on which
Actors are using the system. User-centric does
not mean that all users are humans however;
actors can be individual users or other sys-
tems. Actors are an important part of the Use
Case because they show how the system per-
forms its functions for each user type. Actors
are the best starting point to begin to under-
stand role definition in a role-based or
group-based security model

- System Boundaries: show the boundaries of
trust for the application from a security per-
spective. Care should be taken to ensure that
the related trust models like the network secu-
rity model map from a logical to physical
model for the target system.

Use Cases also define the stakeholder commu-
nity. Stakeholders can include not just the users
of the system, but many other groups can be
thought of as stakeholders, including: develop-
ment team, security team, customers, and busi-
ness sponsors. By defining the stakeholder land-
scape each representative voice can advocate for
their specific goal and a more balanced view of
the business value and commensurate risks can
be modelled. This balanced Use Case Model is
an essential component in understanding the
relative merits of features, usability, time to mar-
ket, and other quality factors in a security con-
text.

A last important point to remember about Use
Cases is that as recursive as it sounds, Admins
are users too! Administrator Use Cases are an
important source of information for how the sys-
tem will be maintained over time and the ad-
ministrator use case definition process can un-
cover some hidden assumptions and security
flaws. To learn more about Use Cases, consult
[1]. Alistair Cockburn’s work is also a very valu-
able resource in this area [2].

Requirements
Requirements come in two flavours: functional
and non-functional. Since not all requirements fit
into the Use Case format, the Use Cases are sup-
plemented by additional requirements docu-
ments. The non-functional requirements docu-
ments in particular are geared towards defining
security requirements. Defining these require-

SOFTWARE SECURITY



Information Security Bulletin, June 2004 Volume 9, Page 170

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

ments early on and being specific about precisely
what the security requirements are at a system
level is essential to getting a consistent security
design into the application. At a minimum the
non-functional requirements should defined the
requirements around Authentication, Authoriza-
tion, and Confidentiality before the design phase
begins in earnest.

The fundamental keys to writing security re-
quirements are to be as specific as possible, and
to aim to make the requirements testable and
measurable. By writing specific and measurable
requirements, the development process will
clearly show where the application is providing
sufficient or deficient security mechanisms.

Since security is at least partially measured in
negative terms, i.e. “the system must not allow
unauthorized usage of its functionality”, it is a
more subtle art to capture the security require-
ments. The value of identifying the requirements
is that this allows the security requirements to be
managed and prioritized alongside the other re-
quirements the development team deals with,
such as features, usability, and performance. A
big part of the early stages in the development
process is to find the balance between business
valuable factors which may be incongruent, for
example security may wish to require an ex-
tremely long password which expires every
month, while the usability team will find this
unacceptable.

The challenge to the security team is to find a
way to attach business value to its requirements,
i.e how does it impact risk? What is the price of
the risk to the business? Feature-driven require-
ments are seen in terms of the business value
they provide to the enterprise. Security-driven
requirements are in large part best seen by how
they mitigate risk. The key here is that the secu-
rity team must be as prepared to show the de-
tailed business case for security as the team,
which drives the features is. Once the relative
merits of the solutions are defined an effective
tradeoff analysis can occur.

Glossary
Domain glossaries were born out of application
development in complicated business domains.
Security keywords and definitions should be
added to the glossary. The glossary functions as
an important educational resource for the busi-
ness and development teams to learn about se-
curity concepts and mechanisms.

Security-Specific Artifacts

Misuse Cases
Developed by Guttorm Sindre and Andreas
Opdahl, Misuse Cases look at the system from
the malicious attacker’s point of view. From a se-
curity viewpoint, Misuse Cases are an excellent
balance to Use Cases since they correlate threats,

targets, and damage to functionality and legiti-
mate use.

As in the instance of Use Cases, Misuse Cases are
primarily text documents with a supplementary
graphical model. Like an attacker, Misuse Cases
invert the expected course of events and lever-
age trust to gain unauthorized access to re-
sources.

