
Know Your Enemy: Sebek2
A kernel based data capture tool

The Honeynet Project

http://www.honeynet.org
Last Modified: 13 September 2003

Introduction:

Back at Berkley in the 1980’s, Cliff Stoll quickly ran into a problem that still vexes honeypot
researchers today: How do you observe an intruder without them noticing? In Cliff’s situation he
was able to directly monitor serial lines to capture the keystrokes of the intruder1. Much has
changed since then, however our fundamental challenge has remained the same, how can we
capture the activities of an intruder without them knowing? It is critical that a honeypot designed
for the purposes of observing human intruders looks and behaves as any normal system, thus we
must ensure that the intruder cannot detect that he or she is being observed. The traditional
approach is to capture these activities by recording the associated network data. This is a
desirable approach because it can be done in such a way as to be invisible to the intruder.

To nobody’s surprise, Blackhats haven’t stood still. It is increasingly common for even the most
basic intruders to utilize encryption to protect their communications channels. If encryption
services are not available on the victim host, it is not uncommon for them to install their own
trusted services such as SSH, an encrypted GUI client, or SSL. Without the key, network based
data capture tools are unable to view this channel.

To observe intruders using session encryption, researchers needed to find a way to break the
session encryption. For many organizations this has proven extremely difficult. In an attempt to
circumvent session encryption rather than break it, the Honeynet Project began experimenting
with using kernel-based rootkits for the purpose of capturing the data of interest from within the
honeypot’s kernel. These experiments lead to the development of a tool called Sebek. This tool
is a piece of code the lives entirely in kernel space and records either some or all data accessed
by users on the system. It provides capabilities to: record keystrokes of a session that is using
encryption, recover files copied with SCP, capture passwords used to log in to remote system,
recover passwords used to enable Burneye protected binaries and accomplish many other
forensics related tasks. This paper discusses Sebek version 2 which will be referred to as Sebek.

What follows is a detailed discussion of Sebek, how it works and its value. We will examine the
architecture and key components. From there, we will drill down into the implementation issues
and technical details of operation. Finally, we will show a usage example demonstrating the use
of the Sebek including its new web interface.

The Sebek development cycle starts on a Linux system. Sebek is ported to other Operating
Systems such as Win32, Solaris, and OpenBSD after it working on Linux. As a result, this paper,
and its examples, will be based on the Linux version of Sebek, however many of the concepts
discussed here apply to the other ports as well.

1 The Cuckoo’s Egg, Cliff Stoll. Pocket Books Nonfiction, 1990. New York, NY.

 1

http://www.honeynet.org/

Sebek Overview:

Sebek is a data capture tool. As with all data capture tools, the goal is to capture data that will
allow us to accurately recreate the events on a honeypot. We want to determine information such
as when an intruder broke in, how they did it, and what they did after gaining access. This
information can, potentially, tell us who the intruder is, what their motivations are, and who they
may be working with. To determine what an intruder did after gaining access, we often want data
that provides the intruder’s keystrokes and the impact of the attack.

When encryption is not used, it is possible to monitor the keystrokes of an intruder by capturing
the network activity off of the wire and then using a tool like ethereal to reassemble the TCP flow
and examine the contents of the session. This technique yields not only what the intruder typed
but also what the user saw as output. Steam reassembly techniques provide a nearly ideal
method to capture the actions of an intruder when the session is not encrypted. When the
session is encrypted, stream reassembly yields the encrypted contents of the session. To be of
use these must be decrypted. This route has proven quite difficult for many. Rather than trying
to break the encryption of a session, others have looked for a way to circumvent encryption.

Information that is encrypted must at some point be decrypted for it to be of any use. The
process of circumvention involves capturing the data post decryption. The idea is to let the
standard mechanisms do the decryption work, and then gain access to this unprotected data.
The first attempts to circumvent such encryption took the form of trojaned binaries. When an
intruder broke into a honeypot, he or she would then log into the compromised host using
encrypted facilities such as SSH. As they typed on the command line, a trojaned shell binary
would record their actions.

