
Unreliable Guide To Locking

Paul Rusty Russell
rusty@rustcorp.com.au

Unreliable Guide To Locking
by Paul Rusty Russell

Copyright ' 2000 by Paul Russell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the �le COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..1

1.1. The Problem With Concurrency ...1

2. Two Main Types of Kernel Locks: Spinlocks and Semaphores3

2.1. Locks and Uniprocessor Kernels ..3
2.2. Read/Write Lock Variants...3
2.3. Locking Only In User Context..3
2.4. Locking Between User Context and BHs ...4
2.5. Locking Between User Context and Tasklets/Soft IRQs4
2.6. Locking Between Bottom Halves ...4

2.6.1. The Same BH...5
2.6.2. Different BHs...5

2.7. Locking Between Tasklets ..5
2.7.1. The Same Tasklet ...5
2.7.2. Different Tasklets ...5

2.8. Locking Between Softirqs...6
2.8.1. The Same Softirq ...6
2.8.2. Different Softirqs ...6

3. Hard IRQ Context ...7

3.1. Locking Between Hard IRQ and Softirqs/Tasklets/BHs7

4. Common Techniques..8

4.1. No Writers in Interrupt Context ..8
4.2. Deadlock: Simple and Advanced..8

4.2.1. Preventing Deadlock ..9
4.2.2. Overzealous Prevention Of Deadlocks ..10

4.3. Per-CPU Data..10
4.4. Big Reader Locks..10
4.5. Avoiding Locks: Read And Write Ordering ...10
4.6. Avoiding Locks: Atomic Operations ..11
4.7. Protecting A Collection of Objects: Reference Counts12

4.7.1. Macros To Help You ..13
4.8. Things Which Sleep..13
4.9. The Fucked Up Sparc..14
4.10. Racing Timers: A Kernel Pastime...14

5. Further reading..16

6. Thanks...17

Glossary ..18

i

Chapter 2. Two Main Types of Kernel
Locks: Spinlocks and Semaphores

There are two main types of kernel locks. The fundamental type is the spinlock
(include/asm/spinlock.h), which is a very simple single-holder lock: if you can’t
get the spinlock, you keep trying (spinning) until you can. Spinlocks are very small and
fast, and can be used anywhere.

The second type is a semaphore (include/asm/semaphore.h): it can have more than
one holder at any time (the number decided at initialization time), although it is most
commonly used as a single-holder lock (a mutex). If you can’t get a semaphore, your
task will put itself on the queue, and be woken up when the semaphore is released. This
means the CPU will do something else while you are waiting, but there are many cases
when you simply can’t sleep (see Section 4.8), and so have to use a spinlock instead.

Neither type of lock is recursive: see Section 4.2.

2.1. Locks and Uniprocessor Kernels
For kernels compiled without CONFIG_SMP, spinlocks do not exist at all. This is an
excellent design decision: when no-one else can run at the same time, there is no reason
to have a lock at all.

You should always test your locking code with CONFIG_SMP enabled, even if you
don’t have an SMP test box, because it will still catch some (simple) kinds of deadlock.

Semaphores still exist, because they are required for synchronization between user
contexts, as we will see below.

2.2. Read/Write Lock Variants
Both spinlocks and semaphores have read/write variants: rwlock_t and struct
rw_semaphore. These divide users into two classes: the readers and the writers. If you
are only reading the data, you can get a read lock, but to write to the data you need the
write lock. Many people can hold a read lock, but a writer must be sole holder.

This means much smoother locking if your code divides up neatly along reader/writer
lines. All the discussions below also apply to read/write variants.

3

Chapter 4. Common Techniques

spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
del_timer(&list->timer);
kfree(list);
list = next;

}

spin_unlock_bh(&list_lock);

Sooner or later, this will crash on SMP, because a timer can have just gone off before
the spin_lock_bh(), and it will only get the lock after we spin_unlock_bh(), and
then try to free the element (which has already been freed!).

This can be avoided by checking the result of del_timer(): if it returns 1, the timer
has been deleted. If 0, it means (in this case) that it is currently running, so we can do:

retry:
spin_lock_bh(&list_lock);

while (list) {
struct foo *next = list->next;
if (!del_timer(&list->timer)) {

/* Give timer a chance to delete this */
spin_unlock_bh(&list_lock);
goto retry;

}
kfree(list);
list = next;

}

spin_unlock_bh(&list_lock);

Another common problem is deleting timers which restart themselves (by calling
add_timer() at the end of their timer function). Because this is a fairly common case
which is prone to races, you can put a call to timer_exit() at the very end of your
timer function, and user del_timer_sync() (include/linux/timer.h) to handle
this case. It returns the number of times the timer had to be deleted before we �nally
stopped it from adding itself back in.

15