- “A Misuse Case is the inverse of a use case, i.e. A
function that the system should not allow” -Sindre
& Opdahl.

Misuse Cases give tangible instances of the
system’s main threats, and map those threats
onto the functionality (Use Cases), the system
boundaries, and the other affected system rela-
tionships with external systems, Actors, and
Use Cases

- “A Mis-actor is the inverse of an actor, i.e., an actor
that one does not want the system to support, an
actor who initiates misuse cases.” -Sindre &
Opdahl.

Mis-actors can be broken down into specific
types, for example to show attacker skill level
or to show internal versus external types of at-
tackers.

Misuse Cases use much of the Use Case termi-
nology, and define their own additional constit-
uents, including:

- Worst Case Threat: the end system state if Mis-
use Case “succeeds”

- Prevention and Detection Guarantees: analogous
to a Use Case Post-condition, but encapsulate
security-specific mechanisms.

- Stakeholders and Risks: addresses business risk
that is generated by the application’s misuse.

Misuse cases define the starting point for more
advanced threat modelling. They can be used to
glean more precise security requirements, and
lead into testing scenarios and Unit Hacks (more
on these in the next article). Misuse Cases exist
in relationship to the functionality described in
Use Cases.

To learn more about Misuse Cases review [3]

Use Cases and Misuse Cases Example
The Use Case and Misuse Case formats comple-
ment each other, and provide a balanced per-
spective of functionality and risk. What follows
is a brief illustrative example of a simple Use
Case and Misuse Case for the fictitious company
Foo Co.

Use
Case:

Update Product Price

Actors Standard Foo Co User
Foo Co Product Specialist

SOFTWARE SECURITY



Volume 9, Page 171 Information Security Bulletin, June 2004

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

SOFTWARE SECURITY

Pre-
condition

User must be authenticated and au-
thorized to perform operation
Session timeout is set

Post-
condition

Product price is updated
Audit log is sent message to record
update action
User session is expired or user ex-
plicitly logs out

Basic
Flow

Foo Co Product Specialist views
Product selection, and selects a prod-
uct to update price
Product Specialist selects an available
price from market pricing schema
Product Specialist updates price, and
confirms update
Standard Foo Co Users can now see
the updated product price for quota-
tion

Note that in a real Use Case multiple alternative
flows will augment the Basic Flow to show what
course of action the Use Case takes in an excep-
tional event.

Misuse
Case

Mis-price Product

Mis-Actor Malicious Insider

Pre-
condition

Mis-Actor must be authenticated
and authorized to perform logon
operation
Mis-Actor must gain unauthorized
access to pricing levels
Session timeout is set

Post-
condition

Product price is set at below recom-
mended level
Product price is updated
Audit log is sent message to record
update action
User session is expired or user ex-
plicitly logs out

Basic
Flow

Malicious Insider views Product se-
lection, and selects a product to up-
date price
Malicious Insider gains unautho-
rized access to pricing minimum
level
Malicious Insider selects a price,
which is below market pricing
schema standard
Malicious Insider updates price, and
confirms update
Standard Foo Co Users now see the
updated “incorrect” product price
for quotation

Worst
Case
Threat

Products sold at below recom-
mended pricing bottom line nega-
tively impact company profit mar-
gins

Value of Use Cases and
Misuse Cases Working Together

This simple example shows several things, which
are valuable to the security and development
teams. First the Misuse Case shows which con-
trols are essentially ineffective in this instance. If
the user can log on, and the authentication and
authorization mechanisms for the application are
not consistent with the mechanisms for the pric-
ing the system is at risk. All of the other security
mechanisms can perform their functions, but the
system will fail and Foo Co will lose money.

Taking the example one step further we add the
Prevention and Detection Guarantees to the Misuse
Case. The Prevention and Detection Guarantees
can take the form other Use Cases which are in-
cluded or extend the behaviour of existing Use
Cases.

