Unreliable Guide To Locking

Paul Rusty Russell

rusty@rustcorp.com.au

Unreliable Guide To Locking
by Paul Rusty Russell

Copyright ' 2000 by Paul Russell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the le COPYING in the source distribution of Linux.

Table of Contents

IO 014 0o (1 Tox 1 o] o USSR PRRP 1
1.1. The Problem With CONCUITENCYccoeiirierini e 1

2. Two Main Types of Kernel Locks: Spinlocksand Semaphores..........c.ccccveevenene. 3
2.1. Locks and Uniprocessor KEMMESoouviiiiiieiie e 3

2.2. Read/Write LOCK Variants.........ccooerierieiierieriesiesie ettt 3

2.3. Locking Only 1N USer CONLEXL.......cceruerieieierieiesiesie e 3

2.4. Locking Between User Context and BHS...........cccooeiirenenenenencee e 4

2.5. Locking Between User Context and Tasklets/Soft IRQS..........ccccevvevieccieennen. 4

2.6. Locking Between Bottom HalVeS...........cccovvieivce s 4
2.6.1. TRESAME BHcooieicie e 5

2.6.2. DIffErent BHS.....ccuo ot 5

2.7. Locking Between TaskIEtS..........ccveiieiiiiiecieecee e 5
2.7.1. The SaME TaSKIELcccoviiiierese e 5

2.7.2. DIfferent TaSKIELS.......cvcoeveee et 5

2.8. LOCKING BEIWEEN SOTTITTS.eeueeueeeeeeieiesiesie ettt 6
2.8.1. The SaME SOFtINT ...ccveecreeeie e 6

2.8.2. DIfferent SOftirgScccvieeiieiii e 6

G o = o B O I o g > A 7
3.1. Locking Between Hard IRQ and Softirqe/Tasklets/BHS ... 7

4. COMMON TECHNIGUES......ccuiiiieierieeie ettt sttt b e sttt sae b seesaeeneens 8
4.1. NOWritersin INterrupt CONEXL......covviieieieeie e 8

4.2. Deadlock: Simple and AQVaNCEd...........cccereririreneneneresesese e 8
4.2.1. Preventing DeadlOCKccoevvririiiiee e 9

4.2.2. Overzealous Prevention Of DeadlocKSccocoveeieiieninininiieee 10

4.3. PEr-CPU Dala......cuiiviieerieiiisie sttt 10

4.4. Big REAAEN LOCKS......ccviiuiitirieiiiite ettt 10

4.5. Avoiding Locks: Read And Write Orderingccooeeererenereneneseseseseenes 10

4.6. Avoiding Locks: AtOMIC OPErationsScccceeeieeiieeeiieeseeseesireesieesessseesnseens 11

4.7. Protecting A Collection of Objects: Reference Counts...........cccccevvvivevieeneene. 12
4.7.1. MECrOS TO HEIP YOU ..ot 13

4.8. ThiNGSWhICH SIEED.....cuiiiiiiiiciiie s 13

4.9. The FUCKEd UP SPAIC......cciiiiiiieceesee sttt st ne e 14
4.10. Racing Timers: A Kernel Pastime........cccocoveveeiieiiiiiiie e 14

5. FUITNEr 1EAING ...t 16
T N =T 01 TSRS 17
€105 YU 18

Chapter 2. Two Main Types of Kernel
Locks: Spinlocks and Semaphores

There are two main types of kernel locks. The fundamental type is the spinlock

(i ncl ude/ asn spi nl ock. h), which isavery simple single-holder lock: if you can’t
get the spinlock, you keep trying (spinning) until you can. Spinlocks are very small and
fast, and can be used anywhere.

The second type is a semaphore (i ncl ude/ asm senmaphor e. h): it can have more than
one holder at any time (the number decided at initialization time), although it is most
commonly used as a single-holder lock (a mutex). If you can’t get a semaphore, your
task will put itself on the queue, and be woken up when the semaphore is released. This
means the CPU will do something else while you are waiting, but there are many cases
when you ssimply can’'t sleep (see Section 4.8), and so have to use a spinlock instead.

Neither type of lock is recursive: see Section 4.2.

2.1. Locks and Uniprocessor Kernels

For kernels compiled without CONFIG_SMP, spinlocks do not exist at all. Thisisan
excellent design decision: when no-one else can run at the same time, there is no reason
to have alock at all.

You should always test your locking code with CONFIG_SMP enabled, even if you
don’'t have an SMP test box, because it will still catch some (simple) kinds of deadlock.

Semaphores still exist, because they are required for synchronization between user
contexts, as we will see below.

2.2. Read/Write Lock Variants

Both spinlocks and semaphores have read/write variants: rwlock_t and struct
rw_semaphore. These divide usersinto two classes: the readers and the writers. If you
are only reading the data, you can get aread lock, but to write to the data you need the
write lock. Many people can hold aread lock, but awriter must be sole holder.

This means much smoother locking if your code divides up neatly along reader/writer
lines. All the discussions below also apply to read/write variants.

