

Lguest:
 Implementing The

Little Linux Hypervisor

Rusty Russell
OzLabs

Contents
Motivation
Theory
Getting to the sash prompt
Segment protection v paging
Performance
Documentation
Future Work

Motivation

Motivation
A learning experience for paravirt_ops

Motivation
A learning experience for paravirt_ops

A playground for virtualization

Motivation
A learning experience for paravirt_ops

A playground for virtualization

SimplicitySimplicity

Motivation
A learning experience for paravirt_ops

A playground for virtualization

SimplicitySimplicity

Linux on Linux, no ABI, all in-tree.

KVM vs lguest

KVM vs lguest

KVM: lguest:

KVM vs lguest

KVM:
- Full Virtualization

lguest:

KVM vs lguest

KVM:
- Full Virtualization

lguest:
- Paravirtualization

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume

lguest:
- Paravirtualization

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume

lguest:
- Paravirtualization
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration

lguest:
- Paravirtualization
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration

lguest:
- Paravirtualization
- Puppies
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration
- x86-64 support

lguest:
- Paravirtualization
- Puppies
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration
- x86-64 support

lguest:
- Paravirtualization
- Puppies
- Puppies
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration
- x86-64 support
- “Features”

lguest:
- Paravirtualization
- Puppies
- Puppies
- Puppies

KVM vs lguest

KVM:
- Full Virtualization
- Suspend/Resume
- Live Migration
- x86-64 support
- “Features”

lguest:
- Paravirtualization
- Puppies
- Puppies
- Puppies

Theory

Theory

Theory
Kernel module “lg.ko”

Theory
Map “switcher” at -4MB

Theory
Put regs in switcher area
Jump to switcher code

Theory
Switch to guest page tables

Theory
Pop guest regs, jump into guest

Theory
Guest (PL 1) segments can't reach

switcher

Theory
Interrupt jumps to switcher, saves regs

Theory
Switch back to host pagetables, jump to

interrupt handler

Theory
Interrupt handler returns to lg.ko

Getting to the sash prompt

Embryonic Switcher
1) Map high address and copy in asm

switcher

Embryonic Switcher
1) Map high address and copy in asm

switcher
2) switch_to_guest

Embryonic Switcher
1) Map high address and copy in asm

switcher
2) switch_to_guest

1) Save host regs
2) Change to switcher IDT
3) Pop guest regs, iret into “guest” loop

Embryonic Switcher
1) Map high address and copy in asm

switcher
2) switch_to_guest

1) Save host regs
2) Change to switcher IDT
3) Pop guest regs, iret into “guest” loop

3) switch_to_host

Embryonic Switcher
1) Map high address and copy in asm

switcher
2) switch_to_guest

1) Save host regs
2) Change to switcher IDT
3) Pop guest regs, iret into “guest” loop

3) switch_to_host
1) Save guest regs
2) Restore host IDT
3) Jmp to host interrupt handler

Switcher In Full
switch_to_guest:

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)
4) Clear host GDT TSS “used” bit

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)
4) Clear host GDT TSS “used” bit
5) Change to guest page table

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)
4) Clear host GDT TSS “used” bit
5) Change to guest page table
6) Pop guest regs

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)
4) Clear host GDT TSS “used” bit
5) Change to guest page table
6) Pop guest regs
7) iret into guest

Switcher In Full
switch_to_guest:

1) Save host regs
2) Change to guest IDT
3) Change to guest GDT (segments)
4) Clear host GDT TSS “used” bit
5) Change to guest page table
6) Pop guest regs
7) iret into guest

• Turns interrupts back on
• Sets privilege level to 1
• Switches segments to truncated entries

Switcher in Full
switch_to_host:

Switcher in Full
switch_to_host:

1) Stub pushes interrupt number on stack

Switcher in Full
switch_to_host:

1) Stub pushes interrupt number on stack
2) Save guest regs on stack

Switcher in Full
switch_to_host:

1) Stub pushes interrupt number on stack
2) Save guest regs on stack
3) Switch back GDT, IDT, page tables

Switcher in Full
switch_to_host:

1) Stub pushes interrupt number on stack
2) Save guest regs on stack
3) Switch back GDT, IDT, page tables
4) Either:

1) iret directly back to module (faults), or
2) jmp to interrupt handler (interrupts)

Guest

Guest
Now we set up page tables to map

guest kernel, and actually switch into
guest

Guest
Now we set up page tables to map

guest kernel, and actually switch into
guest

Crash!Crash!

Guest
Now we set up page tables to map

guest kernel, and actually switch into
guest

Crash!Crash!

Implement that paravirt_op
- needs hypercall mechanism (int 0x81)

Guest
Now we set up page tables to map

guest kernel, and actually switch into
guest

Crash!Crash!

Implement that paravirt_op
- needs hypercall mechanism (int 0x81)

Repeat...

