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Chapter 2. Two Main Types of Kernel
Locks: Spinlocks and Semaphores

There are two main types of kernel locks. The fundamental type is the spinlock

(i ncl ude/ asn spi nl ock. h), which isavery simple single-holder lock: if you can’t
get the spinlock, you keep trying (spinning) until you can. Spinlocks are very small and
fast, and can be used anywhere.

The second type is a semaphore (i ncl ude/ asm senmaphor e. h): it can have more than
one holder at any time (the number decided at initialization time), although it is most
commonly used as a single-holder lock (a mutex). If you can’t get a semaphore, your
task will put itself on the queue, and be woken up when the semaphore is released. This
means the CPU will do something else while you are waiting, but there are many cases
when you ssimply can’'t sleep (see Section 4.8), and so have to use a spinlock instead.

Neither type of lock is recursive: see Section 4.2.

2.1. Locks and Uniprocessor Kernels

For kernels compiled without CONFIG_SMP, spinlocks do not exist at all. Thisisan
excellent design decision: when no-one else can run at the same time, there is no reason
to have alock at all.

You should always test your locking code with CONFIG_SMP enabled, even if you
don’'t have an SMP test box, because it will still catch some (simple) kinds of deadlock.

Semaphores still exist, because they are required for synchronization between user
contexts, as we will see below.

2.2. Read/Write Lock Variants

Both spinlocks and semaphores have read/write variants: rwlock_t and struct
rw_semaphore. These divide usersinto two classes: the readers and the writers. If you
are only reading the data, you can get aread lock, but to write to the data you need the
write lock. Many people can hold aread lock, but awriter must be sole holder.

This means much smoother locking if your code divides up neatly along reader/writer
lines. All the discussions below also apply to read/write variants.