Prevention Guarantee: Each access to the mini-
mum pricing system are authenticated and au-
thorized against the same user repository as the
main Update Product Price Use Case.

Detection Guarantee: After updating Product Price
off line processes read the recorded price set in
the audit log and correlate it against the day’s
minimum pricing levels. Alerts are generated for
prices, which fall below the minimum.

Identifying Misuse Cases

Generally, Use Cases are initially identified by
holding a meeting where the primary stake-
holders who know the domains brainstorm to-
gether to build a first cut list of Use Cases, which
are further refined and edited over time. An ini-
tial list of Misuse Cases can emerge from a simi-
lar setting. Engage the stakeholders who under-
stand the domain, the application serves, busi-
ness risks, security assumptions, user commu-
nity, and technology stack to define the initial
set of Misuse Cases.

Since many Misuse Cases are related to technol-
ogies (i.e. IIS Web Server can have its own set of
genericized Misuse Cases) or deployment pat-
terns (i.e. 3-Tier Web-based application), over
time the Security Team can reuse the Misuse
Case Models. This is important since it reduces
the impact of additional involvement in new
projects for the security team once the initial
models are done. Note that the involvement
number will not approach zero since work is re-
quired to map the Misuse Cases to the domain
and the threat landscape is constantly changing
over time.



Information Security Bulletin, June 2004 Volume 9, Page 172

Copyright ©2004 CHI Publishing Ltd - All Rights Reserved - Do not copy without written permission

Conclusion

Early involvement in the development life cycle
ensures less security impact as the application is
deployed. The keys to success for the security
team’s participation in the development life cy-
cle is to understand what elements exist that can
be leveraged for security purposes and where
there are gaps to be filled with additional secu-
rity-centric artifacts and activities. The end result
of the collaboration between the security, devel-
opment and business teams is a richer shared
understanding of the business risks, security
mechanisms, which mitigate them, and where
opportunities for improvement exist.

In the next article, we will build upon the Analy-
sis Phase and describe collaborating in the De-
sign, Coding and Deployment phases in our de-
velopment process from a security standpoint.

References

[1] Kurt Bittner and Ian Spence, Use Case
Modelling, Addison-Wesley, 2003

[2] http://alistair.cockburn.us/

[3] http://www.ifi.uib.no/conf/refsq2001/
papers/p25.pdf

Additional Resources

Development Process
IBM Rational Software
http://www.ibm.com/software/rational/

XP Methodology
http://www.extremeprogramming.org/

Craig Larman's web site is an excellent starting
point for process and modelling books, articles
and links
http://www.craiglarman.com/

Use Cases
Ivar Jacobson, Use Cases- Yesterday, Today and To-
morrow
http://www.jaczone.com/papers/
use_cases-2002-11-26.pdf

Misuse Cases
Guttorm Sindre and Andreas Opdahl, Templates
for Misuse Case Description
http://www.ifi.uib.no/conf/refsq2001/papers/
p25.pdf

About the Author
Gunnar Peterson is CTO of Arctec Group, a fo-
cussed, best-in-class IT consulting provider
whose primary service is delivering pragmatic,
objective, vendor-independent management and
architectural consulting services for business-
critical systems.

http://www.artechgroup.net

SOFTWARE SECURITY

There is only one way to get all issues of
Information Security Bulletin:

SUBSCRIBING!
Please use the form in the journal, or visit

http://www.isb-online.net

http://alistair.cockburn.us/
http://www.ifi.uib.no/conf/refsq2001/papers/p25.pdf
http://www.ibm.com/software/rational/
http://www.extremeprogramming.org/
http://www.craiglarman.com/
http://www.jaczone.com/papers/use_cases-2002-11-26.pdf
http://www.ifi.uib.no/conf/refsq2001/papers/p25.pdf
http://www.artechgroup.net
http://www.isb-online.net