Page Table Handling

Page Table Handling
“Shadow” page tables

Page Table Handling
“Shadow” page tables

- Guest maintains page tables
- Host maintains real page tables

Page Table Handling
“Shadow” page tables

- Guest maintains page tables
- Host maintains real page tables

- Switcher nailed in permanently

Page Table Handling
“Shadow” page tables

- Guest maintains page tables
- Host maintains real page tables

- Switcher nailed in permanently
- paravirt_ops hooks on all PT operations:

Tell Host to throw away everything

Page Table Handling
“Shadow” page tables

- Guest maintains page tables
- Host maintains real page tables

- Switcher nailed in permanently
- paravirt_ops hooks on all PT operations:

Tell Host to throw away everything
- On page fault, Host re-reads Guest PTEs

and updates real PTE.

Page Table Handling
“Shadow” page tables

- Guest maintains page tables
- Host maintains real page tables

- Switcher nailed in permanently
- paravirt_ops hooks on all PT operations:

Tell Host to throw away everything
- On page fault, Host re-reads Guest PTEs

and updates real PTE.

Optimized later to minimize updates.

Guest
Added primitive “write” hypercall for

console

Guest
Added primitive “write” hypercall for

console
Checking if this processor honours the WP bit

even in supervisor mode..

Interrupts
Need interrupt delivery!

Interrupts
Need interrupt delivery!

First implement interrupt state ops:
irq_disable / irq_enable
save_flags / restore_flags

Interrupts
Need interrupt delivery!

First implement interrupt state ops:
irq_disable / irq_enable
save_flags / restore_flags

“init” hypercall tells Host where our
“struct lguest_page” is.
lguest_page contains “irq_enabled” field.

Interrupts
Need interrupt delivery!

First implement interrupt state ops:
irq_disable / irq_enable
save_flags / restore_flags

“init” hypercall tells Host where our
“struct lguest_page” is.
lguest_page contains “irq_enabled” field.

Simply manipulate that word.

Interrupts
load_idt_entry hypercall:

Host remembers guest interrupt handlers
set_kernel_stack hypercall:

Host needs to know stack for interrupts

Interrupts
load_idt_entry hypercall:

Host remembers guest interrupt handlers
set_kernel_stack hypercall:

Host needs to know stack for interrupts

Host “reflects” traps destined for guest:
Push old stack, RPL etc on guest kernel stack
Change program counter (eip) to handler
May disable interrupts for guest

Interrupts
load_idt_entry hypercall:

Host remembers guest interrupt handlers
set_kernel_stack hypercall:

Host needs to know stack for interrupts

Host “reflects” traps destined for guest:
Push old stack, RPL etc on guest kernel stack
Change program counter (eip) to handler
May disable interrupts for guest

iret hypercall:
pops off stack, restores interrupt state etc.

Interrupts
Later lguest added direct traps

Especially useful for system call
performance

Also removed iret hypercall: normal iret
(almost) works.

Emulation
PCI code uses in/out instructions to try

to find bus

Emulation
PCI code uses in/out instructions to try

to find bus
Guest is PL 1, General Protection Fault

Emulation
PCI code uses in/out instructions to try

to find bus
Guest is PL 1, General Protection Fault
These are not overridden by paravirt_ops

Emulation
PCI code uses in/out instructions to try

to find bus
Guest is PL 1, General Protection Fault
These are not overridden by paravirt_ops

=> Emulate in/out instructions

Timers

Timers
Calibrating delay using timer specific

routine..

Timers
Calibrating delay using timer specific

routine..

Now we need a timer interrupt!
Requires registering a “struct irq_chip”

Timers
Checkin 16:

Timers
Checkin 16:
 Interrupt support, and timer interrupt.
 Implement hlt instruction.
 Simple GDT updates (we reload entire table).
 Godawful clock source and wallclock function.
 Panic handler so we kill process on panic.
 Emulation of another I/O instruction.
 Fix io_bitmap_base: previously random I/O ports were

allowed (IDE access!)
 Don't try to init lhype module when running under paravirt

already.

Timers
Checkin 20:
 Boots to sash prompt in initramfs.

Segments v Paging

Segments v Paging
We originally truncated all segments which

the Guest can access, so we could
protect the Switcher.

Segments v Paging
We originally truncated all segments which

the Guest can access, so we could
protect the Switcher.

glibc really wants to use 4G segments

Segments v Paging
We originally truncated all segments which

the Guest can access, so we could
protect the Switcher.

glibc really wants to use 4G segments
Nasty tricks to allow Guest userspace to use

4G segments, but not Guest kernel.

Segments v Paging
We originally truncated all segments which

the Guest can access, so we could
protect the Switcher.

glibc really wants to use 4G segments
Nasty tricks to allow Guest userspace to use

4G segments, but not Guest kernel.

x86-64 can't use segments for isolation
anyway.