To counter the threat posed by trojaned binaries, intruders started to install their own binaries. It
became apparent that the most robust capture method involved accessing the data from within
the Operating System’s kernel. When capturing data from within the kernel, the intruder can use
any binary they wish, and we are still able to record their actions. Further, because user space
and kernel space are divided, there is ample opportunity to improve the subtlety of the technique,
by hiding our actions from all users including root.

 The first versions of Sebek were designed to collect keystroke data from directly within the
kernel. These early versions were the equivalent of a souped up Adore Rootkit that used a
trojaned sys_read call to capture keystrokes. This system logged keystrokes to a hidden file and
exported them over the network in a manner to make them look like other UDP traffic, such as
NetBIOS. This system allows users to monitor the keystrokes of an intruder, but it was complex,
easy to detect through the use of a packet sniffers and it had a limited throughput. This last issue
made it difficult to record data other than keystrokes.

The next and current iteration of Sebek, version 2, was designed not only to record keystrokes
but all sys_read data. By collecting all data, we expanded the monitoring capability to all activity
on the honeypot including, but not limited to, keystrokes. If a file is copied to the honeypot, Sebek
will see and record the file, producing an identical copy. If the intruder fires up an IRC or mail
client, Sebek will see those messages. A secondary goal was to make Sebek harder to detect,
we focused on switching from obfuscating the logging traffic, to completely hiding it from a
Blackhat. Now when a Blackhat runs a sniffer to detect suspicious traffic he or she is unable to
detect any Sebek traffic.

Sebek is not just an alternative to TCP session reassemble, to be used only in the face of
encryption. Sebek also provides the ability to monitor the internal workings of the honeypot in a
glass-box manner, as compared to the previous black-box techniques. If an intruder where to
install a piece of malware, then log out, we can now track the local actions of the malware even if
it does not access the network.

 2

The Architecture:

Sebek has two components: a client and server. The client captures data off of a honeypot and
exports it to the network where is collected by the server (refer Figure 1). The server collects the
data from one of two possible sources: the first is a live packet capture from the network, the
second is a packet capture archive stored as a tcpdump formatted file. Once the data is collected
it is either uploaded into a relational database or the keystroke logs are immediately extracted.
The communications used by Sebek are UDP based and as such are connectionless and
unreliable.

Figure 1
Typical Sebek deployment. The client module is installed on the honeypot (in blue). The
attacker’s activity captured by the honeypot is dumped to the wire (hidden to the attacker) and
passively collected by the Honeywall Gateway.

The client resides entirely in kernel space on the honeypot and, in the case of the Linux version,
is implemented as a Loadable kernel Module (LKM). The client can record all data that a user
accessed via the read() system call. This data is then exported to the server over the net in a
manner that is difficult to detect from the honeypot running Sebek. The server then gathers the
data from all of the honeypots sending data. Because there is a standard platform independent
log format the server can collect from any honeypot independent of Operating System type. Let
us now take a closer look at how the client actually captures the data.

Client Data Capture:
Data capture is accomplished with the use of a kernel module. With this module we gain access
to the kernel space of the honeypot. Using this access, we then capture all read() activity / data.
Sebek does this by replacing the stock read() function in the System Call Table with a new one.
The new function simply calls the old function, copies the contents into a packet buffer, adds a
header, and sends the packet to the server. The act of replacing the stock function involves
changing one function pointer in the System Call Table.

 3

Figure 2
The conceptual representation of read system call redirection.

When a process calls the standard read() function in user space, a system call is made. This call
maps to an index offset in the System Call Table array. Because Sebek modified the function
pointer at the read index to point to its own implementation, the execution switches into the kernel
context and begins executing the new Sebek read call. At this point Sebek has complete view all
data accessed with this system call. This same technique could be used for any System Call that
we may wish to monitor.

Data that remains encrypted is of little use; to view the data or act on it in some way it must be
decrypted. In the case of an SSH session the keystrokes are decrypted and send to the shell to
have actions performed. This act typically involves a system call. By collecting data in kernel
space, we can gain access to the data within the system call, after it has been decrypted but
before it has been passed to the process that is about to use it. Thus we circumvent the
encryption and capture the keystrokes, file transfers, Burneye passwords, etc.

 4

Client Module Hiding:
To make the presence of the Sebek module less obvious we borrow a few techniques used in
modern LKM based rootkits, such as Adore. Because Sebek is now entirely resident in kernel
space, most of the rootkit techniques no longer apply, however, hiding the existence of the Sebek
module is one example of direct technological benefit. To hide the Sebek module we install a
second module, the cleaner. This module manipulates the linked list of installed modules in such
a way that Sebek is removed from the list. This is not a completely robust method of hiding and
techniques for detecting such hidden modules do exist.2

There are 2 side effects of this removal. First, users can no longer see that Sebek is installed.
Second, once installed, users are unable to rmmod the Sebek module. This hiding ability can be
disabled by setting the “Testing” variable to “1” in the sbk_install.sh install script.
Client Packet Export:
Once the Sebek client captures the data, it needs to send the data to the server without the
intruder detecting that the host is sending this data. Although using the LAN network to send
traffic to the server is not the most secure communication channel, it was decided that because of
its ubiquity, it would be used to send data to the server. If Sebek were to simply send the data to
the server over an UDP flow, an intruder could simply check for the presence of such traffic on
the LAN to determine if Sebek was installed. Sebek does send data to the server using UDP,
however, before it does this it modifies the kernel in a few ways to prevent users from seeing
these packets. First it modifies the kernel such that system is unable to see Sebek Packets, not
just the packets generated by the local host, but any appropriately configured Sebek Packet.
Next, when Sebek transmits data onto the network, it ensures that the system cannot block the
transmission or even count the packets transmitted. We will get into the details of packet hiding
shortly.

If every honeypot on a LAN has Sebek installed, none of them can see any Sebek data, however
the server has full access to this data. By deploying in this manner we have created a covert
channel that allows the server gain access to the data captured by the client. For every read()
request, Sebek generates one or more log packets. Each packet contains a bit of information
about the context of the call made and the data that was accessed with the call. Each packet
contains one Sebek record. The record contain fields that describe the Process that made the
call, the time the call was made and the length of the data recorded as well as the data itself.
These packets are generated entirely within Sebek without using the TCP/IP stack to generate or
send the packets. Because of this, the system is unable to see or block the packets. After each
packet is built, it is sent directly to the device driver, bypassing the raw socket code path as well
as the packet filtering code path. Since packet sniffers are libpcap based and libpcap uses the
raw socket interface to collect packets, sniffers installed on a host running Sebek are unable to
see the Sebek packets generated.

2 Phrack issue 61 has an article on detecting hidden kernel modules in its Linenoise section. The article
describes a brute force method for detecting hidden modules by looking for what appears to be the key
module structure.

 5

Figure 3
Conceptual representation of Sebek packet generation. Note how packets created by Sebek
bypass the stack and go directly to the network device driver. This makes it far more difficult for
attacker to detect Sebek activity.

Because Sebek generates its own packets and sends them directly to the device driver, there is
no ability for a user to block the packets with IPTABLES or monitor them with a network sniffer.
This prevents an intruder on a honeypot from detecting the presence of Sebek by examining the
LAN traffic. A secondary problem that must be addressed is the need to keep honeypot A from
detecting Sebek packets from honeypot B. The use of Ethernet switching does not solve this
problem. Sebek is naturally impervious to ARP spoofing because it does not use ARP to obtain
the destination MAC address that corresponds to the destination IP address, however there are a
couple of situations where A would see B’s Packets3. In these situations, an intruder would be
able to detect the presence of Sebek packets on the LAN by running a sniffer on honeypot A and
would see honeypot B’s Sebek packets.

To solve this problem, Sebek installs its own implementation of the Raw Socket interface. This
new version is programmed to silently ignore Sebek packets. Sebek packets are defined as
those that have both a predetermined destination UDP port and the proper magic number. If
these two values matches what is expected, then we know this a packet to ignore. The
implementation simply does nothing with Sebek packets; it drops them on the floor and moves on

3 Ethernet switches will send ethernet frames to every switch port when they do not have an entry in their
Switch Forwarding Table for the destination host. The most common situation we run into is where the
MAC for the destination expires.

 6

to the next packet in the queue. The end result is that an intruder is unable to capture the Sebek
packets, even if he or she uses a sniffer compiled from known good sources.