Segments v Paging
Instead we can use page protection to

protect Switcher:

Segments v Paging
Instead we can use page protection to

protect Switcher:

Segments v Paging
Instead we can use page protection to

protect Switcher:

Segments v Paging
Instead we can use page protection to

protect Switcher:

Segments v Paging
We copy IDT and GDT for this Guest into

this CPU's page before we run it

Segments v Paging
We copy IDT and GDT for this Guest into

this CPU's page before we run it
- Optimize the common case where nothing

has changed

Segments v Paging
We copy IDT and GDT for this Guest into

this CPU's page before we run it
- Optimize the common case where nothing

has changed

Copy Guest's registers in and out of CPU's
register page

Segments v Paging
We copy IDT and GDT for this Guest into

this CPU's page before we run it
- Optimize the common case where nothing

has changed

Copy Guest's registers in and out of CPU's
register page
- Optimized to just map Guest's registers over

CPU's register page in Guest page tables

Performance

Performance
Performance level-setting:

Performance
Micro (virtbench, times in ns)

Performance
Micro (virtbench, times in ns)
Native:
Time for one context switch via pipe: 2349 (2345 - 2359)
Time for one Copy-on-Write fault: 3722 (3570 - 4876)
Time to exec client once: 284296 (279828 - 356812)
Time for one fork/exit/wait: 96500 (88578 - 130750)

Performance
Micro (virtbench, times in ns)
Native:
Time for one context switch via pipe: 2349 (2345 - 2359)
Time for one Copy-on-Write fault: 3722 (3570 - 4876)
Time to exec client once: 284296 (279828 - 356812)
Time for one fork/exit/wait: 96500 (88578 - 130750)

Lguest:
Time for one context switch via pipe: 4839 (4778 - 4949)
Time for one Copy-on-Write fault: 75023 (14218 - 399609)
Time to exec client once: 767500 (749718 - 1268312)
Time for one fork/exit/wait: 362062 (359468 - 432437)

Performance
Page fault speed sucks.

Every pagefault goes through hypervisor
twice (6x slower than native)

Performance
Page fault speed sucks.

Every pagefault goes through hypervisor
twice (6x slower than native)

It would be possible to handle this in
the Switcher...

Performance
Macro (kernel compile 512M memory)

Performance
Macro (kernel compile 512M memory)
Native:

 real user sys
 7m21s 5m49s 0m38s
 6m53s 5m50s 0m36s
 7m13s 5m50s 0m37s

Performance
Macro (kernel compile 512M memory)
Native:

 real user sys
 7m21s 5m49s 0m38s
 6m53s 5m50s 0m36s
 7m13s 5m50s 0m37s

lguest (w/ virtio blk patch):
 real user sys
 8m27s 6m29s 1m26s
 8m9s 6m31s 1m21s
 8m19s 6m33s 1m23s

Performance

Performance

Performance
Guest wc -l:

Performance
Guest wc -l:

 615 drivers/lguest/lguest.c
 56 drivers/lguest/lguest_asm.S
 148 drivers/lguest/lguest_bus.c
 275 drivers/block/lguest_blk.c
 354 drivers/net/lguest_net.c
 102 drivers/char/hvc_lguest.c
 85 include/linux/lguest.h
 48 include/linux/lguest_bus.h
 73 include/linux/lguest_launcher.h
1756 total

Performance
Host wc -l:

 463 drivers/lguest/core.c
 184 drivers/lguest/hypercalls.c
 268 drivers/lguest/interrupts_and_traps.c
 415 drivers/lguest/io.c
 238 drivers/lguest/lguest_user.c
 262 drivers/lguest/lg.h
 411 drivers/lguest/page_tables.c
 125 drivers/lguest/segments.c
 159 drivers/lguest/switcher.S
2525 total

Performance
Launcher wc -l:

1012 Documentation/lguest/lguest.c

Performance
Launcher wc -l:

1012 Documentation/lguest/lguest.c

Total: 5293 lines

Documentation

Documentation
User as hero

-- Kathy Sierra, LCA 2007 Keynote

Documentation
User as hero

-- Kathy Sierra, LCA 2007 Keynote

drivers/lguest/README

Future Work
Today:
• virtio
• native bzImage execution

Future Work
Today:
• virtio
• native bzImage execution
Tomorrow:
• extensible cmdline
• suspend/resume
• x86-64
• non-root launcher
• guest SMP

Fun Experiments!

Fun Experiments
• fork() hypercall

Fun Experiments
• fork() hypercall
• NUMA simulation

Fun Experiments
• fork() hypercall
• NUMA simulation
• grub-like bootloader

Fun Experiments
• fork() hypercall
• NUMA simulation
• grub-like bootloader
• nested lguests

Fun Experiments
• fork() hypercall
• NUMA simulation
• grub-like bootloader
• nested lguests
• puppies!

References
http://lguest.ozlabs.org

- 2.6.21 patch (includes documentation)
- Code (not documentation) is in -mm

http://lguest.ozlabs.org/

Legal Statement
This work represents the views of the author(s) and does
not necessarily reflect the views of IBM Corporation.
The following terms are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries: IBM (logo). A
full list of U.S. trademarks owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be
trademarks or service marks of others.