Sebek Protocol Specification:
To ensure interoperability with all versions of Sebek, a common protocol has been defined. The
communication channel between the client and the server is unidirectional, with packets
originating from the client and destined to the server. This channel is UDP based and is
connectionless and unreliable. Each packet contains one record. Records are variable length up
to MTU, and have a fixed length header. Each record has a 48 byte header:

Figure 4
Sebek Record Header. This header comes after the IP/UDP header, and is followed by
the data representing the activity on the honeypot (attacker keystrokes, files, passwords,
etc).

 7

Field Name Data Type Description
Magic Unsigned 32 bit Int Along with SRC and DST Port, Magic is

used by Sebek to identify packets which
should be hidden

Version Unsigned 16bit Int Sebek Protocol Version, current version
is “1”.

Type Unsigned 16bit Int Type of record represented. Read data
is type 0, Write data is type 1. Currently
only Read is implemented.

Counter Unsigned 32bit Int PDU counter, used to identify when
packets are lost. This counter restarts
at 0 when installed.

Time_sec Unsigned 32bit Int Seconds since UNIX epoch according
to the honeypot

Time_usec Unsigned 32bit Int Residual Microseconds
PID Unsigned 32bit Int Process ID
UID Unsigned 32bit Int User ID
FD Unsigned 32bit Int File Descriptor

Com 12 Character Array Records the first 12 characters of the
command’s name.

Length Unsigned 32bit Int Length in octets of the PDU’s body.

Figure 5
Structure of a Sebek packet sent by the client.

When Sebek intercepts the read() system call, it not only records the contents of the read, but it
also takes note of the context. The PID, UID, FD and Com fields of the record header are derived
from the information the kernel keeps about the process making the request. The Timestamp
fields are based on the system time, and thus are susceptible to tampering.

The Length field is based on the return length from the read request. If the length of data
returned from the read() call is longer than the LAN MTU, then Sebek chops the read data into
multiple fragments that all fit in onto the LAN. Each one of these fragments is a full Sebek record
with its own header.

Client Misuse Precautions:
As with any tool, Sebek has the potential to be used in an unintended or malicious manner. As it
is a good tool for the monitoring of intruders, it would be a useful tool for the intruders to use on
compromised systems to gather passwords or spy on legitimate users. To reduce the potential
danger of Sebek, a few design decisions have been made.

In the early version of Sebek, export data was encrypted and the packets headers were spoofed
to obfuscate the source of the data, we abandoned this approach in favor of current solution to
make it easier to detect inappropriate usage. Because the currently method of hiding only works
on honeypots with Sebek installed, any other host on the LAN can plainly see the Sebek packets.
This means if an attacker attempts to use Sebek for their own compromised systems,
organizations will easily be able to detect this as they will see the Sebek data exported to the
wire. To further reduce chances of misuse we removed the standard rootkit features from Sebek.
Thus an intruder would not have a single LKM enabling password sniffing and rootkit features.

 8

Client Installation:

Now that we have an understanding of the operation of the Sebek client, let us address how to
install the client. Installation of the client involves building the client for the version of the kernel
that will be on the honeypot.4 Once the client is successfully built, a binary tarball will be
available for copying onto the honeypot. This tarball will include the file sbk_install.sh. The
sbk_install.sh contains both the commands to install Sebek and the configuration variables. To
install, simply edit the options you want, then run the install script on the honeypot. Upon
execution sbk_install.sh installs the kernel module with the specified configuration. There are six
values to configure in the script, often these values will be the same for all honeypots on the LAN.

Destination IP: This field defines the Destination IP address used in all the
Sebek packets generated. Because the Sebek server does not
look at the Destination IP address when it collects packets, it is
not required to set this to IP of the Sebek server. Further it is not
recommended, if by chance the intruder were able to see the
packets they would be able to then identify the host that was
most likely performing all of the data control on the Honeynet.

Destination MAC: This field specifies Destination Ethernet MAC address to use for

all packets. As Sebek doesn’t use ARP, this is a mandatory
option. If the logging server is more than one hop away from the
honeypot, then the Destination MAC should be set to the default
gateway. Lastly, setting this to FF:FF:FF:FF:FF:FF will cause all
packets to be broadcast to every host on the LAN, a helpful trick
for testing.

Magic Value: This value is used to identify which packets are hidden from the

honeypots. When set, not only does Sebek use this value in the
Sebek header, but it also hides packets with this value set. It is
highly recommended that all instances of Sebek on a given LAN
be configured with the same Magic value.

Destination UDP
Port: This field defines the UDP destination port to be configured in

the Sebek packets. This value is used by the Server to identify
packets of interest.

Keystrokes only: This flag accepts two values: 1 or 0. It this flag is set, Sebek will

only collect keystrokes. Otherwise it will collect all read data.
This flag must not be set if you wish to recover SCP file
transfers.

Testing: The testing option is a binary flag. If this flag is set two things

happen, first, the kernel module is not hidden, and second,
additional debugging is activated in the module. Beware however
that this additional debugging may betray the presence of Sebek
by sending debugging data to syslog.

4 Client build details are contained in the source distribution, however recall that kernel modules must be
build against the kernel source that corresponds to the running kernel version on the Host. If the honeypot
is running version 2.4.18 you must compile Sebek using the 2.4.18 kernel source.

 9

When configuring all of the honeypots on the same LAN it is important that they all use the same
magic value. This keeps one honeypot from seeing another’s packets. When configuring the IP
and MAC address values, keep in mind that the MAC value is the most important. If you
incorrectly set the DST IP address, but configure the MAC correctly, the Sebek records will still
make it to the server, presuming that the UDP port is set correctly. Further, when the server is
running on a Honeywall Gateway, the interface doesn’t have an IP address configured, so the
only way to ensure that the packets are recorded by the server would be to configure the
Destination MAC to that of the default gateway or to the Honeywall MAC address.

If you are logging to a remote host(one that is not on the LAN), then the Destination IP must be
set to the IP of that host, and the MAC must be set to the MAC address of the Default Gateway
for the LAN. After configuration, execution of sbk_install.sh will install the Sebek client, and it will
then begin capturing and exporting data.

Server Installation:
We will now discuss how to recover the Sebek data from the client, and once recovered, how to
analyze that data. If you recall from Figure 1, it is common to install the server on the Honeywall
Gateway.

The server has two possible sources of recovering Sebek client data from the network. The first
option is to capture all the network data from a standard, tcpdump log file, then extract just the
Sebek data from that file. The second option is to capture traffic live and directly from the
network interface. Extracting Sebek data out of a tcpdump file provides the ability to examine
archived data or data for which no direct access is possible (such as from a fellow researcher
who sends you data files).

The server is made up of three components. The first component is called sbk_extract. It either
captures the data directly off of an interface, operating as a sniffer or it gathers it from a tcpdump
file. Either way you will have to use this tool to recover the Sebek data. Once sbk_extract
extracts the data, you can do one of two things with it. The first option is to send it through a tool
called sbk_ks_log.pl, which is a Perl script that takes the attacker’s keystrokes and sends them to
STDOUT. The second option is called sbk_upload.pl, which is a Perl script that loads the Sebek
data into a mysql database. To share or archive data, it is recommended that one treat binary
tcpdump packet captures as the canonical source of data. As it is common to keep a record of all
traffic in and out of a honeypot, this archiving is already in place, the addition of Sebek data
archival comes with no additional effort.

sbk_extract is the application that extracts Sebek Records from its input data. Independent of the
type of analysis, sbk_extract is the first application in the pipeline. This application takes Sebek
Packets from either network or a packet capture file then sends the record extracted from the
packet to the specified utility. sbk_extract has three options:

 - f This specifies a pcap file to extract data from.
 - i Defines the interface to listen on.
 - p Specifies the UDP destination port number of interest

Loading Sebek records
into a database: Run sbk_extract and pipe the output to sbk_upload.pl
 ex. sbk_extract | sbk_upload.pl

Command Line monitoring
of keystrokes: Run sbk_extract and pipe to sbk_ks_log.pl
 ex: sbk_extract | sbk_ks_ks_log.pl

Custom Analysis: Run sbk_extract and pipe to you custom analysis

 10

 application.

Monitoring keystroke Activity from the command line:

sbk_ks_log.pl allows you view keystroke activity on the host running the Sebek client from a
command line prompt on the server. It has no options and takes input from sbk_extract via
STDIN.

Example:

 sbk_extract –i eth0 –p 1101 | sbk_ks_log.pl

In this example, sbk_extract is sniffing from interface eth0 and it is expecting those records on
UPD port 1101. sbk_extract then sends those records to sbk_ks_log.pl for extraction of
keystroke activity. The output of sbk_ks_log.pl can be seen bellow.

[2003-07-23 20:03:45 10.0.0.13 6673 bash 500]whoami
[2003-07-23 20:03:48 10.0.0.13 6673 bash 500]who
[2003-07-23 20:03:50 10.0.0.13 6673 bash 500]su
[2003-07-23 20:03:57 10.0.0.13 6886 bash 0]cd /var/log
[2003-07-23 20:03:57 10.0.0.13 6886 bash 0]ls
[2003-07-23 20:04:01 10.0.0.13 6886 bash 0]mkdir ...
[2003-07-23 20:04:20 10.0.0.13 6886 bash 0]tcsh
[2003-07-23 20:04:20 10.0.0.13 6921 tcsh 0]0
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]vt
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]en
[2003-07-23 20:04:20 10.0.0.13 6920 tcsh 0]en
[2003-07-23 20:04:27 10.0.0.13 6920 tcsh 0]cd /tmp
[2003-07-23 20:04:28 10.0.0.13 6920 tcsh 0]ls
[2003-07-23 20:04:42 10.0.0.13 6920 tcsh 0]cd /usr/lib
[2003-07-23 20:04:42 10.0.0.13 6920 tcsh 0]ls

The output from sbk__ks_log.pl is similar to what users see when on a terminal. However, we
only see commands entered and not the output of those commands. Control characters are
escaped when present. For example, when a Backspace is present, it is replaced with [BS].
Each line displayed by the sbk_ks_log.pl tool has the following format:

[TIMESTAMP IP_ADDR PID COMMAND UID] Text

• TIMESTAMP shows the first time keystrokes where entered for that context
• IP_ADDR is the address of the honeypot.
• PID is the process ID.
• COMMAND is the first 10 characters of the command name.
• UID is the User ID for the owner of the process.

Loading Sebek Data into a Database:

sbk_upload.pl is the perl script that uploads records into a mysql database. There are several
options for this script:

 11

-u Database user

-s Database Server, defaults to localhost.

-d Database Name

-p Password

-P Port Number

Example:

 sbk_extract –i eth0 –p 1101 | sbk_upload.pl -u Sebek –p secret – d Sebek

As with the previous example, sbk_extract is looking for Sebek packets on UDP port 1101 and it
is sniffing on interface eth0. The extracted records are sent to sbk_upload.pl, which is loading
them into a database on the localhost using username “Sebek” password “secret” and the inserts
are going into the “Sebek” database. The sbk_upload.pl script then inserts each record into a
mysql database. The schema is defined in Appendix A. Once records have been inserted into
the mysql database, the Sebek data can be viewed using the Web Interface or accessed directly
using SQL queries.

The Web Interface:

Sebek now comes with a web based analysis interface. This interface provides users with the
ability to monitor keystroke activity, search for specific activity, recover SCPed files and in general
provides an improved data browsing capability. This interface is implemented with PHP and only
examines the data contained in the database; it does not use data from other sources such as
packet captures or syslogs. It is designed to support the workflow of forensic investigation,
however it does require a fair degree of technical skill to understand. The intention was to make
this a tool for Sebek data like ethereal is for packet captures. The interface has 3 primary
options: viewing keystrokes, searching, and browsing.

• The Keystroke Summary view provides a summary of all keystroke activity.
• The Search view allows users the ability to query for certain information.
• The Browse view, or table view, provides a summary of all activity, including non

keystroke activity.

Rather than going into the design of the interface, we will follow a usage scenario and how the
interface was used in that scenario. In Figures 5 through 10 bellow, a user has logged into a
honeypot with the IP address of 10.0.1.13. After logging in, the user downloads a file named
malware. This file is a Burneye protected executable binary. Malware is a tool used to gain
unauthorized root access5. The user executes the “malware” binary and gains root access to the
honeypot. The intruder gained access to only one honeypot.

Sebek was configured on the client to record all read data and to send it to the MAC address of
the Honeywall Gateway. On the Honeywall, sbk_extract was run piping its output to the
sbk_upload.pl script. All other honeypots on the LAN also had Sebek installed. To keep the
Sebek traffic from being detected by an intruder, all honeypots used the same Magic value. In
the example we will demonstrate the interfaces ability to:

1. Recover a file copied to the honeypot using SCP.

5 The tool gains unauthorized privilege escalation by leveraging the ptrace vulnerability CAN-2003-0127.

 12

2. Identify the password used to enable the Burneye binary
3. Identity the exact point where user gained root access.

Figure 5
System Overview page.

We start out at the System Overview page in Figure 5. It provides a list of all the hosts we are
monitoring and the last time we saw any activity from the host. By clicking on the Keystrokes
button we can get a summary of what most likely is humanly derived activity.

 13

Figure 6
Keystroke summary page.

The Keystroke Summary view in Figure 6 provides the last 5 or so lines of text from all sessions
on a host. Sessions are nothing more than activity on a specific File Descriptor for a given
process. The sessions are sorted by time of last activity, with most recent at the top. Within each
summary the keystroke logs are sorted in the order they occur. As with the command line tool
sbk_ks_log.pl, control characters are escaped. There are two interesting events we see when we
examining this summary. The first involves PID 1271; it shows what appears to be the first user
access on the system. After checking who was logged in, the user ran a command called
“malware”. The second area of interest is PID 1264. This is an indication of a file being SCP
transferred to the honeypot. Also note that the name of the file transferred is also “malware”.
When one is strictly interested in the keystrokes entered by the intruder, the best way to reduce
the amount of uninteresting data is to use the search interface and search for activity for the
name of the shell being used. Next we will drill down on PID 1264 to see if we can recover a copy
of “malware”.

 14

Figure 7
Details page, for PID 1264.

The Details view, Figure 7, shows all activity for a given PID. In this case we are looking at PID
1264. What we are seeing is an inbound SCP file transfer to the honeypot. From the
examination we can see that the interface detected that File Descriptor 0 corresponds to the
contents of the File Transfer, and the interface represents this by providing a SCP button. By
clicking on the SCP File Transfer view button, the lower half of the view renders File Descriptor 0
as a file. Because Sebek uses UDP to export log data, there is a chance that some data is lost;
this is especially true for intra-LAN transfers. To account for this potential difference, the interface
displays the Expected and Observed Sizes of the file. Clicking on the file name will download the
file. If you were to download this file and run the UNIX utility “strings” on the file you would see
that this is Burneye protected binary. The utility “strings” is useful for extracting plain text
information from binaries. In the case of Burneye protected ELF binaries, one of the first strings
in the binary allows us to positively identify it as a Burneye. Now that we have recovered the file
and have identified it as a Burneye binary, we need to see if we can recover the password used
to activate the binary.

 15

Figure 8
Search results for search on Command “malware”.

The easiest way to look for all executable binary activity is to use the Search interface, shown in
Figure 8. In this example we are looking for the executable called “malware”. By entering the
name of the executable into the Command field, we can search for all instances of a process
running with a matching command name. It should be noted that when a fork occurs we will see
multiple instances of the command executing, even if it were called from the command line only
once. This is what happens in the case above. We see two processes, PID 135 and 1518,
running with the Command name “malware”. The next step will be for us to examine PID 1315 in
detail as this Process terminated first. To examine PID 1315, users simply click on the
corresponding Details button.

 16

Figure 9
Details for PID 1315.

When we drill down on PID 1315(Figure 9), we see only one File Descriptor active. By clicking on
Text / Keystroke, we can view the activity on File Descriptor 3. The first line appears to be plain
text; the second appears to be an ELF binary. This first line of plain text is of interest. It is the
first bit of data read by any of the instances of “malware” and from prior analysis we know that
“malware” is a Burneye binary. In order for a Burneye to run the first thing that happens in the
binary must be activated by a password. Although the interface does not flag this explicitly, this
first line is the password used to activate the binary. At this point we have demonstrated how to
recover an SCPed file, and how to recover the password of a Burneye protected binary. The last
task will be to identify when the User gained root access. To do this we need to examine the
other instance of “malware”.

 17

Figure 10
Details for PID 1318.

PID 1318 shows the other instance of “malware” and it provides us with a wealth of information.
The process starts its execution with the command name of “malware” and terminates with the
name of “sh”. More critically, it starts its execution as UID 500 and terminates as UID 0, or root.
Thus we know that using this process ID the user gained root access. The user gained root
access at 2003-07-23 20:04:01 GMT.

Summary

Sebek is a kernel based data capture tool. It is designed to capture all activity on the honeypot in
a covert manner. We circumvent encryption by capturing the activity in kernel space where it is in
an unencrypted form. Because of this we can capture keystrokes, recover passwords and
monitor any communication including IRC chats, email, and SSH/SCP activity. In general, Sebek
provides an excellent view into the internal activities on a honeypot.

The current version of Sebek has its limits. For a skilled intruder who has intimate knowledge of
the Operation System there are ways of detecting the presence of Sebek6. However it is unclear
if this is something we can work around. One goal of Sebek is to make it sufficiently subtle as to
not raise the suspicions of the intruder. It is anticipated that intruders will develop scripts that will
automate the detection of Sebek on a host. As a result it is anticipated that further work will be
required to reduce the chances of detection.

6 Tools such as kstat and chrootkit are designed to find these sorts of systems.

 18

The future goals for Sebek not only include increasing the difficulty of detection but also
expanding the types of data we collect and the analysis we can perform. We will continue the
transformation from keystroke logger to honeypot glass box analysis tool. For more information
check out the Sebek homepage at:

http://www.honeynet.org/tools/sebek/

Questions, comments, bug reports, or suggestions for the development of Sebek should be
referred to “Edward Balas” ebalas@iu.edu.

 19

http://www.honeynet.org/tools/sebek/
mailto:ebalas@iu.edu

 20

Appendix A:

The Sebek Database Schema is a simple single table schema. Most of the fields map directly
with the Sebek Record format. The exception is the insert_time field, which is used as a
secondary timestamp that references when the record was inserted into the database.

CREATE TABLE read_data (
 id INT UNSIGNED AUTO_INCREMENT,
 ip_addr INT UNSIGNED NOT NULL,
 insert_time TIMESTAMP default 'now()',
 time DATETIME NOT NULL,
 command CHAR(20) NOT NULL,
 counter INT UNSIGNED NOT NULL,
 filed INT UNSIGNED NOT NULL,
 pid INT UNSIGNED NOT NULL,
 uid INT UNSIGNED NOT NULL,
 length INT UNSIGNED NOT NULL,
 data BLOB,

 PRIMARY KEY (id),
 INDEX time_idx(time),
 INDEX ip_idx (ip_addr),
 INDEX ip_time_idx(ip_addr, time),
 INDEX ip_pid_idx (p_addr, pid),
);

	Introduction:
	Sebek Overview:
	The Architecture:
	Sebek Protocol Specification:
	Field Name
	Data Type
	Description
	Magic
	Unsigned 32 bit Int
	Along with SRC and DST Port, Magic is used by Sebek to identify packets which should be hidden
	Version
	Unsigned 16bit Int
	Sebek Protocol Version, current version is “1”.
	Type
	Unsigned 16bit Int
	Type of record represented. Read data is type 0, Write data is type 1. Currently only Read is implemented.
	Counter
	Unsigned 32bit Int
	PDU counter, used to identify when packets are lost. This counter restarts at 0 when installed.
	Time_sec
	Unsigned 32bit Int
	Seconds since UNIX epoch according to the honeypot
	Time_usec
	Unsigned 32bit Int
	Residual Microseconds
	PID
	Unsigned 32bit Int
	Process ID
	UID
	Unsigned 32bit Int
	User ID
	FD
	Unsigned 32bit Int
	File Descriptor
	Com
	12 Character Array
	Records the first 12 characters of the command’s
	Length
	Unsigned 32bit Int
	Length in octets of the PDU’s body.
	
	Client Installation:
	Server Installation:
	The Web Interface:
	Summary
	Appendix A:

