
Tim O'Brien (Sonatype, Inc.), John Casey (Sonatype, Inc.), Brian Fox (Sonatype, Inc.), Bruce
Snyder (Sonatype, Inc.), Jason Van Zyl (Sonatype, Inc.), Eric Redmond ()

Copyright © 2006-2008

Copyright ...xii
1. Creative Commons BY-ND-NC ...xii

Foreword: 0.3 .. xiv
Preface ... xvi

1. How to Use this Book .. xvi
2. Your Feedback ..xvii
3. Font Conventions ...xviii
4. Maven Writing Conventions ..xviii
5. Acknowledgements .. xix

1. Introducing Apache Maven .. 1
1.1. Maven... What is it? ... 1
1.2. Convention Over Configuration ... 2
1.3. A Common Interface .. 3
1.4. Universal Reuse through Maven Plugins ... 4
1.5. Conceptual Model of a "Project" ... 5
1.6. Is Maven an alternative to XYZ? ... 6
1.7. Comparing Maven with Ant .. 8
1.8. Summary .. 12

2. Installing and Running Maven ... 13
2.1. Verify your Java Installation .. 13
2.2. Downloading Maven .. 14
2.3. Installing Maven .. 14

2.3.1. Installing Maven on Mac OSX .. 14
2.3.2. Installing Maven on Microsoft Windows 16
2.3.3. Installing Maven on Linux ... 16
2.3.4. Installing Maven on FreeBSD or OpenBSD 16

2.4. Testing a Maven Installation .. 17
2.5. Maven Installation Details ... 17

2.5.1. User-specific Configuration and Repository 18
2.5.2. Upgrading a Maven Installation ... 19
2.5.3. Upgrading from Maven 1.x to Maven 2.x 20

2.6. Uninstalling Maven .. 21
2.7. Getting Help with Maven ... 21

ii

2.8. Using the Maven Help Plugin .. 22
2.8.1. Describing a Maven Plugin .. 23

2.9. About the Apache Software License .. 25
I. Maven by Example ... 28

3. A Simple Maven Project ... 30
3.1. Introduction ... 30

3.1.1. Downloading this Chapter's Example 30
3.2. Creating a Simple Project .. 31
3.3. Building a Simple Project ... 33
3.4. Simple Project Object Model .. 34
3.5. Core Concepts ... 35

3.5.1. Maven Plugins and Goals .. 36
3.5.2. Maven Lifecycle .. 38
3.5.3. Maven Coordinates ... 42
3.5.4. Maven Repositories ... 45
3.5.5. Maven's Dependency Management 47
3.5.6. Site Generation and Reporting .. 50

3.6. Summary ... 51
4. Customizing a Maven Project ... 52

4.1. Introduction ... 52
4.1.1. Downloading this Chapter's Example 52

4.2. Defining the Simple Weather Project 52
4.2.1. Yahoo! Weather RSS .. 53

4.3. Creating the Simple Weather Project .. 53
4.4. Customize Project Information ... 55
4.5. Add New Dependencies .. 56
4.6. Simple Weather Source Code ... 58
4.7. Add Resources .. 64
4.8. Running the Simple Weather Program 66

4.8.1. The Maven Exec Plugin .. 67
4.8.2. Exploring Your Project Dependencies 68

4.9. Writing Unit Tests ... 70
4.10. Adding Test-scoped Dependencies ... 73
4.11. Adding Unit Test Resources ... 74

Maven: The Definitive Guide

iii

4.12. Executing Unit Tests ... 76
4.12.1. Ignoring Test Failures ... 77
4.12.2. Skipping Unit Tests ... 78

4.13. Building a Packaged Command Line Application 79
4.13.1. Attaching the Assembly Goal to the Package Phase 81

5. A Simple Web Application ... 83
5.1. Introduction ... 83

5.1.1. Downloading this Chapter's Example 83
5.2. Defining the Simple Web Application 83
5.3. Creating the Simple Web Project .. 84
5.4. Configuring the Jetty Plugin ... 85
5.5. Adding a Simple Servlet ... 87
5.6. Adding J2EE Dependencies .. 90
5.7. Conclusion ... 91

6. A Multi-module Project .. 92
6.1. Introduction ... 92

6.1.1. Downloading this Chapter's Example 92
6.2. The Simple Parent Project ... 92
6.3. The Simple Weather Module .. 94
6.4. The Simple Web Application Module 97
6.5. Building the Multimodule Project ... 99
6.6. Running the Web Application ... 101

7. Multi-module Enterprise Project ... 102
7.1. Introduction ... 102

7.1.1. Downloading this Chapter's Example 102
7.1.2. Multi-module Enterprise Project 103
7.1.3. Technology Used in this Example 106

7.2. The Simple Parent Project ... 107
7.3. The Simple Model Module ... 108
7.4. The Simple Weather Module .. 113
7.5. The Simple Persist Module ... 118
7.6. The Simple Web Application Module 126
7.7. Running the Web Application ... 138
7.8. The Simple Command Module ... 139

Maven: The Definitive Guide

iv

7.9. Running the Simple Command ... 146
7.10. Conclusion ... 149

7.10.1. Programming to Interface Projects 150
8. Optimizing and Refactoring POMs ... 152

8.1. Introduction ... 152
8.2. POM Cleanup .. 153
8.3. Optimizing Dependencies ... 153
8.4. Optimizing Plugins .. 159
8.5. Optimizing with the Maven Dependency Plugin 160
8.6. Final POMs ... 164
8.7. Conclusion ... 173

II. Maven Reference ... 174
9. The Project Object Model ... 175

9.1. Introduction ... 175
9.2. The POM ... 175

9.2.1. The Super POM ... 178
9.2.2. The Simplest POM .. 182
9.2.3. The Effective POM ... 183
9.2.4. Real POMs .. 183

9.3. POM Syntax .. 184
9.3.1. Project Versions .. 184
9.3.2. Property References .. 187

9.4. Project Dependencies .. 189
9.4.1. Dependency Scope .. 190
9.4.2. Optional Dependencies ... 192
9.4.3. Dependency Version Ranges .. 193
9.4.4. Transitive Dependencies ... 195
9.4.5. Conflict Resolution ... 197
9.4.6. Dependency Management ... 199

9.5. Project Relationships ... 201
9.5.1. More on Coordinates ... 202
9.5.2. Multi-module Projects ... 203
9.5.3. Project Inheritance ... 205

9.6. POM Best Practices ... 208

Maven: The Definitive Guide

v

9.6.1. Grouping Dependencies .. 209
9.6.2. Multi-module vs. Inheritance .. 211

10. The Build Lifecycle .. 219
10.1. Introduction ... 219

10.1.1. Clean Lifecycle (clean) ... 219
10.1.2. Default Lifecycle (default) .. 223
10.1.3. Site Lifecycle (site) ... 225

10.2. Package-specific Lifecycles .. 226
10.2.1. JAR .. 226
10.2.2. POM .. 227
10.2.3. Maven Plugin .. 227
10.2.4. EJB .. 228
10.2.5. WAR .. 229
10.2.6. EAR ... 230
10.2.7. Other Packaging Types ... 230

10.3. Common Lifecycle Goals ... 232
10.3.1. Process Resources ... 232
10.3.2. Compile ... 236
10.3.3. Process Test Resources ... 238
10.3.4. Test Compile ... 238
10.3.5. Test .. 239
10.3.6. Install ... 240
10.3.7. Deploy ... 240

11. Build Profiles .. 242
11.1. What Are They For? .. 242

11.1.1. What is Build Portability ... 242
11.1.2. Selecting an Appropriate Level of Portability 244

11.2. Portability through Maven Profiles 245
11.2.1. Overriding a Project Object Model 248

11.3. Profile Activation .. 249
11.3.1. Activation Configuration ... 251
11.3.2. Activation by the Absence of a Property 252

11.4. Listing Active Profiles .. 253
11.5. Tips and Tricks .. 253

Maven: The Definitive Guide

vi

11.5.1. Common Environments ... 254
11.5.2. Protecting Secrets .. 256
11.5.3. Platform Classifiers ... 258

11.6. Summary ... 260
12. Maven Assemblies .. 262

12.1. Introduction ... 262
12.2. Assembly Basics ... 263

12.2.1. Predefined Assembly Descriptors 264
12.2.2. Building an Assembly ... 265
12.2.3. Assemblies as Dependencies 268
12.2.4. Assembling Assemblies via Assembly Dependencies 269

12.3. Overview of the Assembly Descriptor 273
12.4. The Assembly Descriptor .. 276

12.4.1. Property References in Assembly Descriptors 276
12.4.2. Required Assembly Information 276

12.5. Controlling the Contents of an Assembly 278
12.5.1. Files Section .. 278
12.5.2. FileSets Section ... 279
12.5.3. Default Exclusion Patterns for fileSets 282
12.5.4. dependencySets Section ... 283
12.5.5. moduleSets Sections ... 297
12.5.6. Repositories Section .. 305
12.5.7. Managing the Assembly’s Root Directory 306
12.5.8. componentDescriptors and
containerDescriptorHandlers ... 307

12.6. Best Practices .. 308
12.6.1. Standard, Reusable Assembly Descriptors 308
12.6.2. Distribution (Aggregating) Assemblies 312

12.7. Summary ... 317
13. Properties and Resource Filtering ... 318

13.1. Introduction ... 318
13.2. Maven Properties .. 318

13.2.1. Maven Project Properties .. 319
13.2.2. Maven Settings Properties ... 321

Maven: The Definitive Guide

vii

13.2.3. Environment Variable Properties 322
13.2.4. Java System Properties .. 323
13.2.5. User-defined Properties ... 324

13.3. Resource Filtering ... 326
14. Maven and Eclipse: m2eclipse .. 330
15. Site Generation .. 331

15.1. Introduction ... 331
15.2. Building a Project Site with Maven 332
15.3. Customizing the Site Descriptor ... 334

15.3.1. Customizing the Header Graphics 335
15.3.2. Customizing the Navigation Menu 336

15.4. Site Directory Structure ... 338
15.5. Writing Project Documentation .. 339

15.5.1. APT Example .. 339
15.5.2. FML Example ... 340

15.6. Deploying Your Project Website .. 341
15.6.1. Configuring Server Authentication 342
15.6.2. Configuring File and Directory Modes 343

15.7. Customizing Site Appearance ... 344
15.7.1. Customizing the Site CSS ... 344
15.7.2. Create a Custom Site Template 345
15.7.3. Reusable Website Skins .. 350
15.7.4. Creating a Custom Theme CSS 352
15.7.5. Customizing Site Templates in a Skin 353

15.8. Tips and Tricks .. 355
15.8.1. Inject XHTML into HEAD ... 355
15.8.2. Add Links under Your Site Logo 355
15.8.3. Add Breadcrumbs to Your Site 356
15.8.4. Add the Project Version .. 357
15.8.5. Modify the Publication Date Format and Location 358
15.8.6. Using Doxia Macros .. 359

16. Repository Management with Nexus .. 361
17. Writing Plugins ... 363

17.1. Introduction ... 363

Maven: The Definitive Guide

viii

17.2. Programming Maven ... 363
17.2.1. What is Inversion of Control? 364
17.2.2. Introduction to Plexus ... 365
17.2.3. Why Plexus? .. 366
17.2.4. What is a Plugin? ... 367

17.3. Plugin Descriptor .. 368
17.3.1. Top-level Plugin Descriptor Elements 370
17.3.2. Mojo Configuration ... 371
17.3.3. Plugin Dependencies ... 375

17.4. Writing a Custom Plugin ... 375
17.4.1. Creating a Plugin Project ... 375
17.4.2. A Simple Java Mojo .. 376
17.4.3. Configuring a Plugin Prefix .. 378
17.4.4. Logging from a Plugin .. 382
17.4.5. Mojo Class Annotations .. 383
17.4.6. When a Mojo Fails .. 385

17.5. Mojo Parameters ... 386
17.5.1. Supplying Values for Mojo Parameters 386
17.5.2. Multi-valued Mojo Parameters 389
17.5.3. Depending on Plexus Components 391
17.5.4. Mojo Parameter Annotations 391

17.6. Plugins and the Maven Lifecycle .. 393
17.6.1. Executing a Parallel Lifecycle 393
17.6.2. Creating a Custom Lifecycle 394
17.6.3. Overriding the Default Lifecycle 396

18. Writing Plugins in Alternative Languages 399
18.1. Writing Plugins in Ant .. 399
18.2. Creating an Ant Plugin .. 399
18.3. Writing Plugins in JRuby .. 402

18.3.1. Creating a JRuby Plugin .. 403
18.3.2. Ruby Mojo Implementations 405
18.3.3. Logging from a Ruby Mojo .. 408
18.3.4. Raising a MojoError .. 409
18.3.5. Referencing Plexus Components from JRuby 409

Maven: The Definitive Guide

ix

18.4. Writing Plugins in Groovy .. 410
18.4.1. Creating a Groovy Plugin .. 411

19. Using Maven Archetypes .. 413
19.1. Introduction to Maven Archetypes .. 413
19.2. Using Archetypes .. 414

19.2.1. Using an Archetype from the Command Line 414
19.2.2. Using the Interactive generate Goal 415
19.2.3. Using an Archetype from m2eclipse 418

19.3. Available Archetypes .. 418
19.3.1. Common Maven Archetypes 418
19.3.2. Notable Third-Party Archetypes 420

19.4. Publishing Archetypes .. 423
20. Developing with Flexmojos .. 426

20.1. Introduction ... 426
20.2. Configuring Build Environment for Flexmojos 426

20.2.1. Using Sonatype's Repository Directly 427
20.2.2. Proxying Sonatype's Repository with Nexus 428

20.3. Creating a Flex Mojos Project ... 433
20.3.1. Creating a Flex Library ... 434
20.3.2. Creating a Flex Application .. 439
20.3.3. Creating a Multi-module Project: Web Application with a
Flex Dependency ... 441

20.4. Developing and Customizing Flexmojos 443
20.4.1. Get the Flexmojos Source Code 443

A. Appendix: Settings Details .. 445
A.1. Quick Overview .. 445
A.2. Settings Details .. 445

A.2.1. Simple Values ... 446
A.2.2. Servers ... 447
A.2.3. Mirrors ... 448
A.2.4. Proxies ... 449
A.2.5. Profiles .. 450
A.2.6. Activation .. 450
A.2.7. Properties ... 452

Maven: The Definitive Guide

x

A.2.8. Repositories ... 453
A.2.9. Plugin Repositories ... 455
A.2.10. Active Profiles ... 456

B. Appendix: Sun Specification Alternatives .. 458

Maven: The Definitive Guide

xi

Copyright
Copyright 2008 Sonatype, Inc.

Online version published by Sonatype, Inc., 654 High Street, Suite 220, Palo Alto,
CA, 94301.

Print version published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly Media, Inc. The Developer's Notebook series
designations, the look of a laboratory notebook, and related trade dress are
trademarks of O'Reilly Media, Inc.

Java(TM) and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and other countries.
Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Sonatype, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

1. Creative Commons BY-ND-NC
This work is licensed under a Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 United States license. For more information about this
license, see http://creativecommons.org/licenses/by-nc-nd/3.0/us/. You are free to
share, copy, distribute, display, and perform the work under the following
conditions:

• You must attribute the work to Sonatype, Inc. with a link to
http://www.sonatype.com.

xii

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com

• You may not use this work for commercial purposes.

• You may not alter, transform, or build upon this work.
If you redistribute this work on a web page, you must include the following link
with the URL in the about attribute listed on a single line (remove the backslashes
and join all URL parameters):

<div xmlns:cc="http://creativecommons.org/ns#"
about="http://creativecommons.org/license/results-one?q_1=2&q_1=1\

&field_commercial=n&field_derivatives=n&field_jurisdiction=us\
&field_format=StillImage&field_worktitle=Maven%3A+\Guide\
&field_attribute_to_name=Sonatype%2C+Inc.\
&field_attribute_to_url=http%3A%2F%2Fwww.sonatype.com\
&field_sourceurl=http%3A%2F%2Fwww.sonatype.com%2Fbook\
&lang=en_US&language=en_US&n_questions=3">

<a rel="cc:attributionURL" property="cc:attributionName"
href="http://www.sonatype.com">Sonatype, Inc. /

<a rel="license"
href="http://creativecommons.org/licenses/by-nc-nd/3.0/us/">

CC BY-NC-ND 3.0
</div>

When downloaded or distributed in a jurisdiction other than the United States of
America, this work shall be covered by the appropriate ported version of Creative
Commons Attribution-Noncommercial-No Derivative Works 3.0 license for the
specific jurisdiction. If the Creative Commons Attribution-Noncommercial-No
Derivative Works version 3.0 license is not available for a specific jurisdiction, this
work shall be covered under the Creative Commons
Attribution-Noncommercial-No Derivate Works version 2.5 license for the
jurisdiction in which the work was downloaded or distributed. A comprehensive
list of jurisdictions for which a Creative Commons license is available can be
found on the Creative Commons International web site at
http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular
jurisdiction, this work shall be covered by the generic, unported Creative
Commons Attribution-Noncommercial-No Derivative Works version 3.0 license
available from http://creativecommons.org/licenses/by-nc-nd/3.0/.

Copyright

xiii

http://creativecommons.org/international
http://creativecommons.org/licenses/by-nc-nd/3.0/

Foreword: 0.3
Q. Wait, the book was sent to the printers and ink was applied to dead trees, but the
book is still in Beta? What does this mean?

A. It means that we're in this for the long haul. If we've been working on this book
for the better part of the year and we're only on Beta 0.3, it means that we're still
working to realize our vision of an ideal book. Expect a steady stream of
improvements and additions to the book over the coming months.

Q. Will we ever emerge from this book's Beta?

A. Maybe not. Remember, GMail is still in Beta. If this book moves out of Beta,
we're essentially saying that there is no more content to add and nothing is going to
change. I've always thought that good books evolve over time and that they live
beyond the confines of the chapters and sections that define them. A good book is
an ongoing conversation and a series of interactions not just between authors and
readers, but of lateral interactions between readers. That was a fancy way of saying
that the book is a community.

We've published a book with O'Reilly that will (to use a cliche) "stand the test of
time". The printed version of this book contains information that will remain
relevant and accurate going forward, and we encourage everyone to go out and
purchase a book today. Even if you don't need it for yourself, you should go to
Amazon, purchase a copy and give it to a friend who hasn't discovered Maven.

Q. What's new in this version?

Well, in this version, we separated the Nexus chapter into a stand-alone book. If
you go to the Repository Management chapter, you'll see that it is a place-holder
page and a link to a new, full book on Sonatype Nexus entitled Repository
Management with Nexus.

We've had some great feedback so far, please keep it coming. Your feedback is
greatly appreciated, send it to book@sonatype.com. To keep yourself informed of
updates, read the book blog at: http://blogs.sonatype.com/book. Everyone at
Sonatype has had a hand in this version of the book, so the author is officially
"Sonatype".

xiv

http://books.sonatype.com/nexus-book/
http://books.sonatype.com/nexus-book/
mailto:book@sonatype.com
http://blogs.sonatype.com/book

Tim O'Brien (tobrien@sonatype.com)

Evanston, IL

January 16, 2008

PS: Did I mention that you really should purchase a copy of this book?

Foreword: 0.3

xv

http://www.amazon.com/Maven-Definitive-Guide-Sonatype-Company/dp/0596517335/ref=sr_1_1?ie=UTF8&s=books&qid=1223866448&sr=8-1

Preface
Maven is a build tool, a project management tool, an abstract container for running
build tasks. It is a tool that has shown itself indispensable for projects that graduate
beyond the simple and need to start finding consistent ways to manage and build
large collections of interdependent modules and libraries which make use of tens
or hundreds of third-party components. It is a tool that has removed much of the
burden of 3rd party dependency management from the daily work schedule of
millions of engineers, and it has enabled many organizations to evolve beyond the
toil and struggle of build management into a new phase where the effort required
to build and maintain software is no longer a limiting factor in software design.

This work is the first attempt at a comprehensive title on Maven. It builds upon the
combined experience and work of the authors of all previous Maven titles, and you
should view it not as a finished work but as the first edition in a long line of
updates to follow. While Maven has been around for a few years, the authors of
this book believe that it has just begun to deliver on the audacious promises it
makes. The authors, and company behind this book, Sonatype, believe that the
publishing of this book marks the beginning of a new phase of innovation and
development surrounding Maven and the software ecosystem that surrounds it.

1. How to Use this Book
Pick it up, read some of the text on the pages. Once you reach the end of a page,
you'll want to either click on a link if you are looking at the HTML version, or, if
you have the printed book, you'll lift up a corner of a page and turn it. If you are
sitting next to a computer, you can type in some of the examples and try to follow
along. Please don't throw a book this large at anyone in anger.

This book is divided into three parts: Introductory Material, Part I, “Maven by
Example”, and Part II, “Maven Reference”. The introductory material consists of
two chapters: Chapter 1, Introducing Apache Maven and Chapter 2, Installing and
Running Maven. Part I, “Maven by Example” introduces Maven by developing
some real examples and walking you through the structure of those examples

xvi

http://www.sonatype.com

providing motivation and explanation along the way. If you are new to Maven,
start with Part I, “Maven by Example”. Part II, “Maven Reference” is less
introduction than reference, each chapter in Part II, “Maven Reference” deals with
a focused topic and dives into as much detail as possible about each topic. For
example, the Chapter 17, Writing Plugins chapter in Part II, “Maven Reference”
deals with writing plugins by providing a few examples and a series of lists and
tables.

While both Part I, “Maven by Example” and Part II, “Maven Reference” provide
explanation, each part takes a different strategy. Where Part I, “Maven by
Example” focuses on the context of a Maven project, Part II, “Maven Reference”
focuses on a single topic. You can skip around in the book, Part I, “Maven by
Example” is by no means a prerequisite for Part II, “Maven Reference”, but you'll
have a better appreciation for Part II, “Maven Reference” if you read through
Part I, “Maven by Example”. Maven is best learned by example, but once you've
gone through the examples, you are going to need a good reference to start
customizing Maven for your own environment.

2. Your Feedback
We didn't write this book so we could send off a Word document to our publisher
and go to a launch party to congratulate ourselves on a job well done. This book
isn't "done"; in fact, this book will never be completely "done". The subject it
covers is constantly changing and expanding, and we consider this work an
ongoing conversation with the community. Publishing the book means that the real
work has just begun, and you, as a reader, play a pivotal role to helping to maintain
and improve this book. If you see something in this book that is wrong: a spelling
mistake, some bad code, a blatant lie, then you should tell us, send us an email at:
book@sonatype.com.

The ongoing relevance of this book depends upon your feedback. We want to
know what works and what doesn't work. We want to know if there is any
information you couldn't understand. We especially want to know if you think that
the book is awful. Positive or negative comments are all welcome. Of course, we
reserve the right to disagree, but all feedback will be rewarded with a gracious

Preface

xvii

mailto:tobrien@sonatype.com

response.

3. Font Conventions
This book follows certain conventions for font usage. Understanding these
conventions up-front makes it easier to use this book.

Italic
Used for filenames, file extensions, URLs, application names, emphasis, and
new terms when they are first introduced.

Constant width

Used for Java class names, methods, variables, properties, data types, database
elements, and snippets of code that appear in text.

Constant width bold

Used for commands you enter at the command line and to highlight new code
inserted in a running example.

Constant width italic

Used to annotate output.

4. Maven Writing Conventions
The book follows certain conventions for naming and font usage in relation to
Apache Maven. Understanding these conventions up-front makes it easier to read
this book.

Compiler plugin
Maven plugins are capitalized.

create goal
Maven goal names are displayed in a constant width font.

Preface

xviii

"plugin"
Maven revolves around the heavy use of plug-ins but you won't find plugin
defined in the dictionary. This book writes the term as "plugin" both because it
is easier to read and write and because it is a standard throughout the Maven
community.

Maven Lifecycle, Maven Standard Directory Layout, Maven Plugin, Project
Object Model
Core Maven concepts are capitalized whenever they are being referenced in the
text.

goalParameter

A Maven goal parameter is displayed in a constant width font.

compile phase
Lifecycle phases are displayed in a constant width font.

5. Acknowledgements
Sonatype would like to thank the following contributors. The people listed below
have provided feedback which has helped improve the quality of this book. Thanks
to Raymond Toal, Steve Daly, Paul Strack, Paul Reinerfelt, Chad Gorshing,
Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian, Marius Kruger, and
Mark Stewart. Special thanks to Joel Costigliola for helping to debug and correct
the Spring web chapter. Stan Guillory was practically a contributing author given
the number of corrections he posted to the book's Get Satisfaction. Thank you Stan.
Special thanks to Richard Coasby of Bamboo for acting as the provisional
grammar consultant.

Thanks to our contributing authors including Eric Redmond.

Thanks to the following contributors who reported errors either in an email or
using the Get Satisfaction site: Paco Soberón, Ray Krueger, Steinar Cook, Henning
Saul, Anders Hammar, "george_007", "ksangani", Niko Mahle, Arun Kumar,
Harold Shinsato, "mimil", "-thrawn-", Matt Gumbley. If you see your Get

Preface

xix

Satisfaction username in this list, and you would like it replaced with your real
name, send an email to book@sonatype.com.

Preface

xx

mailto:book@sonatype.com

Chapter 1. Introducing Apache Maven
Although there are a number of references for Maven online, there is no single,
well-written narrative for introducing Maven that can serve as both an authoritative
reference and an introduction. What we’ve tried to do with this effort is provide
such a narrative coupled with useful reference material.

1.1. Maven... What is it?
The answer to this question depends on your own perspective. The great majority
of Maven users are going to call Maven a “build tool”: a tool used to build
deployable artifacts from source code. Build engineers and project managers might
refer to Maven as something more comprehensive: a project management tool.
What is the difference? A build tool such as Ant is focused solely on
preprocessing, compilation, packaging, testing, and distribution. A project
management tool such as Maven provides a superset of features found in a build
tool. In addition to providing build capabilities, Maven can also run reports,
generate a web site, and facilitate communication among members of a working
team.

A more formal definition of Apache Maven: Maven is a project management tool
which encompasses a project object model, a set of standards, a project lifecycle, a
dependency management system, and logic for executing plugin goals at defined
phases in a lifecycle. When you use Maven, you describe your project using a
well-defined project object model, Maven can then apply cross-cutting logic from
a set of shared (or custom) plugins.

Don't let the fact that Maven is a "project management" tool scare you away. If you
were just looking for a build tool, Maven will do the job. In fact, the first few
chapters of this book will deal with the most common use case: using Maven to
build and distribute your project.

1

http://maven.apache.org

1.2. Convention Over Configuration
Convention over configuration is a simple concept. Systems, libraries, and
frameworks should assume reasonable defaults. Without requiring unnecessary
configuration, systems should "just work". Popular frameworks such as Ruby on
Rails and EJB3 have started to adhere to these principles in reaction to the
configuration complexity of frameworks such as the initial EJB 2.1 specifications.
An illustration of convention over configuration is something like EJB3
persistence: all you need to do to make a particular bean persistent is to annotate
that class with @Entity. The framework assumes table and column names based
on the name of the class and the names of the properties. Hooks are provided for
you to override these default, assumed names if the need arises, but, in most cases,
you will find that using the framework-supplied defaults results in a faster project
execution.

Maven incorporates this concept by providing sensible default behavior for
projects. Without customization, source code is assumed to be in
${basedir}/src/main/java and resources are assumed to be in
${basedir}/src/main/resources. Tests are assumed to be in
${basedir}/src/test, and a project is assumed to produce a JAR file. Maven
assumes that you want the compile byte code to ${basedir}/target/classes and
then create a distributable JAR file in ${basedir}/target. While this might seem
trivial, consider the fact that most Ant-based builds have to define the locations of
these directories. Ant doesn't ship with any built-in idea of where source code or
resources might be in a project; you have to supply this information. Maven's
adoption of convention over configuration goes farther than just simple directory
locations, Maven's core plugins apply a common set of conventions for compiling
source code, packaging distributions, generating web sites, and many other
processes. Maven's strength comes from the fact that it is "opinionated", it has a
defined life-cycle and a set of common plugins that know how to build and
assemble software. If you follow the conventions, Maven will require almost zero
effort - just put your source in the correct directory, and Maven will take care of
the rest.

One side-effect of using systems that follow "convention over configuration" is

Introducing Apache Maven

2

http://www.rubyonrails.org/
http://www.rubyonrails.org/

that end-users might feel that they are forced to use a particular methodology or
approach. While it is certainly true that Maven has some core opinions that
shouldn't be challenged, most of the defaults can be customized. For example, the
location of a project's source code and resources can be customized, names of JAR
files can be customized, and through the development of custom plugins, almost
any behavior can be tailored to your specific environment's requirements. If you
don't care to follow convention, Maven will allow you to customize defaults in
order to adapt to your specific requirements.

1.3. A Common Interface
Before Maven provided a common interface for building software, every single
project had someone dedicated to managing fully customized build system.
Developers had to take time away from developing software to learn about the
idiosyncrasies of each new project they wanted to contribute to. In 2001, you'd
have a completely different approach to building a project like Turbine than you
would to building a project like Tomcat. If a new source code analysis tool came
out that would perform static analysis on source code, or if someone developed a
new unit testing framework, everybody would have to drop what they were doing
and figure out how to fit it into each project's custom build environment. How do
you run unit tests? There were a thousand different answers. This environment was
characterized by a thousand endless arguments about tools and build procedures.
The age before Maven was an age of inefficiency, the age of the "Build Engineer".

Today, most open source developers have used or are currently using Maven to
manage new software projects. This transition is less about developers moving
from one build tool to another and more about developers starting to adopt a
common interface for project builds. As software systems have become more
modular, build systems have become more complex, and the number of projects
has sky-rocketed. Before Maven, when you wanted to check out a project like
Apache ActiveMQ or Apache ServiceMix from Subversion and build it from
source, you really had to set aside about an hour to figure out the build system for
each particular project. What does the project need to build? What libraries do I
need to download? Where do I put them? What goals can I execute in the build? In

Introducing Apache Maven

3

http://turbine.apache.org/
http://tomcat.apache.org
http://activemq.apache.org
http://servicemix.apache.org

the best case, it took a few minutes to figure out a new project's build, and in the
worst cases (like the old Servlet API implementation in the Jakarta Project), a
project's build was so difficult it would take multiple hours just to get to the point
where a new contributor could edit source and compile the project. These days,
you check it out from source, and you run mvn install.

While Maven provides an array of benefits including dependency management and
reuse of common build logic through plugins, the core reason why it has succeeded
is that it has defined a common interface for building software. When you see that
a project like Apache Wicket uses Maven, you can assume that you'll be able to
check it out from source and build it with mvn install without much hassle. You
know where the ignition keys goes, you know that the gas pedal is on the
right-side, and the brake is on the left.

1.4. Universal Reuse through Maven Plugins
The core of Maven is pretty dumb, it doesn't know how to do much beyond parsing
a few XML documents and keeping track of a lifecycle and a few plugins. Maven
has been designed to delegate most responsibility to a set of Maven Plugins which
can affect the Maven Lifecycle and offer access to goals. Most of the action in
Maven happens in plugin goals which take care of things like compiling source,
packaging bytecode, publishing sites, and any other task which need to happen in a
build. The Maven you download from Apache doesn't know much about packaging
a WAR file or running JUnit tests; most of the intelligence of Maven is
implemented in the plugins and the plugins are retrieved from the Maven
Repository. In fact, the first time you ran something like mvn install with a
brand-new Maven installation it retrieved most of the core Maven plugins from the
Central Maven Repository. This is more than just a trick to minimize the download
size of the Maven distribution, this is behavior which allows you to upgrade a
plugin to add capability to your project's build. The fact that Maven retrieves both
dependencies and plugins from the remote repository allows for universal reuse of
build logic.

The Maven Surefire plugin is the plugin that is responsible for running unit tests.
Somewhere between version 1.0 and the version that is in wide use today someone

Introducing Apache Maven

4

http://wicket.apache.org

decided to add support for the TestNG unit testing framework in addition to the
support for JUnit. This upgrade happened in a way that didn't break backwards
compatibility. If you were using the Surefire plugin to compile and execute JUnit 3
unit tests, and you upgraded to the most recent version of the Surefire plugin, your
tests continued to execute without fail. But, you gained new functionality, if you
want to execute unit tests in TestNG you now have that ability. You also gained
the ability to run annotated JUnit 4 unit tests. You gained all of these capabilities
without having to upgrade your Maven installation or install new software. Most
importantly, nothing about your project had to change aside from a version number
for a plugin a single Maven configuration file called the Project Object Model
(POM).

It is this mechanism that affects much more than the Surefire plugin, projects are
compiled with a Compiler plugin, projects are turned into JAR files with a Jar
plugin, there are plugins for running reports, plugins for executing JRuby and
Groovy code, as well as plugins to publish sites to remote servers. Maven has
abstracted common build tasks into plugins which are maintained centrally and
shared universally. If the state-of-the-art changes in any area of the build, if some
new unit testing framework is released or if some new tool is made available, you
don't have to be the one to hack your project's custom build system to support it.
You benefit from the fact that plugins are downloaded from a remote repository
and maintained centrally. This is what is meant by universal reuse through Maven
plugins.

1.5. Conceptual Model of a "Project"
Maven maintains a model of a project. You are not just compiling source code into
bytecode, you are developing a description of a software project and assigning a
unique set of coordinates to a project. You are describing the attributes of the
project. What is the project's license? Who develops and contributes to the project?
What other projects does this project depend upon? Maven is more than just a
"build tool", it is more than just an improvement on tools like make and Ant, it is a
platform that encompasses a new semantics related to software projects and
software development. This definition of a model for every project enables such

Introducing Apache Maven

5

features as:

Dependency Management
Because a project is defined a unique coordinate which consists of a group
identifier, artifact identifier, and version, projects can now use these coordinates
to declare dependencies.

Remote Repositories
Related to dependency management, we can use the coordinates defined in the
Maven Project Object Model (POM) to create repositories of Maven artifacts.

Universal Reuse of Build Logic
Plugins are coded to work with the Project Object Model (POM); they are not
designed to operate upon specific files in known locations. Everything is
abstracted into the Model, plugin configuration and customization happens in
the model.

Tool Portability / Integration
Tools like Eclipse, NetBeans, and IntelliJ now have a common place to find
information about a project. Before the advent of Maven, every IDE had a
different way to store what was essentially a custom Project Object Model
(POM). Maven has standardized this description, and while each IDE continues
to maintain custom project files, they can be easily generated from the model.

Easy Searching and Filtering of Project Artifacts
Tools like Nexus allow you to index and search the contents of a repository
using the information stored in the POM.

Maven has provided a foundation for the beginnings of a consistent semantic
description of a software project.

1.6. Is Maven an alternative to XYZ?
So, sure, Maven is an alternative to Ant, but Apache Ant continues to be a great,
widely-used tool. It has been the reigning champion of Java builds for years, and

Introducing Apache Maven

6

http://ant.apache.org

you can integrate Ant build scripts with your project's Maven build very easily.
This is a common usage pattern for a Maven project. On the other hand, as more
and more open source projects move to Maven as a project management platform,
working developers are starting to realize that Maven not only simplifies the task
of build management, it is helping to encourage a common interface between
developers and software projects. Maven is more of a platform than a tool, while
you could consider Maven an alternative to Ant, you are comparing apples to
oranges. "Maven" includes more than just a build tool.

This is the central point that makes all of the Maven vs. Ant, Maven vs. Buildr,
Maven vs. Gradle arguments irrelevant. Maven isn't totally defined by the
mechanics of your build system, it isn't about scripting the various tasks in your
build as much as it is about encouraging a set of standards, a common interface, a
life-cycle, a standard repository format, a standard directory layout, etc. It certainly
isn't about what format the POM happens to be in (XML vs. YAML vs. Ruby).
Maven is much larger than that, and Maven refers to much more than the tool
itself. When this book talks of Maven, it is referring to the constellation of
software, systems, and standards that support it. Buildr, Ivy, Gradle, all of these
tools interact with the repository format that Maven helped create, and you could
just as easily use a tool like Nexus to support a build written entirely in Buildr.
Nexus is introduced in Chapter 16, Repository Management with Nexus.

While Maven is an alternative to many of these tools, the community needs to
evolve beyond seeing technology as a zero-sum game between unfriendly
competitors in a competition for users and developers. This might be how large
corporations relate to one another, but it has very little relevance to the way that
open source communities work. The headline "Who's winning? Ant or Maven?"
isn't very constructive. If you force us to answer this question, we're definitely
going to say that Maven is a superior alternative to Ant as a foundational
technology for a build; at the same time, Maven's boundaries are constantly
shifting and the Maven community is constantly trying to seek out new ways to
become more ecumenical, more inter-operable, more cooperative. The core tenets
of Maven are declarative builds, dependency management, repository managers,
universal reuse through plugins, but the specific incarnation of these ideas at any
given moment is less important than the sense that the open source community is

Introducing Apache Maven

7

collaborating to reduce the inefficiency of "enterprise-scale builds".

1.7. Comparing Maven with Ant
While the previous section should convince you that the authors of this book have
no interest in creating a feud between Apache Ant and Apache Maven, we are
cognizant of the fact that most organizations have to make a decision between the
Apache Ant and Apache Maven. In this section, we compare and contrast the tools.

Ant excels at build process, it is a build system modeled after make with targets
and dependencies. Each target consists of a set of instructions which are coded in
XML. There is a copy task and a javac task as well as a jar task. When you use
Ant, you supply Ant with specific instructions for compiling and packaging your
output. Look at the following example of a simple build.xml file:

Example 1.1. A Simple Ant build.xml file

<project name="my-project" default="dist" basedir=".">
<description>

simple example build file
</description>

<!-- set global properties for this build -->
<property name="src" location="src/main/java"/>
<property name="build" location="target/classes"/>
<property name="dist" location="target"/>

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init"
description="compile the source " >

<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="dist" depends="compile"
description="generate the distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist}/lib"/>

Introducing Apache Maven

8

<!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>

</target>

<target name="clean"
description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="${build}"/>
<delete dir="${dist}"/>

</target>
</project>

In this simple Ant example, you can see how you have to tell Ant exactly what to
do. There is a compile goal which includes the javac task that compiles the source
in the src/main/java directory to the target/classes directory. You have to tell
Ant exactly where your source is, where you want the resulting bytecode to be
stored, and how to package this all into a JAR file. While there are some recent
developments that help make Ant less procedural, a developer's experience with
Ant is in coding a procedural language written in XML.

Contrast the previous Ant example with a Maven example. In Maven, to create a
JAR file from some Java source, all you need to do is create a simple pom.xml,
place your source code in ${basedir}/src/main/java and then run mvn install
from the command line. The example Maven pom.xml that achieves the same
results as the simple Ant file listed in Example 1.1, “A Simple Ant build.xml file”
is shown in Example 1.2, “A Sample Maven pom.xml”.

Example 1.2. A Sample Maven pom.xml

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>my-project</artifactId>
<version>1.0</version>

</project>

That's all you need in your pom.xml. Running mvn install from the command line
will process resources, compile source, execute unit tests, create a JAR, and install
the JAR in a local repository for reuse in other projects. Without modification, you

Introducing Apache Maven

9

can run mvn site and then find an index.html file in target/site that contains
links to JavaDoc and a few reports about your source code.

Admittedly, this is the simplest possible example project. A project which only
contains source code and which produces a JAR. A project which follows Maven
conventions and doesn't require any dependencies or customization. If we wanted
to start customizing the behavior, our pom.xml is going to grow in size, and in the
largest of projects you can see collections of very complex Maven POMs which
contain a great deal of plugin customization and dependency declarations. But,
even when your project's POM files become more substantial, they hold an entirely
different kind of information from the build file of a similarly sized project using
Ant. Maven POMs contain declarations: "This is a JAR project", and "The source
code is in src/main/java". Ant build files contain explicit instructions: "This is
project", "The source is in src/main/java", "Run javac against this directory",
"Put the results in target/classses", "Create a JAR from the", etc. Where Ant
had to be explicit about the process, there was something "built-in" to Maven that
just knew where the source code was and how it should be processed.

The differences between Ant and Maven in this example are:

Apache Ant

• Ant doesn't have formal conventions like a common project directory
structure, you have to tell Ant exactly where to find the source and where to
put the output. Informal conventions have emerged over time, but they
haven't been codified into the product.

• Ant is procedural, you have to tell Ant exactly what to do and when to do it.
You had to tell it to compile, then copy, then compress.

• Ant doesn't have a lifecycle, you had to define goals and goal dependencies.
You had to attach a sequence of tasks to each goal manually.

Apache Maven

• Maven has conventions, it already knew where your source code was because

Introducing Apache Maven

10

you followed the convention. It put the bytecode in target/classes, and it
produced a JAR file in target.

• Maven is declarative. All you had to do was create a pom.xml file and put
your source in the default directory. Maven took care of the rest.

• Maven has a lifecycle, which you invoked when you executed mvn install.
This command told Maven to execute the a series of sequence steps until it
reached the lifecycle. As a side-effect of this journey through the lifecycle,
Maven executed a number of default plugin goals which did things like
compile and create a JAR.

Maven has built-in intelligence about common project tasks in the form of Maven
plugins. If you wanted to write and execute unit tests, all you would need to do is
write the tests place them in ${basedir}/src/test/java, add a test-scoped
dependency on either TestNG or JUnit, and run mvn test. If you wanted to deploy
a web application and not a JAR, all you would need to do is change you project
type to (war) and put your docroot in ${basedir}/src/main/webapp. Sure, you
can do all of this with Ant, but you will be writing the instructions from scratch. In
Ant, you would first have to figure out where the JUnit JAR file should be, then
you would have to create a classpath that includes the JUnit JAR file, then you
would tell Ant where it should look for test source code, write a goal that compiles
the test source to bytecode, execute the unit tests with JUnit.

Without supporting technologies like antlibs and Ivy (even with these supporting
technologies), Ant has the feeling of a custom procedural build. An efficient set of
Maven POMs in a project which adheres to Maven's assumed conventions has
surprisingly little XML compared to the Ant alternative. Another benefit of Maven
is the reliance on widely-shared Maven plugins. Everyone uses the Maven Surefire
plugin for unit testing, and if someone adds support for a new unit testing
framework, you can gain new capabilities in your own build by just incrementing
the version of a particular Maven plugin in your project's POM.

The decision to use Maven or Ant isn't a binary one, and Ant still has a place in a
complex build. If your current build contains some highly customized process, or if
you've written some Ant scripts to complete a specific process in a specific way

Introducing Apache Maven

11

that cannot be adapted to the Maven standards, you can still use these scripts with
Maven. Ant is made available as a core Maven plugin. Custom Maven plugins can
be implemented in Ant, and Maven projects can be configured to execute Ant
scripts within the Maven project lifecycle.

1.8. Summary
This introduction has been kept purposefully short. We have covered a basic
outline of what Maven is, and how it stacks up to and improves upon other build
tools throughout time. The next chapter will dive into a simple project and show
how Maven can perform phenomenal tasks with the smallest amount of
configuration.

Introducing Apache Maven

12

Chapter 2. Installing and Running Maven
This chapter contains very detailed instructions for installing Maven on a number
of different platforms. Instead of assuming a level of familiarity with installing
software and setting environment variables, we've opted to be as thorough as
possible to minimize any problems that might arise do to a partial installation. The
only thing this chapter assumes is that you've already installed a suitable Java
Development Kit (JDK). If you are just interested in installation, you can move on
to the rest of the book after reading through Downloading Maven and Installing
Maven. If you are interested in the details of your Maven installation, this entire
chapter will give you an overview of what you've installed and the meaning of the
Apache Software License, Version 2.0.

2.1. Verify your Java Installation
While Maven can run on Java 1.4, this book assumes that you are running at least
Java 5. Go with the most recent stable Java Development Kit (JDK) available for
your operating system. Either Java 5 or Java 6 will work with all of the examples
in this book.

% java -version
java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) Client VM (build 1.6.0_02-b06, mixed mode, sharing)

Maven works with all certified JavaTM compatible development kits, and a few
non-certified implementations of Java. The examples in this book were written and
tested against the official Java Development Kit releases downloaded from the Sun
Microsystems web site. If you’re working with a Linux distribution, you may need
to download Sun’s JDK yourself and make sure it’s the version you’re invoking
(by running java -version). Now that Sun has open-sourced Java, this will
hopefully improve in the future, and we’ll get the Sun JRE and JDK by default
even in purist Linux distributions. Until that day, you may need to do some of your
own downloading.

13

2.2. Downloading Maven
You can download Maven from the Apache Maven project website at
http://maven.apache.org/download.html.

When downloading Maven, make sure you choose the latest version of Apache
Maven from the Maven website. The latest version of Maven when this book was
written was Maven 2.0.10. If you are not familiar with the Apache Software
License, you should familiarize yourself with the terms of the license before you
start using the product. More information on the Apache Software License can be
found in Section 2.9, “About the Apache Software License”.

2.3. Installing Maven
There are wide differences between operating systems such as Mac OS X and
Microsoft Windows, and there are subtle differences between different versions of
Windows. Luckily, the process of installing Maven on all of these operating
systems is relatively painless and straightforward. The following sections outline
the recommended best-practice for installing Maven on a variety of operating
systems.

2.3.1. Installing Maven on Mac OSX
You can download a binary release of Maven from
http://maven.apache.org/download.html. Download the current release of Maven in
a format that is convenient for you to work with. Pick an appropriate place for it to
live, and expand the archive there. If you expanded the archive into the directory
/usr/local/apache-maven-2.0.10, you may want to create a symbolic link to
make it easier to work with and to avoid the need to change any environment
configuration when you upgrade to a newer version:

/usr/local % cd /usr/local
/usr/local % ln -s apache-maven-2.0.10 maven
/usr/local % export M2_HOME=/usr/local/maven
/usr/local % export PATH=${M2_HOME}/bin:${PATH}

Installing and Running Maven

14

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Once Maven is installed, you need to do a couple of things to make it work
correctly. You need to add its bin directory in the distribution (in this example,
/usr/local/maven/bin) to your command path. You also need to set the
environment variable M2_HOME to the top-level directory you installed (in this
example, /usr/local/maven).

Note
Installation instructions are the same for both OSX Tiger and OSX
Leopard. It has been reported that Maven 2.0.6 is shipping with a
preview release of XCode. If you have installed XCode, run mvn from
the command-line to check availability. XCode installs Maven in
/usr/share/maven. We recommend installing the most recent version of
Maven 2.0.10 as there have been a number of critical bug fixes and
improvements since Maven 2.0.6 was released.

You'll need to add both M2_HOME and PATH to a script that will run every time you
login. To do this, add the following lines to .bash_login.

export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}

Once you've added these lines to your own environment, you will be able to run
Maven from the command line.

Note
These installation instructions assume that you are running bash.

2.3.1.1. Installing Maven on OSX using MacPorts
If you are using MacPorts, you can install the maven2 port by executing the
following command-line:

$ sudo port install maven2
Password: ******
---> Fetching maven2
---> Attempting to fetch apache-maven-2.0.10-bin.tar.bz2 from http://www.apache.org/dist/maven/binaries
---> Verifying checksum(s) for maven2

Installing and Running Maven

15

---> Extracting maven2
---> Configuring maven2
---> Building maven2 with target all
---> Staging maven2 into destroot
---> Installing maven2 2.0.10_0
---> Activating maven2 2.0.10_0
---> Cleaning maven2

For more information about the maven2 port, see the maven2 Portfile. For more
information about MacPorts and how to install it, see the MacPorts project page.

2.3.2. Installing Maven on Microsoft Windows
Installing Maven on Windows is very similar to installing Maven on Mac OSX, the
main differences being the installation location and the setting of an environment
variable. This book assumes a Maven installation directory of c:\Program
Files\apache-maven-2.0.10, but it won't make a difference if you install Maven
in another directory as long as you configure the proper environment variables.
Once you've unpacked Maven to the installation directory, you will need to set two
environment variables—PATH and M2_HOME. To set these environment variables
from the command-line, type in the following commands:

C:\Users\tobrien > set M2_HOME=c:\Program Files\apache-maven-2.0.10
C:\Users\tobrien > set PATH=%PATH%;%M2_HOME%\bin

Setting these environment variables on the command-line will allow you to run
Maven in your current session, but unless you add them to the System environment
variables through the control panel, you'll have to execute these two lines every
time you log into your system. You should modify both of these variables through
the Control Panel in Microsoft Windows.

2.3.3. Installing Maven on Linux
To install Maven on a Linux machine follow the exact procedure outlined in
Section 2.3.1, “Installing Maven on Mac OSX”.

2.3.4. Installing Maven on FreeBSD or OpenBSD

Installing and Running Maven

16

http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php

3Ever purchased a 200 GB hard drive only to realize that it showed up as less than 200 GiB when you
installed it? Computers understand Gibibytes, but retailers sell products using Gigabytes. MiB stands
for Mebibyte which is defined as 220 or 10242. These binary prefix standards are endorsed by the IEEE,
CIPM, and and IEC. For more information about Kibibytes, Mebibytes, Gibibytes, and Tebibytes see
http://en.wikipedia.org/wiki/Mebibyte,

To install Maven on a FreeBSD or OpenBSD machine, follow the exact procedure
outlined in Section 2.3.1, “Installing Maven on Mac OSX”.

2.4. Testing a Maven Installation
Once Maven is installed, you can check the version by running mvn -v from the
command-line. If Maven has been installed, you should see something resembling
the following output.

$ mvn -v
Maven 2.0.10

If you see this output, you know that Maven is available and ready to be used. If
you do not see this output, and your operating system cannot find the mvn
command, make sure that your PATH environment variable and M2_HOME

environment variable have been properly set.

2.5. Maven Installation Details
Maven's download measures in at roughly 1.5 MiB3, it has attained such a slim
download size because the core of Maven has been designed to retrieve plugins
and dependencies from a remote repository on-demand. When you start using
Maven, it will start to download plugins to a local repository described in
Section 2.5.1, “User-specific Configuration and Repository”. In case you are
curious, let's take a quick look at what is in Maven's installation directory.3

/usr/local/maven $ ls -p1
LICENSE.txt
NOTICE.txt
README.txt
bin/
boot/

Installing and Running Maven

17

http://en.wikipedia.org/wiki/Mebibyte

conf/
lib/

LICENSE.txt contains the software license for Apache Maven. This license is
described in some detail later in the section Section 2.9, “About the Apache
Software License”.” NOTICE.txt contains some notices and attributions required
by libraries that Maven depends on. README.txt contains some installation
instructions. bin/ contains the mvn script that executes Maven. boot/ contains a
JAR file (classwords-1.1.jar) that is responsible for creating the Class Loader in
which Maven executes. conf/ contains a global settings.xml that can be used to
customize the behavior of your Maven installation. If you need to customize
Maven, it is customary to override any settings in a settings.xml file stored in
~/.m2. lib/ contains a single JAR file (maven-core-2.0.10-uber.jar) that
contains the core of Maven.

Note
Unless you are working in a shared Unix environment, you should avoid
customizing the settings.xml in M2_HOME/conf. Altering the global
settings.xml file in the Maven installation itself is usually unnecessary
and it tends to complicate the upgrade procedure for Maven as you'll
have to remember to copy the customized settings.xml from the old
Maven installation to the new installation. If you need to customize
settings.xml, you should be editing your own settings.xml in
~/.m2/settings.xml.

2.5.1. User-specific Configuration and Repository
Once you start using Maven extensively, you'll notice that Maven has created some
local user-specific configuration files and a local repository in your home
directory. In ~/.m2 there will be:

~/.m2/settings.xml
A file containing user-specific configuration for authentication, repositories,

Installing and Running Maven

18

and other information to customize the behavior of Maven.

~/.m2/repository/
This directory contains your local Maven repository. When you download a
dependency from a remote Maven repository, Maven stores a copy of the
dependency in your local repository.

Note
In Unix (and OSX), your home directory will be referred to using a tilde
(i.e. ~/bin refers to /home/tobrien/bin). In Windows, we will also be
using ~ to refer to your home directory. In Windows XP, your home
directory is C:\Documents and Settings\tobrien, and in Windows
Vista, your home directory is C:\Users\tobrien. From this point
forward, you should translate paths such as ~/m2 to your operating
system's equivalent.

2.5.2. Upgrading a Maven Installation
If you've installed Maven on a Mac OSX or Unix machine according to the details
in Section 2.3.1, “Installing Maven on Mac OSX” and Section 2.3.3, “Installing
Maven on Linux”. It should be easy to upgrade to newer versions of Maven when
they become available. Simply install the newer version of Maven
(/usr/local/maven-2.future) next to the existing version of Maven
(/usr/local/maven-2.0.10). Then switch the symbolic link /usr/local/maven

from /usr/local/maven-2.0.10 to /usr/local/maven-2.future. Since, you've
already set your M2_HOME variable to point to /usr/local/maven, you won't need to
change any environment variables.

If you have installed Maven on a Windows machine, simply unpack Maven to
c:\Program Files\maven-2.future and update your M2_HOME variable.

Note
If you have any customizations to the global settings.xml in
M2_HOME/conf, you will need to copy this settings.xml to the conf

Installing and Running Maven

19

directory of the new Maven installation.

2.5.3. Upgrading from Maven 1.x to Maven 2.x
If you are upgrading from Maven 1 to Maven 2, you are going to be using an
entirely new POM and repository structure. If you have already created a custom
Maven 1 repository to hold custom artifacts, you can use the Nexus Repository
Manager to expose a Maven 1 repository in a format that can be understood by
Maven 2 clients. For more information about the Nexus Repository Manager, see
Chapter 16, Repository Management with Nexus. In addition to tools like Nexus,
you can also configure references to repositories to use the legacy layout format.
For more information about configuring a reference to a legacy repository, see
Section A.2.8, “Repositories”.

If you have a set of Maven 1 projects, you may want to know about the Maven
One Plugin. The Maven One Plugin was designed to help projects migrate from
Maven 1 to Maven 2. If you have a Maven 1 project, you can convert the project's
POM by running the one:convert goal as follows:

$ cd my-project
$ mvn one:convert

one:convert will read a project.xml and produce a pom.xml that is compatible
with Maven 2. If you've customized a Maven 1 build using Jelly script in a
maven.xml file, you will need to investigate other options. While Maven 1
emphasized Jelly scripting for customizing builds, Maven 2 favors custom plugins
or customization through scripting Plugins or the Maven Antrun Plugin.

The most important thing to know about when upgrading from Maven 1 to Maven
2 is that Maven 2 is a completely different build framework. Maven 2 introduces
the concept of the Maven Lifecycle and redefines the relationships between
plugins. If you upgrade from Maven 1 to Maven 2, you need to invest some time in
learning about the differences between the two versions. Although it might seem
straightforward to start learning about the new POM structure, you should focus on
the Lifecycle first. If you understand the Maven Lifecycle, you will be able to use

Installing and Running Maven

20

Maven to its fullest potential.

2.6. Uninstalling Maven
Most of the installation instructions involve unpacking of the Maven distribution
archive in a directory and setting of various environment variables. If you need to
remove Maven from your computer, all you need to do is delete your Maven
installation directory and remove the environment variables. You will also want to
delete the ~/.m2 directory as it contains your local repository.

2.7. Getting Help with Maven
While this book aims to be a comprehensive reference, there are going to be topics
we will miss and special situations and tips which are not covered. While the core
of Maven is very simple, the real work in Maven happens in the plugins, and there
are too many plugins available to cover them all in one book. You are going to
encounter problems and features which have not been covered in this book; in
these cases, we suggest searching for answers at the following locations:

http://maven.apache.org
This will be the first place to look, the Maven web site contains a wealth of
information and documentation. Every plugin has a few pages of documentation
and there are a series of "quick start" documents which will be helpful in
addition to the content of this book. While the Maven site contains a wealth of
information, it can also be a frustrating, confusing, and overwhelming. There is
a custom Google search box on the main Maven page that will search known
Maven sites for information. This provides better results than a generic Google
search.

Maven User Mailing List
The Maven User mailing list is the place for users to ask questions. Before you
ask a question on the user mailing list, you will want to search for any previous
discussion that might relate to your question. It is bad form to ask a question

Installing and Running Maven

21

http://maven.apache.org

that has already been asked without first checking to see if an answer already
exists in the archives. There are a number of useful mailing list archive
browsers, we've found Nabble to the be the most useful. You can browse the
User mailing list archives here:
http://www.nabble.com/Maven---Users-f178.html. You can join the user
mailing list by following the instructions available here
http://maven.apache.org/mail-lists.html.

http://www.sonatype.com
Sonatype maintains an online copy of this book and other tutorials related to
Apache Maven.

Note
Despite the best efforts of some very dedicated Maven contributors, the
Maven web site is poorly organized and full of incomplete (and
sometimes) misleading snippets of documentation. Throughout the
Maven community there is a lack of a common standards for plugin
documentation, some plugins are heavily documented while others lack
even the most basic instructions for usage. Often your best bet is to
search for a solution in the archives of the user mailing list. If you really
want to help submit a patch to the Maven site (or this book).

2.8. Using the Maven Help Plugin
Throughout the book, we will be introducing Maven plugins, talking about Maven
Project Object Model (POM) files, settings files, and profiles. There are going to
be times when you need a tool to help you make sense of some of the models that
Maven is using and what goals are available on a specific plugin. The Maven Help
plugin allows you to list active Maven profiles, display an effective POM, print the
effective settings, or list the attributes of a Maven plugin.

Note
For a conceptual overview of the POM and plugins see Chapter 3, A

Installing and Running Maven

22

http://www.nabble.com/Maven---Users-f178.html
http://maven.apache.org/mail-lists.html
http://www.sonatype.com

Simple Maven Project.

The Maven Help plugin has four goals. The first three goals—active-profiles,
effective-pom, and effective-settings—describe a particular project and must
be run in the base directory of a project. The last goal—describe—is slightly
more complex, showing you information about a plugin or a plugin goal. The
following commands provide some general information about the four goals:

help:active-profiles
Lists the profiles (project, user, global) which are active for the build.

help:effective-pom
Displays the effective POM for the current build, with the active profiles
factored in.

help:effective-settings
Prints out the calculated settings for the project, given any profile enhancement
and the inheritance of the global settings into the user-level settings.

help:describe
Describes the attributes of a plugin. This need not run under an existing project
directory. You must at least give the groupId and artifactId of the plugin you
wish to describe.

2.8.1. Describing a Maven Plugin
Once you start using Maven, you'll spend most of your time trying to get more
information about Maven Plugins: How do plugins work? What are the
configuration parameters? What are the goals? The help:describe goal is
something you'll be using very frequently to retrieve this information. With the
plugin parameter you can specify a plugin you wish to investigate, passing in
either the plugin prefix (e.g. maven-help-plugin as help) or the
groupId:artifact[:version], where version is optional. For example, the
following command uses the Help plugin's describe goal to print out information

Installing and Running Maven

23

about the Maven Help plugin.

$ mvn help:describe -Dplugin=help
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
the build environment. It includes the ability to view the effective
POM and settings files, after inheritance and active profiles
have been applied, as well as a describe a particular plugin goal to give
usage information.

...

Executing the describe goal with the plugin parameter printed out the Maven
coordinates for the plugin, the goal prefix, and a brief description of the plugin.
While this information is helpful, you'll usually be looking for more detail than
this. If you want the Help plugin to print a full list of goals with parameters,
execute the help:describe goal with the parameter full as follows:

$ mvn help:describe -Dplugin=help -Dfull
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
the build environment. It includes the ability to view the effective
POM and settings files, after inheritance and active profiles
have been applied, as well as a describe a particular plugin goal to
give usage information.

Mojos:

===
Goal: 'active-profiles'
===
Description:

Lists the profiles which are currently active for this build.

Implementation: org.apache.maven.plugins.help.ActiveProfilesMojo
Language: java

Parameters:

Installing and Running Maven

24

[0] Name: output
Type: java.io.File
Required: false
Directly editable: true
Description:

This is an optional parameter for a file destination for the output of
this mojo...the listing of active profiles per project.

[1] Name: projects
Type: java.util.List
Required: true
Directly editable: false
Description:

This is the list of projects currently slated to be built by Maven.

This mojo doesn't have any component requirements.
===

... removed the other goals ...

This option is great for discovering all of a plugin's goals as well as their
parameters. But sometimes this is far more information than necessary. To get
information about a single goal, set the mojo parameter as well as the plugin

parameter. The following command lists all of the information about the Compiler
plugin's compile goal.

$ mvn help:describe -Dplugin=compiler -Dmojo=compile -Dfull

Note
What? A Mojo? In Maven, a Plugin goal is known as a "Mojo".

2.9. About the Apache Software License
Apache Maven is released under the Apache Software License, Version 2.0. If you

Installing and Running Maven

25

want to read this license, you can read ${M2_HOME}/LICENSE.txt or read this
license on the Open Source Initiative's web site here
http://www.opensource.org/licenses/apache2.0.php.

There's a good chance that, if you are reading this book, you are not a lawyer. If
you are wondering what the Apache License, Version 2.0 means, the Apache
Software Foundation has assembled a very helpful Frequently Asked Questions
(FAQ) page about the license available here
http://www.apache.org/foundation/licence-FAQ.html. Here's is the answer to the
question "I am not a lawyer. What does it all mean?"

[This license] allows you to:

• freely download and use Apache software, in whole or in part, for
personal, company internal, or commercial purposes;

• use Apache software in packages or distributions that you create.
It forbids you to:

• redistribute any piece of Apache-originated software without proper
attribution;

• use any marks owned by The Apache Software Foundation in any way
that might state or imply that the Foundation endorses your
distribution;

• use any marks owned by The Apache Software Foundation in any way
that might state or imply that you created the Apache software in
question.
It requires you to:

• include a copy of the license in any redistribution you may make that
includes Apache software;

• provide clear attribution to The Apache Software Foundation for any
distributions that include Apache software.

Installing and Running Maven

26

http://www.opensource.org/licenses/apache2.0.php
http://www.apache.org/foundation/licence-FAQ.html

It does not require you to:

• include the source of the Apache software itself, or of any
modifications you may have made to it, in any redistribution you may
assemble that includes it;

• submit changes that you make to the software back to the Apache
Software Foundation (though such feedback is encouraged).

This ends the installation information. The next part of the book contains Maven
examples.

Installing and Running Maven

27

Part I. Maven by Example
The first Maven book was Maven: A Developer’s Notebook (O’Reilly). That book
introduced Maven in a series of steps via a conversation between you and a
colleague who already knew how to use Maven. The idea behind the (now-retired)
Developer’s Notebook series was that developers learn best when they are sitting
next to other developers and going through the same thought processes, learning to
code by doing and experimenting. Although the series was successful, the
Notebook format had limitations. Notebooks are, by design, “goal-focused” books
that take you through a series of steps to achieve very specific goals. By contrast,
larger reference books (such as O’Reilly’s animal books) provide comprehensive
reference material that cover the entirety of the topic.

If you read Maven: A Developer’s Notebook, you’ll learn how to create a simple
project or a project that creates a WAR from a set of source files. But if you want
to find out the specifics for something like the Assembly plugin, you’ll hit an
impasse. Because there is no well-written reference material for Maven, you have
to hunt through plugin documentation on the Maven web site or cull from a series
of mailing lists. Once you really dig into Maven, you end up reading through
thousands of HTML pages on the Maven site written by hundreds of different
developers, each with a different idea of what it means to document a plugin.
Despite the best efforts of well-meaning volunteers, reading through plugin
documentation on the Maven site is, at best, frustrating, and at worst, a reason to
abandon Maven. Quite often, Maven users get stuck because they just can’t find an
answer.

This lack of an authoritative (or definitive) reference manual has held Maven back
for a few years, and it has been something of a dampening force on Maven
adoption. With Maven: The Definitive Guide, we intend to change that situation by
providing a comprehensive reference in Part II, “Maven Reference”. In Part I,
we’re preserving the narrative progression of a Developer’s Notebook; it is
valuable material that helps people learn Maven by example. In this part, we
“introduce by doing,” and in Part II, “Maven Reference”, we fill in the blanks and
dig into the details. Where Part II, “Maven Reference” might use a reference table

28

and a program listing detached from an example project, Part II is motivated by
real examples.

After reading this part, you should have everything you need to start using Maven.
You might need to refer to Part II, “Maven Reference” only when you start
customizing Maven by writing custom plugins or when you want more detail about
specific plugins.

29

Chapter 3. A Simple Maven Project

3.1. Introduction
In this chapter, we introduce a simple project created from scratch using the Maven
Archetype plugin. This elementary application provides us with the opportunity to
discuss some core Maven concepts while you follow along with the development
of the project.

Before you can start using Maven for complex, multimodule builds, we have to
start with the basics. If you’ve used Maven before, you’ll notice that it does a good
job of taking care of the details. Your builds tend to “just work,” and you only
really need to dive into the details of Maven when you want to customize the
default behavior or write a custom plugin. However, when you do need to dive into
the details, a thorough understanding of the core concepts is essential. This chapter
aims to introduce you to the simplest possible Maven project and then presents
some of the core concepts that make Maven a solid build platform. After reading it,
you’ll have a fundamental understanding of the build lifecycle, Maven repositories,
dependency management, and the Project Object Model (POM).

3.1.1. Downloading this Chapter's Example
This chapter develops a very simple example which will be used to explore core
concepts of Maven. If you follow the steps described in this chapter, you shouldn't
need to download the examples to recreate the code produced by the Maven. We
will be using the Maven Archetype plugin to create this simple project and this
chapter doesn't modify the project in any way. If you would prefer to read this
chapter with the final example source code, this chapter's example project may be
downloaded with the book's example code at
http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip this archive in any
directory, and then go to the ch03/ directory. In the ch03/ directory you will see a
directory named simple/ which contains the source code for this chapter. If you

30

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz

1The American Heritage Dictionary of the English Language.

wish to follow along with the example code in a web browser, go to
http://www.sonatype.com/book/examples-1.0 and click on the ch03/ directory.

3.2. Creating a Simple Project
To start a new Maven project, use the Maven Archetype plugin from the command
line.

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch03 \
-DartifactId=simple \
-DpackageName=org.sonatype.mavenbook

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] artifact org.apache.maven.plugins:maven-archetype-plugin: checking for

updates from central
[INFO] ---
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:create] (aggregator-style)
[INFO] --
[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \

checking for updates from central
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch03
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/svnw/sonatype/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: simple
[INFO] * End of debug info from resources from generated POM *
[INFO] Archetype created in dir: /Users/tobrien/svnw/sonatype/examples/simple

mvn is the Maven 2 command. archetype:create is called a Maven goal. If you
are familiar with Apache Ant, a Maven goal is analogous to an Ant target; both
describe a unit of work to be completed in a build. The -Dname=value pairs are
arguments that are passed to the goal and take the form of -D properties, similar to
the system property options you might pass to the Java Virtual Machine via the
command line. The purpose of the archetype:create goal is to quickly create a
project from an archetype. In this context, an archetype is defined as “an original
model or type after which other similar things are patterned; a prototype.”1 A
number of archetypes are available in Maven for anything from a simple Swing

A Simple Maven Project

31

http://www.sonatype.com/book/examples-1.0

application to a complex web application. In this chapter, we are going to use the
most basic archetype to create a simple skeleton starter project. The plugin is the
prefix archetype, and the goal is create.

Once we've generated a project, take a look at the directory structure Maven
created under the simple directory:

simple/❶
simple/pom.xml❷

/src/
/src/main/❸

/main/java
/src/test/❹

/test/java

This generated directory adheres to the Maven Standard Directory Layout. We’ll
get into more details later in this chapter, but for now, let’s just try to understand
these few basic directories:

❶ The Maven Archetype plugin creates a directory that matches the
artifactId. Simple. This is known as the project’s base directory.

❷ Every Maven project has what is known as a Project Object Model (POM) in
a file named pom.xml. This file describes the project, configures plugins, and
declares dependencies.

❸ Our project's source code and resources are placed under src/main. In the
case of our simple Java project this will consist of a few Java classes and
some properties file. In another project, this could be the document root of a
web application or configuration files for an application server. In a Java
project, Java classes are placed in src/main/java and classpath resources are
placed in src/main/resources.

❹ Our project's test cases are located in src/test. Under this directory, Java
classes such as JUnit or TestNG tests are placed in src/test/java, and
classpath resources for tests are located in src/test/resources.

The Maven Archetype plugin generated a single class
org.sonatype.mavenbook.App, which is a 13-line Java class with a static main
function that prints out a message:

package org.sonatype.mavenbook;

A Simple Maven Project

32

/**
* Hello world!
*
*/
public class App
{

public static void main(String[] args)
{

System.out.println("Hello World!");
}

}

The simplest Maven archetype generates the simplest possible program: a program
which prints "Hello World!" to standard output.

3.3. Building a Simple Project
Once you have created the project with the Maven Archetype plugin by following
the directions from the previous section (Section 3.2, “Creating a Simple Project”)
you will want to build and package the application. To do so, run mvn install from
the directory that contains the pom.xml:

$ mvn install
[INFO] Scanning for projects...
[INFO] --
[INFO] Building simple
[INFO] task-segment: [install]
[INFO] --
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /simple/target/classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Compiling 1 source file to /simple/target/test-classes
[INFO] [surefire:test]
[INFO] Surefire report directory: /simple/target/surefire-reports

T E S T S

Running org.sonatype.mavenbook.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.105 sec

Results :

A Simple Maven Project

33

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar]
[INFO] Building jar: /simple/target/simple-1.0-SNAPSHOT.jar
[INFO] [install:install]
[INFO] Installing /simple/target/simple-1.0-SNAPSHOT.jar to \

~/.m2/repository/com/sonatype/maven/ch03/simple/1.0-SNAPSHOT/ \
simple-1.0-SNAPSHOT.jar

You've just created, compiled, tested, packaged, and installed the simplest possible
Maven project. To prove to yourself that this program works, run it from the
command line.

$ java -cp target/simple-1.0-SNAPSHOT.jar org.sonatype.mavenbook.App
Hello World!

3.4. Simple Project Object Model
When Maven executes, it looks to the Project Object Model for information about
the project. The POM answers such questions as: What type of project is this?
What is the project’s name? Are there any build customizations for this project?
Example 3.1, “Simple project's pom.xml file” shows the default pom.xml file
created by the Maven Archetype plugin’s create goal.

Example 3.1. Simple project's pom.xml file

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.ch03</groupId>
<artifactId>simple</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

A Simple Maven Project

34

</dependencies>
</project>

This pom.xml file is the most basic POM you will ever deal with for a Maven
project, usually a POM file is considerably more complex: defining multiple
dependencies and customizing plugin behavior. The first few elements—groupId,
artifactId, packaging, version—are what is known as the Maven coordinates
which uniquely identify a project. name and url are descriptive elements of the
POM providing a human readable name and associating the project with a web
site. The dependencies element defines a single, test-scoped dependency on a unit
testing framework called JUnit. These topics will be further introduced in
Section 3.5, “Core Concepts”, all you need to know, at this point, is that the
pom.xml is the file that makes Maven go.

Maven always executes against an effective POM, a combination of settings from
this project's pom.xml, all parent POMs, a super-POM defined within Maven,
user-defined settings, and active profiles. All projects ultimately extend the
super-POM, which defines a set of sensible default configuration settings and
which is fully explained in Chapter 9, The Project Object Model. While your
project might have a relatively minimal pom.xml, the contents of your project's
POM are interpolated with the contents of all parent POMs, user settings, and any
active profiles. To see this "effective" POM, run the following command in the
simple project's base directory.

$ mvn help:effective-pom

When you run this, you should see a much larger POM which exposes the default
settings of Maven. This goal can come in handy if you are trying to debug a build
and want to see how all of the current project's ancestor POMs are contributing to
the effective POM. For more information about the Maven Help plugin, see
Section 2.8, “Using the Maven Help Plugin”.

3.5. Core Concepts
Having just run Maven for the first time, it is a good time to introduce a few of the

A Simple Maven Project

35

core concepts of Maven. In the previous example, you generated a project which
consisted of a POM and some code assembled in the Maven standard directory
layout. You then execute Maven with a lifecycle phase as an argument which
prompted Maven to execute a series of Maven plugin goals. Lastly, you installed a
Maven artifact into your local repository. Wait? What is a "lifecycle"? What is a
"local repository"? The following section defines some of Maven's central
concepts.

3.5.1. Maven Plugins and Goals
In the previous section, we ran Maven with two different types of command-line
arguments. The first command was a single plugin goal, the create goal of the
Archetype plugin. The second execution of Maven was a lifecycle phase, install.
To execute a single Maven plugin goal, we used the syntax mvn
archetype:create, where archetype is the identifier of a plugin and create is the
identifier of a goal. When Maven executes a plugin goal, it prints out the plugin
identifier and goal identifier to standard output:

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch03 \
-DartifactId=simple \
-DpackageName=org.sonatype.mavenbook

...
[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \

checking for updates from central
...

A Maven Plugin is a collection of one or more goals. Examples of Maven plugins
can be simple core plugins like the Jar plugin which contains goals for creating
JAR files, Compiler plugin which contains goals for compiling source code and
unit tests, or the Surefire plugin which contains goals for executing unit tests and
generating reports. Other, more specialized Maven plugins include plugins like the
Hibernate3 plugin for integration with the popular persistence library Hibernate,
the JRuby plugin which allows you to execute ruby as part of a Maven build or to
write Maven plugins in Ruby. Maven also provides for the ability to define custom
plugins. A custom plugin can be written in Java, or a plugin can be written in any
number of languages including Ant, Groovy, beanshell, and, as previously

A Simple Maven Project

36

mentioned, Ruby.

Figure 3.1. A Plugin Contains Goals

A goal is a specific task that may be executed as a standalone goal or along with
other goals as part of a larger build. A goal is a “unit of work” in Maven. Examples
of goals include the compile goal in the Compiler plugin, which compiles all of the
source code for a project, or the test goal of the Surefire plugin, which can
execute unit tests. Goals are configured via configuration properties that can be
used to customize behavior. For example, the compile goal of the Compiler plugin
defines a set of configuration parameters that allow you to specify the target JDK
version or whether to use the compiler optimizations. In the previous example, we
passed in the configuration parameters groupId and artifactId to the create goal
of the Archetype plugin via the command-line parameters
-DgroupId=org.sonatype.mavenbook.ch03 and -DartifactId=simple. We also
passed the packageName parameter to the create goal as org.sonatype.mavenbook.
If we had omitted the packageName parameter, the package name would have
defaulted to org.sonatype.mavenbook.ch03.

Note
When referring to a plugin goal, we frequently use the shorthand
notation: pluginId:goalId. For example, when referring to the create

goal in the Archetype plugin, we write archetype:create.

Goals define parameters that can define sensible default values. In the

A Simple Maven Project

37

create example, we did not specify what kind of archetype the goal was to create
on our command line; we simply passed in a groupId and an artifactId. This is
our first brush with convention over configuration. The convention, or default, for
the create goal is to create a simple project called Quickstart. The create goal
defines a configuration property archetypeArtifactId that has a default value of
maven-archetype-quickstart. The Quickstart archetype generates a minimal
project shell that contains a POM and a single class. The Archetype plugin is far
more powerful than this first example suggests, but it is a great way to get new
projects started fast. Later in this book, we’ll show you how the Archetype plugin
can be used to generate more complex projects such as web applications, and how
you can use the Archetype plugin to define your own set of projects.

The core of Maven has little to do with the specific tasks involved in your project’s
build. By itself, Maven doesn’t know how to compile your code or even how to
make a JAR file. It delegates all of this work to Maven plugins like the Compiler
plugin and the Jar plugin, which are downloaded on an as-needed basis and
periodically updated from the central Maven repository. When you download
Maven, you are getting the core of Maven, which consists of a very basic shell that
knows only how to parse the command line, manage a classpath, parse a POM file,
and download Maven plugins as needed. By keeping the Compiler plugin separate
from Maven’s core and providing for an update mechanism, Maven makes it easier
for users to have access to the latest options in the compiler. In this way, Maven
plugins allow for universal reusability of common build logic. You are not defining
the compile task in a build file; you are using a Compiler plugin that is shared by
every user of Maven. If there is an improvement to the Compiler plugin, every
project that uses Maven can immediately benefit from this change. (And, if you
don’t like the Compiler plugin, you can override it with your own implementation.)

3.5.2. Maven Lifecycle
The second command we ran in the previous section was mvn install. This
command didn’t specify a plugin goal; instead, it specified a Maven lifecycle
phase. A phase is a step in what Maven calls the “build lifecycle.” The build
lifecycle is an ordered sequence of phases involved in building a project. Maven

A Simple Maven Project

38

can support a number of different lifecycles, but the one that’s most often used is
the default Maven lifecycle, which begins with a phase to validate the basic
integrity of the project and ends with a phase that involves deploying a project to
production. Lifecycle phases are intentionally vague, defined solely as validation,
testing, or deployment, and they may mean different things to different projects.
For example, the package phase in a project that produces a JAR, means “package
this project into a JAR”; in a project that produces a web application, the package

phase may produce a WAR file.

Plugin goals can be attached to a lifecycle phase. As Maven moves through the
phases in a lifecycle, it will execute the goals attached to each particular phase.
Each phase may have zero or more goals bound to it. In the previous section, when
you ran mvn install, you might have noticed that more than one goal was
executed. Examine the output after running mvn install and take note of the
various goals that are executed. When this simple example reached the package

phase, it executed the jar goal in the Jar plugin. Since our simple Quickstart
project has (by default) a jar packaging type, the jar:jar goal is bound to the
package phase.

Figure 3.2. A Goal Binds to a Phase

We know that the package phase is going to create a JAR file for a project with
jar packaging. But what of the goals preceding it, such as compiler:compile and
surefire:test? These goals are executed as Maven steps through the phases
preceding package in the Maven lifecycle; executing a phase will first execute all
proceeding phases in order, ending with the phase specified on the command line.
Each phase corresponds to zero or more goals, and since we haven’t performed any
plugin configuration or customization, this example binds a set of standard plugin
goals to the default lifecycle. The following goals are executed in order when

A Simple Maven Project

39

Maven walks through the default lifecycle ending with package:

resources:resources

The resources goal of the Resources plugin is bound to the
process-resources phase. This goal copies all of the resources from
src/main/resources and any other configured resource directories to the
output directory.

compiler:compile

The compile goal of the Compiler plugin is bound to the compile phase. This
goal compiles all of the source code from src/main/java or any other
configured source directories to the output directory.

resources:testResources

The testResources goal of the Resources plugin is bound to the
process-test-resources phase. This goal copies all of the resources from
src/test/resources and any other configured test resource directories to a test
output directory.

compiler:testCompile

The testCompile goal of the Compiler plugin is bound to the test-compile

phase. This goal compiles test cases from src/test/java and any other
configured test source directories to a test output directory.

surefire:test

The test goal of the Surefire plugin is bound to the test phase. This goal
executes all of the tests and creates output files that capture detailed results. By
default, this goal will terminate a build if there is a test failure.

jar:jar

The jar goal of the Jar plugin is bound to the package phase. This goal
packages the output directory into a JAR file.

A Simple Maven Project

40

A Simple Maven Project

41

Figure 3.3. Bound Goals are Run when Their Phases Execute

To summarize, when we executed mvn install, Maven executes all phases up to
the install phase, and in the process of stepping through the life cycle phases it
executes all goals bound to each phase. Instead of executing a Maven lifecycle
goal you could achieve the same results by specifying a sequence of plugin goals
as follows:

mvn resources:resources \
compiler:compile \
resources:testResources \
compiler:testCompile \
surefire:test \
jar:jar \
install:install

It is much easier to execute lifecycle phases that it is to specify explicit goals on
the command line, and the common lifecycle allows every project that uses Maven
to adhere to a well-defined set of standards. The lifecycle is what allows a
developer to jump from one Maven project to another without having to know very
much about the details of each particular project's build. If you can build one
Maven project, you can build them all.

3.5.3. Maven Coordinates
The Archetype plugin created a project with a file named pom.xml. This is the
Project Object Model (POM), a declarative description of a project. When Maven
executes a goal, each goal has access to the information defined in a project’s
POM. When the jar:jar goal needs to create a JAR file, it looks to the POM to
find out what the JAR file’s name is. When the compiler:compile task compiles
Java source code into bytecode, it looks to the POM to see if there are any
parameters for the compile goal. Goals execute in the context of a POM. Goals are
actions we wish to take upon a project, and a project is defined by a POM. The
POM names the project, provides a set of unique identifiers (coordinates) for a
project, and defines the relationships between this project and others through
dependencies, parents, and prerequisites. A POM can also customize plugin

A Simple Maven Project

42

2There is a fifth, seldom-used coordinate named classifier which we will introduce later in the book.
You can feel free to ignore classifiers for now.

behavior and supply information about the community and developers involved in
a project.

Maven Coordinates define a set of identifiers which can be used to uniquely
identify a project, a dependency, or a plugin in a Maven POM. Take a look at the
following POM.

Figure 3.4. A Maven Project's Coordinates

We've highlighted the Maven coordinates for this project: the groupId,
artifactId, version and packaging. These combined identifiers make up a
project's coordinates.2Just like in any other coordinate system, a Maven coordinate
is an address for a specific point in "space": from general to specific. Maven
pinpoints a project via its coordinates when one project relates to another, either as
a dependency, a plugin, or a parent project reference. Maven coordinates are often

A Simple Maven Project

43

written using a colon as a delimiter in the following format:
groupId:artifactId:packaging:version. In the above pom.xml file for our
current project, its coordinate is represented as
mavenbook:my-app:jar:1.0-SNAPSHOT. This notation also applies to project
dependencies, our project relies on JUnit version 3.8.1, it contains a dependency on
junit:junit:jar:3.8.1.

groupId

The group, company, team, organization, project, or other group. The
convention for group identifiers is that they begin with the reverse domain
name of the organization that creates the project. Projects from Sonatype would
have a groupId that begins with com.sonatype, and projects in the Apache
Software Foundation would have a groupId that starts with org.apache.

artifactId

A unique identifier under groupId that represents a single project.

version

A specific release of a project. Projects that have been released have a fixed
version identifier that refers to a specific version of the project. Projects
undergoing active development can use a special identifier that marks a version
as a SNAPSHOT.

The packaging format of a project is also an important component in the Maven
coordinates, but it isn't a part of a project's unique identifier. A project's
groupId:artifactId:version make that project unique; you can't have a project
with the same three groupId, artifactId, and version identifiers.

packaging

The type of project, defaulting to jar, describing the packaged output produced
by a project. A project with packaging jar produces a JAR archive; a project
with packaging war produces a web application.

These four elements become the key to locating and using one particular project in
the vast space of other “Mavenized” projects . Maven repositories (public, private,
and local) are organized according to these identifiers. When this project is

A Simple Maven Project

44

installed into the local Maven repository, it immediately becomes locally available
to any other project that wishes to use it. All you must do is add it as a dependency
of another project using the unique Maven coordinates for a specific artifact.

Figure 3.5. Maven Space is a coordinate system of projects

3.5.4. Maven Repositories
When you run Maven for the first time, you will notice that Maven downloads a
number of files from a remote Maven repository. If the simple project was the first
time you ran Maven, the first thing it will do is download the latest release of the
Resources plugin when it triggers the resources:resource goal. In Maven,
artifacts and plugins are retrieved from a remote repository when they are needed.
One of the reasons the initial Maven download is so small (1.5 MiB) is due to the
fact that Maven doesn't ship with much in the way of plugins. Maven ships with
the bare minimum and fetches from a remote repository when it needs to. Maven
ships with a default remote repository location (http://repo1.maven.org/maven2)
which it uses to download the core Maven plugins and dependencies.

Often you will be writing a project which depends on libraries that are neither free
nor publicly distributed. In this case you will need to either setup a custom

A Simple Maven Project

45

http://repo1.maven.org/maven2

repository inside your organization's network or download and install the
dependencies manually. The default remote repositories can be replaced or
augmented with references to custom Maven repositories maintained by your
organization. There are multiple products available to allow organizations to
manage and maintain mirrors of the public Maven repositories.

What makes a Maven repository a Maven repository? The Maven repository is
defined by structure, a repository is a collection of project artifacts stored in a
structure and format which can be easily understood by Maven. In a Maven
repository everything is stored in a directory structure that closely matches a
project's Maven coordinates. You can see this structure by opening up a web
browser and browsing the central Maven repository at
http://repo1.maven.org/maven2/. You will see that an artifact with the coordinates
org.apache.commons:commons-email:1.1 is available under the directory
/org/apache/commons/commons-email/1.1/ in a file named
commons-email-1.1.jar. The standard for a Maven repository is to store an
artifact in the following directory relative to the root of the repository:
/<groupId>/<artifactId>/<version>/<artifactId>-<version>.<packaging>

Maven downloads artifacts and plugins from a remote repository to your local
machine and stores these artifacts in your local Maven repository. Once Maven has
downloaded an artifact from the remote Maven repository it never needs to
download that artifact again as Maven will always look for the artifact in the local
repository before looking elsewhere. On Windows XP, your local repository is
likely in C:\Documents and Settings\USERNAME\.m2\repository, and on
Windows Vista, your local repository is in C:\Users\USERNAME\.m2\repository.
On Unix systems, your local Maven repository is available in ~/.m2/repository.
When you build a project like the simple project you created in the previous
section, the install phase executes a goal which installs your project's artifacts in
your local Maven repository.

In your local repository, you should be able to see the artifact created by our
simple project. If you run the mvn install command, Maven will install our
project's artifact in your local repository. Try it.

$ mvn install

A Simple Maven Project

46

http://repo1.maven.org/maven2/

...
[INFO] [install:install]
[INFO] Installing .../simple-1.0-SNAPSHOT.jar to \

~/.m2/repository/com/sonatype/maven/simple/1.0-SNAPSHOT/ \
simple-1.0-SNAPSHOT.jar

...

As you can see from the output of this command, Maven installed our project's
JAR file into our local Maven repository. Maven uses the local repository to share
dependencies across local projects. If you develop two projects—project A and
project B—with project B depending on the artifact produced by project A. Maven
will retrieve project A's artifact from your local repository when it is building
project B. Maven repositories are both a local cache of artifacts downloaded from a
remote repository and a mechanism for allowing your projects to depend on each
other.

3.5.5. Maven's Dependency Management
In this chapter's simple example, Maven resolved the coordinates of the JUnit
dependency—junit:junit:3.8.1—to a path in a Maven repository
/junit/junit/3.8.1/junit-3.8.1.jar. The ability to locate an artifact in a
repository based on Maven coordinates gives us the ability to define dependencies
in a project's POM. If you examine the simple project's pom.xml file, you will see
that there is a section which deals with dependencies, and that this section
contains a single dependency—JUnit.

A more complex project would contain more than one dependency, or it might
contain dependencies that depend on other artifacts. Support for transitive
dependencies is one of Maven’s most powerful features. Let’s say your project
depends on a library that, in turn, depends on 5 or 10 other libraries (Spring or
Hibernate, for example). Instead of having to track down all of these dependencies
and list them in your pom.xml explicitly, you can simply depend on the library you
are interested in and Maven will add the dependencies of this library to your
project’s dependencies implicitly. Maven will also take care of working out
conflicts between dependencies, and provides you with the ability to customize the
default behavior and exclude certain transitive dependencies.

A Simple Maven Project

47

Let's take a look at a dependency which was downloaded to your local repository
when you ran the previous example. Look in your local repository path under
~/.m2/repository/junit/junit/3.8.1/. If you have been following this
chapter's examples, there will be a file named junit-3.8.1.jar and a
junit-3.8.1.pom file in addition to a few checksum files which Maven uses to
verify the authenticity of a downloaded artifact. Note that Maven doesn't just
download the JUnit JAR file, Maven also downloads a POM file for the JUnit
dependency. The fact that Maven downloads POM files in addition to artifacts is
central to Maven's support for transitive dependencies.

When you install your project’s artifact in the local repository, you will also notice
that Maven publishes a slightly modified version of the project’s pom.xml file in
the same directory as the JAR file. Storing a POM file in the repository gives other
projects information about this project, most importantly what dependencies it has.
If Project B depends on Project A, it also depends on Project A’s dependencies.
When Maven resolves a dependency artifact from a set of Maven coordinates, it
also retrieves the POM and consults the dependencies POM to find any transitive
dependences. These transitive dependencies are then added as dependencies of the
current project.

A dependency in Maven isn’t just a JAR file; it’s a POM file that, in turn, may
declare dependencies on other artifacts. These dependencies of dependencies are
called transitive dependencies, and they are made possible by the fact that the
Maven repository stores more than just bytecode; it stores metadata about artifacts.

A Simple Maven Project

48

Figure 3.6. Maven Resolves Transitive Dependencies

In the previous figure, project A depends on projects B and C. Project B depends
on project D, and project C depends on project E. The full set of direct and
transitive dependencies for project A would be projects B, C, D, and E, but all
project A had to do was define a dependency on B and C. Transitive dependencies
can come in handy when your project relies on other projects with several small
dependencies (like Hibernate, Apache Struts, or the Spring Framework). Maven
also provides you with the ability to exclude transitive dependencies from being
included in a project's classpath.

Maven also provides for different dependency scopes. The simple project’s
pom.xml contains a single dependency—junit:junit:jar:3.8.1—with a scope
of test. When a dependency has a scope of test, it will not be available to the
compile goal of the Compiler plugin. It will be added to the classpath for only the
compiler:testCompile and surefire:test goals.

When you create a JAR for a project, dependencies are not bundled with the

A Simple Maven Project

49

generated artifact; they are used only for compilation. When you use Maven to
create a WAR or an EAR file, you can configure Maven to bundle dependencies
with the generated artifact, and you can also configure it to exclude certain
dependencies from the WAR file using the provided scope. The provided scope
tells Maven that a dependency is needed for compilation, but should not be
bundled with the output of a build. This scope comes in handy when you are
developing a web application. You’ll need to compile your code against the Servlet
specification, but you don’t want to include the Servlet API JAR in your web
application’s WEB-INF/lib directory.

3.5.6. Site Generation and Reporting
Another important feature of Maven is its ability to generate documentation and
reports. In your simple project’s directory, execute the following command:

$ mvn site

This will execute the site lifecycle phase. Unlike the default build lifecycle that
manages generation of code, manipulation of resources, compilation, packaging,
etc., this lifecycle is concerned solely with processing site content under the
src/site directories and generating reports. After this command executes, you
should see a project web site in the target/site directory. Load
target/site/index.html and you should see a basic shell of a project site. This
shell contains some reports under “Project Reports” in the lefthand navigation
menu, and it also contains information about the project, the dependencies, and
developers associated with it under “Project Information.” The simple project’s
web site is mostly empty, since the POM contains very little information about
itself beyond a coordinate, a name, a URL, and a single test dependency.

On this site, you’ll notice that some default reports are available. A unit test report
communicates the success and failure of all unit tests in the project. Another report
generates Javadoc for the project’s API. Maven provides a full range of
configurable reports, such as the Clover report that examines unit test coverage, the
JXR report that generates cross-referenced HTML source code listings useful for
code reviews, the PMD report that analyzes source code for various coding

A Simple Maven Project

50

problems, and the JDepend report that analyzes the dependencies between
packages in a codebase. You can customize site reports by configuring which
reports are included in a build via the pom.xml file.

3.6. Summary
In this chapter, we have created a simple project, packaged the project into a JAR
file, installed that JAR into the Maven repository for use by other projects, and
generated a site with documentation. We accomplished this without writing a
single line of code or touching a single configuration file. We also took some time
to develop definitions for some of the core concepts of Maven. In the next chapter,
we’ll start customizing and modifying our project pom.xml file to add
dependencies and configure unit tests.

A Simple Maven Project

51

Chapter 4. Customizing a Maven Project

4.1. Introduction
This chapter expands on the information introduced in Chapter 3, A Simple Maven
Project. We’re going to create a simple project generated with the Maven
Archetype plugin, add some dependencies, add some source code, and customize
the project to suit our needs. By the end of this chapter, you will know how to start
using Maven to create real projects.

4.1.1. Downloading this Chapter's Example
We’ll be developing a useful program that interacts with a Yahoo! Weather web
service. Although you should be able to follow along with this chapter without the
example source code, we recommend that you download a copy of the code to use
as a reference. This chapter’s example project may be downloaded with the book’s
example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip this archive in any
directory, and then go to the ch04/ directory. There you will see a directory named
simple-weather/, which contains the Maven project developed in this chapter. If
you wish to follow along with the example code in a web browser, go to
http://www.sonatype.com/book/examples-1.0 and click on the ch04/ directory.

4.2. Defining the Simple Weather Project
Before we start customizing this project, let’s take a step back and talk about the
simple weather project. What is it? It’s a contrived example, created to
demonstrate some of the features of Maven. It is an application that is
representative of the kind you might need to build. The simple weather application
is a basic command-line-driven application that takes a zip code and retrieves some
data from the Yahoo! Weather RSS feed. It then parses the result and prints the

52

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

result to standard output.

We chose this example for a number of reasons. First, it is straightforward. A user
supplies input via the command line, the app takes that zip code, makes a request
to Yahoo! Weather, parses the result, and formats some simple data to the screen.
This example is a simple main() function and some supporting classes; there is no
enterprise framework to introduce and explain, just XML parsing and some
logging statements. Second, it gives us a good excuse to introduce some interesting
libraries such as Velocity, Dom4J, and Log4J. Although this book is focused on
Maven, we won’t shy away from an opportunity to introduce interesting utilities.
Lastly, it is an example that can be introduced, developed, and deployed in a single
chapter.

4.2.1. Yahoo! Weather RSS
Before you build this application, you should know something about the Yahoo!
Weather RSS feed. To start with, the service is made available under the following
terms:

The feeds are provided free of charge for use by individuals and
nonprofit organizations for personal, noncommercial uses. We ask
that you provide attribution to Yahoo! Weather in connection with
your use of the feeds.

In other words, if you are thinking of integrating these feeds into your commercial
web site, think again—this feed is for personal, noncommercial use. The use we’re
encouraging in this chapter is personal educational use. For more information
about these terms of service, see the Yahoo Weather! API documentation here:
http://developer.yahoo.com/weather/.

4.3. Creating the Simple Weather Project
First, let’s use the Maven Archetype plugin to create a basic skeleton for the simple
weather project. Execute the following command to create a new project:

Customizing a Maven Project

53

http://developer.yahoo.com/weather/

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch04 \
-DartifactId=simple-weather \
-DpackageName=org.sonatype.mavenbook \
-Dversion=1.0

[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \

checking for updates from central
[INFO] --
[INFO] Using following parameters for creating Archetype: \

maven-archetype-quickstart:RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch04
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: ~/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0
[INFO] Parameter: artifactId, Value: simple-weather
[INFO] *** End of debug info from resources from generated POM ***
[INFO] Archetype created in dir: ~/examples/simple-weather

Once the Maven Archetype plugin creates the project, go into the simple-weather

directory and take a look at the pom.xml file. You should see the XML document
that’s shown in Example 4.1, “Initial POM for the simple-weather project”.

Example 4.1. Initial POM for the simple-weather project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.ch04</groupId>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>
<version>1.0</version>
<name>simple-weather2</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<configuration>

Customizing a Maven Project

54

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Notice that we passed in the version parameter to the archetype:create goal.
This overrides the default value of 1.0-SNAPSHOT. In this project, we're developing
the 1.0 version of the simple-weather project as you can see in the pom.xml

version element.

4.4. Customize Project Information
Before we start writing code, let’s customize the project information a bit. We
want to add some information about the project’s license, the organization, and a
few of the developers associated with the project. This is all standard information
you would expect to see in most projects. Example 4.2, “Adding Organizational,
Legal, and Developer Information to the pom.xml” shows the XML that supplies
the organizational information, the licensing information, and the developer
information.

Example 4.2. Adding Organizational, Legal, and Developer Information to the
pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

...

<name>simple-weather</name>
<url>http://www.sonatype.com</url>

<licenses>
<license>
<name>Apache 2</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
<distribution>repo</distribution>
<comments>A business-friendly OSS license</comments>

Customizing a Maven Project

55

</license>
</licenses>

<organization>
<name>Sonatype</name>
<url>http://www.sonatype.com</url>

</organization>

<developers>
<developer>
<id>jason</id>
<name>Jason Van Zyl</name>
<email>jason@maven.org</email>
<url>http://www.sonatype.com</url>
<organization>Sonatype</organization>
<organizationUrl>http://www.sonatype.com</organizationUrl>
<roles>

<role>developer</role>
</roles>
<timezone>-6</timezone>

</developer>
</developers>

...
</project>

The ellipses in Example 4.2, “Adding Organizational, Legal, and Developer
Information to the pom.xml” are shorthand for an abbreviated listing. When you
see a pom.xml with "..." and "..." directly after the project element's start tag and
directly before the project element's end tag, this implies that we are not showing
the entire pom.xml file. In this case the licenses, organization, and developers

element were all added before the dependencies element.

4.5. Add New Dependencies
The simple weather application is going to have to complete the following three
tasks: retrieve XML data from Yahoo! Weather, parse the XML from Yahoo, and
then print formatted output to standard output. To accomplish these tasks, we have
to introduce some new dependencies to our project's pom.xml. To parse the XML
response from Yahoo!, we're going to be using Dom4J and Jaxen, to format the
output of this command-line program we are going to be using Velocity, and we
will also need to add a dependency for Log4J which we will be using for logging.

Customizing a Maven Project

56

After we add these dependencies, our dependencies element will look like the
following example.

Example 4.3. Adding Dom4J, Jaxen, Velocity, and Log4J as Dependencies

<project>
[...]
<dependencies>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>
<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>
<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>
<groupId>velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
[...]

</project>

As you can see above, we've added four more dependency elements in addition to
the existing element which was referencing the test scoped dependency on JUnit.
If you add these dependencies to the project's pom.xml file and then run mvn
install, you will see Maven downloading all of these dependencies and other
transitive dependencies to your local Maven repository.

How did we find these dependencies? Did we just "know" the appropriate groupId

and artifactId values? Some of the dependencies are so widely used (like Log4J)

Customizing a Maven Project

57

that you'll just remember what the groupId and artifactId are every time you
need to use them. Velocity, Dom4J, and Jaxen were all located using the helpful
web site http://www.mvnrepository.com. This site provides a search interface to
the Maven repository, you can use it to search for dependencies. To test this for
yourself, load http://www.mvnrepository.com and search for some commonly used
libraries such as Hibernate or the Spring Framework. When you search for an
artifact on this site, it will show you an artifactId and all of the versions known
to the central Maven repository. Clicking on the details for a specific version will
load a page that contains the dependency element you'll need to copy and paste
into your own project's pom.xml. If you need to find a dependency, you'll want to
check out mvnrepository.com, as you'll often find that certain libraries have more
than one groupId. With this tool, you can make sense of the Maven repository.

4.6. Simple Weather Source Code
The Simple Weather command-line application consists of five Java classes.

org.sonatype.mavenbook.weather.Main

The Main class contains a static main() function, and is the entry point for this
system.

org.sonatype.mavenbook.weather.Weather

The Weather class is a straightforward Java bean that holds the location of our
weather report and some key facts, such as the temperature and humidity.

org.sonatype.mavenbook.weather.YahooRetriever

The YahooRetriever class connects to Yahoo! Weather and returns an
InputStream of the data from the feed.

org.sonatype.mavenbook.weather.YahooParser

The YahooParser class parses the XML from Yahoo! Weather, and returns a
Weather object.

org.sonatype.mavenbook.weather.WeatherFormatter

Customizing a Maven Project

58

http://www.mvnrepository.com
http://www.mvnrepository.com
http://www.mvnrepository.com

The WeatherFormatter class takes a Weather object, creates a
VelocityContext, and evaluates a Velocity template.

Although we won’t dwell on the code here, we will provide all the necessary code
for you to get the example working. We assume that most readers have
downloaded the examples that accompany this book, but we’re also mindful of
those who may wish to follow the example in this chapter step-by-step. The
sections that follow list classes in the simple-weather project. Each of these
classes should be placed in the same package: org.sonatype.mavenbook.weather.

Let's remove the App and the AppTest classes created by archetype:create and
add our new package. In a Maven project, all of a project's source code is stored in
src/main/java. From the base directory of the new project, execute the following
commands:

$ cd src/test/java/org/sonatype/mavenbook
$ rm AppTest.java
$ cd ../../../../../..
$ cd src/main/java/org/sonatype/mavenbook
$ rm App.java
$ mkdir weather
$ cd weather

This creates a new package named org.sonatype.mavenbook.weather. Now we
need to put some classes in this directory. Using your favorite text editor, create a
new file named Weather.java with the contents shown in Example 4.4, “Simple
Weather's Weather Model Object”.

Example 4.4. Simple Weather's Weather Model Object

package org.sonatype.mavenbook.weather;

public class Weather {
private String city;
private String region;
private String country;
private String condition;
private String temp;
private String chill;
private String humidity;

public Weather() {}

public String getCity() { return city; }

Customizing a Maven Project

59

public void setCity(String city) { this.city = city; }

public String getRegion() { return region; }
public void setRegion(String region) { this.region = region; }

public String getCountry() { return country; }
public void setCountry(String country) { this.country = country; }

public String getCondition() { return condition; }
public void setCondition(String condition) { this.condition = condition; }

public String getTemp() { return temp; }
public void setTemp(String temp) { this.temp = temp; }

public String getChill() { return chill; }
public void setChill(String chill) { this.chill = chill; }

public String getHumidity() { return humidity; }
public void setHumidity(String humidity) { this.humidity = humidity; }

}

The Weather class defines a simple bean that is used to hold the weather
information parsed from the Yahoo! Weather feed. This feed provides a wealth of
information, from the sunrise and sunset times to the speed and direction of the
wind. To keep this example as simple as possible, the Weather model object keeps
track of only the temperature, chill, humidity, and a textual description of current
conditions.

Now, in the same directory, create a file named Main.java. This Main class will
hold the static main() function—the entry point for this example.

Example 4.5. Simple Weather's Main Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.apache.log4j.PropertyConfigurator;

public class Main {

public static void main(String[] args) throws Exception {
// Configure Log4J
PropertyConfigurator.configure(Main.class.getClassLoader()

.getResource("log4j.properties"));

Customizing a Maven Project

60

// Read the Zip Code from the Command-line (if none supplied, use 60202)
String zipcode = "60202";
try {
zipcode = args[0]);

} catch(Exception e) {}

// Start the program
new Main(zipcode).start();

}

private String zip;

public Main(String zip) {
this.zip = zip;

}

public void start() throws Exception {
// Retrieve Data
InputStream dataIn = new YahooRetriever().retrieve(zip);

// Parse Data
Weather weather = new YahooParser().parse(dataIn);

// Format (Print) Data
System.out.print(new WeatherFormatter().format(weather));

}
}

The main() function shown above configures Log4J by retrieving a resource from
the classpath, it then tries to read a zip code from the command-line. If an
exception is thrown while it is trying to read the zip code, the program will default
to a zip code of 60202. Once it has a zip code, it instantiates an instance of Main
and calls the start() method on an instance of Main. The start() method calls
out to the YahooRetriever to retrieve the weather XML. The YahooRetriever

returns an InputStream which is then passed to the YahooParser. The
YahooParser parses the Yahoo! Weather XML and returns a Weather object.
Finally, the WeatherFormatter takes a Weather object and spits out a formatted
String which is printed to standard output.

Create a file named YahooRetriever.java in the same directory with the contents
shown in Example 4.6, “Simple Weather's YahooRetriever Class”.

Example 4.6. Simple Weather's YahooRetriever Class

Customizing a Maven Project

61

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

import org.apache.log4j.Logger;

public class YahooRetriever {

private static Logger log = Logger.getLogger(YahooRetriever.class);

public InputStream retrieve(int zipcode) throws Exception {
log.info("Retrieving Weather Data");
String url = "http://weather.yahooapis.com/forecastrss?p=" + zipcode;
URLConnection conn = new URL(url).openConnection();
return conn.getInputStream();

}
}

This simple class opens a URLConnection to the Yahoo! Weather API and returns
an InputStream. To create something to parse this feed, we’ll need to create the
YahooParser.java file in the same directory.

Example 4.7. Simple Weather's YahooParser Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.util.HashMap;
import java.util.Map;

import org.apache.log4j.Logger;
import org.dom4j.Document;
import org.dom4j.DocumentFactory;
import org.dom4j.io.SAXReader;

public class YahooParser {

private static Logger log = Logger.getLogger(YahooParser.class);

public Weather parse(InputStream inputStream) throws Exception {
Weather weather = new Weather();

log.info("Creating XML Reader");
SAXReader xmlReader = createXmlReader();
Document doc = xmlReader.read(inputStream);

log.info("Parsing XML Response");

Customizing a Maven Project

62

weather.setCity(doc.valueOf("/rss/channel/y:location/@city"));
weather.setRegion(doc.valueOf("/rss/channel/y:location/@region"));
weather.setCountry(doc.valueOf("/rss/channel/y:location/@country"));
weather.setCondition(doc.valueOf("/rss/channel/item/y:condition/@text"));
weather.setTemp(doc.valueOf("/rss/channel/item/y:condition/@temp"));
weather.setChill(doc.valueOf("/rss/channel/y:wind/@chill"));
weather.setHumidity(doc.valueOf("/rss/channel/y:atmosphere/@humidity"));

return weather;
}

private SAXReader createXmlReader() {
Map<String,String> uris = new HashMap<String,String>();

uris.put("y", "http://xml.weather.yahoo.com/ns/rss/1.0");

DocumentFactory factory = new DocumentFactory();
factory.setXPathNamespaceURIs(uris);

SAXReader xmlReader = new SAXReader();
xmlReader.setDocumentFactory(factory);
return xmlReader;

}
}

The YahooParser is the most complex class in this example. We’re not going to
dive into the details of Dom4J or Jaxen here, but the class deserves some
explanation. YahooParser’s parse() method takes an InputStream and returns a
Weather object. To do this, it needs to parse an XML document with Dom4J. Since
we’re interested in elements under the Yahoo! Weather XML namespace, we need
to create a namespace-aware SAXReader in the createXmlReader() method. Once
we create this reader and parse the document, we get an org.dom4j.Document

object back. Instead of iterating through child elements, we simply address each
piece of information we need using an XPath expression. Dom4J provides the
XML parsing in this example, and Jaxen provides the XPath capabilities.

Once we’ve created a Weather object, we need to format our output for human
consumption. Create a file named WeatherFormatter.java in the same directory
as the other classes.

Example 4.8. Simple Weather's WeatherFormatter Class

package org.sonatype.mavenbook.weather;

Customizing a Maven Project

63

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

public class WeatherFormatter {

private static Logger log = Logger.getLogger(WeatherFormatter.class);

public String format(Weather weather) throws Exception {
log.info("Formatting Weather Data");
Reader reader =
new InputStreamReader(getClass().getClassLoader()

.getResourceAsStream("output.vm"));
VelocityContext context = new VelocityContext();
context.put("weather", weather);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}
}

The WeatherFormatter uses Velocity to render a template. The format() method
takes a Weather bean and spits out a formatted String. The first thing the
format() method does is load a Velocity template from the classpath named
output.vm. We then create a VelocityContext which is populated with a single
Weather object named weather. A StringWriter is created to hold the results of
the template merge. The template is evaluated with a call to Velocity.evaluate()

and the results are returned as a String.

Before we can run this example, we'll need to add some resources to our classpath.

4.7. Add Resources
This project depends on two classpath resources: the Main class that configures
Log4J with a classpath resource named log4j.properties, and the
WeatherFormatter that references a Velocity template from the classpath named
output.vm. Both of these resources need to be in the default package (or the root of
the classpath).

Customizing a Maven Project

64

To add these resources, we’ll need to create a new directory from the base
directory of the project: src/main/resources. Since this directory was not created
by the archetype:create task, we need to create it by executing the following
commands from the project’s base directory:

$ cd src/main
$ mkdir resources
$ cd resources

Once the resources directory is created, we can add the two resources. First, add
the log4j.properties file in the resources directory, as shown in Example 4.9,
“Simple Weather's Log4J Configuration File”.

Example 4.9. Simple Weather's Log4J Configuration File

Set root category priority to INFO and its only appender to CONSOLE.
log4j.rootCategory=INFO, CONSOLE

CONSOLE is set to be a ConsoleAppender using a PatternLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=INFO
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%-4r %-5p %c{1} %x - %m%n

This log4j.properties file simply configures Log4J to print all log messages to
standard output using a PatternLayout. Lastly, we need to create the output.vm,
which is the Velocity template used to render the output of this command-line
program. Create output.vm in the resources/ directory.

Example 4.10. Simple Weather's Output Velocity Template

Current Weather Conditions for:
${weather.city}, ${weather.region}, ${weather.country}

Temperature: ${weather.temp}
Condition: ${weather.condition}
Humidity: ${weather.humidity}

Wind Chill: ${weather.chill}

Customizing a Maven Project

65

This template contains a number of references to a variable named weather, which
is the Weather bean that was passed to the WeatherFormatter. The
${weather.temp} syntax is shorthand for retrieving and displaying the value of the
temp bean property. Now that we have all of our project’s code in the right place,
we can use Maven to run the example.

4.8. Running the Simple Weather Program
Using the Exec plugin from the Codehaus Mojo project, we can execute this
program. To execute the Main class, run the following command from the project’s
base directory:

$ mvn install
/$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:
Evanston, IL, US

Temperature: 45
Condition: Cloudy
Humidity: 76

Wind Chill: 38

...

We didn’t supply a command-line argument to the Main class, so we ended up with
the default zip code, 60202. To supply a zip code, we would use the -Dexec.args

argument and pass in a zip code:

$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main -Dexec.args="70112"
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:

Customizing a Maven Project

66

http://mojo.codehaus.org

New Orleans, LA, US

Temperature: 82
Condition: Fair
Humidity: 71

Wind Chill: 82

[INFO] Finished at: Sun Aug 31 09:33:34 CDT 2008
...

As you can see, we’ve successfully executed the simple weather command-line
tool, retrieved some data from Yahoo! Weather, parsed the result, and formatted
the resulting data with Velocity. We achieved all of this without doing much more
than writing our project’s source code and adding some minimal configuration to
the pom.xml. Notice that no “build process” was involved. We didn’t need to
define how or where the Java compiler compiles our source to bytecode, and we
didn’t need to instruct the build system how to locate the bytecode when we
executed the example application. All we needed to do to include a few
dependencies was locate the appropriate Maven coordinates.

4.8.1. The Maven Exec Plugin
The Exec plugin allows you to execute Java classes and other scripts. It is not a
core Maven plugin, but it is available from the Mojo project hosted by Codehaus.
For a full description of the Exec plugin, run:

$ mvn help:describe -Dplugin=exec -Dfull

This will list all of the goals that are available in the Maven Exec plugin. The Help
plugin will also list all of the valid parameters for the Exec plugin. If you would
like to customize the behavior of the Exec plugin you should use the
documentation provided by help:describe as a guide. Although the Exec plugin
is useful, you shouldn’t rely on it as a way to execute your application outside of
running tests during development. For a more robust solution, use the Maven
Assembly plugin that is demonstrated in the section Section 4.13, “Building a
Packaged Command Line Application”,” later in this chapter.

Customizing a Maven Project

67

http://mojo.codehaus.org
http://www.codehaus.org

4.8.2. Exploring Your Project Dependencies
The Exec plugin makes it possible for us to run the simplest weather program
without having to load the appropriate dependencies into the classpath. In any
other build system, we would have to copy all of the program dependencies into
some sort of lib/ directory containing a collection of JAR files. Then, we would
have to write a simple script that includes our program’s bytecode and all of our
dependencies in a classpath. Only then could we run java
org.sonatype.mavenbook.weather.Main. The Exec plugin leverages the fact that
Maven already knows how to create and manage your classpath and dependencies.

This is convenient, but it’s also nice to know exactly what is being included in
your project’s classpath. Although the project depends on a few libraries such as
Dom4J, Log4J, Jaxen, and Velocity, it also relies on a few transitive dependencies.
If you need to find out what is on the classpath, you can use the Maven
Dependency plugin to print out a list of resolved dependencies. To print out this
list for the simple weather project, execute the dependency:resolve goal:

$ mvn dependency:resolve
...
[INFO] [dependency:resolve]
[INFO]
[INFO] The following files have been resolved:
[INFO] com.ibm.icu:icu4j:jar:2.6.1 (scope = compile)
[INFO] commons-collections:commons-collections:jar:3.1 (scope = compile)
[INFO] commons-lang:commons-lang:jar:2.1 (scope = compile)
[INFO] dom4j:dom4j:jar:1.6.1 (scope = compile)
[INFO] jaxen:jaxen:jar:1.1.1 (scope = compile)
[INFO] jdom:jdom:jar:1.0 (scope = compile)
[INFO] junit:junit:jar:3.8.1 (scope = test)
[INFO] log4j:log4j:jar:1.2.14 (scope = compile)
[INFO] oro:oro:jar:2.0.8 (scope = compile)
[INFO] velocity:velocity:jar:1.5 (scope = compile)
[INFO] xalan:xalan:jar:2.6.0 (scope = compile)
[INFO] xerces:xercesImpl:jar:2.6.2 (scope = compile)
[INFO] xerces:xmlParserAPIs:jar:2.6.2 (scope = compile)
[INFO] xml-apis:xml-apis:jar:1.0.b2 (scope = compile)
[INFO] xom:xom:jar:1.0 (scope = compile)

As you can see, our project has a very large set of dependencies. While we only
included direct dependencies on four libraries, we appear to be depending on 15
dependencies in total. Dom4J depends on Xerces and the XML Parser APIs, Jaxen

Customizing a Maven Project

68

depends on Xalan being available in the classpath. The Dependency plugin is
going to print out the final combination of dependencies under which your project
is being compiled. If you would like to know about the entire dependency tree of
your project, you can run the dependency:tree goal

$ mvn dependency:tree
...
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.ch04:simple-weather:jar:1.0
[INFO] +- log4j:log4j:jar:1.2.14:compile
[INFO] +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | \- xml-apis:xml-apis:jar:1.0.b2:compile
[INFO] +- jaxen:jaxen:jar:1.1.1:compile
[INFO] | +- jdom:jdom:jar:1.0:compile
[INFO] | +- xerces:xercesImpl:jar:2.6.2:compile
[INFO] | \- xom:xom:jar:1.0:compile
[INFO] | +- xerces:xmlParserAPIs:jar:2.6.2:compile
[INFO] | +- xalan:xalan:jar:2.6.0:compile
[INFO] | \- com.ibm.icu:icu4j:jar:2.6.1:compile
[INFO] +- velocity:velocity:jar:1.5:compile
[INFO] | +- commons-collections:commons-collections:jar:3.1:compile
[INFO] | +- commons-lang:commons-lang:jar:2.1:compile
[INFO] | \- oro:oro:jar:2.0.8:compile
[INFO] +- org.apache.commons:commons-io:jar:1.3.2:test
[INFO] \- junit:junit:jar:3.8.1:test
...

If you're truly adventurous or want to see the full dependency trail, including
artifacts that were rejected due to conflicts and other reasons, run Maven with the
debug flag.

$ mvn install -X
...
[DEBUG] org.sonatype.mavenbook.ch04:simple-weather:jar:1.0 (selected for null)
[DEBUG] log4j:log4j:jar:1.2.14:compile (selected for compile)
[DEBUG] dom4j:dom4j:jar:1.6.1:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.0.b2:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1.1:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1-beta-6:compile (removed -)
[DEBUG] jaxen:jaxen:jar:1.0-FCS:compile (removed -)
[DEBUG] jdom:jdom:jar:1.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.3.02:compile (removed - nearer: 1.0.b2)
[DEBUG] xerces:xercesImpl:jar:2.6.2:compile (selected for compile)
[DEBUG] xom:xom:jar:1.0:compile (selected for compile)
[DEBUG] xerces:xmlParserAPIs:jar:2.6.2:compile (selected for compile)
[DEBUG] xalan:xalan:jar:2.6.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:1.0.b2.
[DEBUG] com.ibm.icu:icu4j:jar:2.6.1:compile (selected for compile)
[DEBUG] velocity:velocity:jar:1.5:compile (selected for compile)
[DEBUG] commons-collections:commons-collections:jar:3.1:compile (selected for compile)

Customizing a Maven Project

69

[DEBUG] commons-lang:commons-lang:jar:2.1:compile (selected for compile)
[DEBUG] oro:oro:jar:2.0.8:compile (selected for compile)
[DEBUG] junit:junit:jar:3.8.1:test (selected for test)

In the debug output, we see some of the guts of the dependency management
system at work. What you see here is the tree of dependencies for this project.
Maven is printing out the full Maven coordinates for all of your project’s
dependencies and the dependencies of your dependencies (and the dependencies of
your dependencies’ dependencies). You can see that simple-weather depends on
jaxen, which depends on xom, which in turn depends on icu4j. You can also see
that Maven is creating a graph of dependencies, eliminating duplicates, and
resolving any conflicts between different versions. If you are having problems with
dependencies, it is often helpful to dig a little deeper than the list generated by
dependency:resolve. Turning on the debug output allows you to see Maven’s
dependency mechanism at work.

4.9. Writing Unit Tests
Maven has built-in support for unit tests, and testing is a part of the default Maven
lifecycle. Let’s add some unit tests to our simple weather project. First, let’s create
the org.sonatype.mavenbook.weather package under src/test/java:

$ cd src/test/java
$ cd org/sonatype/mavenbook
$ mkdir -p weather/yahoo
$ cd weather/yahoo

At this point, we will create two unit tests. The first will test the YahooParser, and
the second will test the WeatherFormatter. In the weather package, create a file
named YahooParserTest.java with the contents shown in the next example.

Example 4.11. Simple Weather's YahooParserTest Unit Test

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import junit.framework.TestCase;

Customizing a Maven Project

70

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.YahooParser;

public class YahooParserTest extends TestCase {

public YahooParserTest(String name) {
super(name);

}

public void testParser() throws Exception {
InputStream nyData =
getClass().getClassLoader().getResourceAsStream("ny-weather.xml");

Weather weather = new YahooParser().parse(nyData);
assertEquals("New York", weather.getCity());
assertEquals("NY", weather.getRegion());
assertEquals("US", weather.getCountry());
assertEquals("39", weather.getTemp());
assertEquals("Fair", weather.getCondition());
assertEquals("39", weather.getChill());
assertEquals("67", weather.getHumidity());

}
}

This YahooParserTest extends the TestCase class defined by JUnit. It follows the
usual pattern for a JUnit test: a constructor that takes a single String argument that
calls the constructor of the superclass, and a series of public methods that begin
with “test” that are invoked as unit tests. We define a single test method,
testParser, which tests the YahooParser by parsing an XML document with
known values. The test XML document is named ny-weather.xml and is loaded
from the classpath. We’ll add test resources in Section 4.11, “Adding Unit Test
Resources”.” In our Maven project’s directory layout, the ny-weather.xml file is
found in the directory that contains test
resources—${basedir}/src/test/resources under
org/sonatype/mavenbook/weather/yahoo/ny-weather.xml. The file is read as an
InputStream and passed to the parse() method on YahooParser. The parse()

method returns a Weather object, which is then tested with a series of calls to
assertEquals(), a method defined by TestCase.

In the same directory, create a file named WeatherFormatterTest.java.

Example 4.12. Simple Weather's WeatherFormatterTest Unit Test

Customizing a Maven Project

71

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import org.apache.commons.io.IOUtils;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.WeatherFormatter;
import org.sonatype.mavenbook.weather.YahooParser;

import junit.framework.TestCase;

public class WeatherFormatterTest extends TestCase {

public WeatherFormatterTest(String name) {
super(name);

}

public void testFormat() throws Exception {
InputStream nyData =
getClass().getClassLoader().getResourceAsStream("ny-weather.xml");

Weather weather = new YahooParser().parse(nyData);
String formattedResult = new WeatherFormatter().format(weather);
InputStream expected =
getClass().getClassLoader().getResourceAsStream("format-expected.dat");

assertEquals(IOUtils.toString(expected).trim(),
formattedResult.trim());

}
}

The second unit test in this simple project tests the WeatherFormatter. Like the
YahooParserTest, the WeatherFormatterTest also extends JUnit's TestCase
class. The single test function reads the same test resource from
${basedir}/src/test/resources under the
org/sonatype/mavenbook/weather/yahoo directory via this unit test's classpath.
We'll add test resources in Section 4.11, “Adding Unit Test Resources”.
WeatherFormatterTest runs this sample input file through the YahooParser which
spits out a Weather object, and this object is then formatted with the
WeatherFormatter. Since the WeatherFormatter prints out a String, we need to
test it against some expected input. Our expected input has been captured in a text
file named format-expected.dat which is in the same directory as
ny-weather.xml. To compare the test's output to the expected output, we read this
expected output in as an InputStream and use Commons IO's IOUtils class to

Customizing a Maven Project

72

convert this file to a String. This String is then compared to the test output using
assertEquals().

4.10. Adding Test-scoped Dependencies
In WeatherFormatterTest, we used a utility from Apache Commons IO—the
IOUtils class. IOUtils provides a number of helpful static functions that take
most of the work out of input/output operations. In this particular unit test, we used
IOUtils.toString() to copy the format-expected.dat classpath resource to a
String. We could have done this without using Commons IO, but it would have
required an extra six or seven lines of code to deal with the various
InputStreamReader and StringWriter objects. The main reason we used
Commons IO was to give us an excuse to add a test-scoped dependency on
Commons IO.

A test-scoped dependency is a dependency that is available on the classpath only
during test compilation and test execution. If your project has war or ear
packaging, a test-scoped dependency would not be included in the project’s
output archive. To add a test-scoped dependency, add the dependency element to
your project’s dependencies section, as shown in the following example:

Example 4.13. Adding a Test-scoped Dependency

<project>
...
<dependencies>

...
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
...

</dependencies>
</project>

After you add this dependency to the pom.xml, run mvn dependency:resolve and

Customizing a Maven Project

73

you should see that commons-io is now listed as a dependency with scope test.
We need to do one more thing before we are ready to run this project's unit tests.
We need to create the classpath resources these unit tests depend on. Dependency
scopes are explained in detail in Section 9.4.1, “Dependency Scope”.

4.11. Adding Unit Test Resources
A unit test has access to a set of resources which are specific to tests. Often you'll
store files containing expected results and files containing dummy input in the test
classpath. In this project, we're storing a test XML document for YahooParserTest
named ny-weather.xml and a file containing expected output from the
WeatherFormatter in format-expected.dat.

To add test resources, you'll need to create the src/test/resources directory.
This is the default directory in which Maven looks for unit test resources. To create
this directory execute the following commands from your project's base directory.

$ cd src/test
$ mkdir resources
$ cd resources

Once you've create the resources directory, create a file named
format-expected.dat in the resources directory.

Example 4.14. Simple Weather's WeatherFormatterTest Expected Output

Current Weather Conditions for:
New York, NY, US

Temperature: 39
Condition: Fair
Humidity: 67

Wind Chill: 39

This file should look familiar. It is the same output that was generated previously
when you ran the simple weather project with the Maven Exec plugin. The second

Customizing a Maven Project

74

file you’ll need to add to the resources directory is ny-weather.xml.

Example 4.15. Simple Weather's YahooParserTest XML Input

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
<channel>
<title>Yahoo! Weather - New York, NY</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/</link>
<description>Yahoo! Weather for New York, NY</description>
<language>en-us</language>
<lastBuildDate>Sat, 10 Nov 2007 8:51 pm EDT</lastBuildDate>

<ttl>60</ttl>
<yweather:location city="New York" region="NY" country="US" />
<yweather:units temperature="F" distance="mi" pressure="in" speed="mph" />
<yweather:wind chill="39" direction="0" speed="0" />
<yweather:atmosphere humidity="67" visibility="1609" pressure="30.18"

rising="1" />
<yweather:astronomy sunrise="6:36 am" sunset="4:43 pm" />

<item>
<title>Conditions for New York, NY at 8:51 pm EDT</title>

<geo:lat>40.67</geo:lat>
<geo:long>-73.94</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/\</link>

<pubDate>Sat, 10 Nov 2007 8:51 pm EDT</pubDate>
<yweather:condition text="Fair" code="33" temp="39"

date="Sat, 10 Nov 2007 8:51 pm EDT" />
<description><![CDATA[

Current Conditions:

Fair, 39 F

Forecast:

Sat - Partly Cloudy. High: 45 Low: 32

Sun - Sunny. High: 50 Low: 38

]]></description>
<yweather:forecast day="Sat" date="10 Nov 2007" low="32" high="45"

text="Partly Cloudy" code="29" />

<yweather:forecast day="Sun" date="11 Nov 2007" low="38" high="50"
text="Sunny" code="32" />

Customizing a Maven Project

75

<guid isPermaLink="false">10002_2007_11_10_20_51_EDT</guid>
</item>
</channel>
</rss>

This file contains a test XML document for the YahooParserTest. We store this
file so that we can test the YahooParser without having to retrieve and XML
response from Yahoo! Weather.

4.12. Executing Unit Tests
Now that your project has unit tests, let’s run them. You don’t have to do anything
special to run a unit test; the test phase is a normal part of the Maven lifecycle.
You run Maven tests whenever you run mvn package or mvn install. If you
would like to run all the lifecycle phases up to and including the test phase, run
mvn test:

$ mvn test
...
[INFO] [surefire:test]
[INFO] Surefire report directory: ~/examples/simple-weather/target/\

surefire-reports

T E S T S

Running org.sonatype.mavenbook.weather.yahoo.WeatherFormatterTest
0 INFO YahooParser - Creating XML Reader
177 INFO YahooParser - Parsing XML Response
239 INFO WeatherFormatter - Formatting Weather Data
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.547 sec
Running org.sonatype.mavenbook.weather.yahoo.YahooParserTest
475 INFO YahooParser - Creating XML Reader
483 INFO YahooParser - Parsing XML Response
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.018 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Executing mvn test from the command line caused Maven to execute all lifecycle
phases up to the test phase. The Maven Surefire plugin has a test goal which is

Customizing a Maven Project

76

bound to the test phase. This test goal executes all of the unit tests this project
can find under src/test/java with filenames matching **/Test*.java,
**/*Test.java and **/*TestCase.java. In the case of this project, you can see
that the Surefire plugin's test goal executed WeatherFormatterTest and
YahooParserTest. When the Maven Surefire plugin runs the JUnit tests, it also
generates XML and text reports in the ${basedir}/target/surefire-reports

directory. If your tests are failing, you should look in this directory for details like
stack traces and error messages generated by your unit tests.

4.12.1. Ignoring Test Failures
You will often find yourself developing on a system that has failing unit tests. If
you are practicing Test-Driven Development (TDD), you might use test failure as a
measure of how close your project is to completeness. If you have failing unit tests,
and you would still like to produce build output, you are going to have to tell
Maven to ignore build failures. When Maven encounters a build failure, its default
behavior is to stop the current build. To continue building a project even when the
Surefire plugin encounters failed test cases, you’ll need to set the
testFailureIgnore configuration property of the Surefire plugin to true.

Example 4.16. Ignoring Unit Test Failures

<project>
[...]
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

The plugin documents

Customizing a Maven Project

77

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html) show that
this parameter declares an expression:

Example 4.17. Plugin Parameter Expressions

testFailureIgnore Set this to true to ignore a failure during \
testing. Its use is NOT RECOMMENDED, but quite \
convenient on occasion.

* Type: boolean
* Required: No
* Expression: ${maven.test.failure.ignore}

This expression can be set from the command line using the -D parameter:

$ mvn test -Dmaven.test.failure.ignore=true

4.12.2. Skipping Unit Tests
You may want to configure Maven to skip unit tests altogether. Maybe you have a
very large system where the unit tests take minutes to complete and you don't want
to wait for unit tests to complete before producing output. You might be working
with a legacy system that has a series of failing unit tests, and instead of fixing the
unit tests, you might just want to produce a JAR. Maven provides for the ability to
skip unit tests using the skip parameter of the Surefire plugin. To skip tests from
the command-line, simply add the maven.test.skip property to any goal:

$ mvn install -Dmaven.test.skip=true
...
[INFO] [compiler:testCompile]
[INFO] Not compiling test sources
[INFO] [surefire:test]
[INFO] Tests are skipped.
...

When the Surefire plugin reaches the test goal, it will skip the unit tests if the
maven.test.skip properties is set to true. Another way to configure Maven to
skip unit tests is to add this configuration to your project's pom.xml. To do this, you

Customizing a Maven Project

78

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html

would add a plugin element to your build configuration.

Example 4.18. Skipping Unit Tests

<project>
[...]
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<skip>true</skip>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

4.13. Building a Packaged Command Line
Application
In the Section 4.8, “Running the Simple Weather Program”” section earlier in this
chapter, we executed our application using the Maven Exec plugin. Although that
plugin executed the program and produced some output, you shouldn’t look to
Maven as an execution container for your applications. If you are distributing this
command-line application to others, you will probably want to distribute a JAR or
an archive as a ZIP or TAR’d GZIP file. This section outlines a process for using a
predefined assembly descriptor in the Maven Assembly plugin to produce a
distributable JAR file, which contains the project’s bytecode and all of the
dependencies.

The Maven Assembly plugin is a plugin you can use to create arbitrary
distributions for your applications. You can use the Maven Assembly plugin to
assemble the output of your project in any format you desire by defining a custom
assembly descriptor. In a later chapter we will show you how to create a custom
assembly descriptor which produces a more complex archive for the Simple

Customizing a Maven Project

79

Weather application. In this chapter, we're going to use the predefined
jar-with-dependencies format. To configure the Maven Assembly Plugin, we
need to add the following plugin configuration to our existing build configuration
in the pom.xml.

Example 4.19. Configuring the Maven Assembly Descriptor

<project>
[...]
<build>

<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

Once you’ve added this configuration, you can build the assembly by running the
assembly:assembly goal. In the following screen listing, the assembly:assembly

goal is executed after the Maven build reaches the install lifecycle phase:

$ mvn install assembly:assembly
...
[INFO] [jar:jar]
[INFO] Building jar: ~/examples/simple-weather/target/simple-weather-1.0.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: \

.m2/repository/dom4j/dom4j/1.6.1/dom4j-1.6.1.jar into \
/tmp/archived-file-set.1437961776.tmp

[INFO] Expanding: .m2/repository/commons-lang/commons-lang/2.1/\
commons-lang-2.1.jar

into /tmp/archived-file-set.305257225.tmp
... (Maven Expands all dependencies into a temporary directory) ...
[INFO] Building jar: \

~/examples/simple-weather/target/\
simple-weather-1.0-jar-with-dependencies.jar

Once our assembly is assembled in

Customizing a Maven Project

80

dependencies.jar, we can run the Main class again from the command line. To
run the simple weather application’s Main class, execute the following commands
from your project’s base directory:

$ cd target
$ java -cp simple-weather-1.0-jar-with-dependencies.jar \

org.sonatype.mavenbook.weather.Main 10002
0 INFO YahooRetriever - Retrieving Weather Data
221 INFO YahooParser - Creating XML Reader
399 INFO YahooParser - Parsing XML Response
474 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:
New York, NY, US

Temperature: 44
Condition: Fair
Humidity: 40

Wind Chill: 40

The jar-with-dependencies format creates a single JAR file that includes all of
the bytecode from the simple-weather project as well as the unpacked bytecode
from all of the dependencies. This somewhat unconventional format produces a 9
MiB JAR file containing approximately 5,290 classes, but it does provide for an
easy distribution format for applications you’ve developed with Maven. Later in
this book, we’ll show you how to create a custom assembly descriptor to produce a
more standard distribution.

4.13.1. Attaching the Assembly Goal to the Package
Phase
In Maven 1, a build was customized by stringing together a series of plugin goals.
Each plugin goal had prerequisites and defined a relationship to other plugin goals.
With the release of Maven 2, a lifecycle was introduced and plugin goals are now
associated with a series of phases in a default Maven build lifecycle. The lifecycle
provides a solid foundation that makes it easier to predict and manage the plugin
goals which will be executed in a given build. In Maven 1, plugin goals related to
one another directly; in Maven 2, plugin goals relate to a set of common lifecycle
stages. While it is certainly valid to execute a plugin goal directly from the

Customizing a Maven Project

81

command-line as we just demonstrated, it is more consistent with the design of
Maven to configure the Assembly plugin to execute the assembly:assembly goal
during a phase in the Maven lifecycle.

The following plugin configuration configures the Maven Assembly plugin to
execute the attached goal during the package phase of the Maven default build
lifecycle. The attached goal does the same thing as the assembly goal. To bind to
assembly:attached goal to the package phase we use the executions element
under plugin in the build section of the project's POM.

Example 4.20. Configuring attached Goal Execution during the package
Lifecycle Phase

<project>
[...]
<build>

<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
<executions>

<execution>
<id>simple-command</id>
<phase>package</phase>
<goals>
<goal>attached</goal>

</goals>
</execution>

</executions>
</plugins>

</build>
[...]

</project>

Once you have this configuration in your POM, all you need to do to generate the
assembly is run mvn package. The execution configuration will make sure that the
assembly:attached goal is executed when the Maven lifecycle transitions to the
package phase of the lifecycle.

Customizing a Maven Project

82

Chapter 5. A Simple Web Application

5.1. Introduction
In this chapter, we create a simple web application with the Maven Archetype
plugin. We’ll run this web application in a Servlet container named Jetty, add some
dependencies, write a simple Servlet, and generate a WAR file. At the end of this
chapter, you will be able to start using Maven to accelerate the development of
web applications.

5.1.1. Downloading this Chapter's Example
The example in this chapter is generated with the Maven Archetype plugin. While
you should be able to follow the development of this chapter without the example
source code, we recommend downloading a copy of the example code to use as a
reference. This chapter's example project may be downloaded with the book's
example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip this archive in any
directory, and then go to the ch05/ directory. In the ch05/ directory you will see a
directory named simple-webapp/ which contains the Maven project developed in
this chapter. If you wish to follow along with the example code in a web browser,
go to http://www.sonatype.com/book/examples-1.0 and click on the ch05/

directory.

5.2. Defining the Simple Web Application
We’ve purposefully kept this chapter focused on Plain-Old Web Applications
(POWA)—a servlet and a JavaServer Pages (JSP) page. We’re not going to tell
you how to develop your Struts 2, Tapestry, Wicket, Java Server Faces (JSF), or
Waffle application in the next 20-odd pages, and we’re not going to get into
integrating an Inversion of Control (IoC) container such as Plexus, Guice, or the

83

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

Spring Framework. The goal of this chapter is to show you the basic facilities that
Maven provides for developing web applications—no more, no less. Later in this
book, we’re going to take a look at developing two web applications: one which
that Hibernate, Velocity, and the Spring Framework; and the other that uses
Plexus.

5.3. Creating the Simple Web Project
To create your web application project, run mvn archetype:create with an
artifactId and a groupId. Specify the archetypeArtifactId as
maven-archetype-webapp. Running this will create the appropriate directory
structure and Maven POM:

~/examples$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch05 \
-DartifactId=simple-webapp \
-DpackageName=org.sonatype.mavenbook \
-DarchetypeArtifactId=maven-archetype-webapp

[INFO] [archetype:create]
[INFO] --
[INFO] Using parameters for creating Archetype: maven-archetype-webapp:RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch05
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: ~/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: simple-webapp
[INFO] *************** End of debug info from resources from generated POM **
[INFO] Archetype created in dir: ~/examples/simple-webapp

Once the Maven Archetype plugin creates the project, change directories into the
simple-web directory and take a look at the pom.xml. You should see the XML
document shown in the following example:

Example 5.1. Initial POM for the simple-web project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.ch05</groupId>

A Simple Web Application

84

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple-webapp Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Notice the packaging element contains the value war. This packaging type is what
configures Maven to produce a web application archive in a WAR file. A project
with war packaging is going to create a WAR file in the target/ directory. The
default name of this file is ${artifactId}-${version}.war. In this project, the
default WAR would be generated in target/simple-webapp-1.0-SNAPSHOT.war.
In the simple-webapp project, we’ve customized the name of the generated WAR
file by adding a finalName element inside of this project’s build configuration.
With a finalName of simple-webapp, the package phase produces a WAR file in
target/simple-webapp.war.

5.4. Configuring the Jetty Plugin
Once you’ve compiled, tested, and packaged your web application, you’ll likely
want to deploy it to a servlet container and test the index.jsp that was created by
the Maven Archetype plugin. Normally, this would involve downloading

A Simple Web Application

85

something like Jetty or Apache Tomcat, unpacking a distribution, copying your
application’s WAR file to a webapps/ directory, and then starting your container.
Although you can still do such a thing, there is no need. Instead, you can use the
Maven Jetty plugin to run your web application within Maven. To do this, we’ll
need to configure the Maven Jetty plugin in our project’s pom.xml. Add the plugin

element shown in the following example to your project’s build configuration.

Example 5.2. Configuring the Jetty Plugin

<project>
[...]
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>

</plugin>
</plugins>

</build>
[...]

</project>

Once you've configured the Maven Jetty Plugin in your project's pom.xml, you can
then invoke the Run goal of the Jetty plugin to start your web application in the
Jetty Servlet container. Run mvn jetty:run as follows:

~/examples$ mvn jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[INFO] Webapp source directory = \

~/svnw/sonatype/examples/simple-webapp/src/main/webapp
[INFO] web.xml file = \

~/svnw/sonatype/examples/simple-webapp/src/main/webapp/WEB-INF/web.xml
[INFO] Classes = ~/svnw/sonatype/examples/simple-webapp/target/classes
2007-11-17 22:11:50.532::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Webapp directory = \

~/svnw/sonatype/examples/simple-webapp/src/main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-17 22:11:50.673::INFO: jetty-6.1.6rc1
2007-11-17 22:11:50.846::INFO: No Transaction manager found

A Simple Web Application

86

2007-11-17 22:11:51.057::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

After Maven starts the Jetty Servlet container, load the URL
http://localhost:8080/simple-webapp/ in a web browser. The simple index.jsp

generated by the Archetype is trivial; it contains a second-level heading with the
text "Hello World!". Maven expects the document root of the web application to be
stored in src/main/webapp. It is in this directory where you will find the
index.jsp file shown in Example 5.3, “Contents of src/main/webapp/index.jsp”.

Example 5.3. Contents of src/main/webapp/index.jsp

<html>
<body>

<h2>Hello World!</h2>
</body>

</html>

In src/main/webapp/WEB-INF, we will find the smallest possible web application
descriptor in web.xml, shown in this next example:

Example 5.4. Contents of src/main/webapp/WEB-INF/web.xml

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>

</web-app>

5.5. Adding a Simple Servlet
A web application with a single JSP page and no configured servlets is next to
useless. Let’s add a simple servlet to this application and make some changes to
the pom.xml and web.xml to support this change. First, we’ll need to create a new
package under src/main/java named org.sonatype.mavenbook.web:

A Simple Web Application

87

http://localhost:8080/simple-webapp/

$ mkdir -p src/main/java/org/sonatype/mavenbook/web
$ cd src/main/java/org/sonatype/mavenbook/web

Once you’ve created this package, change to the
src/main/java/org/sonatype/mavenbook/web directory and create a class named
SimpleServlet in SimpleServlet.java, which contains the code shown in the
SimpleServlet class:

Example 5.5. SimpleServlet Class

package org.sonatype.mavenbook.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println("SimpleServlet Executed");
out.flush();
out.close();

}
}

Our SimpleServlet class is just that: a servlet that prints a simple message to the
response’s Writer. To add this servlet to your web application and map it to a
request path, add the servlet and servlet-mapping elements shown in the
following web.xml to your project’s web.xml file. The web.xml file can be found in
src/main/webapp/WEB-INF.

Example 5.6. Mapping the Simple Servlet

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>
<servlet>

<servlet-name>simple</servlet-name>

A Simple Web Application

88

<servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>simple</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>
</web-app>

Everything is in place to test this servlet; the class is in src/main/java and the
web.xml has been updated. Before we launch the Jetty plugin, compile your project
by running mvn compile:

~/examples$ mvn compile
...
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to ~/examples/ch05/simple-webapp/target/classes
[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] Compilation failure

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[4,0] \
package javax.servlet does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[5,0] \
package javax.servlet.http does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[7,35] \
cannot find symbol
symbol: class HttpServlet
public class SimpleServlet extends HttpServlet {

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[8,22] \
cannot find symbol
symbol : class HttpServletRequest
location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[9,22] \
cannot find symbol
symbol : class HttpServletResponse
location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[10,15] \
cannot find symbol
symbol : class ServletException
location: class org.sonatype.mavenbook.web.SimpleServlet

The compilation fails because your Maven project doesn't have a dependency on

A Simple Web Application

89

the Servlet API. In the next section, we'll add the Servlet API to this project's
POM.

5.6. Adding J2EE Dependencies
To write a servlet, we’ll need to add the Servlet API as a project dependency. To
add the Servlet specification API as a dependency to your project’s POM, add the
dependency element as shown in this next example:

Example 5.7. Add the Servlet 2.4 Specification as a Dependency

<project>
[...]
<dependencies>

[...]
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
</dependencies>
[...]

</project>

It is also worth pointing out that we have used the provided scope for this
dependency. This tells Maven that the jar is "provided" by the container and thus
should not be included in the war. If you were interested in writing a custom JSP
tag for this simple web application, you would need to add a dependency on the
JSP 2.0 spec. Use the configuration shown in this example:

Example 5.8. Adding the JSP 2.0 Specification as a Dependency

<project>
[...]
<dependencies>

[...]
<dependency>
<groupId>javax.servlet.jsp</groupId>
<artifactId>jsp-api</artifactId>
<version>2.0</version>

A Simple Web Application

90

<scope>provided</scope>
</dependency>

</dependencies>
[...]

</project>

Once you've added the Servlet specification as a dependency, run mvn clean
install followed by mvn jetty:run.

[tobrien@t1 simple-webapp]$ mvn clean install
...
[tobrien@t1 simple-webapp]$ mvn jetty:run
[INFO] [jetty:run]
...
2007-12-14 16:18:31.305::INFO: jetty-6.1.6rc1
2007-12-14 16:18:31.453::INFO: No Transaction manager found
2007-12-14 16:18:32.745::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

At this point, you should be able to retrieve the output of the SimpleServlet. From
the command line, you can use curl to print the output of this servlet to standard
output:

~/examples$ curl http://localhost:8080/simple-webapp/simple
SimpleServlet Executed

5.7. Conclusion
After reading this chapter, you should be able to bootstrap a simple web
application. This chapter didn't dwell on the million different ways to create a
complete web application, other chapters provide a more comprehensive overview
of projects that involve some of the more popular web frameworks and
technologies.

A Simple Web Application

91

Chapter 6. A Multi-module Project

6.1. Introduction
In this chapter, we create a multimodule project that combines the examples from
the two previous chapters. The simple-weather code developed in Chapter 4,
Customizing a Maven Project will be combined with the simple-webapp project
defined in Chapter 5, A Simple Web Application to create a web application that
retrieves and displays weather forecast information on a web page. At the end of
this chapter, you will be able to use Maven to develop complex, multimodule
projects.

6.1.1. Downloading this Chapter's Example
The multimodule project developed in this example consists of modified versions
of the projects developed in Chapters 4 and 5, and we are not using the Maven
Archetype plugin to generate this multimodule project. We strongly recommend
downloading a copy of the example code to use as a supplemental reference while
reading the content in this chapter. This chapter’s example project may be
downloaded with the book’s example code at
http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip this archive in any
directory, and then go to the ch06/ directory. There you will see a directory named
simple-parent/, which contains the multimodule Maven project developed in this
chapter. In this directory, you will see a pom.xml and the two submodule
directories, simple-weather/ and simple-webapp/. If you wish to follow along
with the example code in a web browser, go to
http://www.sonatype.com/book/examples-1.0 and click on the ch06/ directory.

6.2. The Simple Parent Project

92

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

A multimodule project is defined by a parent POM referencing one or more
submodules. In the simple-parent/ directory, you will find the parent POM (also
called the top-level POM) in simple-parent/pom.xml. See Example 6.1,
“simple-parent Project POM”.

Example 6.1. simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.ch06</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Chapter 6 Simple Parent Project</name>

<modules>
<module>simple-weather</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</pluginManagement>
</build>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

A Multi-module Project

93

Notice that the parent defines a set of Maven coordinates: the groupId is
org.sonatype.mavenbook.ch06, the artifactId is simple-parent, and the
version is 1.0. The parent project doesn’t create a JAR or a WAR like our
previous projects; instead, it is simply a POM that refers to other Maven projects.
The appropriate packaging for a project like simple-parent that simply provides a
Project Object Model is pom. The next section in the pom.xml lists the project’s
submodules. These modules are defined in the modules element, and each module

element corresponds to a subdirectory of the simple-parent/ directory. Maven
knows to look in these directories for pom.xml files, and it will add submodules to
the list of Maven projects included in a build.

Lastly, we define some settings which will be inherited by all submodules. The
simple-parent build configuration configures the target for all Java compilation to
be the Java 5 JVM. Since the compiler plugin is bound to the lifecycle by default,
we can use the pluginManagement section do to this. We will discuss
pluginManagement in more detail in later chapters, but the separation between
providing configuration to default plugins and actually binding plugins is much
easier to see when they are separated this way. The dependencies element adds
JUnit 3.8.1 as a global dependency. Both the build configuration and the
dependencies are inherited by all submodules. Using POM inheritance allows you
to add common dependencies for universal dependencies like JUnit or Log4J.

6.3. The Simple Weather Module
The first submodule we’re going to look at is the simple-weather submodule. This
submodule contains all of the classes that take care of interacting with and parsing
the Yahoo! Weather feeds.

Example 6.2. simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch06</groupId>

A Multi-module Project

94

<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Chapter 6 Simple Weather API</name>

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<testFailureIgnore>true</testFailureIgnore>

</configuration>
</plugin>

</plugins>
</pluginManagement>

</build>

<dependencies>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>
<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>
<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>
<groupId>velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

A Multi-module Project

95

In simple-weather’s pom.xml file, we see this module referencing a parent POM
using a set of Maven coordinates. The parent POM for simple-weather is
identified by a groupId of org.sonatype.mavenbook.ch06, an artifactId of
simple-parent, and a version of 1.0. See Example 6.3, “The WeatherService
class”.

Example 6.3. The WeatherService class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

public class WeatherService {

public WeatherService() {}

public String retrieveForecast(String zip) throws Exception {
// Retrieve Data
InputStream dataIn = new YahooRetriever().retrieve(zip);

// Parse Data
Weather weather = new YahooParser().parse(dataIn);

// Format (Print) Data
return new WeatherFormatter().format(weather);

}
}

The WeatherService class is defined in
src/main/java/org/sonatype/mavenbook/weather, and it simply calls out to the
three objects defined in Chapter 4, Customizing a Maven Project. In this chapter’s
example, we’re creating a separate project that contains service objects that are
referenced in the web application project. This is a common model in enterprise
Java development; often a complex application consists of more than just a single,
simple web application. You might have an enterprise application that consists of
multiple web applications and some command-line applications. Often, you’ll want
to refactor common logic to a service class that can be reused across a number of
projects. This is the justification for creating a WeatherService class; by doing so,
you can see how the simple-webapp project references a service object defined in
simple-weather.

A Multi-module Project

96

The retrieveForecast() method takes a String containing a zip code. This zip
code parameter is then passed to the YahooRetriever’s retrieve() method, which
gets the XML from Yahoo! Weather. The XML returned from YahooRetriever is
then passed to the parse() method on YahooParser which returns a Weather

object. This Weather object is then formatted into a presentable String by the
WeatherFormatter.

6.4. The Simple Web Application Module
The simple-webapp module is the second submodule referenced in the
simple-parent project. This web application project depends upon the
simple-weather module, and it contains some simple servlets that present the
results of the Yahoo! weather service query.

Example 6.4. simple-webapp Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch06</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<name>simple-webapp Maven Webapp</name>
<dependencies>

<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.ch06</groupId>
<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
<build>

A Multi-module Project

97

<finalName>simple-webapp</finalName>
<plugins>
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>

</plugin>
</plugins>

</build>
</project>

This simple-webapp module defines a very simple servlet that reads a zip code
from an HTTP request, calls the WeatherService shown in Example 6.3, “The
WeatherService class”, and prints the results to the response’s Writer.

Example 6.5. simple-webapp WeatherServlet

package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.WeatherService;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WeatherServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
String zip = request.getParameter("zip");
WeatherService weatherService = new WeatherService();
PrintWriter out = response.getWriter();
try {

out.println(weatherService.retrieveForecast(zip));
} catch(Exception e) {

out.println("Error Retrieving Forecast: " + e.getMessage());
}
out.flush();
out.close();

}
}

In WeatherServlet, we instantiate an instance of the WeatherService class
defined in simple-weather. The zip code supplied in the request parameter is
passed to the retrieveForecast() method and the resulting test is printed to the
response's Writer.

A Multi-module Project

98

Finally, to tie all of this together is the web.xml for simple-webapp in
src/main/webapp/WEB-INF. The servlet and servlet-mapping elements in the
web.xml shown in Example 6.6, “simple-webapp web.xml” map the request path
/weather to the WeatherServlet.

Example 6.6. simple-webapp web.xml

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>
<servlet>

<servlet-name>simple</servlet-name>
<servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>

</servlet>
<servlet>

<servlet-name>weather</servlet-name>
<servlet-class>org.sonatype.mavenbook.web.WeatherServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>simple</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>weather</servlet-name>
<url-pattern>/weather</url-pattern>

</servlet-mapping>
</web-app>

6.5. Building the Multimodule Project
With the simple-weather project containing all the general code for interacting
with the Yahoo! Weather service and the simple-webapp project containing a
simple servlet, it is time to compile and package the application into a WAR file.
To do this, you will want to compile and install both projects in the appropriate
order; since simple-webapp depends on simple-weather, the simple-weather

JAR needs to be created before the simple-webapp project can compile. To do this,
you will run mvn clean install command from the simple-parent project:

A Multi-module Project

99

~/examples/ch06/simple-parent$ mvn clean install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Simple Parent Project
[INFO] simple-weather
[INFO] simple-webapp Maven Webapp
[INFO] --
[INFO] Building simple-weather
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-weather-1.0.jar to simple-weather-1.0.jar
[INFO] --
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-webapp.war to simple-webapp-1.0.war
[INFO]
[INFO] --
[INFO] Reactor Summary:
[INFO] --
[INFO] Simple Parent Project SUCCESS [3.041s]
[INFO] simple-weather SUCCESS [4.802s]
[INFO] simple-webapp Maven Webapp SUCCESS [3.065s]
[INFO] --

When Maven is executed against a project with submodules, Maven first loads the
parent POM and locates all of the submodule POMs. Maven then puts all of these
project POMs into something called the Maven Reactor which analyzes the
dependencies between modules. The Reactor takes care of ordering components to
ensure that interdependent modules are compiled and installed in the proper order.

Note
The Reactor preserves the order of modules as defined in the POM unless
changes need to be made. A helpful mental model for this is to picture
that modules with dependencies on sibling projects are "pushed down"
the list until the dependency ordering is satisfied. On rare occasions, it
may be handy to rearrange the module order of your build -- for example
if you want a frequently unstable module towards the beginning of the
build.

A Multi-module Project

100

Once the Reactor figures out the order in which projects must be built, Maven then
executes the specified goals for every module in a multi-module build. In this
example, you can see that Maven builds simple-weather before simple-webapp

effectively executing mvn clean install for each submodule.

Note
When you run Maven from the command line you'll frequently want to
specify the clean lifecycle phase before any other lifecycle stages. When
you specify clean, you make sure that Maven is going to remove old
output before it compiles and packages an application. Running clean

isn't necessary, but it is a useful precaution to make sure that you are
performing a "clean build".

6.6. Running the Web Application
Once the multimodule project has been installed with mvn clean install from the
parent project, simple-project, you can then change directories into the
simple-webapp project and run the Run goal of the Jetty plugin:

~/examples/ch06/simple-parent/simple-webapp $ mvn jetty:run
[INFO] --
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [jetty:run]
[INFO] --
[...]
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[...]
[INFO] Webapp directory = ~/examples/ch06/simple-parent/\

simple-webapp/src/main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-18 1:58:26.980::INFO: jetty-6.1.6rc1
2007-11-18 1:58:26.125::INFO: No Transaction manager found
2007-11-18 1:58:27.633::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty has started, load
http://localhost:8080/simple-webapp/weather?zip=01201 in a browser and you
should see the formatted weather output.

A Multi-module Project

101

http://localhost:8080/simple-webapp/weather?zip=01201

Chapter 7. Multi-module Enterprise Project

7.1. Introduction
In this chapter, we create a multimodule project that evolves the examples from
Chapter 6, A Multi-module Project and Chapter 5, A Simple Web Application into a
project that uses the Spring Framework and Hibernate to create both a simple web
application and a command-line utility to read data from the Yahoo! Weather feed.
The simple-weather code developed in Chapter 4, Customizing a Maven Project
will be combined with the simple-webapp project defined in Chapter 5, A Simple
Web Application. In the process of creating this multimodule project, we’ll explore
Maven and discuss the different ways it can be used to create modular projects that
encourage reuse.

7.1.1. Downloading this Chapter's Example
The multi-module project developed in this example consists of modified versions
of the projects developed in Chapter 4, Customizing a Maven Project and
Chapter 5, A Simple Web Application, and we are not using the Maven Archetype
plug-in to generate this multi-module project. We strongly recommend
downloading a copy of the example code to use as a supplemental reference while
reading the content in this chapter. Without the examples, you won't be able to
recreate this chapter's example code. This chapter's example project may be
downloaded with the book's example code at
http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip this archive in any
directory, and then go to the ch07/ directory. In the ch07/ directory you will see a
directory named simple-parent/ which contains the multi-module Maven project
developed in this chapter. In the simple-parent/ project directory you will see a
pom.xml and the five submodule directories simple-model/, simple-persist/,
simple-command/, simple-weather/ and simple-webapp/. If you wish to follow
along with the example code in a web browser, go to

102

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz

http://www.sonatype.com/book/examples-1.0 and click on the ch07/ directory.

7.1.2. Multi-module Enterprise Project
Presenting the complexity of a massive Enterprise-level project far exceeds the
scope of this book. Such projects are characterized by multiple databases,
integration with external systems, and subprojects which may be divided by
departments. These projects usually span thousands of lines of code, and involve
the effort of tens or hundreds of software developers. While such a complete
example is outside the scope of this book, we can provide you with a sample
project that suggests the complexity of a larger Enterprise application. In the
conclusion we suggest some possibilities for modularity beyond that presented in
this chapter.

In this chapter, we're going to look at a multi-module Maven project that will
produce two applications: a command-line query tool for the Yahoo! Weather feed
and a web application which queries the Yahoo! Weather feed. Both of these
applications will store the results of queries in an embedded database. Each will
allow the user to retrieve historical weather data from this embedded database.
Both applications will reuse application logic and share a persistence library. This
chapter's example builds upon the Yahoo! Weather parsing code introduced in
Chapter 4, Customizing a Maven Project. This project is divided into five
submodules shown in Figure 7.1, “Multi-module Enterprise Application Module
Relationships”.

Multi-module Enterprise Project

103

http://www.sonatype.com/book/examples-1.0

Figure 7.1. Multi-module Enterprise Application Module Relationships

In Figure 7.1, “Multi-module Enterprise Application Module Relationships”, you
can see that there are five submodules of simple-parent, they are:

simple-model
This module defines a simple object model which models the data returned
from the Yahoo! Weather feed. This object model contains the Weather,
Condition, Atmosphere, Location, and Wind objects. When our application
parses the Yahoo! Weather feed, the parsers defined in simple-weather will
parse the XML and create Weather objects which are then used by the
application. This project contains model objects annotated with Hibernate 3
Annotations which are used by the logic in simple-persist to map each model
object to a corresponding table in a relational database.

simple-weather
This module contains all of the logic required to retrieve data from the Yahoo!
Weather feed and parse the resulting XML. The XML returned from this feed is

Multi-module Enterprise Project

104

converted into the model objects defined in simple-model. simple-weather
has a dependency on simple-model. simple-weather defines a
WeatherService object which is referenced by both the simple-command and
simple-webapp projects.

simple-persist
This module contains some Data Access Objects (DAO) which are configured
to store Weather objects in an embedded database. Both of the applications
defined in this multi-module project will use the DAOs defined in
simple-persist to store data in an embedded database. The DAOs defined in
this project understand and return the model objects defined in simple-model.
simple-persist has a direct dependency on simple-model and it depends upon
the Hibernate Annotations present on the model objects.

simple-webapp
The web application project contains two Spring MVC Controller
implementations which use the WeatherService defined in simple-weather

and the DAOs defined in simple-persist. simple-webapp has a direct
dependency on simple-weather and simple-persist; it has a transitive
dependency on simple-model.

simple-command
This module contains a simple command-line tool which can be used to query
the Yahoo! Weather feed. This project contains a class with a static main()

function and interacts with the WeatherService defined in simple-weather and
the DAOs defined in simple-persist. simple-command has a direct
dependency on simple-weather and simple-persist; is has a transitive
dependency on simple-model.

This chapter contains a contrived example simple enough to introduce in a book,
yet complex enough to justify a set of five submodules. Our contrived example has
a model project with five classes, a persistence library with two service classes,
and a weather parsing library with five or six classes, but a real-world system
might have a model project with a hundred objects, several persistence libraries,
and service libraries spanning multiple departments. Although we’ve tried to make
sure that the code contained in this example is straightforward enough to

Multi-module Enterprise Project

105

comprehend in a single sitting, we’ve also gone out of our way to build a modular
project. You might be tempted to look at the examples in this chapter and walk
away with the idea that Maven encourages too much complexity given that our
model project has only five classes. Although using Maven does suggest a certain
level of modularity, do realize that we’ve gone out of our way to complicate our
simple example projects for the purpose of demonstrating Maven’s multimodule
features.

7.1.3. Technology Used in this Example
This chapter's example involves some technology which, while popular, is not
directly related to Maven. These technologies are the Spring Framework and
Hibernate. The Spring Framework is an Inversion of Control (IoC) container and a
set of frameworks that aim to simplify interaction with various J2EE libraries.
Using the Spring Framework as a foundational framework for application
development gives you access to a number of helpful abstractions that can take
much of the meddlesome busywork out of dealing with persistence frameworks
like Hibernate or iBatis or enterprise APIs like JDBC, JNDI, and JMS. The Spring
Framework has grown in popularity over the past few years as a replacement for
the heavy weight enterprise standards coming out of Sun Microsystems. Hibernate
is a widely used Object-Relational Mapping framework which allows you to
interact with a relational database as if it were a collection of Java objects. This
example focuses on building a simple web application and a command-line
application that uses the Spring Framework to expose a set of reusable components
to applications and which also uses Hibernate to persist weather data in an
embedded database.

We’ve decided to include references to these frameworks to demonstrate how one
would construct projects using these technologies when using Maven. Although we
make brief efforts to introduce these technologies throughout this chapter, we will
not go out of our way to fully explain these technologies. For more information
about the Spring Framework, please see the project’s web site at
http://www.springframework.org/. For more information about Hibernate and
Hibernate Annotations, please see the project’s web site at

Multi-module Enterprise Project

106

http://www.springframework.org/

http://www.hibernate.org. This chapter uses Hyper-threaded Structured Query
Language Database (HSQLDB) as an embedded database; for more information
about this database, see the project’s web site at http://hsqldb.org/.

7.2. The Simple Parent Project
This simple-parent project has a pom.xml that references five submodules:
simple-command, simple-model, simple-weather, simple-persist, and
simple-webapp. The top-level pom.xml is shown in Example 7.1, “simple-parent
Project POM”.

Example 7.1. simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Chapter 7 Simple Parent Project</name>

<modules>
<module>simple-command</module>
<module>simple-model</module>
<module>simple-weather</module>
<module>simple-persist</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</pluginManagement>

Multi-module Enterprise Project

107

http://www.hibernate.org
http://hsqldb.org/

</build>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Note
If you are already familiar with Maven POMs, you might notice that this
top-level POM does not define a dependencyManagement element. The
dependencyManagement element allows you to define dependency
versions in a single, top-level POM, and it is introduced in Chapter 8,
Optimizing and Refactoring POMs.

Note the similarities of this parent POM to the parent POM defined in
Example 6.1, “simple-parent Project POM”. The only real difference between
these two POMs is the list of submodules. Where that example only listed two
submodules, this parent POM lists five submodules. The next few sections explore
each of these five submodules in some detail. Because our example uses Java
annotations, we've configured the compiler to target the Java 5 JVM.

7.3. The Simple Model Module
The first thing most enterprise projects need is an object model. An object model
captures the core set of domain objects in any system. A banking system might
have an object model which consists of an Account, Customer, and Transaction

object, or a system to capture and communicate sports scores might have a Team

and a Game object. Whatever it is, there's a good chance that you've modeled the
concepts in your system in an object model. It is a common practice in Maven
projects to separate this project into a separate project which is widely referenced.

Multi-module Enterprise Project

108

In this system we are capturing each query to the Yahoo! Weather feed with a
Weather object which references four other objects. Wind direction, chill, and
speed are stored in a Wind object. Location data including the zip code, city, region,
and country are stored in a Location class. Atmospheric conditions such as the
humidity, maximum visibility, barometric pressure, and whether the pressure is
rising or falling is stored in an Atmosphere class. A textual description of
conditions, the temperature, and the date of the observation is stored in a
Condition class.

Figure 7.2. Simple Object Model for Weather Data

The pom.xml file for this simple model object contains one dependency that bears
some explanation. Our object model is annotated with Hibernate Annotations. We
use these annotations to map the model objects in this model to tables in a
relational database. The dependency is
org.hibernate:hibernate-annotations:3.3.0.ga. Take a look at the pom.xml

shown in Example 7.2, “simple-model pom.xml”, and then look at the next few
examples for some illustrations of these annotations.

Multi-module Enterprise Project

109

Example 7.2. simple-model pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-model</artifactId>
<packaging>jar</packaging>

<name>Simple Object Model</name>

<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
</dependencies>

</project>

In src/main/java/org/sonatype/mavenbook/weather/model, we have
Weather.java, which contains the annotated Weather model object. The Weather

object is a simple Java bean. This means that we have private member variables
like id, location, condition, wind, atmosphere, and date exposed with public
getter and setter methods that adhere to the following pattern: if a property is
named name, there will be a public no-arg getter method named getName(), and
there will be a one-argument setter named setName(String name). Although we
show the getter and setter method for the id property, we’ve omitted most of the
getters and setters for most of the other properties to save a few trees. See
Example 7.3, “Annotated Weather Model Object”.

Example 7.3. Annotated Weather Model Object

Multi-module Enterprise Project

110

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

import java.util.Date;

@Entity
@NamedQueries({

@NamedQuery(name="Weather.byLocation",
query="from Weather w where w.location = :location")

})
public class Weather {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Integer id;

@ManyToOne(cascade=CascadeType.ALL)
private Location location;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Condition condition;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Wind wind;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Atmosphere atmosphere;

private Date date;

public Weather() {}

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

// All getter and setter methods omitted...
}

In the Weather class, we are using Hibernate annotations to provide guidance to the
simple-persist project. These annotations are used by Hibernate to map an object
to a table in a relational database. Although a full explanation of Hibernate
annotations is beyond the scope of this chapter, here is a brief explanation for the
curious. The @Entity annotation marks this class as a persistent entity. We’ve
omitted the @Table annotation on this class, so Hibernate is going to use the name
of the class as the name of the table to map Weather to. The @NamedQueries

annotation defines a query that is used by the WeatherDAO in simple-persist. The

Multi-module Enterprise Project

111

query language in the @NamedQuery annotation is written in something called
Hibernate Query Language (HQL). Each member variable is annotated with
annotations that define the type of column and any relationships implied by that
column:

Id

The id property is annotated with @Id. This marks the id property as the
property that contains the primary key in a database table. The
@GeneratedValue controls how new primary key values are generated. In the
case of id, we’re using the IDENTITY GenerationType, which will use the
underlying database’s identity generation facilities.

Location

Each Weather object instance corresponds to a Location object. A Location

object represents a zip code, and the @ManyToOne makes sure that Weather
objects that point to the same Location object reference the same instance. The
cascade attribute of the @ManyToOne makes sure that we persist a Location

object every time we persist a Weather object.

Condition, Wind, Atmosphere
Each of these objects is mapped as a @OneToOne with the CascadeType of ALL.
This means that every time we save a Weather object, we’ll be inserting a row
into the Weather table, the Condition table, the Wind table, and the Atmosphere

table.

Date

Date is not annotated. This means that Hibernate is going to use all of the
column defaults to define this mapping. The column name is going to be date,
and the column type is going to be the appropriate time to match the Date

object.

Note
If you have a property you wish to omit from a table mapping, you
would annotate that property with @Transient.

Multi-module Enterprise Project

112

Next, take a look at one of the secondary model objects, Condition, shown in
Example 7.4, “simple-model's Condition model object.”. This class also resides in
src/main/java/org/sonatype/mavenbook/weather/model.

Example 7.4. simple-model's Condition model object.

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

@Entity
public class Condition {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Integer id;

private String text;
private String code;
private String temp;
private String date;

@OneToOne(cascade=CascadeType.ALL)
@JoinColumn(name="weather_id", nullable=false)
private Weather weather;

public Condition() {}

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

// All getter and setter methods omitted...
}

The Condition class resembles the Weather class. It is annotated as an @Entity,
and it has similar annotations on the id property. The text, code, temp, and date

properties are all left with the default column settings, and the weather property is
annotated with a @OneToOne annotation and another annotation that references the
associated Weather object with a foreign key column named weather_id.

7.4. The Simple Weather Module
The next module we’re going to examine could be considered something of a

Multi-module Enterprise Project

113

“service.” The Simple Weather module is the module that contains all of the logic
necessary to retrieve and parse the data from the Yahoo! Weather RSS feed.
Although Simple Weather contains three Java classes and one JUnit test, it is going
to present a single component, WeatherService, to both the Simple Web
Application and the Simple Command-line Utility. Very often an enterprise project
will contain several API modules that contain critical business logic or logic that
interacts with external systems. A banking system might have a module that
retrieves and parses data from a third-party data provider, and a system to display
sports scores might interact with an XML feed that presents real-time scores for
basketball or soccer. In Example 7.5, “simple-weather Module POM”, this module
encapsulates all of the network activity and XML parsing that is involved in the
interaction with Yahoo! Weather. Other modules can depend on this module and
simply call out to the retrieveForecast() method on WeatherService, which
takes a zip code as an argument and which returns a Weather object.

Example 7.5. simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Simple Weather API</name>

<dependencies>
<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-model</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>

Multi-module Enterprise Project

114

<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>
<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The simple-weather POM extends the simple-parent POM, sets the packaging
to jar, and then adds the following dependencies:

org.sonatype.mavenbook.ch07:simple-model:1.0

simple-weather parses the Yahoo! Weather RSS feed into a Weather object. It
has a direct dependency on simple-model.

log4j:log4j:1.2.14

simple-weather uses the Log4J library to print log messages.

dom4j:dom4j:1.6.1 and jaxen:jaxen:1.1.1

Both of these dependencies are used to parse the XML returned from Yahoo!
Weather.

org.apache.commons:commons-io:1.3.2 (scope=test)

This test-scoped dependency is used by the YahooParserTest.
Next is the WeatherService class, shown in Example 7.6, “The WeatherService
class”. This class is going to look very similar to the WeatherService class from
Example 6.3, “The WeatherService class”. Although the WeatherService is the
same, there are some subtle differences in this chapter’s example. This version’s
retrieveForecast() method returns a Weather object, and the formatting is going

Multi-module Enterprise Project

115

to be left to the applications that call WeatherService. The other major change is
that the YahooRetriever and YahooParser are both bean properties of the
WeatherService bean.

Example 7.6. The WeatherService class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherService {

private YahooRetriever yahooRetriever;
private YahooParser yahooParser;

public WeatherService() {}

public Weather retrieveForecast(String zip) throws Exception {
// Retrieve Data
InputStream dataIn = yahooRetriever.retrieve(zip);

// Parse DataS
Weather weather = yahooParser.parse(zip, dataIn);

return weather;
}

public YahooRetriever getYahooRetriever() {
return yahooRetriever;

}

public void setYahooRetriever(YahooRetriever yahooRetriever) {
this.yahooRetriever = yahooRetriever;

}

public YahooParser getYahooParser() {
return yahooParser;

}

public void setYahooParser(YahooParser yahooParser) {
this.yahooParser = yahooParser;

}
}

Finally, in this project we have an XML file that is used by the Spring Framework
to create something called an ApplicationContext. First, some explanation: both

Multi-module Enterprise Project

116

of our applications, the web application and the command-line utility, need to
interact with the WeatherService class, and they both do so by retrieving an
instance of this class from a Spring ApplicationContext using the name
weatherService. Our web application uses a Spring MVC controller that is
associated with an instance of WeatherService, and our command-line utility
loads the WeatherService from an ApplicationContext in a static main()

function. To encourage reuse, we’ve included an
applicationContext-weather.xml file in src/main/resources, which is
available on the classpath. Modules that depend on the simple-weather module
can load this application context using the ClasspathXmlApplicationContext in
the Spring Framework. They can then reference a named instance of the
WeatherService named weatherService.

Example 7.7. Spring Application Context for the simple-weather Module

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
default-lazy-init="true">

<bean id="weatherService"
class="org.sonatype.mavenbook.weather.WeatherService">

<property name="yahooRetriever" ref="yahooRetriever"/>
<property name="yahooParser" ref="yahooParser"/>

</bean>

<bean id="yahooRetriever"
class="org.sonatype.mavenbook.weather.YahooRetriever"/>

<bean id="yahooParser"
class="org.sonatype.mavenbook.weather.YahooParser"/>

</beans>

This document defines three beans: yahooParser, yahooRetriever, and
weatherService. The weatherService bean is an instance of WeatherService,
and this XML document populates the yahooParser and yahooRetriever

properties with references to the named instances of the corresponding classes.
Think of this applicationContext-weather.xml file as defining the architecture

Multi-module Enterprise Project

117

of a subsystem in this multi-module project. Projects like simple-webapp and
simple-command can reference this context and retrieve an instance of
WeatherService which already has relationships to instances of YahooRetriever
and YahooParser.

7.5. The Simple Persist Module
This module defines two very simple Data Access Objects (DAOs). A DAO is an
object that provides an interface for persistence operations. In an application that
makes use of an Object-Relational Mapping (ORM) framework such as Hibernate,
DAOs are usually defined around objects. In this project, we are defining two
DAO objects: WeatherDAO and LocationDAO. The WeatherDAO class allows us to
save a Weather object to a database and retrieve a Weather object by id, and to
retrieve Weather objects that match a specific Location. The LocationDAO has a
method that allows us to retrieve a Location object by zip code. First, let’s take a
look at the simple-persist POM in Example 7.8, “simple-persist POM”.

Example 7.8. simple-persist POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-persist</artifactId>
<packaging>jar</packaging>

<name>Simple Persistence API</name>

<dependencies>
<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-model</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>

Multi-module Enterprise Project

118

<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
</dependencies>

</project>

This POM file references simple-parent as a parent POM, and it defines a few
dependencies. The dependencies listed in simple-persist's POM are:

org.sonatype.mavenbook.ch07:simple-model:1.0

Just like the simple-weather module, this persistence module references the
core model objects defined in simple-model.

org.hibernate:hibernate:3.2.5.ga

We define a dependency on Hibernate version 3.2.5.ga, but notice that we’re
excluding a dependency of Hibernate. We’re doing this because the
javax.transaction:javax dependency is not available in the public Maven
repository. This dependency happens to be one of those Sun dependencies that

Multi-module Enterprise Project

119

has not yet made it into the free central Maven repository. To avoid an
annoying message telling us to go download these nonfree dependencies, we
simple exclude this dependency from Hibernate and add a dependency on...

javax.servlet:servlet-api:2.4

Since this project contains a Servlet, we need to include the Servlet API version
2.4.

org.springframework:spring:2.0.7

This includes the entire Spring Framework as a dependency.

Note
It is generally a good practice to depend on only the components of
Spring you happen to be using. The Spring Framework project has
been nice enough to create focused artifacts such as
spring-hibernate3.

Why depend on Spring? When it comes to Hibernate integration, Spring allows us
to leverage helper classes such as HibernateDaoSupport. For an example of what
is possible with the help of HibernateDaoSupport, take a look at the code for the
WeatherDAO in Example 7.9, “simple-persist's WeatherDAO Class”.

Example 7.9. simple-persist's WeatherDAO Class

package org.sonatype.mavenbook.weather.persist;

import java.util.ArrayList;
import java.util.List;

import org.hibernate.Query;
import org.hibernate.Session;
import org.springframework.orm.hibernate3.HibernateCallback;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherDAO extends HibernateDaoSupport# {

public WeatherDAO() {}

Multi-module Enterprise Project

120

public void save(Weather weather) {#
getHibernateTemplate().save(weather);

}

public Weather load(Integer id) {#
return (Weather) getHibernateTemplate().load(Weather.class, id);

}

@SuppressWarnings("unchecked")
public List<Weather> recentForLocation(final Location location) {
return (List<Weather>) getHibernateTemplate().execute(

new HibernateCallback() {#
public Object doInHibernate(Session session) {

Query query = getSession().getNamedQuery("Weather.byLocation");
query.setParameter("location", location);
return new ArrayList<Weather>(query.list());

}
});

}
}

That's it. No really, you are done writing a class that can insert new rows, select by
primary key, and find all rows in Weather that join to an id in the Location table.
Clearly, we can't stop this book and insert the five hundred pages it would take to
get you up to speed on the intricacies of Hibernate, but we can do some very quick
explanation:

❶ This class extends HibernateDaoSupport. What this means is that the class is
going to be associated with a Hibernate SessionFactory which it is going to
use to create Hibernate Session objects. In Hibernate, every operation goes
through a Session object, a Session mediates access to the underlying
database and takes care of managing the connection to the JDBC
DataSource. Extending HibernateDaoSupport also means that we can access
the HibernateTemplate using getHibernateTemplate(). For an example of
what can be done with the HibernateTemplate...

❷ The save() method takes an instance of Weather and calls the save()

method on a HibernateTemplate. The HibernateTemplate simplifies calls to
common Hibernate operations and converts any database specific exceptions
to runtime exceptions. Here we call out to save() which inserts a new record
into the Weather table. Alternatives to save() are update() which updates an

Multi-module Enterprise Project

121

existing row, or saveOrUpdate() which would either save or update
depending on the presence of a non-null id property in Weather.

❸ The load() method, once again, is a one-liner that just calls a method on an
instance of HibernateTemplate. load() on HibernateTemplate takes a
Class object and a Serializable object. In this case, the Serializable

corresponds to the id value of the Weather object to load.
❹ This last method recentForLocation() calls out to a NamedQuery defined in

the Weather model object. If you can think back that far, the Weather model
object defined a named query "Weather.byLocation" with a query of "from
Weather w where w.location = :location". We're loading this
NamedQuery using a reference to a Hibernate Session object inside a
HibernateCallback which is executed by the execute() method on
HibernateTemplate. You can see in this method that we're populating the
named parameter location with the parameter passed in to the
recentForLocation() method.

Now is a good time for some clarification. HibernateDaoSupport and
HibernateTemplate are classes from the Spring Framework. They were created by
the Spring Framework to make writing Hibernate DAO objects painless. To
support this DAO, we’ll need to do some configuration in the simple-persist

Spring ApplicationContext definition. The XML document shown in
Example 7.10, “Spring Application Context for simple-persist” is stored in
src/main/resources in a file named applicationContext-persist.xml.

Example 7.10. Spring Application Context for simple-persist

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"
default-lazy-init="true">

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean">

<property name="annotatedClasses">
<list>

<value>org.sonatype.mavenbook.weather.model.Atmosphere</value>
<value>org.sonatype.mavenbook.weather.model.Condition</value>
<value>org.sonatype.mavenbook.weather.model.Location</value>
<value>org.sonatype.mavenbook.weather.model.Weather</value>
<value>org.sonatype.mavenbook.weather.model.Wind</value>

Multi-module Enterprise Project

122

</list>
</property>
<property name="hibernateProperties">

<props>
<prop key="hibernate.show_sql">false</prop>
<prop key="hibernate.format_sql">true</prop>
<prop key="hibernate.transaction.factory_class">
org.hibernate.transaction.JDBCTransactionFactory

</prop>
<prop key="hibernate.dialect">
org.hibernate.dialect.HSQLDialect

</prop>
<prop key="hibernate.connection.pool_size">0</prop>
<prop key="hibernate.connection.driver_class">
org.hsqldb.jdbcDriver

</prop>
<prop key="hibernate.connection.url">
jdbc:hsqldb:data/weather;shutdown=true

</prop>
<prop key="hibernate.connection.username">sa</prop>
<prop key="hibernate.connection.password"></prop>
<prop key="hibernate.connection.autocommit">true</prop>
<prop key="hibernate.jdbc.batch_size">0</prop>

</props>
</property>

</bean>

<bean id="locationDAO"
class="org.sonatype.mavenbook.weather.persist.LocationDAO">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="weatherDAO"
class="org.sonatype.mavenbook.weather.persist.WeatherDAO">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

</beans>

In this application context, we're accomplishing a few things. The sessionFactory

bean is the bean from which the DAOs retrieve Hibernate Session objects. This
bean is an instance of AnnotationSessionFactoryBean and is supplied with a list
of annotatedClasses. Note that the list of annotated classes is the list of classes
defined in our simple-model module. Next, the sessionFactory is configured
with a set of Hibernate configuration properties (hibernateProperties). In this
example, our Hibernate properties define a number of settings:

Multi-module Enterprise Project

123

hibernate.dialect

This setting controls how SQL is to be generated for our database. Since we are
using the HSQLDB database, our database dialect is set to
org.hibernate.dialect.HSQLDialect. Hibernate has dialects for all major
databases such as Oracle, MySQL, Postgres, and SQL Server.

hibernate.connection.*

In this example, we’re configuring the JDBC connection properties from the
Spring configuration. Our applications are configured to run against a HSQLDB
in the ./data/weather directory. In a real enterprise application, it is more
likely you would use something like JNDI to externalize database configuration
from your application’s code.

Lastly, in this bean definition file, both of the simple-persist DAO objects are
created and given a reference to the sessionFactory bean just defined. Just like
the Spring application context in simple-weather, this
applicationContext-persist.xml file defines the architecture of a submodule in
a larger enterprise design. If you were working with a larger collection of
persistence classes, you might find it useful to capture them in an application
context which is separate from your application.

There’s one last piece of the puzzle in simple-persist. Later in this chapter,
we’re going to see how we can use the Maven Hibernate3 plugin to generate our
database schema from the annotated model objects. For this to work properly, the
Maven Hibernate3 plugin needs to read the JDBC connection configuration
parameters, the list of annotated classes, and other Hibernate configuration from a
file named hibernate.cfg.xml in src/main/resources. The purpose of this file
(which duplicates some of the configuration in
applicationContext-persist.xml) is to allow us to leverage the Maven
Hibernate3 plugin to generate Data Definition Language (DDL) from nothing more
than our annotations. See Example 7.11, “simple-persist hibernate.cfg.xml”.

Example 7.11. simple-persist hibernate.cfg.xml

<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"

Multi-module Enterprise Project

124

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>

<!-- Database connection settings -->
<property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:data/weather</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>
<property name="connection.shutdown">true</property>

<!-- JDBC connection pool (use the built-in one) -->
<property name="connection.pool_size">1</property>

<!-- Enable Hibernate's automatic session context management -->
<property name="current_session_context_class">thread</property>

<!-- Disable the second-level cache -->
<property name="cache.provider_class">
org.hibernate.cache.NoCacheProvider

</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

<!-- disable batching so HSQLDB will propagate errors correctly. -->
<property name="jdbc.batch_size">0</property>

<!-- List all the mapping documents we're using -->
<mapping class="org.sonatype.mavenbook.weather.model.Atmosphere"/>
<mapping class="org.sonatype.mavenbook.weather.model.Condition"/>
<mapping class="org.sonatype.mavenbook.weather.model.Location"/>
<mapping class="org.sonatype.mavenbook.weather.model.Weather"/>
<mapping class="org.sonatype.mavenbook.weather.model.Wind"/>

</session-factory>
</hibernate-configuration>

The contents of Example 7.10, “Spring Application Context for simple-persist”
and Example 7.1, “simple-parent Project POM” are redundant. While the Spring
Application Context XML is going to be used by the web application and the
command-line application, the hibernate.cfg.xml exists only to support the
Maven Hibernate3 plugin. Later in this chapter, we'll see how to use this
hibernate.cfg.xml and the Maven Hibernate3 plugin to generate a database

Multi-module Enterprise Project

125

schema based on the annotated object model defined in simple-model. This
hibernate.cfg.xml file is the file that will configure the JDBC connection
properties and enumerate the list of annotated model classes for the Maven
Hibernate3 plugin.

7.6. The Simple Web Application Module
The web application is defined in a simple-webapp project. This simple web
application project is going to define two Spring MVC Controllers:
WeatherController and HistoryController. Both of these controllers are going
to reference components defined in simple-weather and simple-persist. The
Spring container is configured in this application’s web.xml, which references the
applicationContext-weather.xml file in simple-weather and the
applicationContext-persist.xml file in simple-persist. The component
architecture of this simple web application is shown in Figure 7.3, “Spring MVC
Controllers Referencing Components in simple-weather and simple-persist.”.

Multi-module Enterprise Project

126

Figure 7.3. Spring MVC Controllers Referencing Components in
simple-weather and simple-persist.

The POM for simple-webapp is shown in Example 7.12, “POM for
simple-webapp”.

Example 7.12. POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<name>Simple Web Application</name>
<dependencies>

<dependency> #
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-persist</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>

Multi-module Enterprise Project

127

</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin> #

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<dependencies>#

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId> #
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.0</version>
<configuration>

<components>
<component>

<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation> #

</component>
</components>

</configuration>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

As this book progresses and the examples become more and more substantial,
you’ll notice that the pom.xml begins to take on some weight. In this POM, we’re
configuring four dependencies and two plugins. Let’s go through this POM in
detail and dwell on some of the important configuration points:

❶ This simple-webapp project defines four dependencies: the Servlet 2.4
specification, the simple-weather service library, the simple-persist
persistence library, and the entire Spring Framework 2.0.7.

Multi-module Enterprise Project

128

❷ The Maven Jetty plugin couldn’t be easier to add to this project; we simply
add a plugin element that references the appropriate groupId and
artifactId. The fact that this plugin is so trivial to configure means that the
plugin developers did a good job of providing adequate defaults that don’t
need to be overridden in most cases. If you did need to override the
configuration of the Jetty plugin, you would do so by providing a
configuration element.

❸ In our build configuration, we're going to be configuring the Maven
Hibernate3 Plugin to hit an embedded HSQLDB instance. For the Maven
Hibernate 3 plugin to successfully connect to this database using JDBC, the
plugin will need reference the HSQLDB JDBC driver on the classpath. To
make a dependency available for a plugin, we add a dependency declaration
right inside plugin declaration. In this case, we're referencing
hsqldb:hsqldb:1.8.0.7. The Hibernate plugin also needs the JDBC driver to
create the database, so we have also added this dependency to its
configuration.

❹ The Maven Hibernate plugin is when this POM starts to get interesting. In the
next section, we’re going to run the hbm2ddl goal to generate a HSQLDB
database. In this pom.xml, we’re including a reference to version 2.0 of the
hibernate3-maven-plugin hosted by the Codehaus Mojo plugin.

❺ The Maven Hibernate3 plugin has different ways to obtain Hibernate
mapping information that are appropriate for different usage scenarios of the
Hibernate3 plugin. If you were using Hibernate Mapping XML (.hbm.xml)
files, and you wanted to generate model classes using the hbm2java goal, you
would set your implementation to configuration. If you were using the
Hibernate3 plugin to reverse engineer a database to produce .hbm.xml files
and model classes from an existing database, you would use an
implementation of jdbcconfiguration. In this case, we’re simply using an
existing annotated object model to generate a database. In other words, we
have our Hibernate mapping, but we don’t yet have a database. In this usage
scenario, the appropriate implementation value is
annotationconfiguration. The Maven Hibernate3 plugin is discussed in
more detail in the later section Section 7.7, “Running the Web Application”.”

Multi-module Enterprise Project

129

Note
A common mistake is to use the extensions configuration to add
dependencies required by a plugin. This is strongly discouraged as the
extensions can cause classpath pollution across your project, among other
nasty side-effects. Additionally, the extensions behavior is being
reworked in 2.1 and you'll eventually need to change it anway. The only
normal use for extensions is to define new wagon implementations

Next, we turn our attention to the two Spring MVC controllers that will handle all
of the requests. Both of these controllers reference the beans defined in
simple-weather and simple-persist.

Example 7.13. simple-webapp WeatherController

package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;
import org.sonatype.mavenbook.weather.WeatherService;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;

public class WeatherController implements Controller {

private WeatherService weatherService;
private WeatherDAO weatherDAO;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception {

String zip = request.getParameter("zip");
Weather weather = weatherService.retrieveForecast(zip);
weatherDAO.save(weather);
return new ModelAndView("weather", "weather", weather);

}

public WeatherService getWeatherService() {
return weatherService;

}

public void setWeatherService(WeatherService weatherService) {
this.weatherService = weatherService;

}

Multi-module Enterprise Project

130

public WeatherDAO getWeatherDAO() {
return weatherDAO;

}

public void setWeatherDAO(WeatherDAO weatherDAO) {
this.weatherDAO = weatherDAO;

}
}

WeatherController implements the Spring MVC Controller interface that
mandates the presence of a handleRequest() method with the signature shown in
the example. If you look at the meat of this method, you’ll see that it invokes the
retrieveForecast() method on the weatherService instance variable. Unlike the
previous chapter, which had a Servlet that instantiated the WeatherService class,
the WeatherController is a bean with a weatherService property. The Spring
IoC container is responsible for wiring the controller to the weatherService

component. Also notice that we’re not using the WeatherFormatter in this Spring
controller implementation; instead, we’re passing the Weather object returned by
retrieveForecast() to the constructor of ModelAndView. This ModelAndView
class is going to be used to render a Velocity template, and this template will have
references to a ${weather} variable. The weather.vm template is stored in
src/main/webapp/WEB-INF/vm and is shown in ???.

In the WeatherController, before we render the output of the forecast, we pass the
Weather object returned by the WeatherService to the save() method on
WeatherDAO. Here we are saving this Weather object—using Hibernate—to an
HSQLDB database. Later, in HistoryController, we will see how we can retrieve
a history of weather forecasts that were saved by the WeatherController.

Example 7.14. weather.vm template rendered by WeatherController

Current Weather Conditions for:
${weather.location.city}, ${weather.location.region},
${weather.location.country}

Temperature: ${weather.condition.temp}
Condition: ${weather.condition.text}
Humidity: ${weather.atmosphere.humidity}
Wind Chill: ${weather.wind.chill}
Date: ${weather.date}

Multi-module Enterprise Project

131

The syntax for this Velocity template is straightforward, variables are referenced
using ${} notation. The expression between the curly braces references a property,
or a property of a property on the weather variable which was passed to this
template by the WeatherController.

The HistoryController is used to retrieve recent forecasts that have been
requested by the WeatherController. Whenever we retrieve a forecast from the
WeatherController, that controller saves the Weather object to the database via
the WeatherDAO. WeatherDAO then uses Hibernate to dissect the Weather object into
a series of rows in a set of related database tables. The HistoryController is
shown in Example 7.15, “simple-web HistoryController”.

Example 7.15. simple-web HistoryController

package org.sonatype.mavenbook.web;

import java.util.*;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import org.sonatype.mavenbook.weather.model.*;
import org.sonatype.mavenbook.weather.persist.*;

public class HistoryController implements Controller {

private LocationDAO locationDAO;
private WeatherDAO weatherDAO;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception {

String zip = request.getParameter("zip");
Location location = locationDAO.findByZip(zip);
List<Weather> weathers = weatherDAO.recentForLocation(location);

Map<String,Object> model = new HashMap<String,Object>();
model.put("location", location);
model.put("weathers", weathers);

return new ModelAndView("history", model);
}

public WeatherDAO getWeatherDAO() {
return weatherDAO;

Multi-module Enterprise Project

132

}

public void setWeatherDAO(WeatherDAO weatherDAO) {
this.weatherDAO = weatherDAO;

}

public LocationDAO getLocationDAO() {
return locationDAO;

}

public void setLocationDAO(LocationDAO locationDAO) {
this.locationDAO = locationDAO;

}
}

The HistoryController is wired to two DAO objects defined in simple-persist.
The DAOs are bean properties of the HistoryController: WeatherDAO and
LocationDAO. The goal of the HistoryController is to retrieve a List of Weather
objects which correspond to the zip parameter. When the WeatherDAO saves the
Weather object to the database, it doesn't just store the zip code, it stores a
Location object which is related to the Weather object in the simple-model. To
retrieve a List of Weather objects, the HistoryController first retrieves the
Location object that corresponds to the zip parameter. It does this by invoking the
findByZip() method on LocationDAO.

Once the Location object has been retrieved, the HistoryController will then
attempt to retrieve recent Weather objects that match the given Location. Once the
List<Weather> has been retrieved, a HashMap is created to hold two variables for
the history.vm Velocity template shown in ???.

Example 7.16. history.vm rendered by the HistoryController

Weather History for: ${location.city}, ${location.region}, ${location.country}

#foreach($weather in $weathers)

Temperature: $weather.condition.temp
Condition: $weather.condition.text
Humidity: $weather.atmosphere.humidity
Wind Chill: $weather.wind.chill

Multi-module Enterprise Project

133

Date: $weather.date

#end

The history.vm template in src/main/webapp/WEB-INF/vm references the
location variable to print out information about the location of the forecasts
retrieved from the WeatherDAO. This template then uses a Velocity control
structure, #foreach, to loop through each element in the weathers variable. Each
element in weathers is assigned to a variable named weather and the template
between #foreach and #end is rendered for each forecast.

You've seen these Controller implementations, and you've seen that they
reference other beans defined in simple-weather and simple-persist, they
respond to HTTP requests, and they yield control to some mysterious templating
system that knows how to render Velocity templates. All of this magic is
configured in a Spring application context in
src/main/webapp/WEB-INF/weather-servlet.xml. This XML configures the
controllers and references other Spring-managed beans, it is loaded by a
ServletContextListener which is also configured to load the
applicationContext-weather.xml and applicationContext-persist.xml from
the classpath. Let's take a closer look at the weather-servlet.xml shown in ???.

Example 7.17. Spring Controller configuration weather-servlet.xml

<beans>
<bean id="weatherController" #

class="org.sonatype.mavenbook.web.WeatherController">
<property name="weatherService" ref="weatherService"/>
<property name="weatherDAO" ref="weatherDAO"/>

</bean>

<bean id="historyController"
class="org.sonatype.mavenbook.web.HistoryController">

<property name="weatherDAO" ref="weatherDAO"/>
<property name="locationDAO" ref="locationDAO"/>

</bean>

<!-- you can have more than one handler defined -->
<bean id="urlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="urlMap">
<map>

Multi-module Enterprise Project

134

<entry key="/weather.x"> #
<ref bean="weatherController" />

</entry>
<entry key="/history.x">

<ref bean="historyController" />
</entry>

</map>
</property>

</bean>

<bean id="velocityConfig" #
class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">

<property name="resourceLoaderPath" value="/WEB-INF/vm/"/>
</bean>

<bean id="viewResolver" #
class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">

<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".vm"/>
<property name="exposeSpringMacroHelpers" value="true"/>

</bean>
</beans>

❶ The weather-servlet.xml defines the two controllers as Spring-managed
beans. weatherController has two properties which are references to
weatherService and weatherDAO. historyController references the beans
weatherDAO and locationDAO. When this ApplicationContext is created, it
is created in an environment that has access to the ApplicationContexts
defined in both simple-persist and simple-weather. In ??? you will see
how Spring is configured to merge components from multiple Spring
configuration files.

❷ The urlMapping bean defines the URL patterns which invoke the
WeatherController and the HistoryController. In this example, we are
using the SimpleUrlHandlerMapping and mapping /weather.x to
WeatherController and /history.x to HistoryController.

❸ Since we are using the Velocity templating engine, we will need to pass in
some configuration options. In the velocityConfig bean, we are telling
Velocity to look for all templates in the /WEB-INF/vm directory.

❹ Last, the viewResolver is configured with the class VelocityViewResolver.

Multi-module Enterprise Project

135

There are a number of ViewResolver implementations in Spring from a
standard ViewResolver to render JSP or JSTL pages to a resolver which can
render Freemarker templates. In this example, we're configuring the Velocity
templating engine and setting the default prefix and suffix which will be
automatically appended to the names of the template passed to
ModelAndView.

Finally, the simple-webapp project was a web.xml which provides the basic
configuration for the web application. The web.xml file is shown in ???.

Example 7.18. web.xml for simple-webapp

<web-app id="simple-webapp" version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<display-name>Simple Web Application</display-name>

<context-param> #
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:applicationContext-weather.xml
classpath:applicationContext-persist.xml

</param-value>
</context-param>

<context-param> #
<param-name>log4jConfigLocation</param-name>
<param-value>/WEB-INF/log4j.properties</param-value>

</context-param>

<listener> #
<listener-class>
org.springframework.web.util.Log4jConfigListener

</listener-class>
</listener>

<listener>
<listener-class> #
org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

<servlet> #
<servlet-name>weather</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet

</servlet-class>

Multi-module Enterprise Project

136

<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping> #
<servlet-name>weather</servlet-name>
<url-pattern>*.x</url-pattern>

</servlet-mapping>
</web-app>

❶ Here's a bit of magic which allows us to reuse the
applicationContext-weather.xml and applicationContext-persist.xml

in this project. The contextConfigLocation is used by the
ContextLoaderListener to create an ApplicationContext. When the
weather servlet is created, the weather-servlet.xml from ??? is going to be
evaluated with the ApplicationContext created from this
contextConfigLocation. In this way, you can define a set of beans in
another project and you can reference these beans via the classpath. Since the
simple-persist and simple-weather JARs are going to be in WEB-INF/lib,
all we do is use the classpath: prefix to reference these files. (Another
option would have been to copy these files to /WEB-INF and reference them
with something like /WEB-INF/applicationContext-persist.xml).

❷ The log4jConfigLocation is used to tell the Log4JConfigListener where to
look for Log4J logging configuration. In this example, we tell Log4J to look
in /WEB-INF/log4j.properties.

❸ This makes sure that the Log4J system is configured when the web
application starts. It is important to put this Log4JConfigListener before the
ContextLoaderListener; otherwise, you may miss important logging
messages which point to a problem preventing application startup. If you
have a particularly large set of beans managed by Spring, and one of them
happens to blow up on application startup, your application will fail. If you
have logging initialized before Spring starts, you might have a chance to
catch a warning or an error. If you don't have logging initialized before
Spring starts up, you'll have no idea why your application refuses to start.

❹ The ContextLoaderListener is essentially the Spring container. When the
application starts, this listener will build an ApplicationContext from the

Multi-module Enterprise Project

137

contextConfigLocation parameter.
❺ We define a Spring MVC DispatcherServlet with a name of weather. This

will cause Spring to look for a Spring configuration file in
/WEB-INF/weather-servlet.xml. You can have as many
DispatcherServlets as you need, a DispatcherServlet can contain one or
more Spring MVC Controller implementations.

❻ All requests ending in .x will be routed to the weather servlet. Note that the
.x extension has no particular meaning, it is an arbitrary choice and you can
use whatever URL pattern you like.

7.7. Running the Web Application
To run the web application, you’ll first need to build the database using the
Hibernate3 plugin. To do this, run the following from the simple-webapp project
directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] --
[INFO] Building Chapter 7 Simple Web Application
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] --
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export complete
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Once you've done this, there should be a ${basedir}/data directory which will
contain the HSQLDB database. You can then start the web application with:

$ mvn jetty:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'jetty'.
[INFO] --
[INFO] Building Chapter 7 Simple Web Application
[INFO] task-segment: [jetty:run]
[INFO] --
[INFO] Preparing jetty:run
...

Multi-module Enterprise Project

138

[INFO] [jetty:run]
[INFO] Configuring Jetty for project: Chapter 7 Simple Web Application
...
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Starting jetty 6.1.7 ...
2008-03-25 10:28:03.639::INFO: jetty-6.1.7
...
2147 INFO DispatcherServlet - FrameworkServlet 'weather': \

initialization completed in 1654 ms
2008-03-25 10:28:06.341::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty is started, you can load
http://localhost:8080/simple-webapp/weather.x?zip=60202 and you should see the
weather for Evanston, IL in your web browser. Change the ZIP code and you
should be able to get your own weather report.

Current Weather Conditions for: Evanston, IL, US

* Temperature: 42
* Condition: Partly Cloudy
* Humidity: 55
* Wind Chill: 34
* Date: Tue Mar 25 10:29:45 CDT 2008

7.8. The Simple Command Module
The simple-command project is a command-line version of the simple-webapp. It
is a utility that relies on the same dependencies: simple-persist and
simple-weather. Instead of interacting with this application via a web browser,
you would run the simple-command utility from the command-line.

Multi-module Enterprise Project

139

http://localhost:8080/simple-webapp/weather.x?zip=60202

Figure 7.4. Command line application referencing simple-weather and
simple-persist

Example 7.19. POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-command</artifactId>
<packaging>jar</packaging>
<name>Simple Command Line Tool</name>

<build>
<finalName>${project.artifactId}</finalName>

Multi-module Enterprise Project

140

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>

</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>

<components>
<component>

<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>

<dependencies>
<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>

Multi-module Enterprise Project

141

<dependency>
<groupId>org.sonatype.mavenbook.ch07</groupId>
<artifactId>simple-persist</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</project>

This POM creates an JAR file which will contain the
org.sonatype.mavenbook.weather.Main class shown in Example 7.20, “The
Main class for simple-command”. In this POM we configure the Maven Assembly
plugin to use a built-in assembly descriptor named jar-with-dependencies which
creates a single JAR file containing all the bytecode a project needs to execute
including the bytecode from the project you are building and all the dependency
bytecode.

Example 7.20. The Main class for simple-command

package org.sonatype.mavenbook.weather;

import java.util.List;

import org.apache.log4j.PropertyConfigurator;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.LocationDAO;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;

public class Main {

private WeatherService weatherService;
private WeatherDAO weatherDAO;
private LocationDAO locationDAO;

Multi-module Enterprise Project

142

public static void main(String[] args) throws Exception {
// Configure Log4J
PropertyConfigurator.configure(Main.class.getClassLoader().getResource(

"log4j.properties"));

// Read the Zip Code from the Command-line (if none supplied, use 60202)
String zipcode = "60202";
try {
zipcode = args[0];

} catch (Exception e) {
}

// Read the Operation from the Command-line (if none supplied use weather)
String operation = "weather";
try {
operation = args[1];

} catch (Exception e) {
}

// Start the program
Main main = new Main(zipcode);

ApplicationContext context =
new ClassPathXmlApplicationContext(

new String[] { "classpath:applicationContext-weather.xml",
"classpath:applicationContext-persist.xml" });

main.weatherService = (WeatherService) context.getBean("weatherService");
main.locationDAO = (LocationDAO) context.getBean("locationDAO");
main.weatherDAO = (WeatherDAO) context.getBean("weatherDAO");
if(operation.equals("weather")) {
main.getWeather();

} else {
main.getHistory();

}
}

private String zip;

public Main(String zip) {
this.zip = zip;

}

public void getWeather() throws Exception {
Weather weather = weatherService.retrieveForecast(zip);
weatherDAO.save(weather);
System.out.print(new WeatherFormatter().formatWeather(weather));

}

public void getHistory() throws Exception {
Location location = locationDAO.findByZip(zip);
List<Weather> weathers = weatherDAO.recentForLocation(location);
System.out.print(new WeatherFormatter().formatHistory(location, weathers));

Multi-module Enterprise Project

143

}
}

The Main class has a reference to WeatherDAO, LocationDAO, and WeatherService.
The static main() method in this class:

• Reads the Zip Code from the first command line argument

• Reads the Operation from the second command line argument. If the
operation is "weather", the latest weather will be retrieved from the web
service. If the operation is "history", the program will fetch historical
weather records from the local database.

• Loads a Spring ApplicationContext using two XML files loaded from
simple-persist and simple-weather

• Creates an instance of Main

• Populates the weatherService, weatherDAO, and locationDAO with beans
from the Spring ApplicationContext

• Runs the appropriate method getWeather() or getHistory() depending on
the specified operation.

In the web application we use Spring VelocityViewResolver to render a Velocity
template. In the stand-alone implementation, we need to write a simple class which
renders our weather data with a Velocity template. Example 7.21,
“WeatherFormatter renders weather data using a Velocity template” is a listing of
the WeatherFormatter, a class with two methods that render the weather report
and the weather history.

Example 7.21. WeatherFormatter renders weather data using a Velocity
template

package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;

Multi-module Enterprise Project

144

import java.io.StringWriter;
import java.util.List;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherFormatter {

private static Logger log = Logger.getLogger(WeatherFormatter.class);

public String formatWeather(Weather weather) throws Exception {
log.info("Formatting Weather Data");
Reader reader =
new InputStreamReader(getClass().getClassLoader().

getResourceAsStream("weather.vm"));
VelocityContext context = new VelocityContext();
context.put("weather", weather);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}

public String formatHistory(Location location, List<Weather> weathers)
throws Exception {

log.info("Formatting History Data");
Reader reader =
new InputStreamReader(getClass().getClassLoader().

getResourceAsStream("history.vm"));
VelocityContext context = new VelocityContext();
context.put("location", location);
context.put("weathers", weathers);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}
}

The weather.vm template simply prints the zip code's city, country, and region as
well as the current temperature. The history.vm template prints the location and
then iterates through the weather forecast records stored in the local database. Both
of these templates are in ${basedir}/src/main/resources.

Example 7.22. The weather.vm Velocity template

Multi-module Enterprise Project

145

**
Current Weather Conditions for:

${weather.location.city},
${weather.location.region},
${weather.location.country}

**

* Temperature: ${weather.condition.temp}
* Condition: ${weather.condition.text}
* Humidity: ${weather.atmosphere.humidity}
* Wind Chill: ${weather.wind.chill}
* Date: ${weather.date}

Example 7.23. The history.vm Velocity template

Weather History for:
${location.city},
${location.region},
${location.country}

#foreach($weather in $weathers)
**
* Temperature: $weather.condition.temp
* Condition: $weather.condition.text
* Humidity: $weather.atmosphere.humidity
* Wind Chill: $weather.wind.chill
* Date: $weather.date
#end

7.9. Running the Simple Command
The simple-command project is configured to create a single JAR containing the
bytecode of the project and all of the bytecode from the dependencies. To create
this assembly, run the assembly goal of the Maven Assembly plugin from the
simple-command project directory:

$ mvn assembly:assembly
[INFO] --
[INFO] Building Chapter 7 Simple Command Line Tool
[INFO] task-segment: [assembly:assembly] (aggregator-style)
[INFO] --

Multi-module Enterprise Project

146

[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [surefire:test]
...
[INFO] [jar:jar]
[INFO] Building jar: .../simple-parent/simple-command/target/simple-command.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: .../.m2/repository/.../simple-weather-1-SNAPSHOT.jar into \

/tmp/archived-file-set.93251505.tmp
[INFO] Expanding: .../.m2/repository/.../simple-model-1-SNAPSHOT.jar into \

/tmp/archived-file-set.2012480870.tmp
[INFO] Expanding: .../.m2/repository/../hibernate-3.2.5.ga.jar into \

/tmp/archived-file-set.1296516202.tmp
... skipping 25 lines of dependency unpacking ...
[INFO] Expanding: .../.m2/repository/.../velocity-1.5.jar into /tmp/archived-file-set.379482226.tmp
[INFO] Expanding: .../.m2/repository/.../commons-lang-2.1.jar into \

/tmp/archived-file-set.1329200163.tmp
[INFO] Expanding: .../.m2/repository/.../oro-2.0.8.jar into /tmp/archived-file-set.1993155327.tmp
[INFO] Building jar: .../simple-parent/simple-command/target/simple-command-jar-with-dependencies.jar

The build progresses through the lifecycle compiling bytecode, running tests, and
finally building a JAR for the project. Then the assembly:assembly goal creates a
JAR with dependencies by unpacking all of the dependencies to temporary
directories and then collecting all of the bytecode into a single JAR in target/

named simple-command-jar-with-dependencies.jar. This "uber" JAR weighs in
at 15 MB.

Before you run the command-line tool, you will need to invoke the hbm2ddl goal
of the Hibernate3 plugin to create the HSQLDB database. Do this by running the
following command from the simple-command directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] --
[INFO] Building Chapter 7 Simple Command Line Tool
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] --
[INFO] Preparing hibernate3:hbm2ddl
...

Multi-module Enterprise Project

147

10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export complete
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Once you run this, you should see a data/ directory under simple-command. This
data/ directory holds the HSQLDB database. To run the command-line weather
forecaster, run the following from the simple-command/ project directory:

$ java -cp target/simple-command-jar-with-dependencies.jar \
org.sonatype.mavenbook.weather.Main 60202

2321 INFO YahooRetriever - Retrieving Weather Data
2489 INFO YahooParser - Creating XML Reader
2581 INFO YahooParser - Parsing XML Response
2875 INFO WeatherFormatter - Formatting Weather Data
**
Current Weather Conditions for:

Evanston,
IL,
US

**

* Temperature: 75
* Condition: Partly Cloudy
* Humidity: 64
* Wind Chill: 75
* Date: Wed Aug 06 09:35:30 CDT 2008

To run a history query, execute the following command:

$ java -cp target/simple-command-jar-with-dependencies.jar \
org.sonatype.mavenbook.weather.Main 60202 history

2470 INFO WeatherFormatter - Formatting History Data
Weather History for:
Evanston, IL, US

**
* Temperature: 39
* Condition: Heavy Rain
* Humidity: 93
* Wind Chill: 36
* Date: 2007-12-02 13:45:27.187
**
* Temperature: 75
* Condition: Partly Cloudy
* Humidity: 64
* Wind Chill: 75
* Date: 2008-08-06 09:24:11.725
**
* Temperature: 75

Multi-module Enterprise Project

148

* Condition: Partly Cloudy
* Humidity: 64
* Wind Chill: 75
* Date: 2008-08-06 09:27:28.475

7.10. Conclusion
We've spent a great deal of time on topics not directly related Maven to get this far.
We've done this to present a complete and meaningful example project which you
can use to implement real-world systems. We didn't take any short-cuts to produce
slick, canned results quickly, and we're not going to dazzle you with some Ruby on
Rails-esque wizardry and lead you to believe that you can create a finished Java
Enterprise application in "10 easy minutes!" There's too much of this in the market,
there are too many people trying to sell you the easiest framework that requires
zero investment of time or attention. What we're trying to do in this chapter is
present the entire picture, the entire ecosystem of a multi-module build. What
we've done is present Maven in the context of a application which resembles
something you could see in the wild—not the fast-food, 10 minute screen-cast that
slings mud at Apache Ant and tries to convince you to adopt Apache Maven.

If you walk away from this chapter wondering what it has to do with Maven, we've
succeeded. We present a complex set of projects, using popular frameworks, and
we tie them together using declarative builds. The fact that more than 60% of this
chapter was spent explaining Spring and Hibernate should tell you that Maven, for
the most part, stepped out of the way. It worked. It allowed us to focus on the
application itself, not on the build process. Instead of spending time discussing
Maven, and the work you would have to do to "build a build" that integrated with
Spring and Hibernate, we talked almost exclusively about the technologies used in
this contrived project. If you start to use Maven, and you take the time to learn it,
you really do start to benefit from the fact that you don't have to spend time coding
up some procedural build script. You don't have to spend your time worrying about
mundane aspects of your build.

You can use the skeleton project introduced in this chapter as the foundation for
your own, and chances are that when you do, you'll find yourself creating more and

Multi-module Enterprise Project

149

more modules as you need them. For example, the project on which this chapter
was based has two distinct model projects, two persistence projects which persist
to dramatically different databases, several web applications, and a Java mobile
application. In total, the real world system I based this on contains at least 15
interrelated modules. The point is that, you've seen the most complex multi-module
example we're going to include in this book, but you should also know that this
example just scratches the surface of what is possible with Maven.

7.10.1. Programming to Interface Projects
This chapter explored a multi-module project which was more complex than the
simple example presented in Chapter 6, A Multi-module Project, yet it was still a
simplification of a real-world project. In a larger project, you might find yourself
building a system resembling Figure 7.5, “Programming to Interface Projects”.

Multi-module Enterprise Project

150

Figure 7.5. Programming to Interface Projects

When we use the term interface project we are referring to a Maven project which
contains interfaces and constants only. In Figure 7.5, “Programming to Interface
Projects” the interface projects would be persist-api and parse-api. If
big-command and big-webapp are written to the interfaces defined in persist-api,
then it is very easy to just swap in another implementation of the persistence
library. This particular diagram shows two implementations of the persist-api

project, one which stores data in an XML database, and the other which stores data
in a relational database. If you use some of the concepts in this chapter, you can
see how you could just pass in a flag to the program that swaps in a different
Spring application context XML file to swap out data sources of persistence
implementations. Just like the OO design of the application itself, it is often wise to
separate the interfaces of an API from the implementation of the API into separate
Maven projects.

Multi-module Enterprise Project

151

Chapter 8. Optimizing and Refactoring
POMs

8.1. Introduction
In Chapter 7, Multi-module Enterprise Project, we showed how many pieces of
Maven come together to produce a fully functional multimodule build. Although
the example from that chapter suggests a real application—one that interacts with a
database, a web service, and that itself presents two interfaces: one in a web
application, and one on the command line—that example project is still contrived.
To present the complexity of a real project would require a book far larger than the
one you are now reading. Real-life applications evolve over years and are often
maintained by large, diverse groups of developers, each with a different focus. In a
real-world project, you are often evaluating decisions and designs made and
created by others. In this chapter, we take a step back from the examples you’ve
seen in Part I, “Maven by Example”, and we ask ourselves if there are any
optimizations that might make more sense given what we now know about Maven.
Maven is a very capable tool that can be as simple or as complex as you need it to
be. Because of this, there are often a million ways to accomplish the same task, and
there is often no one “right” way to configure your Maven project.

Don't misinterpret that last sentence as a license to go off and ask Maven to do
something it wasn't designed for. While Maven allows for a diversity of approach,
there is certainly "A Maven Way", and you'll be more productive using Maven as it
was designed to be used. All this chapter is trying to do is communicate some of
the optimizations you can perform on an existing Maven project. Why didn't we
just introduce an optimized POM in the first place? Designing POMs for pedagogy
is a very different requirement from designing POMs for efficiency. While it is
certainly much easier to define a certain setting in your ~/.m2/settings.xml than
to declare a profile in a pom.xml, writing a book, and reading a book is mostly
about pacing and making sure we're not introducing concepts before you are ready.
In Part I, “Maven by Example”, we've made an effort not to overwhelm the reader

152

with too much information, and, in doing so, we've skipped some core concepts
like the dependencyManagement element introduced in this chapter.

There are many instances in Part I, “Maven by Example” when the authors of this
book took a shortcut or glossed over an important detail to shuffle you along to the
main point of a specific chapter. You learned how to create a Maven project, and
you compiled and installed it without having to wade through hundreds of pages
introducing every last switch and dial available to you. We’ve done this because
we believe it is important to deliver the new Maven user to a result faster rather
than meandering our way through a very long, seemingly interminable story. Once
you’ve started to use Maven, you should know how to analyze your own projects
and POMs. In this chapter, we take a step back and look at what we are left with
after the example from Chapter 7, Multi-module Enterprise Project.

8.2. POM Cleanup
Optimizing a multimodule project’s POM is best done in several passes, as there
are many areas to focus on. In general, we are looking for repetition within a POM
and across the sibling POMs. When you are starting out, or when a project is still
evolving rapidly, it is acceptable to duplicate some dependencies and plugin
configurations here and there, but as the project matures and as the number of
modules increases, you will want to take some time to refactor common
dependencies and configuration points. Making your POMs more efficient will go
a long way to helping you manage complexity as your project grows. Whenever
there is duplication of some piece of information, there is usually a better way.

8.3. Optimizing Dependencies
If you look through the various POMs created in Chapter 7, Multi-module
Enterprise Project, note several patterns of replication. The first pattern we can see
is that some dependencies such as spring and hibernate-annotations are
declared in several modules. The hibernate dependency also has the exclusion on
javax.transaction replicated in each definition. The second pattern of duplication to

Optimizing and Refactoring POMs

153

note is that sometimes several dependencies are related and share the same version.
This is often the case when a project’s release consists of several closely coupled
components. For example, look at the dependencies on hibernate-annotations

and hibernate-commons-annotations. Both are listed as version 3.3.0.ga, and
we can expect the versions of both these dependencies to change together going
forward. Both the hibernate-annotations and hibernate-commons-annotations

are components of the same project released by JBoss, and so when there is a new
project release, both of these dependencies will change. The third and last pattern
of duplication is the duplication of sibling module dependencies and sibling
module versions. Maven provides simple mechanisms that let you factor all of this
duplication into a parent POM.

Just as in your project’s source code, any time you have duplication in your POMs,
you open the door a bit for trouble down the road. Duplicated dependency
declarations make it difficult to ensure consistent versions across a large project.
When you only have two or three modules, this might not be a primary issue, but
when your organization is using a large, multimodule Maven build to manage
hundreds of components across multiple departments, one single mismatch
between dependencies can cause chaos and confusion. A simple version mismatch
in a project’s dependency on a bytecode manipulation package called ASM three
levels deep in the project hierarchy could throw a wrench into a web application
maintained by a completely different group of developers who depend on that
particular module. Unit tests could pass because they are being run with one
version of a dependency, but they could fail disastrously in production where the
bundle (WAR, in this case) was packaged up with a different version. If you have
tens of projects using something like Hibernate Annotations, each repeating and
duplicating the dependencies and exclusions, the mean time between someone
screwing up a build is going to be very short. As your Maven projects become
more complex, your dependency lists are going to grow, and you are going to want
to consolidate versions and dependency declarations in parent POMs.

The duplication of the sibling module versions can introduce a particularly nasty
problem that is not directly caused by Maven and is learned only after you’ve been
bitten by this bug a few times. If you use the Maven Release plugin to perform
your releases, all these sibling dependency versions will be updated automatically

Optimizing and Refactoring POMs

154

for you, so maintaining them is not the concern. If simple-web version
1.3-SNAPSHOT depends on simple-persist version 1.3-SNAPSHOT, and if you are
performing a release of the 1.3 version of both projects, the Maven Release plugin
is smart enough to change the versions throughout your multimodule project’s
POMs automatically. Running the release with the Release plugin will
automatically increment all of the versions in your build to 1.4-SNAPSHOT, and the
release plugin will commit the code change to the repository. Releasing a huge
multimodule project couldn’t be easier, until...

Problems occur when developers merge changes to the POM and interfere with a
release that is in progress. Often a developer merges and occasionally mishandles
the conflict on the sibling dependency, inadvertently reverting that version to a
previous release. Since the consecutive versions of the dependency are often
compatible, it does not show up when the developer builds, and won’t show up in
any continuous integration build system as a failed build. Imagine a very complex
build where the trunk is full of components at 1.4-SNAPSHOT, and now imagine that
Developer A has updated Component A deep within the project’s hierarchy to
depend on version 1.3-SNAPSHOT of Component B. Even though most developers
have 1.4-SNAPSHOT, the build succeeds if version 1.3-SNAPSHOT and
1.4-SNAPSHOT of Component B are compatible. Maven continues to build the
project using the 1.3-SNAPSHOT version of Component B from the developer’s
local repositories. Everything seems to be going quite smoothly—the project
builds, the continuous integration build works fine, and so on. Someone might
have a mystifying bug related to Component B, but she chalks it up to malevolent
gremlins and moves on. Meanwhile, a pump in the reactor room is steadily
building up pressure, until something blows....

Someone, let's call them Mr. Inadvertent, had a merge conflict in component A,
and mistakenly pegged component A's dependency on component B to
1.3-SNAPSHOT while the rest of the project marches on. A bunch of developers
have been trying to fix a bug in component B all this time and they've been
mystified as to why they can't seem to fix the bug in production. Eventually
someone looks at component A and realizes that the dependency is pointing to the
wrong version. Hopefully, the bug wasn't large enough to cost money or lives, but
Mr. Inadvertent feels stupid and people tend to trust him a little less than they did

Optimizing and Refactoring POMs

155

before the whole sibling dependency screw-up. (Hopefully, Mr. Inadvertent
realizes that this was user error and not Maven's fault, but more than likely he
starts an awful blog and complains about Maven endlessly to make himself feel
better.)

Fortunately, dependency duplication and sibling dependency mismatch are easily
preventable if you make some small changes. The first thing we’re going to do is
find all the dependencies used in more than one project and move them up to the
parent POM’s dependencyManagement section. We’ll leave out the sibling
dependencies for now. The simple-parent pom now contains the following:

<project>
...
<dependencyManagement>

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>

<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

</dependencyManagement>
...

Optimizing and Refactoring POMs

156

</project>

Once these are moved up, we need to remove the versions for these dependencies
from each of the POMs; otherwise, they will override the dependencyManagement

defined in the parent project. Let’s look at only simple-model for brevity’s sake:

<project>
...
<dependencies>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
</dependencies>
...

</project>

The next thing we should do is fix the replication of the hibernate-annotations

and hibernate-commons-annotations version since these should match. We’ll do
this by creating a property called hibernate-annotations-version. The resulting
simple-parent section looks like this:

<project>
...
<properties>

<hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
</properties>

<dependencyManagement>
...
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
...

</dependencyManagement>
...

</project

Optimizing and Refactoring POMs

157

The last issue we have to resolve is with the sibling dependencies. One technique
we could use is to move these up to the dependencyManagement section, just like
all the others, and define the versions of sibling projects in the top-level parent
project. This is certainly a valid approach, but we can also solve the version
problem just by using two built-in properties—${project.groupId} and
${project.version}. Since they are sibling dependencies, there is not much value
to be gained by enumerating them in the parent, so we’ll rely on the built-in
${project.version} property. Because they all share the same group, we can
further future-proof these declarations by referring to the current POM’s group
using the built-in ${project.groupId} property. The simple-command dependency
section now looks like this:

<project>
...
<dependencies>

...
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
...

</dependencies>
...

</project>

Here’s a summary of the two optimizations we completed that reduce duplication
of dependencies:

Pull-up common dependencies to dependencyManagement

If more than one project depends on a specific dependency, you can list the
dependency in dependencyManagement. The parent POM can contain a version
and a set of exclusions; all the child POM needs to do to reference this
dependency is use the groupId and artifactId. Child projects can omit the
version and exclusions if the dependency is listed in dependencyManagement.

Optimizing and Refactoring POMs

158

Use built-in project version and groupId for sibling projects
Use ${project.version} and ${project.groupId} when referring to a sibling
project. Sibling projects almost always share the same groupId, and they almost
always share the same release version. Using ${project.version} will help
you avoid the sibling version mismatch problem discussed previously.

8.4. Optimizing Plugins
If we take a look at the various plugin configurations, we can see the HSQLDB
dependencies duplicated in several places. Unfortunately, dependencyManagement
doesn’t apply to plugin dependencies, but we can still use a property to consolidate
the versions. Most complex Maven multimodule projects tend to define all
versions in the top-level POM. This top-level POM then becomes a focal point for
changes that affect the entire project. Think of version numbers as string literals in
a Java class; if you are constantly repeating a literal, you’ll likely want to make it a
variable so that when it needs to be changed, you have to change it in only one
place. Rolling up the version of HSQLDB into a property in the top-level POM
yields the following properties element:

<project>
...
<properties>

<hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
<hsqldb.version>1.8.0.7</hsqldb.version>

</properties>
...

</project>

The next thing we notice is that the hibernate3-maven-plugin configuration is
duplicated in the simple-webapp and simple-command modules. We can manage
the plugin configuration in the top-level POM just as we managed the
dependencies in the top-level POM with the dependencyManagement section. To do
this, we use the pluginManagement element in the top-level POM’s build element:

<project>
...
<build>

<pluginManagement>
<plugins>

Optimizing and Refactoring POMs

159

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>
<components>

<component>
<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>
<dependency>

<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>${hsqldb.version}</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</pluginManagement>
</build>
...

</project>

8.5. Optimizing with the Maven Dependency
Plugin
On larger projects, additional dependencies often tend to creep into a POM as the
number of dependencies grow. As dependencies change, you are often left with
dependencies that are not being used, and just as often, you may forget to declare
explicit dependencies for libraries you require. Because Maven 2.x includes
transitive dependencies in the compile scope, your project may compile properly
but fail to run in production. Consider a case where a project uses classes from a
widely used project such as Jakarta Commons BeanUtils. Instead of declaring an

Optimizing and Refactoring POMs

160

explicit dependency on BeanUtils, your project simply relies on a project like
Hibernate that references BeanUtils as a transitive dependency. Your project may
compile successfully and run just fine, but if you upgrade to a new version of
Hibernate that doesn’t depend on BeanUtils, you’ll start to get compile and runtime
errors, and it won’t be immediately obvious why your project stopped compiling.
Also, because you haven’t explicitly listed a dependency version, Maven cannot
resolve any version conflicts that may arise.

A good rule of thumb in Maven is to always declare explicit dependencies for
classes referenced in your code. If you are going to be importing Commons
BeanUtils classes, you should also be declaring a direct dependency on Commons
BeanUtils. Fortunately, via bytecode analysis, the Maven Dependency plugin is
able to assist you in uncovering direct references to dependencies. Using the
updated POMs we previously optimized, let’s look to see if any errors pop up:

$ mvn dependency:analyze
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Chapter 8 Simple Parent Project
[INFO] Chapter 8 Simple Object Model
[INFO] Chapter 8 Simple Weather API
[INFO] Chapter 8 Simple Persistence API
[INFO] Chapter 8 Simple Command Line Tool
[INFO] Chapter 8 Simple Web Application
[INFO] Chapter 8 Parent Project
[INFO] Searching repository for plugin with prefix: 'dependency'.

...

[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:analyze]
[INFO] --
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] javax.persistence:persistence-api:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile

Optimizing and Refactoring POMs

161

[WARNING] org.hibernate:hibernate:jar:3.2.5.ga:compile
[WARNING] junit:junit:jar:3.8.1:test

...

[INFO] --
[INFO] Building Chapter 8 Simple Web Application
[INFO] task-segment: [dependency:analyze]
[INFO] --
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] org.sonatype.mavenbook.ch08:simple-model:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.apache.velocity:velocity:jar:1.5:compile
[WARNING] javax.servlet:jstl:jar:1.1.2:compile
[WARNING] taglibs:standard:jar:1.1.2:compile
[WARNING] junit:junit:jar:3.8.1:test

In the truncated output just shown, you can see the output of the
dependency:analyze goal. This goal analyzes the project to see whether there are
any indirect dependencies, or dependencies that are being referenced but are not
directly declared. In the simple-model project, the Dependency plugin indicates a
“used undeclared dependency” on javax.persistence:persistence-api. To
investigate further, go to the simple-model directory and run the dependency:tree

goal, which will list all of the project’s direct and transitive dependencies:

$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'dependency'.
[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:tree]
[INFO] --
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.ch08:simple-model:jar:1.0
[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[INFO] | \- javax.persistence:persistence-api:jar:1.0:compile
[INFO] +- org.hibernate:hibernate:jar:3.2.5.ga:compile
[INFO] | +- net.sf.ehcache:ehcache:jar:1.2.3:compile
[INFO] | +- commons-logging:commons-logging:jar:1.0.4:compile

Optimizing and Refactoring POMs

162

[INFO] | +- asm:asm-attrs:jar:1.5.3:compile
[INFO] | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | +- antlr:antlr:jar:2.7.6:compile
[INFO] | +- cglib:cglib:jar:2.1_3:compile
[INFO] | +- asm:asm:jar:1.5.3:compile
[INFO] | \- commons-collections:commons-collections:jar:2.1.1:compile
[INFO] \- junit:junit:jar:3.8.1:test
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

From this output, we can see that the persistence-api dependency is coming
from hibernate. A cursory scan of the source in this module will reveal many
javax.persistence import statements confirming that we are, indeed, directly
referencing this dependency. The simple fix is to add a direct reference to the
dependency. In this example, we put the dependency version in simple-parent’s
dependencyManagement section because the dependency is linked to Hibernate, and
the Hibernate version is declared here. Eventually you are going to want to
upgrade your project’s version of Hibernate. Listing the persistence-api

dependency version near the Hibernate dependency version will make it more
obvious later when your team modifies the parent POM to upgrade the Hibernate
version.

If you look at the dependency:analyze output from the simple-web module, you
will see that we also need to add a direct reference to the simple-model

dependency. The code in simple-webapp directly references the model objects in
simple-model, and the simple-model is exposed to simple-webapp as a transitive
dependency via simple-persist. Since this is a sibling dependency that shares
both the version and groupId, the dependency can be defined in simple-webapp’s
pom.xml using the ${project.groupId} and ${project.version}.

How did the Maven Dependency plugin uncover these issues? How does
dependency:analyze know which classes and dependencies are directly referenced
by your project’s bytecode? The Dependency plugin uses the ObjectWeb ASM
(http://asm.objectweb.org/) toolkit to analyze the raw bytecode. The Dependency
plugin uses ASM to walk through all the classes in the current project, and it builds
a list of every other class referenced. It then walks through all the dependencies,
direct and transitive, and marks off the classes discovered in the direct
dependencies. Any classes not located in the direct dependencies are discovered in

Optimizing and Refactoring POMs

163

http://asm.objectweb.org/

the transitive dependencies, and the list of “used, undeclared dependencies” is
produced.

In contrast, the list of unused, declared dependencies is a little trickier to validate,
and less useful than the “used, undeclared dependencies.” For one, some
dependencies are used only at runtime or for tests, and they won’t be found in the
bytecode. These are pretty obvious when you see them in the output; for example,
JUnit appears in this list, but this is expected because it is used only for unit tests.
You’ll also notice that the Velocity and Servlet API dependencies are listed in this
list for the simple-web module. This is also expected because, although the project
doesn’t have any direct references to the classes of these artifacts, they are still
essential during runtime.

Be careful when removing any unused, declared dependencies unless you have
very good test coverage, or you might introduce a runtime error. A more sinister
issue pops up with bytecode optimization. For example, it is legal for a compiler to
substitute the value of a constant and optimize away the reference. Removing this
dependency will cause the compile to fail, yet the tool shows it as unused. Future
versions of the Maven Dependency plugin will provide better techniques for
detecting and/or ignoring these types of issues.

You should use the dependency:analyze tool periodically to detect these common
errors in your projects. It can be configured to fail the build if certain conditions
are found, and it is also available as a report.

8.6. Final POMs
As an overview, the final POM files are listed as a reference for this chapter.
Example 8.1, “Final POM for simple-parent” shows the top-level POM for
simple-parent.

Example 8.1. Final POM for simple-parent

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

Optimizing and Refactoring POMs

164

<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Chapter 8 Simple Parent Project</name>

<modules>
<module>simple-command</module>
<module>simple-model</module>
<module>simple-weather</module>
<module>simple-persist</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>
<components>

<component>
<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>
<dependency>

<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>${hsqldb.version}</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</pluginManagement>
</build>

<properties>
<hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>

Optimizing and Refactoring POMs

165

<hsqldb.version>1.8.0.7</hsqldb.version>
</properties>
<dependencyManagement>

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>

<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>

<groupId>javax.persistence</groupId>
<artifactId>persistence-api</artifactId>
<version>1.0</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

</dependencyManagement>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Optimizing and Refactoring POMs

166

The POM shown in Example 8.2, “Final POM for simple-command” captures the
POM for simple-command, the command-line version of the tool.

Example 8.2. Final POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-command</artifactId>
<packaging>jar</packaging>
<name>Chapter 8 Simple Command Line Tool</name>

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>

<manifest>
<mainClass>org.sonatype.mavenbook.weather.Main</mainClass>
<addClasspath>true</addClasspath>

</manifest>
</archive>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<testFailureIgnore>true</testFailureIgnore>

</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>

</configuration>
</plugin>

</plugins>

Optimizing and Refactoring POMs

167

</pluginManagement>
</build>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Example 8.3, “Final POM for simple-model” is the
simple-model project’s POM. The simple-model project contains all of the model
objects used throughout the application.

Example 8.3. Final POM for simple-model

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-model</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Object Model</name>

<dependencies>
<dependency>
<groupId>org.hibernate</groupId>

Optimizing and Refactoring POMs

168

<artifactId>hibernate-annotations</artifactId>
</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
<dependency>
<groupId>javax.persistence</groupId>
<artifactId>persistence-api</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Example 8.4, “Final POM for simple-persist” is the
simple-persist project’s POM. The simple-persist project contains all of the
persistence logic that is implemented using Hibernate.

Example 8.4. Final POM for simple-persist

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-persist</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Persistence API</name>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

</dependency>
<dependency>

Optimizing and Refactoring POMs

169

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Example 8.5, “Final POM for simple-weather” is the
simple-weather project’s POM. The simple-weather project is the project that
contains all of the logic to parse the Yahoo! Weather RSS feed. This project
depends on the simple-model project.

Example 8.5. Final POM for simple-weather

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Weather API</name>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

Optimizing and Refactoring POMs

170

</dependency>
<dependency>
<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>
<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Finally, the POM shown in Example 8.6, “Final POM for simple-webapp” is the
simple-webapp project’s POM. The simple-webapp project contains a web
application that stores retrieved weather forecasts in an HSQLDB database and that
also interacts with the libraries generated by the simple-weather project.

Example 8.6. Final POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<name>Chapter 8 Simple Web Application</name>
<dependencies>

<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>

Optimizing and Refactoring POMs

171

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
<version>1.1.2</version>

</dependency>
<dependency>
<groupId>taglibs</groupId>
<artifactId>standard</artifactId>
<version>1.1.2</version>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>6.1.9</version>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>${hsqldb.version}</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

Optimizing and Refactoring POMs

172

8.7. Conclusion
This chapter has shown you several techniques for improving the control of your
dependencies and plugins to ease future maintenance of your builds. We
recommend periodically reviewing your builds in this way to ensure that
duplication and thus potential trouble spots are minimized. As a project matures,
new dependencies are inevitably introduced, and you may find that a dependency
previously used in 1 place is now used in 10 and should be moved up. The used
and unused dependencies list changes over time and can easily be cleaned up with
the Maven Dependency plugin.

Optimizing and Refactoring POMs

173

Part II. Maven Reference

174

Chapter 9. The Project Object Model

9.1. Introduction
This chapter covers the central concept of Maven—the Project Object Model. The
POM is where a project’s identity and structure are declared, builds are configured,
and projects are related to one another. The presence of a pom.xml file defines a
Maven project.

9.2. The POM
Maven projects, dependencies, builds, artifacts: all of these are objects to be
modeled and described. These objects are described by an XML file called a
Project Object Model. The POM tells Maven what sort of project it is dealing with
and how to modify default behavior to generate output from source. In the same
way a Java web application has a web.xml that describes, configures, and
customizes the application, a Maven project is defined by the presence of a
pom.xml. It is a descriptive declaration of a project for Maven; it is the figurative
“map” that Maven needs to understand what it is looking at when it builds your
project.

You could also think of the pom.xml as analogous to a Makefile or an Ant
build.xml. When you are using GNU make to build something like MySQL,
you’ll usually have a file named Makefile that contains explicit instructions for
building a binary from source. When you are using Apache Ant, you likely have a
file named build.xml that contains explicit instructions for cleaning, compiling,
packaging, and deploying an application. make, Ant, and Maven are similar in that
they rely on the presence of a commonly named file such as Makefile, build.xml,
or pom.xml, but that is where the similarities end. If you look at a Maven pom.xml,
the majority of the POM is going to deal with descriptions: Where is the source
code? Where are the resources? What is the packaging? If you look at an Ant
build.xml file, you’ll see something entirely different. You’ll see explicit

175

instructions for tasks such as compiling a set of Java classes. The Maven POM is
declarative, and although you can certainly choose to include some procedural
customizations via the Maven Ant plugin, for the most part you will not need to get
into the gritty procedural details of your project’s build.

The POM is also not specific to building Java projects. While most of the examples
in this book are geared towards Java applications, there is nothing Java-specific in
the definition of a Maven Project Object Model. While Maven's default plugins are
targeted at building JAR artifacts from a set of source, tests, and resources, there is
nothing preventing you from defining a POM for a project that contains C# sources
and produces some proprietary Microsoft binary using Microsoft tools. Similarly,
there is nothing stopping you from defining a POM for a technical book. In fact,
the source for this book and this book's examples is captured in a multi-module
Maven project which uses one of the many Maven Docbook plugins to apply the
standard Docbook XSL to a series of chapter XML files. Others have created
Maven plugins to build Adobe Flex code into SWCs and SWFs, and yet others
have used Maven to build projects written in C.

We've established that the POM describes and declares, it is unlike Ant or Make in
that it doesn't provide explicit instructions, and we've noted that POM concepts are
not specific to Java. Diving into more specifics, take a look at Figure 9.1, “The
Project Object Model” for a survey of the contents of a POM.

The Project Object Model

176

Figure 9.1. The Project Object Model

The POM contains four categories of description and configuration:

General project information
This includes a project’s name, the URL for a project, the sponsoring
organization, and a list of developers and contributors along with the license for
a project.

Build settings
In this section, we customize the behavior of the default Maven build. We can
change the location of source and tests, we can add new plugins, we can attach
plugin goals to the lifecycle, and we can customize the site generation
parameters.

Build environment
The build environment consists of profiles that can be activated for use in
different environments. For example, during development you may want to
deploy to a development server, whereas in production you want to deploy to a

The Project Object Model

177

production server. The build environment customizes the build settings for
specific environments and is often supplemented by a custom settings.xml in
~/.m2. This settings file is discussed in Chapter 11, Build Profiles and in the
section Section A.2, “Settings Details”.

POM relationships
A project rarely stands alone; it depends on other projects, inherits POM
settings from parent projects, defines its own coordinates, and may include
submodules.

9.2.1. The Super POM
Before we dive into some examples of POMs, let's take a quick look at the Super
POM. All Maven project POMs extend the Super POM which defines a set of
defaults shared by all projects. This Super POM is a part of the Maven installation,
and can be found in the maven-2.0.10-uber.jar file in ${M2_HOME}/lib. If you
look in this JAR file, you will find a file named pom-4.0.0.xml under the
org.apache.maven.project package. The Super POM for Maven is shown in
Example 9.1, “The Super POM”.

Example 9.1. The Super POM

<project>
<modelVersion>4.0.0</modelVersion>
<name>Maven Default Project</name>

<repositories>
<repository>
<id>central</id> #
<name>Maven Repository Switchboard</name>
<layout>default</layout>
<url>http://repo1.maven.org/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>

</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>central</id> #
<name>Maven Plugin Repository</name>

The Project Object Model

178

<url>http://repo1.maven.org/maven2</url>
<layout>default</layout>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>

<updatePolicy>never</updatePolicy>
</releases>

</pluginRepository>
</pluginRepositories>

<build> #
<directory>target</directory>
<outputDirectory>target/classes</outputDirectory>
<finalName>${pom.artifactId}-${pom.version}</finalName>
<testOutputDirectory>target/test-classes</testOutputDirectory>
<sourceDirectory>src/main/java</sourceDirectory>
<scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>
<resources>
<resource>

<directory>src/main/resources</directory>
</resource>

</resources>
<testResources>
<testResource>

<directory>src/test/resources</directory>
</testResource>

</testResources>
</build>

<pluginManagement>#
<plugins>
<plugin>

<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>

</plugin>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<version>2.2-beta-1</version>

</plugin>
<plugin>

<artifactId>maven-clean-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>2.0.2</version>

</plugin>
<plugin>

<artifactId>maven-dependency-plugin</artifactId>
<version>2.0</version>

</plugin>

The Project Object Model

179

<plugin>
<artifactId>maven-deploy-plugin</artifactId>
<version>2.3</version>

</plugin>
<plugin>

<artifactId>maven-ear-plugin</artifactId>
<version>2.3.1</version>

</plugin>
<plugin>

<artifactId>maven-ejb-plugin</artifactId>
<version>2.1</version>

</plugin>
<plugin>

<artifactId>maven-install-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-jar-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-javadoc-plugin</artifactId>
<version>2.4</version>

</plugin>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.3</version>

</plugin>
<plugin>

<artifactId>maven-rar-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-release-plugin</artifactId>
<version>2.0-beta-7</version>

</plugin>
<plugin>

<artifactId>maven-resources-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-site-plugin</artifactId>
<version>2.0-beta-6</version>

</plugin>
<plugin>

<artifactId>maven-source-plugin</artifactId>
<version>2.0.4</version>

</plugin>
<plugin>

<artifactId>maven-surefire-plugin</artifactId>
<version>2.4.2</version>

</plugin>
<plugin>

The Project Object Model

180

<artifactId>maven-war-plugin</artifactId>
<version>2.1-alpha-1</version>

</plugin>
</plugins>

</pluginManagement>

<reporting>
<outputDirectory>target/site</outputDirectory>

</reporting>
</project>

The Super POM defines some standard configuration variables that are inherited
by all projects. Those values are captured in the annotated sections:

❶ The default Super POM defines a single remote Maven repository with an ID
of central. This is the central Maven repository that all Maven clients are
configured to read from by default. This setting can be overridden by a
custom settings.xml file. Note that the default Super POM has disabled
snapshot artifacts on the central Maven repository. If you need to use a
snapshot repository, you will need to customize repository settings in your
pom.xml or in your settings.xml. Settings and profiles are covered in
Chapter 11, Build Profiles and in Section A.2, “Settings Details”.

❷ The central Maven repository also contains Maven plugins. The default
plugin repository is the central Maven repository. Snapshots are disabled, and
the update policy is set to “never,” which means that Maven will never
automatically update a plugin if a new version is released.

❸ The build element sets the default values for directories in the Maven
Standard Directory layout.

❹ Starting in Maven 2.0.9, default versions of core plugins have been provided
in the Super POM. This was done to provide some stability for users that are
not specifying versions in their POMs.

The Project Object Model

181

Figure 9.2. The Super POM is always the base Parent

9.2.2. The Simplest POM
All Maven POMs inherit defaults from the Super POM (introduced earlier in the
section Section 9.2.1, “The Super POM””). If you are just writing a simple project
that produces a JAR from some source in src/main/java, want to run your JUnit
tests in src/test/java, and want to build a project site using mvn site, you don’t
have to customize anything. All you would need, in this case, is the simplest
possible POM shown in Example 9.2, “The Simplest POM”. This POM defines a
groupId, artifactId, and version: the three required coordinates for every
project.

Example 9.2. The Simplest POM

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.ch08</groupId>
<artifactId>simplest-project</artifactId>
<version>1</version>

</project>

The Project Object Model

182

Such a simple POM would be more than adequate for a simple project—e.g., a
Java library that produces a JAR file. It isn’t related to any other projects, it has no
dependencies, and it lacks basic information such as a name and a URL. If you
were to create this file and then create the subdirectory src/main/java with some
source code, running mvn package would produce a JAR in
target/simple-project-1.jar.

9.2.3. The Effective POM
This simplest POM brings us to the concept of the “effective POM.” Since POMs
can inherit configuration from other POMs, you must always think of a Maven
POM in terms of the combination of the Super POM, plus any parent POMs, and
finally the current project’s POM. Maven starts with the Super POM and then
overrides default configuration with one or more parent POMs. Then it overrides
the resulting configuration with the current project’s POM. You end up with an
effective POM that is a mixture of various POMs. If you want to see a project’s
effective POM, you’ll need to run the effective-pom goal in the Maven Help
plugin, which was introduced earlier in the section Section 2.8, “Using the Maven
Help Plugin”.” To run the effective-pom goal, execute the following in a
directory with a pom.xml file:

$ mvn help:effective-pom

Executing the effective-pom goal should print out an XML document capturing
the merge between the Super POM and the POM from Example 9.2, “The Simplest
POM”.

9.2.4. Real POMs
Instead of typing up a contrived set of POMs to walk you through step-by-step,
you should take a look at the examples in Part I, “Maven by Example”. Maven is
something of a chameleon; you can pick and choose the features you want to take
advantage of. Some open source projects may value the ability to list developers
and contributors, generate clean project documentation, and manage releases
automatically using the Maven Release plugin. On the other hand, someone

The Project Object Model

183

working in a corporate environment on a small team might not be interested in the
distribution management capabilities of Maven nor the ability to list developers.
The remainder of this chapter is going to discuss features of the POM in isolation.
Instead of bombarding you with a 10-page listing of a set of related POMs, we’re
going to focus on creating a good reference for specific sections of the POM. In
this chapter, we discuss relationships between POMs, but we don’t illustrate such a
project here. If you are looking for such an illustration, refer to Chapter 7,
Multi-module Enterprise Project.

9.3. POM Syntax
The POM is always in a file named pom.xml in the base directory of a Maven
project. This XML document can start with the XML declaration, or you can
choose to omit it. All values in a POM are captured as XML elements.

9.3.1. Project Versions
A Maven project’s version encodes a release version number that is used to group
and order releases. Maven versions contain the following parts: major version,
minor version, incremental version, and qualifier. In a version, these parts
correspond to the following format:

<major version>.<minor version>.<incremental version>-<qualifier>

For example, the version "1.3.5" has a major version of 1, a minor version of 3,
and an incremental version of 5. The version "5" has a major version of 5 and no
minor or incremental version. The qualifier exists to capture milestone builds:
alpha and beta releases, and the qualifier is separated from the major, minor, and
incremental versions by a hyphen. For example, the version "1.3-beta-01" has a
major version of 1, a minor version of 3, and a qualifier of "beta-01".

Keeping your version numbers aligned with this standard will become very
important when you want to start using version ranges in your POMs. Version
ranges, introduced in Section 9.4.3, “Dependency Version Ranges”, allow you to
specify a dependency on a range of versions, and they are only supported because

The Project Object Model

184

Maven has the ability to sort versions based on the version release number format
introduced in this section.

If your version release number matches the format
<major>.<minor>.<incremental>-<qualifier> then your versions will be
compared properly; "1.2.3" will be evaluated as a more recent build than "1.0.2",
and the comparison will be made using the numeric values of the major, minor,
and incremental versions. If your version release number does not fit the standard
introduced in this section, then your versions will be compared as strings; "1.0.1b"
will be compared to "1.2.0b" using a String comparison.

9.3.1.1. Version Build Numbers
One gotcha for release version numbers is the ordering of the qualifiers. Take the
version release numbers “1.2.3-alpha-2” and “1.2.3-alpha-10,” where the “alpha-2”
build corresponds to the 2nd alpha build, and the “alpha-10” build corresponds to
the 10th alpha build. Even though “alpha-10” should be considered more recent
than “alpha-2,” Maven is going to sort “alpha-10” before “alpha-2” due to a known
issue in the way Maven handles version numbers.

Maven is supposed to treat the number after the qualifier as a build number. In
other words, the qualifier should be "alpha", and the build number should be 2.
Even though Maven has been designed to separate the build number from the
qualifier, this parsing is currently broken. As a result, "alpha-2" and "alpha-10" are
compared using a String comparison, and "alpha-10" comes before "alpha-2"
alphabetically. To get around this limitation, you will need to left-pad your
qualified build numbers. If you use "alpha-02" and "alpha-10" this problem will go
away, and it will continue to work once Maven properly parses the version build
number.

9.3.1.2. SNAPSHOT Versions
Maven versions can contain a string literal to signify that a project is currently
under active development. If a version contains the string “SNAPSHOT,” then
Maven will expand this token to a date and time value converted to UTC
(Coordinated Universal Time) when you install or release this component. For

The Project Object Model

185

example, if your project has a version of “1.0-SNAPSHOT” and you deploy this
project’s artifacts to a Maven repository, Maven would expand this version to
“1.0-20080207-230803-1” if you were to deploy a release at 11:08 PM on
February 7th, 2008 UTC. In other words, when you deploy a snapshot, you are not
making a release of a software component; you are releasing a snapshot of a
component at a specific time.

Why would you use this? SNAPSHOT versions are used for projects under active
development. If your project depends on a software component that is under active
development, you can depend on a SNAPSHOT release, and Maven will
periodically attempt to download the latest snapshot from a repository when you
run a build. Similarly, if the next release of your system is going to have a version
"1.4", your project would have a version "1.4-SNAPSHOT" version until it was
formally released.

As a default setting, Maven will not check for SNAPSHOT releases on remote
repositories, to depend on SNAPSHOT releases, users must explicitly enable the
ability to download snapshots using a repository or pluginRepository element
in the POM.

When releasing a project you should resolve all dependencies on SNAPSHOT
versions to dependencies on released versions. If a project depends on a
SNAPSHOT, it is not stable as the dependencies may change over time. Artifacts
published to non-snapshot Maven repositories such as
http://repo1.maven.org/maven2 cannot depend on SNAPSHOT versions, as
Maven's Super POM has snapshot's disabled from the Central repository.
SNAPSHOT versions are for development only.

9.3.1.3. LATEST and RELEASE Versions
When you depend on a plugin or a dependency, you can use the a version value of
LATEST or RELEASE. LATEST refers to the latest released or snapshot version
of a particular artifact, the most recently deployed artifact in a particular
repository. RELEASE refers to the last non-snapshot release in the repository. In
general, it is not a best practice to design software which depends on a non-specific
version of an artifact. If you are developing software, you might want to use

The Project Object Model

186

http://repo1.maven.org/maven2

RELEASE or LATEST as a convenience so that you don't have to update version
numbers when a new release of a third-party library is released. When you release
software, you should always make sure that your project depends on specific
versions to reduce the chances of your build or your project being affected by a
software release not under your control. Use LATEST and RELEASE with
caution, if at all.

Starting with Maven 2.0.9, Maven locks down the version numbers of common
and core Maven plugins in the super POM to standardize a core set of Maven
plugins for a particular version of Maven. This change was introduced to Maven
2.0.9 to bring stability and reproducibility to Maven builds. Before Maven 2.0.9,
Maven would automatically update core Maven plugins using the LATEST
version. This behavior led to a number of surprises when bugs was introduced into
core plugins or functionality changed in a core plugin which subsequently broke a
build. When Maven automatically updated core plugins, it was noted that there was
little guarantee that a build would be reproducible as plugins could be updated
whenever a new version was pushed to the central repository. Starting with Maven
2.0.9, Maven, essentially, ships with a core set of locked down plugin versions.
Non-core plugins, or plugins without versions assigned in the Super POM will still
use the LATEST version to retrieve a plugin artifact from the repository. It is for
this reason that you should assign explicit version numbers to any custom or
non-core plugins used in your build.

9.3.2. Property References
A POM can include references to properties preceded by a dollar sign and
surrounded by two curly braces. For example, consider the following POM:

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>project-a</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<build>

<finalName>${project.groupId}-${project.artifactId}</finalName>
</build>

</project>

The Project Object Model

187

If you put this XML in a pom.xml and run mvn help:effective-pom, you will see
that the output contains the line:

...
<finalName>org.sonatype.mavenbook-project-a</finalName>
...

When Maven reads a POM, it replaces references to properties when it loads the
POM XML. Maven properties occur frequently in advanced Maven usage, and are
similar to properties in other systems such as Ant or Velocity. They are simply
variables delimited by ${...}. Maven provides three implicit variables which can
be used to access environment variables, POM information, and Maven Settings:

env
The env variable exposes environment variables exposed by your operating
system or shell. For example, a reference to ${env.PATH} in a Maven POM
would be replaced by the ${PATH} environment variable (or %PATH% in
Windows).

project
The project variable exposes the POM. You can use a dot-notated (.) path to
reference the value of a POM element. For example, in this section we used the
groupId and artifactId to set the finalName element in the build
configuration. The syntax for this property reference was:
${project.groupId}-${project.artifactId}.

settings
The settings variable exposes Maven settings information. You can use a
dot-notated (.) path to reference the value of an element in a settings.xml file.
For example, ${settings.offline} would reference the value of the offline

element in ~/.m2/settings.xml.

Note
You may see older builds that use ${pom.xxx} or just ${xxx} to reference
POM properties. These methods have been deprecated and only
${project.xxx} should be used.

The Project Object Model

188

In addition to the three implicit variables, you can reference system properties and
any custom properties set in the Maven POM or in a build profile:

Java System Properties
All properties accessible via getProperties() on java.lang.System are
exposed as POM properties. Some examples of system properties are:
${user.name}, ${user.home}, ${java.home}, and ${os.name}. A full list of
system properties can be found in the Javadoc for the java.lang.System class.

x
Arbitrary properties can be set with a properties element in a pom.xml or
settings.xml, or properties can be loaded from external files. If you set a
property named fooBar in your pom.xml, that same property is referenced with
${fooBar}. Custom properties come in handy when you are building a system
that filters resources and targets different deployment platforms. Here is the
syntax for setting ${foo}=bar in a POM:

<properties>
<foo>bar</foo>

</properties>

For a more comprehensive list of available properties, see Chapter 13, Properties
and Resource Filtering.

9.4. Project Dependencies
Maven can manage both internal and external dependencies. An external
dependency for a Java project might be a library such as Plexus, the Spring
Framework, or Log4J. An internal dependency is illustrated by a web application
project depending on another project that contains service classes, model objects,
or persistence logic. Example 9.3, “Project Dependencies” shows some examples
of project dependencies.

Example 9.3. Project Dependencies

<project>

The Project Object Model

189

...
<dependencies>

<dependency>
<groupId>org.codehaus.xfire</groupId>
<artifactId>xfire-java5</artifactId>
<version>1.2.5</version>

</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
</dependencies>
...

</project>

The first dependency is a compile dependency on the XFire SOAP library from
Codehaus. You would use this type of dependency if your project depended on this
library for compilation, testing, and during execution. The second dependency is a
test-scoped dependency on JUnit. You would use a test-scoped dependency
when you need to reference this library only during testing. The last dependency in
Example 9.3, “Project Dependencies” is a dependency on the Servlet 2.4 API. The
last dependency is scoped as a provided dependency. You would use a provided
scope when the application you are developing needs a library for compilation and
testing, but this library is supplied by a container at runtime.

9.4.1. Dependency Scope
Example 9.3, “Project Dependencies” briefly introduced three of the five
dependency scopes: compile, test, and provided. Scope controls which
dependencies are available in which classpath, and which dependencies are
included with an application. Let’s explore each scope in detail:

The Project Object Model

190

compile
compile is the default scope; all dependencies are compile-scoped if a scope is
not supplied. compile dependencies are available in all classpaths, and they are
packaged.

provided
provided dependencies are used when you expect the JDK or a container to
provide them. For example, if you were developing a web application, you
would need the Servlet API available on the compile classpath to compile a
servlet, but you wouldn’t want to include the Servlet API in the packaged
WAR; the Servlet API JAR is supplied by your application server or servlet
container. provided dependencies are available on the compilation classpath
(not runtime). They are not transitive, nor are they packaged.

runtime
runtime dependencies are required to execute and test the system, but they are
not required for compilation. For example, you may need a JDBC API JAR at
compile time and the JDBC driver implementation only at runtime.

test
test-scoped dependencies are not required during the normal operation of an
application, and they are available only during test compilation and execution
phases. The test scope was previously introduced in Section 4.10, “Adding
Test-scoped Dependencies”.”

system
The system scope is similar to provided except that you have to provide an
explicit path to the JAR on the local file system. This is intended to allow
compilation against native objects that may be part of the system libraries. The
artifact is assumed to always be available and is not looked up in a repository. If
you declare the scope to be system, you must also provide the systemPath

element. Note that this scope is not recommended (you should always try to
reference dependencies in a public or custom Maven repository).

The Project Object Model

191

9.4.2. Optional Dependencies
Assume that you are working on a library that provides caching behavior. Instead
of writing a caching system from scratch, you want to use some of the existing
libraries that provide caching on the file system and distributed caches. Also
assume that you want to give the end user an option to cache on the file system or
to use an in-memory distributed cache. To cache on the file system, you’ll want to
use a freely available library called EHCache (http://ehcache.sourceforge.net/), and
to cache in a distributed in-memory cache, you want to use another freely available
caching library named SwarmCache (http://swarmcache.sourceforge.net/). You’ll
code an interface and create a library that can be configured to use either EHCache
or SwarmCache, but you want to avoid adding a dependency on both caching
libraries to any project that depends on your library.

In other words, you need both libraries to compile this library project, but you don't
want both libraries to show up as transitive runtime dependencies for the project
that uses your library. You can accomplish this by using optional dependencies as
shown in Example 9.4, “Declaring Optional Dependencies”.

Example 9.4. Declaring Optional Dependencies

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>my-project</artifactId>
<version>1.0.0</version>
<dependencies>

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache</artifactId>
<version>1.4.1</version>
<optional>true</optional>

</dependency>
<dependency>
<groupId>swarmcache</groupId>
<artifactId>swarmcache</artifactId>
<version>1.0RC2</version>
<optional>true</optional>

</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.13</version>

The Project Object Model

192

http://ehcache.sourceforge.net/
http://swarmcache.sourceforge.net/

</dependency>
</dependencies>

</project>

Once you've declared these dependencies as optional, you are required to include
them explicitly in the project that depends on my-project. For example, if you
were writing an application which depended on my-project and wanted to use the
EHCache implementation, you would need to add the following dependency

element to your project.

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>my-application</artifactId>
<version>1.0.0</version>
<dependencies>

<dependency>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>my-project</artifactId>
<version>1.0.0</version>

</dependency>
<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>swarmcache</artifactId>
<version>1.4.1</version>

</dependency>
</dependencies>

</project>

In an ideal world, you wouldn’t have to use optional dependencies. Instead of
having one large project with a series of optional dependencies, you would
separate the EHCache-specific code to a my-project-ehcache submodule and the
SwarmCache-specific code to a my-project-swarmcache submodule. This way,
instead of requiring projects that reference my-project to specifically add a
dependency, projects can just reference a particular implementation project and
benefit from the transitive dependency.

9.4.3. Dependency Version Ranges
You don’t just have to depend on a specific version of a dependency; you can
specify a range of versions that would satisfy a given dependency. For example,

The Project Object Model

193

you can specify that your project depends on version 3.8 or greater of JUnit, or
anything between versions 1.2.10 and 1.2.14 of JUnit. You do this by surrounding
one or more version numbers with the following characters:

(,)
Exclusive quantifiers

[,]
Inclusive quantifiers

For example, if you wished to access any JUnit version greater than or equal to 3.8
but less than 4.0, your dependency would be as shown in Example 9.5, “Specifying
a Dependency Range: JUnit 3.8 - JUnit 4.0”.

Example 9.5. Specifying a Dependency Range: JUnit 3.8 - JUnit 4.0

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>[3.8,4.0)</version>
<scope>test</scope>

</dependency>

If you want to depend on any version of JUnit no higher than 3.8.1, you would
specify only an upper inclusive boundary, as shown in Example 9.6, “Specifying a
Dependency Range: JUnit <= 3.8.1”.

Example 9.6. Specifying a Dependency Range: JUnit <= 3.8.1

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>[,3.8.1]</version>ex-de
<scope>test</scope>

</dependency>

A version before or after the comma is not required, and means +/- infinity. For
example, "[4.0,)" means any version greater than or equal to 4.0. "(,2.0)" is any

The Project Object Model

194

version less than 2.0. "[1.2]" means only version 1.2, and nothing else.

Note
When declaring a "normal" version such as 3.8.2 for Junit, internally this
is represented as "allow anything, but prefer 3.8.2." This means that when
a conflict is detected, Maven is allowed to use the conflict algorithms to
choose the best version. If you specify [3.8.2], it means that only 3.8.2
will be used and nothing else. If somewhere else there is a dependency
that specifies [3.8.1], you would get a build failure telling you of the
conflict. We point this out to make you aware of the option, but use it
sparingly and only when really needed. The preferred way to resolve this
is via dependencyManagement.

9.4.4. Transitive Dependencies
A transitive dependency is a dependency of a dependency. If project-a depends
on project-b, which in turn depends on project-c, then project-c is considered
a transitive dependency of project-a. If project-c depended on project-d, then
project-d would also be considered a transitive dependency of project-a. Part of
Maven’s appeal is that it can manage transitive dependencies and shield the
developer from having to keep track of all of the dependencies required to compile
and run an application. You can just depend on something like the Spring
Framework and not have to worry about tracking down every last dependency of
the Spring Framework.

Maven accomplishes this by building a graph of dependencies and dealing with
any conflicts and overlaps that might occur. For example, if Maven sees that two
projects depend on the same groupId and artifactId, it will sort out which
dependency to use automatically, always favoring the more recent version of a
dependency. Although this sounds convenient, there are some edge cases where
transitive dependencies can cause some configuration issues. For these scenarios,
you can use a dependency exclusion.

The Project Object Model

195

9.4.4.1. Transitive Dependencies and Scope
Each of the scopes outlined earlier in the section Section 9.4.1, “Dependency
Scope”” affects not just the scope of the dependency in the declaring project, but
also how it acts as a transitive dependency. The easiest way to convey this
information is through a table, as in Table 9.1, “How Scope Affects Transitive
Dependencies”. Scopes in the top row represent the scope of a transitive
dependency. Scopes in the leftmost column represent the scope of a direct
dependency. The intersection of the row and column is the scope that is assigned to
a transitive dependency. A blank cell in this table means that the transitive
dependency will be omitted.

Table 9.1. How Scope Affects Transitive Dependencies

Direct Scope Transitive
Scope

compile provided runtime test

compile compile - runtime -

provided provided provided provided -

runtime runtime - runtime -

test test - test -

To illustrate the relationship of transitive dependency scope to direct dependency
scope, consider the following example. If project-a contains a test scoped
dependency on project-b which contains a compile scoped dependency on
project-c. project-c would be a test-scoped transitive dependency of project-a.

You can think of this as a transitive boundary which acts as a filter on dependency
scope. Transitive dependencies which are provided and test scope usually do not
affect a project. The exception to this rule is that a provided scoped transitive
dependency to a provided scope direct dependency is still a provided dependency
of a project. Transitive dependencies which are compile and runtime scoped

The Project Object Model

196

usually affect a project regardless of the scope of a direct dependency. Transitive
dependencies which are compile scoped will have the same scope regardless of the
scope of the direct dependency. Transitive dependencies which are runtime scoped
will generally have the same scope of the direct dependency except when the direct
dependency has a scope of compile. When a transitive dependency is runtime
scoped and a direct is compile scoped the direct dependency the transitive
dependency will have an effective scope of runtime.

9.4.5. Conflict Resolution
There will be times when you need to exclude a transitive dependency, such as
when you are depending on a project that depends on another project, but you
would like to either exclude the dependency altogether or replace the transitive
dependency with another dependency that provides the same functionality.
Example 9.7, “Excluding a Transitive Dependency” shows an example of a
dependency element that adds a dependency on project-a, but excludes the
transitive dependency project-b.

Example 9.7. Excluding a Transitive Dependency

<dependency>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>project-a</artifactId>
<version>1.0</version>
<exclusions>

<exclusion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>project-b</artifactId>

</exclusion>
</exclusions>

</dependency>

Often, you will want to replace a transitive dependency with another
implementation. For example, if you are depending on a library that depends on the
Sun JTA API, you may want to replace the declared transitive dependency.
Hibernate is one example. Hibernate depends on the Sun JTA API JAR, which is
not available in the central Maven repository because it cannot be freely

The Project Object Model

197

redistributed. Fortunately, the Apache Geronimo project has created an
independent implementation of this library that can be freely redistributed. To
replace a transitive dependency with another dependency, you would exclude the
transitive dependency and declare a dependency on the project you wanted instead.
Example 9.8, “Excluding and Replacing a Transitive Dependency” shows an
example of a such replacement.

Example 9.8. Excluding and Replacing a Transitive Dependency

<dependencies>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>
<exclusion>

<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.apache.geronimo.specs</groupId>
<artifactId>geronimo-jta_1.1_spec</artifactId>
<version>1.1</version>

</dependency>
</dependencies>

In Example 9.8, “Excluding and Replacing a Transitive Dependency”, there is
nothing marking the dependency on geronimo-jta_1.1_spec as a replacement, it
just happens to be a library which provides the same API as the original JTA
dependency. Here are some other reasons you might want to exclude or replace
transitive dependencies:

1. The groupId or artifactId of the artifact has changed, where the current
project requires an alternately named version from a dependency's version -
resulting in 2 copies of the same project in the classpath. Normally Maven
would capture this conflict and use a single version of the project, but when
groupId or artifactId are different, Maven will consider this to be two
different libraries.

The Project Object Model

198

2. An artifact is not used in your project and the transitive dependency has not
been marked as an optional dependency. In this case, you might want to
exclude a dependency because it isn't something your system needs and you
are trying to cut down on the number of libraries distributed with an
application.

3. An artifact which is provided by your runtime container thus should not be
included with your build. An example of this is if a dependency depends on
something like the Servlet API and you want to make sure that the
dependency is not included in a web application's WEB-INF/lib directory.

4. To exclude a dependency which might be an API with multiple
implementations. This is the situation illustrated by Example 9.8,
“Excluding and Replacing a Transitive Dependency”; there is a Sun API
which requires click-wrap licensing and a time-consuming manual install
into a custom repository (Sun's JTA JAR) versus a freely distributed version
of the same API available in the central Maven repository (Geronimo's JTA
implementation).

9.4.6. Dependency Management
Once you've adopted Maven at your super complex enterprise and you have two
hundred and twenty inter-related Maven projects, you are going to start wondering
if there is a better way to get a handle on dependency versions. If every single
project that uses a dependency like the MySQL Java connector needs to
independently list the version number of the dependency, you are going to run into
problems when you need to upgrade to a new version. Because the version
numbers are distributed throughout your project tree, you are going to have to
manually edit each of the pom.xml files that reference a dependency to make sure
that you are changing the version number everywhere. Even with find, xargs, and
awk, you are still running the risk of missing a single POM.

Luckily, Maven provides a way for you to consolidate dependency version
numbers in the dependencyManagement element. You'll usually see the

The Project Object Model

199

dependencyManagement element in a top-level parent POM for an organization or
project. Using the dependencyManagement element in a pom.xml allows you to
reference a dependency in a child project without having to explicitly list the
version. Maven will walk up the parent-child hierarchy until it finds a project with
a dependencyManagement element, it will then use the version specified in this
dependencyManagement element.

For example, if you have a large set of projects which make use of the MySQL
Java connector version 5.1.2, you could define the following
dependencyManagement element in your multi-module project's top-level POM.

Example 9.9. Defining Dependency Versions in a Top-level POM

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>a-parent</artifactId>
<version>1.0.0</version>
...
<dependencyManagement>

<dependencies>
<dependency>

<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.2</version>

</dependency>
...

<dependencies>
</dependencyManagement>

Then, in a child project, you can add a dependency to the MySQL Java Connector
using the following dependency XML:

<project>
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook</groupId>
<artifactId>a-parent</artifactId>
<version>1.0.0</version>

</parent>
<artifactId>project-a</artifactId>
...
<dependencies>

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>

The Project Object Model

200

</dependency>
</dependencies>

</project>

You should notice that the child project did not have to explicitly list the version of
the mysql-connector-java dependency. Because this dependency was defined in
the top-level POM's dependencyManagement element, the version number is going
to propagate to the child project's dependency on mysql-connector-java. Note
that if this child project did define a version, it would override the version listed in
the top-level POM's dependencyManagement section. That is, the
dependencyManagement version is only used when the child does not declare a
version directly.

Dependency management in a top-level POM is different from just defining a
dependency on a widely shared parent POM. For starters, all dependencies are
inherited. If mysql-connector-java were listed as a dependency of the top-level
parent project, every single project in the hierarchy would have a reference to this
dependency. Instead of adding in unnecessary dependencies, using
dependencyManagement allows you to consolidate and centralize the management
of dependency versions without adding dependencies which are inherited by all
children. In other words, the dependencyManagement element is equivalent to an
environment variable which allows you to declare a dependency anywhere below a
project without specifying a version number.

9.5. Project Relationships
One of the compelling reasons to use Maven is that it makes the process of
tracking down dependencies (and dependencies of dependencies) very easy. When
a project depends on an artifact produced by another project we say that this
artifact is a dependency. In the case of a Java project, this can be as simple as a
project depending on an external dependency like Log4J or JUnit. While
dependencies can model external dependencies, they can also manage the
dependencies between a set of related projects, if project-a depends on
project-b, Maven is smart enough to know that project-b must be built before

The Project Object Model

201

project-a.

Relationships are not only about dependencies and figuring out what one project
needs to be able to build an artifact. Maven can model the relationship of a project
to a parent, and the relationship of a project to submodules. This section gives an
overview of the various relationships between projects and how such relationships
are configured.

9.5.1. More on Coordinates
Coordinates define a unique location for a project, they were first introduced in
Chapter 3, A Simple Maven Project. Projects are related to one another using
Maven Coordinates. project-a doesn't just depend on project-b; a project with a
groupId, artifactId, and version depends on another project with a groupId,
artifactId, and version. To review, a Maven Coordinate is made up of three
components:

groupId
A groupId groups a set of related artifacts. Group identifiers generally resemble
a Java package name. For example, the groupId org.apache.maven is the base
groupId for all artifacts produced by the Apache Maven project. Group
identifiers are translated into paths in the Maven Repository; for example, the
org.apache.maven groupId can be found in /maven2/org/apache/maven on
repo1.maven.org.

artifactId
The artifactId is the project's main identifier. When you generate an artifact,
this artifact is going to be named with the artifactId. When you refer to a
project, you are going to refer to it using the artifactId. The artifactId,
groupId combination must be unique. In other words, you can't have two
separate projects with the same artifactId and groupId; artifactIds are
unique within a particular groupId.

Note
While '.'s are commonly used in groupIds, you should try to avoid

The Project Object Model

202

http://repo1.maven.org/maven2/org/apache/maven

using them in artifactIds. This can cause issues when trying to
parse a fully qualified name down into the subcomponents.

version
When an artifact is released, it is released with a version number. This version
number is a numeric identifier such as "1.0", "1.1.1", or "1.1.2-alpha-01". You
can also use what is known as a snapshot version. A snapshot version is a
version for a component which is under development, snapshot version
numbers always end in SNAPSHOT; for example, "1.0-SNAPSHOT",
"1.1.1-SNAPSHOT", and "1-SNAPSHOT". Section 9.3.1.1, “Version Build
Numbers” introduces versions and version ranges.

There is a fourth, less-used qualifier:

classifier
You would use a classifier if you were releasing the same code but needed to
produce two separate artifacts for technical reasons. For example, if you wanted
to build two separate artifacts of a JAR, one compiled with the Java 1.4
compiler and another compiled with the Java 6 compiler, you might use the
classifier to produce two separate JAR artifacts under the same
groupId:artifactId:version combination. If your project uses native extensions,
you might use the classifier to produce an artifact for each target platform.
Classifiers are commonly used to package up an artifact's sources, JavaDocs or
binary assemblies.

When we talk of dependencies in this book, we often use the following shorthand
notation to describe a dependency: groupId:artifactId:version. To refer to the
2.5 release of the Spring Framework, we would refer to it as
org.springframework:spring:2.5. When you ask Maven to print out a list of
dependencies with the Maven Dependency plugin, you will also see that Maven
tends to print out log messages with this shorthand dependency notation.

9.5.2. Multi-module Projects

The Project Object Model

203

Multi-module projects are projects which contain a list of modules to build. A
multi-module project always has a packaging of pom, and rarely produces an
artifact. A multi-module project exists only to group projects together in a build.
Figure 9.3, “Multi-module Project Relationships” shows a project hierarchy which
includes two parent projects with packaging of pom, and three projects with
packaging of jar.

Figure 9.3. Multi-module Project Relationships

The directory structure on the file system would also mirror the module
relationships. A set of projects illustrated by Figure 9.3, “Multi-module Project
Relationships” would have the following directory structure:

top-group/pom.xml
top-group/sub-group/pom.xml
top-group/sub-group/project-a/pom.xml
top-group/sub-group/project-b/pom.xml
top-group/project-c/pom.xml

The projects are related to one another because top-group and sub-group are
referencing sub-modules in a POM. For example, the
org.sonatype.mavenbook:top-group project is a multi-module project with

The Project Object Model

204

packaging of type pom. top-group's pom.xml would include the following modules
element:

Example 9.10. top-group modules element

<project>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>top-group</artifactId>
...
<modules>

<module>sub-group</module>
<module>project-c</module>

</modules>
...

</project>

When Maven is reading top-group POM it will look at the modules element and
see that top-group references the projects sub-group and project-c. Maven will
then look for a pom.xml in each of these subdirectories. Maven repeats this process
for each of the submodules: it will read the sub-group/pom.xml and see that the
sub-group project references two projects with the following modules element:

Example 9.11. sub-group modules element

<project>
...
<modules>

<module>project-a</module>
<module>project-b</module>

</modules>
...

</project>

Note that we call the projects under the multi-module projects "modules" and not
"children" or "child projects". This is purposeful, so as not to confuse projects
grouped by multi-module projects with projects that inherit POM information from
each other.

9.5.3. Project Inheritance

The Project Object Model

205

There are going to be times when you want a project to inherit values from a parent
POM. You might be building a large system, and you don't want to have to repeat
the same dependency elements over and over again. You can avoid repeating
yourself if your projects make use of inheritance via the parent element. When a
project specifies a parent, it inherits the information in the parent project's POM. It
can then override and add to the values specified in this parent POM.

All Maven POMs inherit values from a parent POM. If a POM does not specify a
direct parent using the parent element, that POM will inherit values from the
Super POM. Example 9.12, “Project Inheritance” shows the parent element of
project-a which inherits the POM defined by the a-parent project.

Example 9.12. Project Inheritance

<project>
<parent>

<groupId>com.training.killerapp</groupId>
<artifactId>a-parent</artifactId>
<version>1.0-SNAPSHOT</version>

</parent>
<artifactId>project-a</artifactId>
...

</project>

Running mvn help:effective-pom in project-a would show a POM that is the
result of merging the Super POM with the POM defined by a-parent and the
POM defined in project-a. The implicit and explicit inheritance relationships for
project-a are shown in Figure 9.4, “Project Inheritance for a-parent and
project-a”.

The Project Object Model

206

Figure 9.4. Project Inheritance for a-parent and project-a

When a project specifies a parent project, Maven uses that parent POM as a
starting point before it reads the current project's POM. It inherits everything,
including the groupId and version number. You'll notice that project-a does not
specify either, both groupId and version are inherited from a-parent. With a
parent element, all a POM really needs to define is an artifactId. This isn't
mandatory, project-a could have a different groupId and version, but by not
providing values, Maven will use the values specified in the parent POM. If you
start using Maven to manage and build large multi-module projects, you will often
be creating many projects which share a common groupId and version.

When you inherit a POM, you can choose to live with the inherited POM
information or to selectively override it. The following is a list of items a Maven
POM inherits from its parent POM:

• identifiers (at least one of groupId or artifactId must be overridden.)

• dependencies

The Project Object Model

207

• developers and contributors

• plugin lists

• reports lists

• plugin executions (executions with matching ids are merged)

• plugin configuration
When Maven inherits dependencies, it will add dependencies of child projects to
the dependencies defined in parent projects. You can use this feature of Maven to
specify widely used dependencies across all projects which inherit from a top-level
POM. For example, if your system makes universal use of the Log4J logging
framework, you can list this dependency in your top-level POM. Any projects
which inherit POM information from this project will automatically have Log4J as
a dependency. Similarly, if you need to make sure that every project is using the
same version of a Maven plugin, you can list this Maven plugin version explicitly
in a top-level parent POM's pluginManagement section.

Maven assumes that the parent POM is available from the local repository, or
available in the parent directory (../pom.xml) of the current project. If neither
location is valid this default behavior may be overridden via the relativePath

element. For example, some organizations prefer a flat project structure where a
parent project's pom.xml isn't in the parent directory of a child project. It might be
in a sibling directory to the project. If your child project were in a directory
./project-a and the parent project were in a directory named ./a-parent, you
could specify the relative location of parent-a's POM with the following
configuration:

<project>
<parent>

<groupId>org.sonatype.mavenbook</groupId>
<artifactId>a-parent</artifactId>
<version>1.0-SNAPSHOT</version>
<relativePath>../a-parent/pom.xml</relativePath>

</parent>
<artifactId>project-a</artifactId>

</project>

The Project Object Model

208

9.6. POM Best Practices
Maven can be used to manage everything from simple, single-project systems to
builds that involve hundreds of inter-related submodules. Part of the learning
process with Maven isn't just figuring out the syntax for configuring Maven, it is
learning the "Maven Way"—the current set of best practices for organizing and
building projects using Maven. This section attempts to distill some of this
knowledge to help you adopt best practices from the start without having to wade
through years of discussions on the Maven mailing lists.

9.6.1. Grouping Dependencies
If you have a set of dependencies which are logically grouped together. You can
create a project with pom packaging that groups dependencies together. For
example, let's assume that your application uses Hibernate, a popular
Object-Relational mapping framework. Every project which uses Hibernate might
also have a dependency on the Spring Framework and a MySQL JDBC driver.
Instead of having to include these dependencies in every project that uses
Hibernate, Spring, and MySQL you could create a special POM that does nothing
more than declare a set of common dependencies. You could create a project called
persistence-deps (short for Persistence Dependencies), and have every project
that needs to do persistence depend on this convenience project:

Example 9.13. Consolidating Dependencies in a Single POM Project

<project>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>persistence-deps</artifactId>
<version>1.0</version>
<packaging>pom</packaging>
<dependencies>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>${hibernateVersion}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

The Project Object Model

209

<version>${hibernateAnnotationsVersion}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-hibernate3</artifactId>
<version>${springVersion}</version>

</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysqlVersion}</version>

</dependency>
</dependencies>
<properties>

<mysqlVersion>(5.1,)</mysqlVersion>
<springVersion>(2.0.6,)</springVersion>
<hibernateVersion>3.2.5.ga</hibernateVersion>
<hibernateAnnotationsVersion>3.3.0.ga</hibernateAnnotationsVersion>

</properties>
</project>

If you create this project in a directory named persistence-deps, all you need to
do is create this pom.xml and run mvn install. Since the packaging type is pom, this
POM is installed in your local repository. You can now add this project as a
dependency and all of its dependencies will be added to your project. When you
declare a dependency on this persistence-deps project, don't forget to specify the
dependency type as pom.

Example 9.14. Declaring a Dependency on a POM

<project>
<description>This is a project requiring JDBC</description>
...
<dependencies>

...
<dependency>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>persistence-deps</artifactId>
<version>1.0</version>
<type>pom</type>

</dependency>
</dependencies>

</project>

The Project Object Model

210

If you later decide to switch to a different JDBC driver (for example, JTDS), just
replace the dependencies in the persistence-deps project to use
net.sourceforge.jtds:jtds instead of mysql:mysql-java-connector and
update the version number. All projects depending on persistence-deps will use
JTDS if they decide to update to the newer version. Consolidating related
dependencies is a good way to cut down on the length of pom.xml files that start
having to depend on a large number of dependencies. If you need to share a large
number of dependencies between projects, you could also just establish
parent-child relationships between projects and refactor all common dependencies
to the parent project, but the disadvantage of the parent-child approach is that a
project can have only one parent. Sometimes it makes more sense to group similar
dependencies together and reference a pom dependency. This way, your project can
reference as many of these consolidated dependency POMs as it needs.

Note
Maven uses the depth of a dependency in the tree when resolving
conflicts using a nearest-wins approach. Using the dependency grouping
technique above pushes those dependencies one level down in the tree.
Keep this in mind when choosing between grouping in a pom or using
dependenctManagement in a parent POM

9.6.2. Multi-module vs. Inheritance
There is a difference between inheriting from a parent project and being managed
by a multimodule project. A parent project is one that passes its values to its
children. A multimodule project simply manages a group of other subprojects or
modules. The multimodule relationship is defined from the topmost level
downwards. When setting up a multimodule project, you are simply telling a
project that its build should include the specified modules. Multimodule builds are
to be used to group modules together in a single build. The parent-child
relationship is defined from the leaf node upwards. The parent-child relationship
deals more with the definition of a particular project. When you associate a child
with its parent, you are telling Maven that a project’s POM is derived from

The Project Object Model

211

another.

To illustrate the decision process that goes into choosing a design that uses
inheritance vs. multi-module or both approaches consider the following two
examples: the Maven project used to generate this book and a hypothetical project
that contains a number of logically grouped modules.

9.6.2.1. Simple Project
First, let's take a look at the maven-book project. The inheritance and multi-module
relationships are shown in Figure 9.5, “maven-book Multi-module vs. Inheritance”.

Figure 9.5. maven-book Multi-module vs. Inheritance

When we build this Maven book you are reading, we run mvn package in a
multi-module project named maven-book. This multi-module project includes two
submodules: book-examples and book-chapters. Neither of these projects share
the same parent, they are related only in that they are modules in the maven-book

The Project Object Model

212

project. book-examples builds the ZIP and TGZ archives you downloaded to get
this book's example. When we run the book-examples build from book-examples/

directory with mvn package, it has no knowledge that it is a part of the larger
maven-book project. book-examples doesn't really care about maven-book, all it
knows in life is that its parent is the top-most sonatype POM and that it creates an
archive of examples. In this case, the maven-book project exists only as a
convenience and as a aggregator of modules.

The book projects do all define a parent. Each of the three projects: maven-book,
book-examples, and book-chapters all list a shared "corporate" parent —
sonatype. This is a common practice in organizations which have adopted Maven,
instead of having every project extend the Super POM by default, some
organizations define a top-level corporate POM that serves as the default parent
when a project doesn't have any good reason to depend on another. In this book
example, there is no compelling reason to have book-examples and
book-chapters share the same parent POM, they are entirely different projects
which have a different set of dependencies, a different build configuration, and use
drastically different plugins to create the content you are now reading. The
sonatype POM gives the organization a change to customize the default behavior
of Maven and supply some organization-specific information to configure
deployment settings and build profiles.

9.6.2.2. Multi-module Enterprise Project
Let's take a look at an example that provides a more accurate picture of a
real-world project where inheritance and multi-module relationships exist side by
side. Figure 9.6, “Enterprise Multi-module vs. Inheritance” shows a collection of
projects that resemble a typical set of projects in an enterprise application. There is
a top-level POM for the corporation with an artifactId of sonatype. There is a
multi-module project named big-system which references sub-modules
server-side and client-side.

The Project Object Model

213

Figure 9.6. Enterprise Multi-module vs. Inheritance

What's going on here? Let's try to deconstruct this confusing set of arrows. First,
let's take a look at big-system. The big-system might be the project that you
would run mvn package on to build and test the entire system. big-system
references submodules client-side and server-side. Each of these projects
effectively rolls up all of the code that runs on either the server or on the client.
Let's focus on the server-side project. Under the server-side project we have a
project called server-lib and a multi-module project named web-apps. Under
web-apps we have two Java web applications: client-web and admin-web.

Let's start with the parent/child relationships from client-web and admin-web to
web-apps. Since both of the web applications are implemented in the same web

The Project Object Model

214

application framework (let's say Wicket), both projects would share the same set of
core dependencies. The dependencies on the Servlet API, the JSP API, and Wicket
would all be captured in the web-apps project. Both client-web and admin-web

also need to depend on server-lib, this dependency would be defined as a
dependency between web-apps and server-lib. Because client-web and
admin-web share so much configuration by inheriting from web-apps, both
client-web and admin-web will have very small POMs containing little more than
identifiers, a parent declaration, and a final build name.

Next we focus on the parent/child relationship from web-apps and server-lib to
server-side. In this case, let's just assume that there is a separate working group
of developers which work on the server-side code and another group of developers
that work on the client-side code. The list of developers would be configured in the
server-side POM and inherited by all of the child projects underneath it:
web-apps, server-lib, client-web, and admin-web. We could also imagine that
the server-side project might have different build and deployment settings which
are unique to the development for the server side. The server-side project might
define a build profile that only makes sense for all of the server-side projects.
This build profile might contain the database host and credentials, or the
server-side project's POM might configure a specific version of the Maven Jetty
plugin which should be universal across all projects that inherit the server-side

POM.

In this example, the main reason to use parent/child relationships is shared
dependencies and common configuration for a group of projects which are
logically related. All of the projects below big-system are related to one another
as submodules, but not all submodules are configured to point back to parent
project that included it as a submodule. Everything is a submodule for reasons of
convenience, to build the entire system just go to the big-system project directory
and run mvn package. Look more closely at the figure and you'll see that there is
no parent/child relationship between server-side and big-system. Why is this?
POM inheritance is very powerful, but it can be overused. When it makes sense to
share dependencies and build configuration, a parent/child relationship should be
used. When it doesn't make sense is when there are distinct differences between
two projects. Take, for example, the server-side and client-side projects. It is

The Project Object Model

215

possible to create a system where client-side and server-side inherited a
common POM from big-system, but as soon as a significant divergence between
the two child projects develops, you then have to figure out creative ways to factor
out common build configuration to big-system without affecting all of the
children. Even though client-side and server-side might both depend on
Log4J, they also might have distinct plugin configurations.

There's a certain point defined more by style and experience where you decide that
minimal duplication of configuration is a small price to pay for allowing projects
like client-side and server-side to remain completely independent. Designing
a huge set of thirty plus projects which all inherit five levels of POM configuration
isn't always the best idea. In such a setup, you might not have to duplicate your
Log4J dependency more than once, but you'll also end up having to wade through
five levels of POM just figure out how Maven calculated your effective POM. All
of this complexity to avoid duplicating five lines of dependency declaration. In
Maven, there is a "Maven Way", but there are also many ways to accomplish the
same thing. It all boils down to preference and style. For the most part, you won't
go wrong if all of your submodules turn out to define back-references to the same
project as a parent, but your use of Maven may evolve over time.

9.6.2.3. Prototype Parent Projects
Take the following example shown in Figure 9.7, “Using parent projects as
"prototypes" for specialized projects” as another hypothetical and creative way to
use inheritance and multi-modules builds to reuse dependencies.

The Project Object Model

216

Figure 9.7. Using parent projects as "prototypes" for specialized projects

Figure 9.7, “Using parent projects as "prototypes" for specialized projects” is yet
another way to think about inheritance and multi-module projects. In this example,
you have two distinct systems. system-a and system-b each define independent
applications. system-a defines two modules a-lib and a-swing. system-a and
a-lib both define the top-level sonatype POM as a parent project, but the a-swing

project defines swing-proto as a parent project. In this system, swing-proto
supplies a foundational POM for Swing applications and the struts-proto project
provides a foundational POM for Struts 2 web applications. While the sonatype

POM provides high level information such as the groupId, organization
information, and build profiles, struts-proto defines all of the dependencies that
you need to create a struts application. This approach would work well if your

The Project Object Model

217

development is characterized by many independent applications which each have
to follow the same set of rules. If you are creating a lot of struts applications but
they are not really related to one another, you might just define everything you
need in struts-proto. The downside to this approach is that you won't be able to
use parent/child relationships within the system-a and system-b project
hierarchies to share information like developers and other build configuration. A
project can only have one parent.

The other downside of this approach is that as soon as you have one project that
"breaks the mold" you'll either have to override the prototype parent POM or find a
way to factor customizations into the shared parent without those customizations
affecting all the children. In general, using POMs as prototypes for specialized
project "types" isn't a recommended practice.

The Project Object Model

218

Chapter 10. The Build Lifecycle

10.1. Introduction
Maven models projects as nouns which are described by a POM. The POM
captures the identity of a project: What does a project contain? What type of
packaging a project needs? Does the project have a parent? What are the
dependencies? We've explored the idea of describing a project in the previous
chapters, but we haven't introduced the mechanism that allows Maven to act upon
these objects. In Maven the "verbs" are goals packaged in Maven plugins which
are tied to a phases in a build lifecycle. A Maven lifecycle consists of a sequence
of named phases: prepare-resources, compile, package, and install among other.
There is phase that captures compilation and a phase that captures packaging.
There are pre- and post- phases which can be used to register goals which must run
prior to compilation, or tasks which must be run after a particular phase. When you
tell Maven to build a project, you are telling Maven to step through a defined
sequence of phases and execute any goals which may have been registered with
each phase.

A build lifecycle is an organized sequence of phases that exist to give order to a set
of goals. Those goals are chosen and bound by the packaging type of the project
being acted upon. There are three standard lifecycles in Maven: clean, default
(sometimes called build) and site. In this chapter, you are going to learn how
Maven ties goals to lifecycle phases and how the lifecycle can be customized. You
will also learn about the default lifecycle phases.

10.1.1. Clean Lifecycle (clean)
The first lifecycle you'll be interested in is the simplest lifecycle in Maven.
Running mvn clean invokes the clean lifecycle which consists of three lifecycle
phases:

219

• pre-clean

• clean

• post-clean

The interesting phase in the clean lifecycle is the clean phase. The Clean plugin's
clean goal (clean:clean) is bound to the clean phase in the clean lifecycle. The
clean:clean goal deletes the output of a build by deleting the build directory. If
you haven't customized the location of the build directory it will be the
${basedir}/target directory as defined by the Super POM. When you execute
the clean:clean goal you do not do so by executing the goal directly with mvn
clean:clean, you do so by executing the clean phase of the clean lifecycle.
Executing the clean phase gives Maven an opportunity to execute any other goals
which may be bound to the pre-clean phase.

For example, suppose you wanted to trigger an antrun:run goal task to echo a
notification on pre-clean, or to make an archive of a project's build directory
before it is deleted. Simply running the clean:clean goal will not execute the
lifecycle at all, but specifying the clean phase will use the clean lifecycle and
advance through the three lifecycle phases until it reaches the clean phase.
Example 10.1, “Triggering a Goal on pre-clean” shows an example of build
configuration which binds the antrun:run goal to the pre-clean phase to echo an
alert that the project artifact is about to be deleted. In this example, the antrun:run

goal is being used to execute some arbitrary Ant commands to check for an
existing project artifact. If the project's artifact is about to be deleted it will print
this to the screen

Example 10.1. Triggering a Goal on pre-clean

<project>
...
<build>

<plugins>... <plugin>
<artifactId>maven-antrun-plugin</artifactId>
<executions>
<execution>

<id>file-exists</id>
<phase>pre-clean</phase>

The Build Lifecycle

220

<goals>
<goal>run</goal>

</goals>
<configuration>

<tasks>
<!-- adds the ant-contrib tasks (if/then/else used below) -->
<taskdef resource="net/sf/antcontrib/antcontrib.properties" />
<available

file="${project.build.directory}/${project.build.finalName}.${project.packaging}"
property="file.exists" value="true" />

<if>
<not>
<isset property="file.exists" />

</not>
<then>
<echo>No
${project.build.finalName}.${project.packaging} to
delete</echo>

</then>
<else>
<echo>Deleting
${project.build.finalName}.${project.packaging}</echo>

</else>
</if>

</tasks>
</configuration>

</execution>
</executions>
<dependencies>
<dependency>

<groupId>ant-contrib</groupId>
<artifactId>ant-contrib</artifactId>
<version>1.0b2</version>

</dependency>
</dependencies>

</plugin>
</plugins>
</build>

</project>

Running mvn clean on a project with this build configuration will produce output
similar to the following:

[INFO] Scanning for projects...
[INFO] --
[INFO] Building Your Project
[INFO] task-segment: [clean]
[INFO] --
[INFO] [antrun:run {execution: file-exists}]
[INFO] Executing tasks

The Build Lifecycle

221

[echo] Deleting your-project-1.0-SNAPSHOT.jar
[INFO] Executed tasks
[INFO] [clean:clean]
[INFO] Deleting directory ~/corp/your-project/target
[INFO] Deleting directory ~/corp/your-project/target/classes
[INFO] Deleting directory ~/corp/your-project/target/test-classes
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 second
[INFO] Finished at: Wed Nov 08 11:46:26 CST 2006
[INFO] Final Memory: 2M/5M
[INFO] --

In addition to configuring Maven to run a goal during the pre-clean phase, you
can also customize the Clean plugin to delete files in addition to the build output
directory. You can configure the plugin to remove specific files in a fileSet. The
example below configures clean to remove all .class files in a directory named
target-other/ using standard Ant file wildcards: * and **.

Example 10.2. Customizing Behavior of the Clean Plugin

<project>
<modelVersion>4.0.0</modelVersion>
...
<build>

<plugins>
<plugin>

<artifactId>maven-clean-plugin</artifactId>
<configuration>

<filesets>
<fileset>

<directory>target-other</directory>
<includes>
<include>*.class</include>

</includes>
</fileset>

</filesets>
</configuration>

</plugin>
</plugins>

</build>
</project>

The Build Lifecycle

222

10.1.2. Default Lifecycle (default)
Most Maven users will be familiar with the default lifecycle. It is a general model
of a build process for a software application. The first phase is validate and the
last phase is deploy. The phases in the default Maven lifecycle are shown in
Table 10.1, “Maven Lifecycle Phases”.

Table 10.1. Maven Lifecycle Phases

Lifecycle Phase Description

validate Validate the project is correct and all
necessary information is available to
complete a build

generate-sources Generate any source code for inclusion in
compilation

process-sources Process the source code, for example to
filter any values

generate-resources Generate resources for inclusion in the
package

process-resources Copy and process the resources into the
destination directory, ready for packaging

compile Compile the source code of the project

process-classes Post-process the generated files from
compilation, for example to do bytecode
enhancement on Java classes

generate-test-sources Generate any test source code for
inclusion in compilation

process-test-sources Process the test source code, for example
to filter any values

generate-test-resources Create resources for testing

The Build Lifecycle

223

Lifecycle Phase Description

process-test-resources Copy and process the resources into the
test destination directory

test-compile Compile the test source code into the test
destination directory

test Run tests using a suitable unit testing
framework. These tests should not require
the code be packaged or deployed

prepare-package Perform any operations necessary to
prepare a package before the actual
packaging. This often results in an
unpacked, processed version of the
package (coming in Maven 2.1+)

package Take the compiled code and package it in
its distributable format, such as a JAR,
WAR, or EAR

pre-integration-test Perform actions required before
integration tests are executed. This may
involve things such as setting up the
required environment

integration-test Process and deploy the package if
necessary into an environment where
integration tests can be run

post-integration-test Perform actions required after integration
tests have been executed. This may
include cleaning up the environment

verify Run any checks to verify the package is
valid and meets quality criteria

install Install the package into the local

The Build Lifecycle

224

Lifecycle Phase Description

repository, for use as a dependency in
other projects locally

deploy Copies the final package to the remote
repository for sharing with other
developers and projects (usually only
relevant during a formal release)

10.1.3. Site Lifecycle (site)
Maven does more than build software artifacts from project, it can also generate
project documentation and reports about the project, or a collection of projects.
Project documentation and site generation have a dedicated lifecycle which
contains four phases:

1. pre-site

2. site

3. post-site

4. site-deploy
The default goals bound to the site lifecycle is:

1. site - site:site

2. site-deploy -site:deploy
The packaging type does not usually alter this lifecycle since packaging types are
concerned primarily with artifact creation, not with the type of site generated. The
Site plugin kicks off the execution of Doxia document generation and other report
generation plugins. You can generate a site from a Maven project by running the
following command:

$ mvn site

The Build Lifecycle

225

http://maven.apache.org/doxia/

For more information about Maven Site generation, see Chapter 15, Site
Generation.

10.2. Package-specific Lifecycles
The specific goals bound to each phase default to a set of goals specific to a
project's packaging. A project with packaging jar has a different set of default
goals from a project with a packaging of war. The packaging element affects the
steps required to build a project. For an example of how the packaging affects the
build, consider two projects: one with pom packaging and the other with jar

packaging. The project with pom packaging will run the site:attach-descriptor

goal during the package phase, and the project with jar packaging will run the
jar:jar goal instead.

The following sections describe the lifecycle for all built-in packaging types in
Maven. Use these sections to find out what default goals are mapped to default
lifecycle phases.

10.2.1. JAR
JAR is the default packaging type, the most common, and thus the most commonly
encountered lifecycle configuration. The default goals for the JAR lifecycle are
shown in Table 10.2, “Default Goals for JAR Packaging”.

Table 10.2. Default Goals for JAR Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

The Build Lifecycle

226

Lifecycle Phase Goal

test surefire:test

package jar:jar

install install:install

deploy deploy:deploy

10.2.2. POM
POM is the simplest packaging type. The artifact that it generates is itself only,
rather than a JAR, SAR, or EAR. There is no code to test or compile, and there are
no resources the process. The default goals for projects with POM packaging are
shown in Table 10.3, “Default Goals for POM Packaging”.

Table 10.3. Default Goals for POM Packaging

Lifecycle Phase Goal

package site:attach-descriptor

install install:install

deploy deploy:deploy

10.2.3. Maven Plugin
This packaging type is similar to JAR packaging type with three additions:
plugin:descriptor, plugin:addPluginArtifactMetadata, and
plugin:updateRegistry. These goals generate a descriptor file and perform some
modifications to the repository data. The default goals for projects with plugin
packaging are shown in Table 10.4, “Default Goals for Plugin Packaging”.

Table 10.4. Default Goals for Plugin Packaging

The Build Lifecycle

227

Lifecycle Phase Goal

generate-resources plugin:descriptor

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar, plugin:addPluginArtifactMetadata

install install:install, plugin:updateRegistry

deploy deploy:deploy

10.2.4. EJB
EJBs, or Enterprise Java Beans, are a common data access mechanism for
model-driven development in Enterprise Java. Maven provides support for EJB 2
and 3. Though you must configure the EJB plugin to specifically package for
EJB3, else the plugin defaults to 2.1 and looks for the presence of certain EJB
configuration files. The default goals for projects with EJB packaging are shown in
Table 10.5, “Default Goals for EJB Packaging”.

Table 10.5. Default Goals for EJB Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

The Build Lifecycle

228

Lifecycle Phase Goal

test surefire:test

package ejb:ejb

install install:install

deploy deploy:deploy

10.2.5. WAR
The WAR packaging type is similar to the JAR and EJB types. The exception
being the package goal of war:war. Note that the war:war plugin requires a
web.xml configuration in your src/main/webapp/WEB-INF directory. The default
goals for projects with WAR packaging are shown in Table 10.6, “Default Goals
for WAR Packaging”.

Table 10.6. Default Goals for WAR Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package war:war

install install:install

deploy deploy:deploy

The Build Lifecycle

229

10.2.6. EAR
EARs are probably the simplest Java EE constructs, consisting primarily of the
deployment descriptor application.xml file, some resources and some modules.
The EAR plugin has a goal named generate-application-xml which generates
the application.xml based upon the configuration in the EAR project's POM. The
default goals for projects with EAR packaging are shown in Table 10.7, “Default
Goals for EAR Packaging”.

Table 10.7. Default Goals for EAR Packaging

Lifecycle Phase Goal

generate-resources ear:generate-application-xml

process-resources resources:resources

package ear:ear

install install:install

deploy deploy:deploy

10.2.7. Other Packaging Types
This is not an exhaustive list of every packaging type available for Maven. There
are a number of packaging formats available through external projects and plugins:
the NAR (native archive) packaging type, the SWF and SWC packaging types for
projects that produce Adobe Flash and Flex content, and many others. You can
also define a custom packaging type and customize the default lifecycle goals to
suit your own project packaging requirements.

To use one of these custom packaging types, you need two things: a plugin which
defines the lifecycle for a custom packaging type and a repository which contains
this plugin. Some custom packaging types are defined in plugins available from the
central Maven repository. Here is an example of a project which references the
Israfil Flex plugin and uses a custom packaging type of SWF to produce output

The Build Lifecycle

230

from Adobe Flex source.

Example 10.3. Custom Packaging Type for Adobe Flex (SWF)

<project>
...
<packaging>swf</packaging>
...
<build>

<plugins>
<plugin>

<groupId>net.israfil.mojo</groupId>
<artifactId>maven-flex2-plugin</artifactId>
<version>1.4-SNAPSHOT</version>
<extensions>true</extensions>
<configuration>

<debug>true</debug>
<flexHome>${flex.home}</flexHome>
<useNetwork>true</useNetwork>
<main>org/sonatype/mavenbook/Main.mxml</main>

</configuration>
</plugin>

</plugins>
</build>
...

</project>

In Section 17.6, “Plugins and the Maven Lifecycle”, we show you how to create
your own packaging type with a customized lifecycle. This example should give
you an idea of what you'll need to do to reference a custom packaging type. All
you need to do is reference the plugin which supplies the custom packaging type.
The Israfil Flex plugin is a third-party Maven plugin hosted at Google Code, for
more information about this plugin and how to use Maven to compile Adobe Flex
go to http://code.google.com/p/israfil-mojo. This plugin supplies the following
lifecycle for the SWF packaging type:

Table 10.8. Default Lifecycle for SWF Packaging

Lifecycle Phase Goal

compile flex2:compile-swc

install install

The Build Lifecycle

231

http://code.google.com/p/israfil-mojo

Lifecycle Phase Goal

deploy deploy

10.3. Common Lifecycle Goals
Many of the packaging lifecycles have similar goals. If you look at the goals bound
to the WAR and JAR lifecycles, you'll see that they differ only in the package

phase. The package phase of the WAR lifecycle calls war:war and the package

phase of the JAR lifecycle calls jar:jar. Most of the lifecycles you will come into
contact share some common lifecycle goals for managing resources, running tests,
and compiling source code. In this section, we'll explore some of these common
lifecycle goals in detail.

10.3.1. Process Resources
Most lifecycles bind the resources:resources goal to the process-resources

phase. The process-resources phase "processes" resources and copies them to
the output directory. If you haven't customized the default directory locations
defined in the Super POM, this means that Maven will copy the files from
${basedir}/src/main/resources to ${basedir}/target/classes or the
directory defined in ${project.build.outputDirectory}. In addition to copying
the resources to the output directory, Maven can also apply a filter to the resources
that allows you to replace tokens within resource file. Just like variables are
referenced in a POM using ${...} notation, you can reference variables in your
project's resources using the same syntax. Coupled with build profiles, such a
facility can be used to produce build artifacts which target different deployment
platforms. This is something that is common in environments which need to
produce output for development, testing, staging, and production platforms from
the same project. For more information about build profiles, see Chapter 11, Build
Profiles.

To illustrate resource filtering, assume that you have a project with an XML file in

The Build Lifecycle

232

src/main/resources/META-INF/service.xml. You want to externalize some
configuration variables to a properties file. In other words, you might want to
reference a JDBC URL, username, and password for your database, and you don't
want to put these values directly into the service.xml file. Instead, you would like
to use a properties file to capture all of the configuration points for your program.
Doing this will allow you to consolidate all configuration into a single properties
file and make it easier to change configuration values when you need to target a
new deployment environment. First, take a look at the contents of service.xml in
src/main/resources/META-INF.

Example 10.4. Using Properties in Project Resources

<service>
<!-- This URL was set by project version ${project.version} -->
<url>${jdbc.url}</url>
<user>${jdbc.username}</user>
<password>${jdbc.password}</password>

</service>

This XML file uses the same property reference syntax you can use in the POM. In
fact, the first variable referenced is the project variable which is also an implicit
variable made available in the POM. The project variable provides access to
POM information. The next three variable references are jdbc.url,
jdbc.username, and jdbc.password. These custom variables are defined in a
properties file src/main/filters/default.properties.

Example 10.5. default.properties in src/main/filters

jdbc.url=jdbc:hsqldb:mem:mydb
jdbc.username=sa
jdbc.password=

To configure resource filtering with this default.properties file, we need to
specify two things in a project's POM: a list of properties files in the filters

element of the build configuration, and a flag to Maven that the resources directory
is to be filtered. The default Maven behavior is to skip filtering and just copy the

The Build Lifecycle

233

resources to the output directory; you'll need to explicitly configure resource filter,
or Maven will skip the step altogether. This default ensures that Maven's resource
filtering feature doesn't surprise you out of nowhere and clobbering any ${...}

references you didn't want it to replace.

Example 10.6. Filter Resources (Replacing Properties)

<build>
<filters>

<filter>src/main/filters/default.properties</filter>
</filters>
<resources>

<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>

</resource>
</resources>

</build>

As with all directories in Maven, the resources directory does not need to be in
src/main/resources. This is just the default value defined in the Super POM. You
should also note that you don't need to consolidate all of your resources into a
single directory. You can always separate resources into separate directories under
src/main. Assume that you have project which contains hundreds of XML
documents and hundreds of images. Instead of mixing the resources in the
src/main/resources directory, you might want to create two directories
src/main/xml and src/main/images to hold this content. To add directories to the
list of resource directories, you would add the following resource elements to
your build configuration.

Example 10.7. Configuring Additional Resource Directories

<build>
...
<resources>

<resource>
<directory>src/main/resources</directory>

</resource>
<resource>
<directory>src/main/xml</directory>

</resource>

The Build Lifecycle

234

<resource>
<directory>src/main/images</directory>

</resource>
</resources>
...

</build>

When you are building a project that produces a console application or a
command-line tool, you'll often find yourself writing simple shell scripts that need
to reference the JAR produced by a build. When you are using the assembly plugin
to produce a distribution for an application as a ZIP or TAR, you might place all of
you scripts in a directory like src/main/command. In the following POM resource
configuration, you'll see how we can use resource filtering and a reference to the
project variable to capture the final output name of the JAR. For more information
about the Maven Assembly plugin, see Chapter 12, Maven Assemblies.

Example 10.8. Filtering Script Resources

<build>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>simple-cmd</artifactId>
<version>2.3.1</version>
...
<resources>

<resource>
<filtering>true</filtering>
<directory>${basedir}/src/main/command</directory>
<includes>

<include>run.bat</include>
<include>run.sh</include>

</includes>
<targetPath>${basedir}</targetPath>

</resource>
<resource>
<directory>${basedir}/src/main/resources</directory>

</resource>
</resources>
...

</build>

If you run mvn process-resources in this project, you will end up with two files,
run.sh and run.bat, in ${basedir}. We've singled out these two files in a

The Build Lifecycle

235

resource element, configuring filtering, and set the targetPath to be ${basedir}.
In a second resource element, we've configured the default resources path to be
copied to the default output directory without any filtering. Example 10.8,
“Filtering Script Resources” shows you how to declare two resource directories
and supply them with different filtering and target directory preferences. The
project from Example 10.8, “Filtering Script Resources” would contain a run.bat

file in src/main/command with the following content:

@echo off
java -jar ${project.build.finalName}.jar %*

After running mvn process-resources, a file named run.bat would appear in
${basedir} with the following content:

@echo off
java -jar simple-cmd-2.3.1.jar %*

The ability to customize filtering for specific subsets of resources is another reason
why complex projects with many different kinds of resources often find it
advantageous to separate resources into multiple directories. The alternative to
storing different kinds of resources with different filtering requirements in different
directories is to use a more complex set of include and exclude patterns to match
all resource files which match a certain pattern.

10.3.2. Compile
Most lifecycles bind the Compiler plugin's compile goal to the compile phase.
This phase calls out to compile:compile which is configured to compile all of the
source code and copy the bytecode to the build output directory. If you haven't
customized the values defined in the Super POM, compile:compile is going to
compile everything from src/main/java to target/classes. The Compiler plugin
calls out to javac and uses default source and target settings of 1.3 and 1.1. In
other words, the compiler plugin assumes that your Java source conforms to Java
1.3 and that you are targeting a Java 1.1 JVM. If you would like to change these
settings, you'll need to supply the target and source configuration to the Compiler
plugin in your project's POM as shown in Example 10.9, “Setting the Source and

The Build Lifecycle

236

Target Versions for the Compiler Plugin”.

Example 10.9. Setting the Source and Target Versions for the Compiler
Plugin

<project>
...
<build>

...
<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
...

</build>
...

</project>

Notice we are configuring the Compiler plugin, and not the specific
compile:compile goal. If we were going to configure the source and target for just
the compile:compile goal, we would place the configuration element below an
execution element for the compile:compile goal. We've configured the target and
source for the plugin because compile:compile isn't the only goal we're interested
in configuring. The Compiler plugin is reused when Maven compiles tests using
the compile:testCompile goal, and configuring target and source at the plugin
level allows us to define it once for all goals in a plugin.

If you need to customize the location of the source code, you can do so by
changing the build configuration. If you wanted to store your project's source code
in src/java instead of src/main/java and if you wanted build output to go to
classes instead of target/classes, you could always override the default
sourceDirectory defined by the Super POM.

Example 10.10. Overriding the Default Source Directory

<build>

The Build Lifecycle

237

...
<sourceDirectory>src/java</sourceDirectory>
<outputDirectory>classes</outputDirectory>
...

</build>

Warning
While it might seem necessary to bend Maven to your own idea of
project directory structure, we can't emphasize enough that you should
sacrifice your own ideas of directory structure in favor of the Maven
defaults. This isn't because we're trying to brainwash you into accepting
the Maven Way, but it will be easier for people to understand your
project if it adheres to the most basic conventions. Just forget about this.
Don't do it.

10.3.3. Process Test Resources
The process-test-resources phase is almost indistinguishable from the
process-resources phase. There are some trivial differences in the POM, but
most everything the same. You can filter test resources just as you filter regular
resources. The default location for test resources is defined in the Super POM as
src/test/resources, and the default output directory for test resources is
target/test-classes as defined in ${project.build.testOutputDirectory}.

10.3.4. Test Compile
The test-compile phase is almost identical to the compile phase. The only
difference is that test-compile is going to invoke compile:testCompile to
compile source from the test source directory to the test build output directory. If
you haven't customized the default directories from the Super POM,
compile:testCompile is going to compile the source in src/test/java to the
target/test-classes directory.

As with the source code directory, if you want to customize the location of the test

The Build Lifecycle

238

source code and the output of test compilation, you can do so by overriding the
testSourceDirectory and the testOutputDirectory. If you wanted to store test
source in src-test/ instead of src/test/java and you wanted to save test
bytecode to classes-test/ instead of target/test-classes, you would use the
following configuration.

Example 10.11. Overriding the Location of Test Source and Output

<build>
...
<testSourceDirectory>src-test</testSourceDirectory>
<testOutputDirectory>classes-test</testOutputDirectory>
...

</build>

10.3.5. Test
Most lifecycles bind the test goal of the Surefire plugin to the test phase. The
Surefire plugin is Maven's unit testing plugin, the default behavior of Surefire is to
look for all classes ending in *Test in the test source directory and to run them as
JUnit tests. The Surefire plugin can also be configured to run TestNG unit tests.

After running mvn test, you should also notice that the Surefire produces a number
of reports in target/surefire-reports. This reports directory will have two files
for each test executed by the Surefire plugin: an XML document containing
execution information for the test, and a text file containing the output of the unit
test. If there is a problem during the test phase and a unit test has failed, you can
use the output of Maven and the contents of this directory to track down the cause
of a test failure. This surefire-reports/ directory is also used during site
generation to create an easy to read summary of all the unit tests in a project.

If you are working on a project that has some failing unit tests, but you want the
project to produce output, you'll need to configure the Surefire plugin to continue a
build even if it encounters a failure. The default behavior is to stop a build
whenever a unit test failure is encountered. To override this behavior, you'll need
to set the testFailureIgnore configuration property on the Surefire plugin to true.

The Build Lifecycle

239

http://www.junit.org
http://www.testng.org

Example 10.12. Configuring Surefire to Ignore Test Failures

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>
</plugin>
...

</plugins>
</build>

If you would like to skip tests altogether, you can do so by executing the following
command:

$ mvn install -Dmaven.test.skip=true

The maven.test.skip variable controls both the Compiler and the Surefire plugin,
if you pass in maven.test.skip you've told Maven to ignore tests altogether.

10.3.6. Install
The install goal of the Install plugin is almost always bound to the install

lifecycle phase. This install:install goal simply installs a project's main artifact
to the local repository. If you have a project with a groupId of
org.sonatype.mavenbook, an artifactId of simple-test, and a version of 1.0.2,
the install:install goal is going to copy the JAR file from
target/simple-test-1.0.2.jar to
~/.m2/repository/org/sonatype/mavenbook/simple-test/1.0.2/simple-test-1.0.2.jar.
If the project has POM packaging, this goal will copy the POM to the local
repository.

10.3.7. Deploy
The deploy goal of the Deploy plugin is usually bound to the deploy lifecycle

The Build Lifecycle

240

phase. This phase is used to deploy an artifact to a remote Maven repository, this is
usually required to update a remote repository when you are performing a release.
The deployment procedure can be as simple as copying a file to another directory
or as complex as transferring a file over SCP using a public key. Deployment
settings usually involve credentials to a remote repository, and, as such,
deployment settings are usually not stored in a pom.xml. Instead, deployment
settings are more frequently found in an individual user's ~/.m2/settings.xml.
For now, all you need to know is that the deploy:deploy goal is bound to the
deploy phase and it takes care of transporting an artifact to a published repository
and updating any repository information which might be affected by such a
deployment.

The Build Lifecycle

241

Chapter 11. Build Profiles

11.1. What Are They For?
Profiles allow for the ability to customize a particular build for a particular
environment; profiles enable portability between different build environments.

What do we mean by different build environments? Two example build
environments are production and development. When you are working in a
development environment, your system might be configured to read from a
development database instance running on your local machine while in production,
your system is configured to read from the production database. Maven allows you
to define any number of build environments (build profiles) which can override
any of the settings in the pom.xml. You could configure your application to read
from your local, development instance of a database in your "development" profile,
and you can configure it to read from the production database in the "production"
profile. Profiles can also be activated by the environment and platform, you can
customize a build to run differently depending the Operating System or the
installed JDK version. Before we talk about using and configuring Maven profiles,
we need to define the concept of Build Portability.

11.1.1. What is Build Portability
A build's "portability" is a measure of how easy it is to take a particular project and
build it in different environments. A build which works without any custom
configuration or customization of properties files is more portable than a build
which requires a great deal of work to build from scratch. The most portable
projects tend to be widely used open source projects like Apache Commons of
Apache Velocity which ship with Maven builds which require little or no
customization. Put simply, the most portable project builds tend to just work, out
of the box, and the least portable builds require you to jump through hoops and
configure platform specific paths to locate build tools. Before we show you how to
achieve build portability, let's survey the different kinds of portability we are

242

talking about.

11.1.1.1. Non-Portable Builds
The lack of portability is exactly what all build tools are made to prevent -
however, any tool can be configured to be non-portable (even Maven). A
non-portable project is buildable only under a specific set of circumstances and
criteria (e.g., your local machine). Unless you are working by yourself and you
have no plans on ever deploying your application to another machine, it is best to
avoid non-portability entirely. A non-portable build only runs on a single machine,
it is a "one-off". Maven is designed to discourage non-portable builds by offering
the ability to customize builds using profiles.

When a new developer gets the source for a non-portable project, they will not be
able to build the project without rewriting large portions of a build script.

11.1.1.2. Environment Portability
A build exhibits environment portability if it has a mechanism for customizing
behavior and configuration when targeting different environments. A project that
contains a reference to a test database in a test environment, for example, and a
production database in a production environment, is environmentally portable. It is
likely that this build has a different set of properties for each environment. When
you move to a different environment, one that is not defined and has no profile
created for it, the project will not work. Hence, it is only portable between defined
environments.

When a new developer gets the source for an environmentally portable project,
they will have to run the build within a defined environment or they will have to
create a custom environment to successfully build the project.

11.1.1.3. Organizational (In-House) Portability
The center of this level of portability is a project's requirement that only a select
few may access internal resources such as source control or an
internally-maintained Maven repository. A project at a large corporation may
depend on a database available only to in-house developers, or an open source

Build Profiles

243

project might require a specific level of credentials to publish a web site and
deploy the products of a build to a public repository.

If you attempt to build an in-house project from scratch outside of the in-house
network (for example, outside of a corporate firewall), the build will fail. It may
fail because certain required custom plugins are unavailable, or project
dependencies cannot be found because you don't have the appropriate credentials
to retrieve dependencies from a custom remote repository. Such a project is
portable only across environments in a single organization.

11.1.1.4. Wide (Universal) Portability
Anyone may download a widely portable project's source, compile, and install it
without customizing a build for a specific environment. This is the highest level of
portability; anything less requires extra work for those who wish to build your
project. This level of portability is especially important for open source projects,
which depend on the ability for would-be contributors to easily download and
build from source.

Any developer could download the source for a widely portable project.

11.1.2. Selecting an Appropriate Level of Portability
Clearly, you'll want to avoid creating the worst-case scenario: the non-portable
build. You may have had the misfortune to work or study at an organization that
had critical applications with non-portable builds. In such organizations, you
cannot deploy an application without the help of a specific individual on a specific
machine. In such an organization, it is also very difficult to introduce new project
dependencies or changes without coordinating the change with the single person
who maintains such a non-portable build. Non-portable builds tend to grow in
highly political environments when one individual or group needs to exert control
over how and when a project is built and deployed. "How do we build the system?
Oh, we've got to call Jack and ask him to build it for us, no one else deploys to
production." That is a dangerous situation which is more common that you would
think. If you work for this organization, Maven and Maven profiles provide a way
out of this mess.

Build Profiles

244

On the opposite end of the portability spectrum are widely portable builds. Widely
portable builds are generally the most difficult build systems to attain. These builds
restrict your dependencies to those projects and tools that may be freely distributed
and are publicly available. Many commercial software packages might be excluded
from the most-portable builds because they cannot be downloaded before you have
accepted a certain license. Wide portability also restricts dependencies to those
pieces of software that may be distributed as Maven artifacts. For example, if you
depend upon Oracle JDBC drivers, your users will have to download and install
them manually; this is not widely portable as you will have to distribute a set of
environment setup instructions for people interested in building your application.
On the other hand, you could use a JDBC driver which is available from the public
Maven repositories like MySQL or HSQLDB.

As stated previously, open source projects benefit from having the most widely
portable build possible. Widely portable builds reduce the inefficiencies associated
with contributing to a project. In an open source project (such as Maven) there are
two distinct groups: end-users and developers. When an end-user uses a project
like Maven and decides to contribute a patch to Maven, they have to make the
transition from using the output of a build to running a build. They have to first
become a developer, and if it is difficult to learn how to build a project, this
end-user has a disincentive to take the time to contribute to a project. In a widely
portable project, an end-user doesn't have to follow a set or arcane build
instructions to start becoming a developer, they can download the source, modify
the source, build, and submit a contribution without asking someone to help them
set up a build environment. When the cost of contributing source back to an
open-source project is lower, you'll see an increase in source code contributions,
especially casual contributions which can make the difference between a project's
success and a project's failure. One side-effect of Maven's adoption across a wide
group of open source projects is that it has made it easier for developers to
contribute code to various open source projects.

11.2. Portability through Maven Profiles
A profile in Maven is an alternative set of configuration values which set or

Build Profiles

245

override default values. Using a profile, you can customize a build for different
environments. Profiles are configured in the pom.xml and are given an identifier.
Then you can run Maven with a command-line flag that tells Maven to execute
goals in a specific profile. The following pom.xml uses a production profile to
override the default settings of the Compiler plugin.

Example 11.1. Using a Maven Profile to Override Production Compiler
Settings

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>simple</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<profiles>#

<profile>
<id>production</id>#
<build>#

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<debug>false</debug>#
<optimize>true</optimize>

</configuration>
</plugin>

</plugins>
</build>

</profile>
</profiles>

</project>

Build Profiles

246

In this example, we've added a profile named production that overrides the default
configuration of the Maven Compiler plugin, let's examine the syntax of this
profile in detail.

❶ The profiles element is in the pom.xml, it contains one or more profile

elements. Since profiles override the default settings in a pom.xml, the
profiles element is usually listed as the last element in a pom.xml.

❷ Each profile has to have an id element. This id element contains the name
which is used to invoke this profile from the command-line. A profile is
invoked by passing the -P<profile_id> command-line argument to Maven.

❸ A profile element can contain many of the elements which can appear under
the project element of a POM XML Document. In this example, we're
overriding the behavior of the Compiler plugin and we have to override the
plugin configuration which is normally enclosed in a build and a plugins

element.
❹ We're overriding the configuration of the Maven Compiler plugin. We're

making sure that the bytecode produced by the production profile doesn't
contain debug information and that the bytecode has gone through the
compiler's optimization routines.

To execute mvn install under the production profile, you need to pass the
-Pproduction argument on the command-line. To verify that the production

profile overrides the default Compiler plugin configuration, execute Maven with
debug output enabled (-X) as follows:

~/examples/profile $ mvn clean install -Pproduction -X
... (omitting debugging output) ...
[DEBUG] Configuring mojo 'o.a.m.plugins:maven-compiler-plugin:2.0.2:testCompile'
[DEBUG] (f) basedir = ~\examples\profile
[DEBUG] (f) buildDirectory = ~\examples\profile\target
...
[DEBUG] (f) compilerId = javac
[DEBUG] (f) debug = false
[DEBUG] (f) failOnError = true
[DEBUG] (f) fork = false
[DEBUG] (f) optimize = true
[DEBUG] (f) outputDirectory = \

~\svnw\sonatype\examples\profile\target\test-classes
[DEBUG] (f) outputFileName = simple-1.0-SNAPSHOT
[DEBUG] (f) showDeprecation = false
[DEBUG] (f) showWarnings = false
[DEBUG] (f) staleMillis = 0

Build Profiles

247

[DEBUG] (f) verbose = false
[DEBUG] -- end configuration --
... (omitting debugging output) ...

This excerpt from the debug output of Maven shows the configuration of the
Compiler plugin under the production profile. As shown in the output, debug is set
to false and optimize is set to true.

11.2.1. Overriding a Project Object Model
While the previous example showed you how to override the default configuration
properties of a single Maven plugin, you still don't know exactly what a Maven
profile is allowed to override. The short-answer to that question is that a Maven
profile can override almost everything that you would have in a pom.xml. The
Maven POM contains an element under project called profiles containing a
project's alternate configurations, and under this element are profile elements
which define each profile. Each profile must have an id, and other than that, it can
contain almost any of the elements one would expect to see under project. The
following XML document shows all of the elements, a profile is allowed to
override.

Example 11.2. Elements Allowed in a Profile

<project>
<profiles>

<profile>
<build>

<defaultGoal>...</defaultGoal>
<finalName>...</finalName>
<resources>...</resources>
<testResources>...</testResources>
<plugins>...</plugins>

</build>
<reporting>...</reporting>
<modules>...</modules>
<dependencies>...</dependencies>
<dependencyManagement>...</dependencyManagement>
<distributionManagement>...</distributionManagement>
<repositories>...</repositories>
<pluginRepositories>...</pluginRepositories>
<properties>...</properties>

</profile>

Build Profiles

248

</profiles>
</project>

A profile can override an element shown with ellipses. A profile can override the
final name of a project's artifact in a profile, the dependencies, and the behavior of
a project's build via plugin configuration. A profile can also override the
configuration of distribution settings depending on the profile; for example, if you
need to publish an artifact to a staging server in a staging profile, you would create
a staging profile which overrides the distributionManagement element in a
profile.

11.3. Profile Activation
In the previous section we showed you how to create a profile that overrides
default behavior for a specific target environment. In the previous build the default
build was designed for development and the production profile exists to provide
configuration for a production environment. What happens when you need to
provide customizations based on variables like operating systems or JDK version?
Maven provides a way to "activate" a profile for different environmental
parameters, this is called profile activation.

Take the following example, assume that we have a Java library that has a specific
feature only available in the Java 6 release: the Scripting Engine as defined in
JSR-223. You've separated the portion of the library that deals with the scripting
library into a separate Maven project, and you want people running Java 5 to be
able to build the project without attempting to build the Java 6 specific library
extension. You can do this by using a Maven profile that adds the script extension
module to the build only when the build is running within a Java 6 JDK. First, let's
take a look at our project's directory layout and how we want developers to build
the system.

When someone runs mvn install with a Java 6 JDK, you want the build to include
the simple-script project's build, when they are running in Java 5, you would like
to skip the simple-script project build. If you failed to skip the simple-script

Build Profiles

249

http://jcp.org/en/jsr/detail?id=223

project build in Java 5, your build would fail because Java 5 does not have the
ScriptEngine on the classpath. Let's take a look at the library project's pom.xml:

Example 11.3. Dynamic Inclusion of Submodules Using Profile Activation

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>simple</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<profiles>

<profile>
<id>jdk16</id>
<activation>#

<jdk>1.6</jdk>
</activation>
<modules>#

<module>simple-script</module>
</modules>

</profile>
</profiles>

</project>

If you run mvn install under Java 1.6, you will see Maven descending into the
simple-script subdirectory to build the simple-script project. If you are
running mvn install in Java 1.5, the build will not try to build the simple-script

submodule. Exploring this activation configuration in more detail:

❶ The activation element lists the conditions for profile activation. In this
example, we've specified that this profile will be activated by Java versions
that begin with "1.6". This would include "1.6.0_03", "1.6.0_02", or any

Build Profiles

250

other string that began with "1.6". Activation parameters are not limited to
Java version, for a full list of activation parameters, see Activation
Configuration.

❷ In this profile we are adding the module simple-script. Adding this module
will cause Maven to look in the simple-script/ subdirectory for a pom.xml.

11.3.1. Activation Configuration
Activations can contain one of more selectors including JDK versions, Operating
System parameters, files, and properties. A profile is activated when all activation
criteria has been satisfied. For example, a profile could list an Operating System
family of Windows, and a JDK version of 1.4, this profile will only be activated
when the build is executed on a Windows machine running Java 1.4. If the profile
is active then all elements override the corresponding project-level elements as if
the profile were included with the -P command-line argument. The following
example, lists a profile which is activated by a very specific combination of
operating system parameters, properties, and a JDK version.

Example 11.4. Profile Activation Parameters: JDK Version, OS Parameters,
and Properties

<project>
...
<profiles>

<profile>
<id>dev</id>
<activation>

<activeByDefault>false</activeByDefault>#
<jdk>1.5</jdk>#
<os>

<name>Windows XP</name>#
<family>Windows</family>
<arch>x86</arch>
<version>5.1.2600</version>

</os>
<property>

<name>mavenVersion</name>#
<value>2.0.5</value>

</property>
<file>

<exists>file2.properties</exists>#
<missing>file1.properties</missing>

</file>

Build Profiles

251

</activation>
...

</profile>
</profiles>

</project>

This previous example defines a very narrow set of activation parameters. Let's
examine each activation criterion in detail:

❶ The activeByDefault element controls whether this profile is considered
active by default.

❷ This profile will only be active for JDK versions that begin with "1.5". This
includes "1.5.0_01", "1.5.1".

❸ This profile targets a very specific version of Windows XP, version 5.1.2600
on a 32-bit platform. If your project uses the native plugin to build a C
program, you might find yourself writing projects for specific platforms.

❹ The property element tells Maven to activate this profile if the property
mavenVersion is set to the value 2.0.5. mavenVersion is an implicit property
that is available to all Maven builds.

❺ The file element allows us to activate a profile based on the presence (or
absence) of files. The dev profile will be activated if a file named
file2.properties exists in the base directory of the project. The dev profile
will only be activated if there is no file named file1.properties file in the
base directory of the project.

11.3.2. Activation by the Absence of a Property
You can activate a profile based on the value of a property like environment.type.
You can activate a development profile if environment.type equals dev, or a
production profile if environment.type equals prod. You can also activate a
profile in the absence of a property. The following configuration activates a profile
if the property environment.type is not present during Maven execution.

Example 11.5. Activating Profiles in the Absence of a Property

Build Profiles

252

<project>
...
<profiles>

<profile>
<id>development</id>
<activation>

<property>
<name>!environment.type</name>

</property>
</activation>

</profile>
</profiles>

</project>

Note the exclamation point prefixing the property name. The exclamation point is
often referred to as the "bang" character and signifies "not". This profile is
activated when no ${environment.type} property is set.

11.4. Listing Active Profiles
Maven profiles can be defined in either pom.xml, profiles.xml,
~/.m2/settings.xml, or ${M2_HOME}/conf/settings.xml. With these four levels,
there's no good way of keeping track of profiles available to a particular project
without remembering which profiles are defined in these four files. To make it
easier to keep track of which profiles are available, and where they have been
defined, the Maven Help plugin defines a goal, active-profiles, which lists all
the active profiles and where they have been defined. You can run the
active-profiles goal, as follows:

$ mvn help:active-profiles
Active Profiles for Project 'My Project':

The following profiles are active:

- my-settings-profile (source: settings.xml)
- my-external-profile (source: profiles.xml)
- my-internal-profile (source: pom.xml)

Build Profiles

253

11.5. Tips and Tricks
Profiles can encourage build portability. If your build needs subtle customizations
to work on different platforms or if you need your build to produce different results
for different target platforms, project profiles increase build portability. Settings
profiles generally decrease build portability by adding extra-project information
that must be communicated from developer to developer. The following sections
provide some guidelines and some ideas for applying Maven profiles to your
project.

11.5.1. Common Environments
One of the core motivations for Maven project profiles was to provide for
environment-specific configuration settings. In a development environment, you
might want to produce bytecode with debug information and you might want to
configure your system to use a development database instance. In a production
environment you might want to produce a signed JAR and configure the system to
use a production database. In this chapter, we defined a number of environments
with identifiers like dev and prod. A simpler way to do this would be to define
profiles that are activated by environment properties and to use these common
environment properties across all of your projects. For example, if every project
had a development profile activated by a property named environment.type

having a value of dev, and if those same projects had a production profile
activated by a property named environment.type having a value of prod, you
could create a default profile in your settings.xml that always set
environment.type to dev on your development machine. This way, each project
defines a dev profile activated by the same environment variable. Let's see how
this is done, the following settings.xml defines a profile in ~/.m2/settings.xml

which sets the environment.type property to dev.

Example 11.6. ~/.m2/settings.xml defines a default profile setting
environment.type

<settings>

Build Profiles

254

<profiles>
<profile>
<activation>

<activeByDefault>true</activeByDefault>
</activation>
<properties>

<environment.type>dev</environment.type>
</properties>

</profile>
</profiles>

</settings>

This means that every time you run Maven on your machine, this profile will be
activated and the property environment.type will have the value dev. You can
then use this property to activate profiles defined in a project's pom.xml as follows.
Let's take a look at how a project's pom.xml would define a profile activated by
environment.type having the value dev.

Example 11.7. Project Profile Activated by environment.type equalling 'dev'

<project>
...
<profiles>

<profile>
<id>development</id>
<activation>

<property>
<name>environment.type</name>
<value>dev</value>

</property>
</activation>
<properties>

<database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
<database.url>

jdbc:mysql://localhost:3306/app_dev
</database.url>
<database.user>development_user</database.user>
<database.password>development_password</database.password>

</properties>
</profile>
<profile>
<id>production</id>
<activation>

<property>
<name>environment.type</name>
<value>prod</value>

</property>

Build Profiles

255

</activation>
<properties>

<database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
<database.url>jdbc:mysql://master01:3306,slave01:3306/app_prod</database.url>
<database.user>prod_user</database.user>

</properties>
</profile>

</profiles>
</project>

This project defines some properties like database.url and database.user which
might be used to configure another Maven plugin configured in the pom.xml. There
are plugins available that can manipulate the database, run SQL, and plugins like
the Maven Hibernate3 plugin which can generate annotated model objects for use
in persistence frameworks. A few of these plugins, can be configured in a pom.xml

using these properties. These properties could also be used to filter resources. In
this example, because we've defined a profile in ~/.m2/settings.xml which sets
environment.type to dev, the development profile will always be activated when
we run Maven on our development machine. Alternatively, if we wanted to
override this default, we could set a property on the command-line. If we need to
activate the production profile, we could always run Maven with:

~/examples/profiles $ mvn install -Denvironment.type=prod

Setting a property on the command-line would override the default property set in
~/.m2/settings.xml. We could have just defined a profile with an id of "dev" and
invoked it directly with the -P command-line argument, but using this
environment.type property allows us to code other project pom.xml files to this
standard. Every project in your codebase could have a profile which is activated by
the same environment.type property set in every user's ~/.m2/settings.xml. In
this way, developers can share common configuration for development without
defining this configuration in non-portable settings.xml files.

11.5.2. Protecting Secrets
This best practice builds upon the previous section. In Project Profile Activated by
environment.type equalling 'dev', the production profile does not contain the

Build Profiles

256

database.password property. I've done this on purpose to illustrate the concept of
putting secrets in you user-specific settings.xml. If you were developing an
application at a large organization which values security, it is likely that the
majority of the development group will not know the password to the production
database. In an organization that draws a bold line between the development group
and the operations group, this will be the norm. Developers may have access to a
development and a staging environment, but they might not have (or want to have)
access to the production database. There are a number of reasons why this makes
sense, particularly if an organization is dealing with extremely sensitive financial,
intelligence, or medical information. In this scenario, the production environment
build may only be carried out by a lead developer or by a member of the
production operations group. When they run this build using the prod

environment.type, they will need to define this variable in their settings.xml as
follows:

Example 11.8. Storing Secrets in a User-specific Settings Profile

<settings>
<profiles>

<profile>
<activeByDefault>true</activeByDefault>
<properties>

<environment.type>prod</environment.type>
<database.password>m1ss10nimp0ss1bl3</database.password>

</properties>
</profile>

</profiles>
</settings>

This user has defined a default profile which sets the environment.type to prod

and which also sets the production password. When the project is executed, the
production profile is activated by the environment.type property and the
database.password property is populated. This way, you can put all of the
production-specific configuration into a project's pom.xml and leave out only the
single secret necessary to access the production database.

Note

Build Profiles

257

Secrets usually conflict with wide portability, but this makes sense. You
wouldn't want to share your secrets openly.

11.5.3. Platform Classifiers
Let's assume that you have a library or a project that produces platform-specific
customizations. Even though Java is platform-neutral, there are times when you
might need to write some code that invokes platform-specific native code. Another
possibility is that you've written some C code which is compiled by the Maven
Native plugin and you want to produce a qualified artifact depending on the build
platform. You can set a classifier with the Maven Assembly plugin or with the
Maven Jar plugin. The following pom.xml produces a qualified artifact using
profiles which are activated by Operation System parameters. For more
information about the Maven Assembly plugin, see Chapter 12, Maven Assemblies.

Example 11.9. Qualifying Artifacts with Platform Activated Project Profiles

<project>
...
<profiles>

<profile>
<id>windows</id>
<activation>

<os>
<family>windows</family>

</os>
</activation>
<build>

<plugins>
<plugin
<artifactId>maven-jar-plugin</artifactId>
<configuration>

<classifier>win</classifier>
</configuration>

</plugin>
</plugins>

</build>
</profile>
<profile>
<id>linux</id>
<activation>

<os>

Build Profiles

258

<family>unix</family>
</os>

</activation>
<build>

<plugins>
<plugin>
<artifactId>maven-jar-plugin</artifactId>
<configuration>

<classifier>linux</classifier>
</configuration>

</plugin>
</plugins>

</build>
</profile>

</profiles>
</project>

If the Operating System is in the Windows family, this pom.xml qualifies the JAR
artifact with "-win". If the Operating System is in the Unix family, the artifact is
qualified with "-linux". This pom.xml successfully adds the qualifiers to the
artifacts, but it is more verbose than it need to be due to the redundant
configuration of the Maven Jar plugin in both profiles. This example could be
rewritten to use variable substitution to minimize redundancy as follows:

Example 11.10. Qualifying Artifacts with Platform Activated Project Profiles
and Variable Substitution

<project>
...
<build>

<plugins>
<plugin>

<artifactId>maven-jar-plugin</artifactId>
<configuration>

<classifier>${envClassifier}</classifier>
</configuration>

</plugin>
</plugins>

</build>
...
<profiles>

<profile>
<id>windows</id>
<activation>

<os>
<family>windows</family>

Build Profiles

259

</os>
</activation>
<properties>

<envClassifier>win</envClassifier>
</properties>

</profile>
<profile>
<id>linux</id>
<activation>

<os>
<family>unix</family>

</os>
</activation>
<properties>

<envClassifier>linux</envClassifier>
</properties>

</profile>
</profiles>

</project>

In this pom.xml, each profile doesn't need to include a build element to configure
the Jar plugin. Instead, each profile is activated by the Operating System family
and sets the envClassifier property to either win or linux. This envClassifier
is then referenced in the default pom.xml build element to add a classifier to the
project's JAR artifact. The JAR artifact will be named
${finalName}-${envClassifier}.jar and included as a dependency using the
following dependency syntax:

Example 11.11. Depending on a Qualified Artifact

<dependency>
<groupId>com.mycompany</groupId>
<artifactId>my-project</artifactId>
<version>1.0</version>
<classifier>linux</classifier>

</dependency>

11.6. Summary
When used judiciously, profiles can make it very easy to customize a build for

Build Profiles

260

different platforms. If something in your build needs to define a platform-specific
path for something like an application server, you can put these configuration
points in a profile which is activated by an operating system parameter. If you have
a project which needs to produce different artifacts for different environments, you
can customize the build behavior for different environments and platforms via
profile-specific plugin behavior. Using profiles, builds can become portable, there
is no need to rewrite your build logic to support a new environment, just override
the configuration that needs to change and share the configuration points which
can be shared.

Build Profiles

261

Chapter 12. Maven Assemblies

12.1. Introduction
Maven provides plugins that are used to create the most common archive types,
most of which are consumable as dependencies of other projects. Some examples
include the JAR, WAR, EJB, and EAR plugins. As discussed in Chapter 10, The
Build Lifecycle these plugins correspond to different project packaging types each
with a slightly different build process. While Maven has plugins and customized
lifecycles to support standard packaging types, there are times when you'll need to
create an archive or directory with a custom layout. Such custom archives are
called Maven Assemblies.

There are any number of reasons why you may want to build custom archives for
your project. Perhaps the most common is the project distribution. The word
‘distribution’ means many different things to different people (and projects),
depending on how the project is meant to be used. Essentially, these are archives
that provide a convenient way for users to install or otherwise make use of the
project’s releases. In some cases, this may mean bundling a web application with
an application server like Jetty. In others, it could mean bundling API
documentation alongside source and compiled binaries like jar files. Assemblies
usually come in handy when you are building the final distribution of a product.
For example, products like Nexus introduced in Chapter 16, Repository
Management with Nexus, are the product of large multi-module Maven products,
and the final archive you download from Sonatype was created using a Maven
Assembly.

In most cases, the Assembly plugin is ideally suited to the process of building
project distributions. However, assemblies don’t have to be distribution archives;
assemblies are intended to provide Maven users with the flexibility they need to
produce customized archives of all kinds. Essentially, assemblies are intended to
fill the gaps between the standard archive formats provided by project package
types. Of course, you could write an entire Maven plugin simply to generate your

262

own custom archive format, along with a new lifecycle mapping and
artifact-handling configuration to tell Maven how to deploy it. But the Assembly
plugin makes this unnecessary in most cases by providing generalized support for
creating your own archive recipe without spending so much time writing Maven
code.

12.2. Assembly Basics
Before we go any further, it’s best to take a minute and talk about the two main
goals in the Assembly plugin: assembly:assembly, and the single mojo. I list
these two goals in different ways because it reflects the difference in how they’re
used. The assembly:assembly goal is designed to be invoked directly from the
command line, and should never be bound to a build lifecycle phase. In contrast,
the single mojo is designed to be a part of your everyday build, and should be
bound to a phase in your project’s build lifecycle.

The main reason for this difference is that the assembly:assembly goal is what
Maven terms an aggregator mojo; that is, a mojo which is designed to run at most
once in a build, regardless of how many projects are being built. It draws its
configuration from the root project - usually the top-level POM or the command
line. When bound to a lifecycle, an aggregator mojo can have some nasty
side-effects. It can force the execution of the package lifecycle phase to execute
ahead of time, and can result in builds which end up executing the package phase
twice.

Because the assembly:assembly goal is an aggregator mojo, it raises some issues
in multi-module Maven builds, and it should only be called as a stand-alone mojo
from the command-line. Never bind an assembly:assembly execution to a
lifecycle phase. assembly:assembly was the original goal in the Assembly plugin,
and was never designed to be part of the standard build process for a project. As it
became clear that assembly archives were a legitimate requirement for projects to
produce, the single mojo was developed. This mojo assumes that it has been
bound to the correct part of the build process, so that it will have access to the
project files and artifacts it needs to execute within the lifecycle of a large
multi-module Maven project. In a multi-module environment, it will execute as

Maven Assemblies

263

many times as it is bound to the different module POMs. Unlike
assembly:assembly, single will never force the execution of another lifecycle
phase ahead of itself.

The Assembly plugin provides several other goals in addition to these two.
However, discussion of these other mojos is beyond the scope of this chapter,
because they serve exotic or obsolete use cases, and because they are almost never
needed. Whenever possible, you should definitely stick to using
assembly:assembly for assemblies generated from the command line, and to
single for assemblies bound to lifecycle phases.

12.2.1. Predefined Assembly Descriptors
While many people opt to create their own archive recipes - called assembly
descriptors - this isn’t strictly necessary. The Assembly plugin provides built-in
descriptors for several common archive types that you can use immediately
without writing a line of configuration. The following assembly descriptors are
predefined in the Maven Assembly plugin:

bin

The bin descriptor is used to bundle project LICENSE, README, and NOTICE files
with the project’s main artifact, assuming this project builds a jar as its main
artifact. Think of this as the smallest possible binary distribution for completely
self-contained projects.

jar-with-dependencies

The jar-with-dependencies descriptor builds a JAR archive with the contents
of the main project jar along with the unpacked contents of all the project’s
runtime dependencies. Coupled with an appropriate Main-Class Manifest entry
(discussed in “Plugin Configuration” below), this descriptor can produce a
self-contained, executable jar for your project, even if the project has
dependencies.

project

The project descriptor simply archives the project directory structure as it

Maven Assemblies

264

exists in your file-system and, most likely, in your version control system. Of
course, the target directory is omitted, as are any version-control metadata files
like the CVS and .svn directories we’re all used to seeing. Basically, the point of
this descriptor is to create a project archive that, when unpacked, can be built
using Maven.

src

The src descriptor produces an archive of your project source and pom.xml

files, along with any LICENSE, README, and NOTICE files that are in the project’s
root directory. This precursor to the project descriptor produces an archive that
can be built by Maven in most cases. However, because of its assumption that
all source files and resources reside in the standard src directory, it has the
potential to leave out non-standard directories and files that are nonetheless
critical to some builds.

12.2.2. Building an Assembly
The Assembly plugin can be executed in two ways: you can invoke it directly from
the command line, or you can configure it as part of your standard build process by
binding it to a phase of your project’s build lifecycle. Direct invocation has its
uses, particularly for one-off assemblies that are not considered part of your
project’s core deliverables. In most cases, you’ll probably want to generate the
assemblies for your project as part of its standard build process. Doing this has the
effect of including your custom assemblies whenever the project is installed or
deployed into Maven’s repositories, so they are always available to your users.

As an example of the direct invocation of the Assembly plugin, imagine that you
wanted to ship off a copy of your project which people could build from source.
Instead of just deploying the end-product of the build, you wanted to include the
source as well. You won’t need to do this often, so it doesn’t make sense to add the
configuration to your POM. Instead, you can use the following command:

$ mvn -DdescriptorId=project assembly:single
...
[INFO] [assembly:single]
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\

target/direct-invocation-1.0-SNAPSHOT-project.tar.gz
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\

Maven Assemblies

265

target/direct-invocation-1.0-SNAPSHOT-project.tar.bz2
[INFO] Building zip: /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\

target/direct-invocation-1.0-SNAPSHOT-project.zip
...

Imagine you want to produce an executable JAR from your project. If your project
is totally self-contained with no dependencies, this can be achieved with the main
project artifact using the archive configuration of the JAR plugin. However, most
projects have dependencies, and those dependencies must be incorporated in any
executable JAR. In this case, you want to make sure that every time the main
project JAR is installed or deployed, your executable JAR goes along with it.

Assuming the main class for the project is org.sonatype.mavenbook.App, the
following POM configuration will create an executable JAR:

Example 12.1. Assembly Descriptor for Executable JAR

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<artifactId>executable-jar</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>Assemblies Executable Jar Example</name>
<url>http://sonatype.com/book</url>
<dependencies>

<dependency>
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactId>
<version>2.4</version>

</dependency>
</dependencies>

<build>
<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<version>2.2-beta-2</version>
<executions>

<execution>
<id>create-executable-jar</id>
<phase>package</phase>
<goals>

<goal>single</goal>

Maven Assemblies

266

</goals>
<configuration>

<descriptorRefs>
<descriptorRef>
jar-with-dependencies

</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>org.sonatype.mavenbook.App</mainClass>

</manifest>
</archive>

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

There are two things to notice about the configuration above. First, we’re using the
descriptorRefs configuration section instead of the descriptorId parameter we
used last time. This allows multiple assembly types to be built from the same
Assembly plugin execution, while still supporting our use case with relatively little
extra configuration. Second, the archive element under configuration sets the
Main-Class manifest attribute in the generated JAR. This section is commonly
available in plugins that create JAR files, such as the JAR plugin used for the
default project package type.

Now, you can produce the executable JAR simply by executing mvn package.
Afterward, we’ll also get a directory listing for the target directory, just to verify
that the executable JAR was generated. Finally, just to prove that we actually do
have an executable JAR, we’ll try executing it:

$ mvn package
... (output omitted) ...
[INFO] [jar:jar]
[INFO] Building jar: ~/mvn-examples-1.0/assemblies/executable-jar/target/\

executable-jar-1.0-SNAPSHOT.jar
[INFO] [assembly:single {execution: create-executable-jar}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: ~/mvn-examples-1.0/assemblies/executable-jar/target/\

executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
... (output omitted) ...
$ ls -1 target

Maven Assemblies

267

... (output omitted) ...
executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
executable-jar-1.0-SNAPSHOT.jar
... (output omitted) ...
$ java -jar \

target/executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
Hello, World!

From the output shown above, you can see that the normal project build now
produces a new artifact in addition to the main JAR file. The new one has a
classifier of jar-with-dependencies. Finally, we verified that the new JAR
actually is executable, and that executing the JAR produced the desired output of
“Hello, World!”

12.2.3. Assemblies as Dependencies
When you generate assemblies as part of your normal build process, those
assembly archives will be attached to your main project’s artifact. This means they
will be installed and deployed alongside the main artifact, and are then resolvable
in much the same way. Each assembly artifact is given the same basic coordinate
(groupId, artifactId, and version) as the main project. However, these artifacts
are attachments, which in Maven means they are derivative works based on some
aspect of the main project build. To provide a couple of examples, source
assemblies contain the raw inputs for the project build, and
jar-with-dependencies assemblies contain the project’s classes plus its
dependencies. Attached artifacts are allowed to circumvent the Maven requirement
of one project, one artifact precisely because of this derivative quality.

Since assemblies are (normally) attached artifacts, each must have a classifier to
distinguish it from the main artifact, in addition to the normal artifact coordinate.
By default, the classifier is the same as the assembly descriptor’s identifier. When
using the built-in assembly descriptors, as above, the assembly descriptor’s
identifier is generally also the same as the identifier used in the descriptorRef for
that type of assembly.

Once you’ve deployed an assembly alongside your main project artifact, how can
you use that assembly as a dependency in another project? The answer is fairly
straightforward. Recall the discussions in Section 3.5.3, “Maven Coordinates” and

Maven Assemblies

268

Section 9.5.1, “More on Coordinates” about project dependencies in Maven,
projects depend on other projects using a combination of four basic elements,
referred to as a project’s coordinates: groupId, artifactId, version, and
packaging. In Section 11.5.3, “Platform Classifiers”, multiple platform-specific
variants of a project’s artifact and available, and the project specifies a classifier

element with a value of either win or linux to select the appropriate dependency
artifact for the target platform. Assembly artifacts can be used as dependencies
using the required coordinates of a project plus the classifier under which the
assembly was installed or deployed. If the assembly is not a JAR archive, we also
need to declare its type.

12.2.4. Assembling Assemblies via Assembly
Dependencies
How's that for a confusing section title? Let's try to set up a scenario which would
explain the idea of assembling assemblies. Imagine you want to create an archive
which itself contains some project assemblies. Assume that you have a
multi-module build and you want to deploy an assembly which contains a set of
related project assemblies. In this section's example, we create a bundle of
"buildable" project directories for a set of projects that are commonly used
together. For simplicity, we’ll reuse the two built-in assembly descriptors
discussed above - project and jar-with-dependencies. In this particular
example, it is assumed that each project creates the project assembly in addition
to its main JAR artifact. Assume that every project in a multi-module build binds
the single goal to the package phase and uses the project descriptorRef. Every
project in a multi-module will inherit the configuration from a top-level pom.xml
whose pluginManagement element is shown in Example 12.2, “Configuring the
project assembly in top-level POM”.

Example 12.2. Configuring the project assembly in top-level POM

<project>
...
<build>

<pluginManagement>
<plugins>

Maven Assemblies

269

<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.2-beta-2</version>
<executions>
<execution>

<id>create-project-bundle</id>
<phase>package</phase>
<goals>
<goal>single</goal>

</goals>
<configuration>
<descriptorRefs>
<descriptorRef>project</descriptorRef>

</descriptorRefs>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</pluginManagement>
</build>
...

</project>

Each project POM references the managed plugin configuration from
Example 12.2, “Configuring the project assembly in top-level POM” using a
minimal plugin declaration in its build section shown in Example 12.3, “Activating
the Assembly Plugin Configuration in Child Projects”.

Example 12.3. Activating the Assembly Plugin Configuration in Child
Projects

<build>
<plugins>

<plugin>
<artifactId>maven-assembly-plugin</artifactId>

</plugin>
</plugins>

</build>

To produce the set of project assemblies, run mvn install from the top-level
directory. You should see Maven installing artifacts with classifiers in your local
repository.

Maven Assemblies

270

$ mvn install
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\

second-project/target/second-project-1.0-SNAPSHOT-project.tar.gz to
~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\

second-project-1.0-SNAPSHOT-project.tar.gz
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\

second-project/target/second-project-1.0-SNAPSHOT-project.tar.bz2 to
~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\

second-project-1.0-SNAPSHOT-project.tar.bz2
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\

second-project/target/second-project-1.0-SNAPSHOT-project.zip to
~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\\

second-project-1.0-SNAPSHOT-project.zip
...

When you run install, Maven will copy the each project's main artifact and each
assembly to your local Maven repository. All of these artifacts are now available
for reference as dependencies in other projects locally. If your ultimate goal is to
create a bundle which includes assemblies from multiple project, you can do so by
creating another project which will include other project's assemblies as
dependencies. This bundling project (aptly named project-bundle) is responsible
for creating the bundled assembly. The POM for the bundling project would
resemble the XML document listed in Example 12.4, “POM for the Assembly
Bundling Project”.

Example 12.4. POM for the Assembly Bundling Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<artifactId>project-bundle</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>Assemblies-as-Dependencies Example Project Bundle</name>
<url>http://sonatype.com/book</url>
<dependencies>

<dependency>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<artifactId>first-project</artifactId>
<version>1.0-SNAPSHOT</version>

Maven Assemblies

271

<classifier>project</classifier>
<type>zip</type>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<artifactId>second-project</artifactId>
<version>1.0-SNAPSHOT</version>
<classifier>project</classifier>
<type>zip</type>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<version>2.2-beta-2</version>
<executions>

<execution>
<id>bundle-project-sources</id>
<phase>package</phase>
<goals>

<goal>single</goal>
</goals>
<configuration>

<descriptorRefs>
<descriptorRef>
jar-with-dependencies

</descriptorRef>
</descriptorRefs>

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

This bundling project's POM references the two assemblies from first-project

and second-project. Instead of referencing the main artifact of each project, the
bundling project's POM specifies a classifier of project and a type of zip. This
tells Maven to resolve the ZIP archive which was created by the project

assembly. Note that the bundling project generates a jar-with-dependencies

assembly. jar-with-dependencies does not create a particularly elegant bundle, it
simply creates a JAR file with the unpacked contents of all of the dependencies.
jar-with-dependencies is really just telling Maven to take all of the
dependencies, unpack them, and then create a single archive which includes the

Maven Assemblies

272

output of the current project. In this project, it has the effect of creating a single
JAR file that puts the two project assemblies from first-project and
second-project side-by-side.

This example illustrates how the basic capabilities of the Maven Assembly plugin
can be combined without the need for a custom assembly descriptor. It achieves
the purpose of creating a single archive that contains the project directories for
multiple projects side-by-side. This time, the jar-with-dependencies is just a
storage format, so we don’t need to specify a Main-Class manifest attribute. To
build the bundle, we just build the project-bundle project normally:

$ mvn package
...
[INFO] [assembly:single {execution: bundle-project-sources}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: ~/downloads/mvn-examples-1.0/assemblies/as-dependencies/\

project-bundle/target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar

To verify that the project-bundle assembly contains the unpacked contents of the
assembly dependencies, run jar tf:

$ jar tf \
target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar

...
first-project-1.0-SNAPSHOT/pom.xml
first-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java
first-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java
...
second-project-1.0-SNAPSHOT/pom.xml
second-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java
second-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java

After reading this section, the title should make more sense. You've assembled
assemblies from two projects into an assembly using a bundling project which has
a dependency on each of the assemblies.

12.3. Overview of the Assembly Descriptor
When the standard assembly descriptors introduced in Section 12.2, “Assembly
Basics” are not adequate, you will need to define your own assembly descriptor.
The assembly descriptor is an XML document which defines the structure and

Maven Assemblies

273

contents of an assembly.

Figure 12.1. Assembly Descriptor Picture

The assembly descriptor contains five main configuration sections, plus two
additional sections: one for specifying standard assembly-descriptor fragments,
called component descriptors, and another for specifying custom file processor
classes to help manage the assembly-production process.

Base Configuration
This section contains the information required by all assemblies, plus some
additional configuration options related to the format of the entire archive, such
as the base path to use for all archive entries. For the assembly descriptor to be
valid, you must at least specify the assembly id, at least one format, and at least

Maven Assemblies

274

one of the other sections shown above.

File Information
The configurations in this segment of the assembly descriptor apply to specific
files on the file system within the project’s directory structure. This segment
contains two main sections: files and fileSets. You use files and fileSets

to control the permissions of files in an assembly and to include or exclude files
from an assembly.

Dependency Information
Almost all projects of any size depend on other projects. When creating
distribution archives, project dependencies are usually included in the
end-product of an assembly. This section manages the way dependencies are
included in the resulting archive. This section allows you to specify whether
dependencies are unpacked, added directly to the lib/ directory, or mapped to
new file names. This section also allows you to control the permissions of
dependencies in the assembly, and which dependencies are included in an
assembly.

Repository Information
At times, it’s useful to isolate the sum total of all artifacts necessary to build a
project, whether they’re dependency artifacts, POMs of dependency artifacts, or
even a project’s own POM ancestry (your parent POM, its parent, and so on).
This section allows you to include one or more artifact-repository directory
structures inside your assembly, with various configuration options. The
Assembly plugin does not have the ability to include plugin artifacts in these
repositories yet.

Module Information
This section of the assembly descriptor allows you to take advantage of these
parent-child relationships when assembling your custom archive, to include
source files, artifacts, and dependencies from your project’s modules. This is
the most complex section of the assembly descriptor, because it allows you to
work with modules and sub-modules in two ways: as a series of fileSets (via
the sources section) or as a series of dependencySets (via the binaries

Maven Assemblies

275

section).

12.4. The Assembly Descriptor
This section is a tour of the assembly descriptor which contains some guidelines
for developing a custom assembly descriptor. The Assembly plugin is one of the
largest plugins in the Maven ensemble, and one of the most flexible.

12.4.1. Property References in Assembly Descriptors
Any property discussed in Section 13.2, “Maven Properties” can be referenced in
an assembly descriptor. Before any assembly descriptor is used by Maven, it is
interpolated using information from the POM and the current build environment.
All properties supported for interpolation within the POM itself are valid for use in
assembly descriptors, including POM properties, POM element values, system
properties, user-defined properties, and operating-system environment variables.

The only exceptions to this interpolation step are elements in various sections of
the descriptor named outputDirectory, outputDirectoryMapping, or
outputFileNameMapping. The reason these are held back in their raw form is to
allow artifact- or module-specific information to be applied when resolving
expressions in these values, on a per-item basis.

12.4.2. Required Assembly Information
There are two essential pieces of information that are required for every assembly:
the id, and the list of archive formats to produce. In practice, at least one other
section of the descriptor is required - since most archive format components will
choke if they don’t have at least one file to include - but without at least one
format and an id, there is no archive to create. The id is used both in the archive’s
file name, and as part of the archive’s artifact classifier in the Maven repository.
The format string also controls the archiver-component instance that will create the
final assembly archive. All assembly descriptors must contain an id and at least
one format:

Maven Assemblies

276

Example 12.5. Required Assembly Descriptor Elements

<assembly>
<id>bundle</id>
<formats>

<format>zip</format>
</formats>
...

</assembly>

The assembly id can be any string that does not contain spaces. The standard
practice is to use dashes when you must separate words within the assembly id. If
you were creating an assembly to create an interesting unique package structure,
you would give your an id of something like interesting-unique-package. It
also supports multiple formats within a single assembly descriptor, allowing you to
create the familiar .zip, .tar.gz, and .tar.bz2 distribution archive set with ease.
If you don't find the archive format you need, you can also create a custom format.
Custom formats are discussed in Section 12.5.8, “componentDescriptors and
containerDescriptorHandlers”. The Assembly plugin supports several archive
formats natively, including:

• jar

• zip

• tar

• bzip2

• gzip

• tar.gz

• tar.bz2

• rar

Maven Assemblies

277

• war

• ear

• sar

• dir

The id and format are essential because they will become a part of the coordinates
for the assembled archive. The example from Example 12.5, “Required Assembly
Descriptor Elements” will create an assembly artifact of type zip with a classifier
of bundle.

12.5. Controlling the Contents of an Assembly
In theory, id and format are the only absolute requirements for a valid assembly
descriptor; however, many assembly archivers will fail if they do not have at least
one file to include in the output archive. The task of defining the files to be
included in the assembly is handled by the five main sections of the assembly
descriptor: files, fileSets, dependencySets, repositories, and moduleSets. To
explore these sections most effectively, we’ll start by discussing the most
elemental section: files. Then, we’ll move on to the two most commonly used
sections, fileSets and dependencySets. Once you understand the workings of
fileSets and dependencySets, it’s easier to understand repositories and
moduleSets.

12.5.1. Files Section
The files section is the simplest part of the assembly descriptor, it is designed for
files that have a definite location relative to your project’s directory. Using this
section, you have absolute control over the exact set of files that are included in
your assembly, exactly what they are named, and where they will reside in the
archive.

Maven Assemblies

278

Example 12.6. Including a JAR file in an Assembly using files

<assembly>
...
<files>

<file>
<source>target/my-app-1.0.jar</source>
<outputDirectory>lib</outputDirectory>
<destName>my-app.jar</destName>
<fileMode>0644</fileMode>

</file>
</files>
...

</assembly>

Assuming you were building a project called my-app with a version of 1.0,
Example 12.6, “Including a JAR file in an Assembly using files” would include
your project's JAR in the assembly’s lib/ directory, trimming the version from the
file name in the process so the final file name is simply my-app.jar. It would then
make the JAR readable by everyone and writable by the user that owns it (this is
what the mode 0644 means for files, using Unix four-digit Octal permission
notation). For more information about the format of the value in fileMode, please
see the Wikipedia's explanation of four-digit Octal notation.

You could build a very complex assembly using file entries, if you knew the full
list of files to be included. Even if you didn’t know the full list before the build
started, you could probably use a custom Maven plugin to discover that list and
generate the assembly descriptor using references like the one above. While the
files section gives you fine-grained control over the permission, location, and name
of each file in the assembly archive, listing a file element for every file in a large
archive would be a tedious exercise. For the most part, you will be operating on
groups of files and dependencies using fileSets. The remaining four
file-inclusion sections are designed to help you include entire sets of files that
match a particular criteria.

12.5.2. FileSets Section
Similar to the files section, fileSets are intended for files that have a definite

Maven Assemblies

279

http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

location relative to your project’s directory structure. However, unlike the files

section, fileSets describe sets of files, defined by file and path patterns they
match (or don’t match), and the general directory structure in which they are
located. The simplest fileSet just specifies the directory where the files are
located:

<assembly>
...
<fileSets>

<fileSet>
<directory>src/main/java</directory>

</fileSet>
</fileSets>
...

</assembly>

This file set simply includes the contents of the src/main/java directory from our
project. It takes advantage of many default settings in the section, so let’s discuss
those briefly.

First, you’ll notice that we haven’t told the file set where within the assembly
matching files should be located. By default, the destination directory (specified
with outputDirectory) is the same as the source directory (in our case,
src/main/java). Additionally, we haven’t specified any inclusion or exclusion file
patterns. When these are empty, the file set assumes that all files within the source
directory are included, with some important exceptions. The exceptions to this rule
pertain mainly to source-control metadata files and directories, and are controlled
by the useDefaultExcludes flag, which is defaulted to true. When active,
useDefaultExcludes will keep directories like .svn/ and CVS/ from being added
to the assembly archive. Section 12.5.3, “Default Exclusion Patterns for fileSets”
provides a detailed list of the default exclusion patterns.

If we want more control over this file set, we can specify it more explicitly.
Example 12.7, “Including Files with fileSet” shows a fileSet element with all
of the default elements specified.

Example 12.7. Including Files with fileSet

<assembly>
...
<fileSets>

Maven Assemblies

280

<fileSet>
<directory>src/main/java</directory>
<outputDirectory>src/main/java</outputDirectory>
<includes>

<include>**</include>
</includes>
<useDefaultExcludes>true</useDefaultExcludes>
<fileMode>0644</fileMode>
<directoryMode>0755</directoryMode>

</fileSet>
</fileSets>
...

</assembly>

The includes section uses a list of include elements, which contain path patterns.
These patterns may contain wildcards such as ‘**’ which matches one or more
directories or ‘*’ which matches part of a file name, and ‘?’ which matches a single
character in a file name. Example 12.7, “Including Files with fileSet” uses a
fileMode entry to specify that files in this set should be readable by all, but only
writable by the owner. Since the fileSet includes directories, we also have the
option of specifying a directoryMode that works in much the same way as the
fileMode. Since a directories’ execute permission is what allows users to list their
contents, we want to make sure directories are executable in addition to being
readable. Like files, only the owner can write to directories in this set.

The fileSet entry offers some other options as well. First, it allows for an
excludes section with a form identical to the includes section. These exclusion
patterns allow you to exclude specific file patterns from a fileSet. Include
patterns take precedence over exclude patterns. Additionally, you can set the
filtering flag to true if you want to substitute property values for expressions
within the included files. Expressions can be delimited either by ${ and } (standard
Maven expressions like ${project.groupId}) or by @ and @ (standard Ant
expressions like @project.groupId@). You can adjust the line ending of your files
using the lineEnding element; valid values for lineEnding are:

keep
Preserve line endings from original files. (This is the default value.)

Maven Assemblies

281

unix
Unix-style line endings

lf
Only a Line Feed Character

dos
MS-DOS-style line endings

crlf
Carriage-return followed by a Line Feed

Finally, if you want to ensure that all file-matching patterns are used, you can use
the useStrictFiltering element with a value of true (the default is false). This
can be especially useful if unused patterns may signal missing files in an
intermediary output directory. When useStrictFiltering is set to true, the
Assembly plugin will fail if an include pattern is not satisfied. In other words, if
you have an include pattern which includes a file from a build, and that file is not
present, setting useStrictFiltering to true will cause a failure if Maven cannot
find the file to be included.

12.5.3. Default Exclusion Patterns for fileSets
When you use the default exclusion patterns, the Maven Assembly plugin is going
to be ignoring more than just SVN and CVS information. By default the exclusion
patterns are defined by the DirectoryScanner class in the plexus-utils project hosted
at Codehaus. The array of exclude patterns is defined as a static, final String array
named DEFAULTEXCLUDES in DirectoryScanner. The contents of this variable are
shown in Example 12.8, “Definition of Default Exclusion Patterns from Plexus
Utils”.

Example 12.8. Definition of Default Exclusion Patterns from Plexus Utils

public static final String[] DEFAULTEXCLUDES = {
// Miscellaneous typical temporary files
"**/*~",
"**/#*#",

Maven Assemblies

282

http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java
http://plexus.codehaus.org/plexus-utils/

"**/.#*",
"**/%*%",
"**/._*",

// CVS
"**/CVS",
"**/CVS/**",
"**/.cvsignore",

// SCCS
"**/SCCS",
"**/SCCS/**",

// Visual SourceSafe
"**/vssver.scc",

// Subversion
"**/.svn",
"**/.svn/**",

// Arch
"**/.arch-ids",
"**/.arch-ids/**",

//Bazaar
"**/.bzr",
"**/.bzr/**",

//SurroundSCM
"**/.MySCMServerInfo",

// Mac
"**/.DS_Store"

};

This default array of patterns excludes temporary files from editors like GNU
Emacs, and other common temporary files from Macs and a few common source
control systems (although Visual SourceSafe is more of a curse than a source
control system). If you need to override these default exclusion patterns you set
useDefaultExcludes to false and then define a set of exclusion patterns in your
own assembly descriptor.

12.5.4. dependencySets Section
One of the most common requirements for assemblies is the inclusion of a

Maven Assemblies

283

http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/

project’s dependencies in an assembly archive. Where files and fileSets deal
with files in your project, dependency files don't have a location in your project.
The artifacts your project depends on have to be resolved by Maven during the
build. Dependency artifacts are abstract, they lack a definite location, and are
resolved using a symbolic set of Maven coordinates. While Since file and
fileSet specifications require a concrete source path, dependencies are included
or excluded from an assembly using a combination of Maven coordinates and
dependency scopes.

The simplest dependencySet is an empty element:

<assembly>
...
<dependencySets>

<dependencySet/>
</dependencySets>
...

</assembly>

The dependencySet above will match all runtime dependencies of your project
(runtime scope includes the compile scope implicitly), and it will add these
dependencies to the root directory of your assembly archive. It will also copy the
current project’s main artifact into the root of the assembly archive, if it exists.

Note
Wait? I thought dependencySet was about including my project's
dependencies, not my project's main archive? This counterintuitive
side-effect was a widely-used bug in the 2.1 version of the Assembly
plugin, and, because Maven puts an emphasis on backward compatibility,
this counterintuitive and incorrect behavior needed to be preserved
between a 2.1 and 2.2 release. You can control this behavior by changing
the useProjectArtifact flag to false.

While the default dependency set can be quite useful with no configuration
whatsoever, this section of the assembly descriptor also supports a wide array of
configuration options, allowing your to tailor its behavior to your specific
requirements. For example, the first thing you might do to the dependency set

Maven Assemblies

284

above is exclude the current project artifact, by setting the useProjectArtifact

flag to false (again, its default value is true for legacy reasons). This will allow
you to manage the current project’s build output separately from its dependency
files. Alternatively, you might choose to unpack the dependency artifacts using by
setting the unpack flag to true (this is false by default). When unpack is set to
true, the Assembly plugin will combine the unpacked contents of all matching
dependencies inside the archive’s root directory.

From this point, there are several things you might choose to do with this
dependency set. The next sections discuss how to define the output location for
dependency sets and how include and exclude dependencies by scope. Finally,
we’ll expand on the unpacking functionality of the dependency set by exploring
some advanced options for unpacking dependencies.

12.5.4.1. Customizing Dependency Output Location
There are two configuration options that are used in concert to define the location
for a dependency file within the assembly archive: outputDirectory and
outputFileNameMapping. You may want to customize the location of
dependencies in your assembly using properties of the dependency artifacts
themselves. Let's say you want to put all the dependencies in directories that match
the dependency artifact's groupId. In this case, you would use the
outputDirectory element of the dependencySet, and you would supply
something like:

<assembly>
...
<dependencySets>

<dependencySet>
<outputDirectory>${artifact.groupId}</outputDirectory>

</dependencySet>
</dependencySets>
...

</assembly>

This would have the effect of placing every single dependency in a subdirectory
that matched the name of each dependency artifact's groupId.

If you wanted to perform a further customization and remove the version numbers
from all dependencies. You could customize the the output file name for each

Maven Assemblies

285

dependency using the outputFileNameMapping element as follows:

<assembly>
...
<dependencySets>

<dependencySet>
<outputDirectory>${artifact.groupId}</outputDirectory>
<outputFileNameMapping>

${artifact.artifactId}.${artifact.extension}
</outputFileNameMapping>

</dependencySet>
</dependencySets>
...

</assembly>

In the previous example, a dependency on commons:commons-codec version 1.3,
would end up in the file commons/commons-codec.jar.

12.5.4.2. Interpolation of Properties in Dependency Output Location
As mentioned in the Assembly Interpolation section above, neither of these
elements are interpolated with the rest of the assembly descriptor, because their
raw values have to be interpreted using additional, artifact-specific expression
resolvers.

The artifact expressions available for these two elements vary only slightly. In both
cases, all of the ${project.*}, ${pom.*}, and ${*} expressions that are available
in the POM and the rest of the assembly descriptor are also available here. For the
outputFileNameMapping element, the following process is applied to resolve
expressions:

1. If the expression matches the pattern ${artifact.*}:

a. Match against the dependency’s Artifact instance (resolves: groupId,
artifactId, version, baseVersion, scope, classifier, and file.*)

b. Match against the dependency’s ArtifactHandler instance (resolves:
expression)

c. Match against the project instance associated with the dependency’s
Artifact (resolves: mainly POM properties)

Maven Assemblies

286

2. If the expression matches the patterns ${pom.*} or ${project.*}:

a. Match against the project instance (MavenProject) of the current build.

3. If the expression matches the pattern ${dashClassifier?} and the Artifact
instance contains a non-null classifier, resolve to the classifier preceded by a
dash (-classifier). Otherwise, resolve to an empty string.

4. Attempt to resolve the expression against the project instance of the current
build.

5. Attempt to resolve the expression against the POM properties of the current
build.

6. Attempt to resolve the expression against the available system properties.

7. Attempt to resolve the expression against the available operating-system
environment variables.

The outputDirectory value is interpolated in much the same way, with the
difference being that there is no available ${artifact.*} information, only the
${project.*} instance for the particular artifact. Therefore, the expressions listed
above associated with those classes (1a, 1b, and 3 in the process listing above) are
unavailable.

How do you know when to use outputDirectory and outputFileNameMapping?
When dependencies are unpacked only the outputDirectory is used to calculate
the output location. When dependencies are managed as whole files (not
unpacked), both outputDirectory and outputFileNameMapping can be used
together. When used together, the result is the equivalent of:

<archive-root-dir>/<outputDirectory>/<outputFileNameMapping>

When outputDirectory is missing, it is not used. When outputFileNameMapping

is missing, its default value is:
${artifact.artifactId}-${artifact.version}${dashClassifier?}.${artifact.extension}

Maven Assemblies

287

12.5.4.3. Including and Excluding Dependencies by Scope
In Section 9.4, “Project Dependencies”, it was noted that all project dependencies
have one scope or another. Scope determines when in the build process that
dependency normally would be used. For instance, test-scoped dependencies are
not included in the classpath during compilation of the main project sources; but
they are included in the classpath when compiling unit test sources. This is because
your project’s main source code should not contain any code specific to testing,
since testing is not a function of the project (it’s a function of the project’s build
process). Similarly, provided-scoped dependencies are assumed to be present in the
environment of any eventual deployment. However, if a project depends on a
particular provided dependency, it is likely to require that dependency in order to
compile. Therefore, provided-scoped dependencies are present in the compilation
classpath, but not in the dependency set that should be bundled with the project’s
artifact or assembly.

Also from Section 9.4, “Project Dependencies”, recall that some dependency
scopes imply others. For instance, the runtime dependency scope implies the
compile scope, since all compile-time dependencies (except for those in the
provided scope) will be required for the code to execute. There are a number of
complex relationships between the various dependency scopes which control how
the scope of a direct dependency affects the scope of a transitive dependency. In a
Maven Assembly descriptor, we can use scopes to apply different settings to
different sets of dependencies accordingly.

For instance, if we plan to bundle a web application with Jetty to create a
completely self-contained application, we’ll need to include all provided-scope
dependencies somewhere in the jetty directory structure we’re including. This
ensures those provided dependencies actually are present in the runtime
environment. Non-provided, runtime dependencies will still land in the
WEB-INF/lib directory, so these two dependency sets must be processed
separately. These dependency sets might look similar to the following XML.

Example 12.9. Defining Dependency Sets Using Scope

<assembly>

Maven Assemblies

288

http://www.mortbay.org/jetty-6/

...
<dependencySets>

<dependencySet>
<scope>provided</scope>
<outputDirectory>lib/${project.artifactId}</outputDirectory>

</dependencySet>
<dependencySet>
<scope>runtime</scope>
<outputDirectory>

webapps/${webContextName}/WEB-INF/lib
</outputDirectory>

</dependencySet>
</dependencySets>
...

</assembly>

Provided-scoped dependencies are added to the lib/ directory in the assembly
root, which is assumed to be a libraries directory that will be included in the Jetty
global runtime classpath. We’re using a subdirectory named for the project’s
artifactId in order to make it easier to track the origin of a particular library.
Runtime dependencies are included in the WEB-INF/lib path of the web
application, which is located within a subdirectory of the standard Jetty webapps/

directory that is named using a custom POM property called webContextName.
What we've done in the previous example is separate application-specific
dependencies from dependencies which will be present in a Servlet contains global
classpath.

However, simply separating according to scope may not be enough, particularly in
the case of a web application. It’s conceivable that one or more runtime
dependencies will actually be bundles of standardized, non-compiled resources for
use in the web application. For example, consider a set of web application which
reuse a common set of Javascript, CSS, SWF, and image resources. To make these
resources easy to standardize, it’s a common practice to bundle them up in an
archive and deploy them to the Maven repository. At that point, they can be
referenced as standard Maven dependencies - possibly with a dependency type of
zip - that are normally specified with a runtime scope. Remember, these are
resources, not binary dependencies of the application code itself; therefore, it’s not
appropriate to blindly include them in the WEB-INF/lib directory. Instead, these
resource archives should be separated from binary runtime dependencies, and

Maven Assemblies

289

unpacked into the web application document root somewhere. In order to achieve
this kind of separation, we’ll need to use inclusion and exclusion patterns that
apply to the coordinates of a specific dependency.

In other words, say you have three or four web application which reuse the same
resources and you want to create an assembly that puts provided dependencies into
lib/, runtime dependencies into webapps/<contextName>/WEB-INF/lib, and then
unpacks a specific runtime dependency into your web application's document root.
You can do this because the Assembly allows you to define multiple include and
exclude patterns for a given dependencySet element. Read the next section for
more development of this idea.

12.5.4.4. Fine Tuning: Dependency Includes and Excludes
A resource dependency might be as simple as a set of resources (CSS, Javascript,
and Images) in a project that has an assembly which creates a ZIP archive.
Depending on the particulars of our web application, we might be able to
distinguish resource dependencies from binary dependencies solely according to
type. Most web applications are going to depend on other dependencies of type
jar, and it is possible that we can state with certainty that all dependencies of type
zip are resource dependencies. Or, we might have a situation where resources are
stored in jar format, but have a classifier of something like resources. In either
case, we can specify an inclusion pattern to target these resource dependencies and
apply different logic than that used for binary dependencies. We’ll specify these
tuning patterns using the includes and excludes sections of the dependencySet.

Both includes and excludes are list sections, meaning they accept the sub-elements
include and exclude respectively. Each include or exclude element contains a
string value, which can contain wildcards. Each string value can match
dependencies in a few different ways. Generally speaking, three identity pattern
formats are supported:

groupId:artifactId - version-less key
You would use this pattern to match a dependency by only the groupId and the
artifactId

Maven Assemblies

290

groupId:artifactId:type[:classifier] - conflict id
The pattern allows you to specify a wider set of coordinates to create a more
specific include/exclude pattern.

groupId:artifactId:type[:classifier]:version - full artifact identity
If you need to get really specific, you can specify all the coordinates.

All of these pattern formats support the wildcard character ‘*’, which can match
any subsection of the identity and is not limited to matching single identity parts
(sections between ‘:’ characters). Also, note that the classifier section above is
optional, in that patterns matching dependencies that don’t have classifiers do not
need to account for the classifier section in the pattern.

In the example given above, where the key distinction is the artifact type zip, and
none of the dependencies have classifiers, the following pattern would match
resource dependencies assuming that they were of type zip:

*:zip

The pattern above makes use of the second dependency identity: the dependency’s
conflict id. Now that we have a pattern that distinguishes resource dependencies
from binary dependencies, we can modify our dependency sets to handle resource
archives differently:

Example 12.10. Using Dependency Excludes and Includes in dependencySets

<assembly>
...
<dependencySets>

<dependencySet>
<scope>provided</scope>
<outputDirectory>lib/${project.artifactId}</outputDirectory>

</dependencySet>
<dependencySet>
<scope>runtime</scope>
<outputDirectory>

webapps/${webContextName}/WEB-INF/lib
</outputDirectory>
<excludes>

<exclude>*:zip</exclude>
</excludes>

</dependencySet>

Maven Assemblies

291

<dependencySet>
<scope>runtime</scope>
<outputDirectory>

webapps/${webContextName}/resources
</outputDirectory>
<includes>

<include>*:zip</include>
</includes>
<unpack>true</unpack>

</dependencySet>
</dependencySets>
...

</assembly>

In Example 12.10, “Using Dependency Excludes and Includes in
dependencySets”, the runtime-scoped dependency set from our last example has
been updated to exclude resource dependencies. Only binary dependencies
(non-zip dependencies) should be added to the WEB-INF/lib directory of the web
application. Resource dependencies now have their own dependency set, which is
configured to include these dependencies in the resources directory of the web
application. The includes section in the last dependencySet reverses the exclusion
from the previous dependencySet, so that resource dependencies are included
using the same identity pattern (i.e. *:zip). The last dependencySet refers to the
shared resource dependency and it is configured to unpack the shared resource
dependency in the document root of the web application.

Example 12.10, “Using Dependency Excludes and Includes in dependencySets”
was based upon the assumption that our shared resources project dependency had a
type which differed from all of the other dependencies. What if the share resource
dependency had the same type as all of the other dependencies? How could you
differentiate the dependency? In this case if the shared resource dependency had
been bundled as a JAR with the classifier resources, you can change to the
identity pattern and match those dependencies instead:

*:jar:resources

Instead of matching on artifacts with a type of zip and no classifier, we’re
matching on artifacts with a classifier of resources and a type of jar.

Just like the fileSets section, dependencySets support the useStrictFiltering

Maven Assemblies

292

flag. When enabled, any specified patterns that don’t match one or more
dependencies will cause the assembly - and consequently, the build - to fail. This
can be particularly useful as a safety valve, to make sure your project dependencies
and assembly descriptors are synchronized and interacting as you expect them to.
By default, this flag is set to false for the purposes of backward compatibility.

12.5.4.5. Transitive Dependencies, Project Attachments, and Project
Artifacts
The dependencySet section supports two more general mechanisms for tuning the
subset of matching artifacts: transitive selection options, and options for working
with project artifacts. Both of these features are a product of the need to support
legacy configurations that applied a somewhat more liberal definition of the word
“dependency”. As a prime example, consider the project’s own main artifact.
Typically, this would not be considered a dependency; yet older versions of the
Assembly plugin included the project artifact in calculations of dependency sets.
To provide backward compatibility with this “feature”, the 2.2 releases (currently
at 2.2-beta-2) of the Assembly plugin support a flag in the dependencySet called
useProjectArtifact, whose default value is true. By default, dependency sets
will attempt to include the project artifact itself in calculations about which
dependency artifacts match and which don’t. If you’d rather deal with the project
artifact separately, set this flag to false.

Tip
The authors of this book recommend that you always set
useProjectArtifact to false.

As a natural extension to the inclusion of the project artifact, the project’s attached
artifacts can also be managed within a dependencySet using the
useProjectAttachments flag (whose default value is false). Enabling this flag
allows patterns that specify classifiers and types to match on artifacts that are
“attached” to the main project artifact; that is, they share the same basic
groupId/artifactId/version identity, but differ in type and classifier from the
main artifact. This could be useful for including JavaDoc or source jars in an

Maven Assemblies

293

assembly.

Aside from dealing with the project’s own artifacts, it’s also possible to fine-tune
the dependency set using two transitive-resolution flags. The first, called
useTransitiveDependencies (and set to true by default) simply specifies whether
the dependency set should consider transitive dependencies at all when
determining the matching artifact set to be included. As an example of how this
could be used, consider what happens when your POM has a dependency on
another assembly. That assembly (most likely) will have a classifier that separates
it from the main project artifact, making it an attachment. However, one quirk of
the Maven dependency-resolution process is that the transitive-dependency
information for the main artifact is still used when resolving the assembly artifact.
If the assembly bundles its project dependencies inside itself, using transitive
dependency resolution here would effectively duplicate those dependencies. To
avoid this, we simply set useTransitiveDependencies to false for the
dependency set that handles that assembly dependency.

The other transitive-resolution flag is far more subtle. It’s called
useTransitiveFiltering, and has a default value of false. To understand what
this flag does, we first need to understand what information is available for any
given artifact during the resolution process. When an artifact is a dependency of a
dependency (that is, removed at least one level from your own POM), it has what
Maven calls a "dependency trail", which is maintained as a list of strings that
correspond to the full artifact identities
(groupId:artifactId:type:[classifier:]version) of all dependencies between
your POM and the artifact that owns that dependency trail. If you remember the
three types of artifact identities available for pattern matching in a dependency set,
you’ll notice that the entries in the dependency trail - the full artifact identity -
correspond to the third type. When useTransitiveFiltering is set to true, the
entries in an artifact’s dependency trail can cause the artifact to be included or
excluded in the same way its own identity can.

If you’re considering using transitive filtering, be careful! A given artifact can be
included from multiple places in the transitive-dependency graph, but as of Maven
2.0.9, only the first inclusion’s trail will be tracked for this type of matching. This
can lead to subtle problems when collecting the dependencies for your project.

Maven Assemblies

294

Warning
Most assemblies don’t really need this level of control over dependency
sets; consider carefully whether yours truly does. Hint: It probably
doesn't.

12.5.4.6. Advanced Unpacking Options
As we discussed previously, some project dependencies may need to be unpacked
in order to create a working assembly archive. In the examples above, the decision
to unpack or not was simple. It didn’t take into account what needed to be
unpacked, or more importantly, what should not be unpacked. To gain more
control over the dependency unpacking process, we can configure the
unpackOptions element of the dependencySet. Using this section, we have the
ability to choose which file patterns to include or exclude from the assembly, and
whether included files should be filtered to resolve expressions using current POM
information. In fact, the options available for unpacking dependency sets are fairly
similar to those available for including files from the project directory structure,
using the file sets descriptor section.

To continue our web-application example, suppose some of the resource
dependencies have been bundled with a file that details their distribution license. In
the case of our web application, we’ll handle third-party license notices by way of
a NOTICES file included in our own bundle, so we don’t want to include the license
file from the resource dependency. To exclude this file, we simply add it to the
unpack options inside the dependency set that handles resource artifacts:

Example 12.11. Excluding Files from a Dependency Unpack

<asembly>
...
<dependencySets>

<dependencySet>
<scope>runtime</scope>
<outputDirectory>

webapps/${webContextName}/resources
</outputDirectory>
<includes>

<include>*:zip</include>

Maven Assemblies

295

</includes>
<unpack>true</unpack>
<unpackOptions>

<excludes>
<exclude>**/LICENSE*</exclude>

</excludes>
</unpackOptions>

</dependencySet>
</dependencySets>
...

</assembly>

Notice that the exclude we’re using looks very similar to those used in fileSet

declarations. Here, we’re blocking any file starting with the word LICENSE in any
directory within our resource artifacts. You can think of the unpack options section
as a lightweight fileSet applied to each dependency matched within that
dependency set. In other words, it is a fileSet by way of an unpacked
dependency. Just as we specified an exclusion pattern for files within resource
dependencies in order to block certain files, you can also choose which restricted
set of files to include using the includes section. The same code that processes
inclusions and exclusions on fileSets has been reused for processing
unpackOptions.

In addition to file inclusion and exclusion, the unpack options on a dependency set
also provides a filtering flag, whose default value is false. Again, this should
be familiar from our discussion of file sets above. In both cases, expressions using
either the Maven syntax of ${property} or the Ant syntax of @property@ are
supported. Filtering is a particularly nice feature to have for dependency sets,
though, since it effectively allows you to create standardized, versioned resource
templates that are then customized to each assembly as they are included. Once
you start mastering the use of filtered, unpacked dependencies which store shared
resources, you will be able to start abstracting repeated resources into common
resource projects.

12.5.4.7. Summarizing Dependency Sets
Finally, it’s worth mentioning that dependency sets support the same fileMode and
directoryMode configuration options that file sets do, though you should

Maven Assemblies

296

remember that the directoryMode setting will only be used when dependencies are
unpacked.

12.5.5. moduleSets Sections
Multi-module builds are generally stitched together using the parent and modules
sections of interrelated POMs. Typically, parent POMs specify their children in a
modules section, which under normal circumstances causes the child POMs to be
included in the build process of the parent. Exactly how this relationship is
constructed can have important implications for the ways in which the Assembly
plugin can participate in this process, but we’ll discuss that more later. For now,
it’s enough to keep in mind this parent-module relationship as we discuss the
moduleSets section.

Projects are stitched together into multi-module builds because they are part of a
larger system. These projects are designed to be used together, and single module
in a larger build has little practical value on its own. In this way, the structure of
the project’s build is related to the way we expect the project (and its modules) to
be used. If consider the project from the user's perspective, it makes sense that the
ideal end goal of that build would be a single, distributable file that the user can
consume directly with minimum installation hassle. Since Maven multi-module
builds typically follow a top-down structure, where dependency information,
plugin configurations, and other information trickles down from parent to child, it
seems natural that the task of rolling all of these modules into a single distribution
file should fall to the topmost project. This is where the moduleSet comes into the
picture.

Module sets allow the inclusion of resources that belong to each module in the
project structure into the final assembly archive. Just like you can select a group of
files to include in an assembly using a fileSet and a dependencySet, you can
include a set of files and resources using a moduleSet to refer to modules in a
multi-module build. They achieve this by enabling two basic types of
module-specific inclusion: file-based, and artifact-based. Before we get into the
specifics and differences between file-based and artifact-based inclusion of module
resources into an assembly, let’s talk a little about selecting which modules to

Maven Assemblies

297

process.

12.5.5.1. Module Selection
By now, you should be familiar with includes/excludes patterns as they are used
throughout the assembly descriptor to filter files and dependencies. When you are
referring to modules in an assembly descriptor, you will also use the
includes/excludes patterns to define rules which apply to different sets of
modules. The difference in moduleSet includes and excludes is that these rules
do not allow for wildcard patterns. (As of the 2.2-beta-2 release, this feature has
not really seen much demand, so it hasn’t been implemented.) Instead, each
include or exclude value is simply the groupId and artifactId for the module,
separated by a colon, like this:

groupId:artifactId

In addition to includes and excludes, the moduleSet also supports an additional
selection tool: the includeSubModules flag (whose default value is true). The
parent-child relationship in any multi-module build structure is not strictly limited
to two tiers of projects. In fact, you can include any number of tiers, or layers, in
your build. Any project that is a module of a module of the current project is
considered a sub-module. In some cases, you may want to deal with each
individual module in the build separately (including sub-modules). For example,
this is often simplest when dealing with artifact-based contributions from these
modules. To do this, you would simply leave the useSubModules flag set to the
default of true.

When you’re trying to include files from each module’s directory structure, you
may wish to process that module’s directory structure only once. If your project
directory structure mirrors that of the parent-module relationships that are included
in the POMs, this approach would allow file patterns like **/src/main/java to apply
not only to that direct module’s project directory, but also to the directories of its
own modules as well. In this case you don’t want to process sub-modules directly
(they will be processed as subdirectories within your own project’s modules
instead), you should set the useSubModules flag to false.

Once we’ve determined how module selection should proceed for the module set

Maven Assemblies

298

in question, we’re ready to choose what to include from each module. As
mentioned above, this can include files or artifacts from the module project.

12.5.5.2. Sources Section
Suppose you want to include the source of all modules in your project's assembly,
but you would like to exclude a particular module. Maybe you have a project
named secret-sauce which contains secret and sensitive code that you don't want
to distribute with your project. The simplest way to accomplish this is to use a
moduleSet which includes each project's directory in ${module.basedir.name}

and which excludes the secret-sauce module from the assembly.

Example 12.12. Includes and Excluding Modules with a moduleSet

<assembly>
...
<moduleSets>

<moduleSet>
<includeSubModules>false</includeSubModules>
<excludes>

<exclude>
com.mycompany.application:secret-sauce

</exclude>
</excludes>
<sources>

<outputDirectoryMapping>
${module.basedir.name}

</outputDirectoryMapping>
<excludeSubModuleDirectories>

false
</excludeSubModuleDirectories>
<fileSets>

<fileSet>
<directory>/</directory>
<excludes>

<exclude>**/target</exclude>
</excludes>

</fileSet>
</fileSets>

</sources>
</moduleSet>

</moduleSets>
...

</assembly>

Maven Assemblies

299

In Example 12.12, “Includes and Excluding Modules with a moduleSet”, since
we’re dealing with each module’s sources it’s simpler to deal only with direct
modules of the current project, handling sub-modules using file-path wildcard
patterns in the file set. We set the includeSubModules element to false so we
don't have to worry about submodules showing up in the root directory of the
assembly archive. The exclude element will take care of excluding the
secret-sauce module. We’re not going to include the project sources for the
secret-sauce module; they’re, well, secret.

Normally, module sources are included in the assembly under a subdirectory
named after the module’s artifactId. However, since Maven allows modules that
are not in directories named after the module project’s artifactId, it’s often better
to use the expression ${module.basedir.name} to preserve the module directory’s
actual name (${module.basedir.name} is the same as calling
MavenProject.getBasedir().getName()). It is critical to remember that modules
are not required to be subdirectories of the project that declares them. If your
project has a particularly strange directory structure, you may need to resort to
special moduleSet declarations that include specific project and account for your
own project's idiosyncracies.

Warning
Try to minimize your own project's idiosyncracies, while Maven is
flexible, if you find yourself doing too much configuration there is likely
an easier way.

Continuing through Example 12.12, “Includes and Excluding Modules with a
moduleSet”, since we’re not processing sub-modules explicitly in this module set,
we need to make sure sub-module directories are not excluded from the source
directories we consider for each direct module. By setting the
excludeSubModuleDirectories flag to false, this allows us to apply the same file
pattern to directory structures within a sub-module of the one we’re processing.
Finally in Example 12.12, “Includes and Excluding Modules with a moduleSet”,
we’re not interested in any output of the build process for this module set. We
exclude the target/ directory from all modules.

Maven Assemblies

300

It’s also worth mentioning that the sources section supports fileSet-like elements
directly within itself, in addition to supporting nested fileSets. These
configuration elements are used to provide backward compatibility to previous
versions of the Assembly plugin (versions 2.1 and under) that didn’t support
multiple distinct file sets for the same module without creating a separate module
set declaration. They are deprecated, and should not be used.

12.5.5.3. Interpolation of outputDirectoryMapping in moduleSets

In Section 12.5.4.1, “Customizing Dependency Output Location”, we used the
element outputDirectoryMapping to change the name of the directory under
which each module’s sources would be included. The expressions contained in this
element are resolved in exactly the same way as the outputFileNameMapping, used
in dependency sets (see the explanation of this algorithm in Section 12.5.4,
“dependencySets Section”).

In Example 12.12, “Includes and Excluding Modules with a moduleSet”, we used
the expression ${module.basedir.name}. You might notice that the root of that
expression, module, is not listed in the mapping-resolution algorithm from the
dependency sets section; this object root is specific to configurations within
moduleSets. It works in exactly the same way as the ${artifact.*} references
available in the outputFileNameMapping element, except it is applied to the
module’s MavenProject, Artifact, and ArtifactHandler instances instead of
those from a dependency artifact.

12.5.5.4. Binaries section
Just as the sources section is primarily concerned with including a module in its
source form, the binaries section is primarily concerned with including the
module’s build output, or its artifacts. Though this section functions primarily as a
way of specifying dependencySets that apply to each module in the set, there are a
few additional features unique to module artifacts that are worth exploring:
attachmentClassifier and includeDependencies. In addition, the binaries

section contains options similar to the dependencySet section, that relate to the
handling of the module artifact itself. These are: unpack, outputFileNameMapping,
outputDirectory, directoryMode, and fileMode. Finally, module binaries can

Maven Assemblies

301

contain a dependencySets section, to specify how each module’s dependencies
should be included in the assembly archive. First, let’s take a look at how the
options mentioned here can be used to manage the module’s own artifacts.

Suppose we want to include the javadoc jars for each of our modules inside our
assembly. In this case, we don’t care about including the module dependencies; we
just want the javadoc jar. However, since this particular jar is always going to be
present as an attachment to the main project artifact, we need to specify which
classifier to use to retrieve it. For simplicity, we won’t cover unpacking the module
javadoc jars, since this configuration is exactly the same as what we used for
dependency sets earlier in this chapter. The resulting module set might look similar
to Example 12.13, “Including JavaDoc from Modules in an Assembly”.

Example 12.13. Including JavaDoc from Modules in an Assembly

<assembly>
...
<moduleSets>

<moduleSet>
<binaries>

<attachmentClassifier>javadoc</attachmentClassifier>
<includeDependencies>false</includeDependencies>
<outputDirectory>apidoc-jars</outputDirectory>

</binaries>
</moduleSet>

</moduleSets>
...

</assembly>

In Example 12.13, “Including JavaDoc from Modules in an Assembly”, we don’t
explicitly set the includeSubModules flag, since it’s true by default. However, we
definitely want to process all modules - even sub-modules - using this module set,
since we’re not using any sort of file pattern that could match on sub-module
directory structures within. The attachmentClassifier grabs the attached artifact
with the javadoc classifier for each module processed. The includeDependencies

element tells the Assembly plugin that we're not interested in any of the module's
dependencies, just the javadoc attachment. Finally, the outputDirectory element
tells the Assembly plugin to put all of the javadoc jars into a directory named
apidoc-jars/ off of the assembly root directory.

Maven Assemblies

302

Although we’re not doing anything too complicated in this example, it’s important
to understand that the same changes to the expression-resolution algorithm
discussed for the outputDirectoryMapping element of the sources section also
applies here. That is, whatever was available as ${artifact.*} inside a
dependencySet’s outputFileNameMapping configuration is also available here as
${module.*}. The same applies for outputFileNameMapping when used directly
within a binaries section.

Finally, let’s examine an example where we simply want to process the module’s
artifact and its runtime dependencies. In this case, we want to separate the artifact
set for each module into separate directory structures, according to the module’s
artifactId and version. The resulting module set is surprisingly simply, and it
looks like the listing in Example 12.14, “Including Module Artifacts and
Dependencies in an Assembly”:

Example 12.14. Including Module Artifacts and Dependencies in an Assembly

<assembly>
...
<moduleSets>

<moduleSet>
<binaries>

<outputDirectory>
${module.artifactId}-${module.version}

</outputDirectory>
<dependencySets>

<dependencySet/>
</dependencySets>

</binaries>
</moduleSet>

</moduleSets>
...

</assembly>

In Example 12.14, “Including Module Artifacts and Dependencies in an
Assembly”, we’re using the empty dependencySet element here, since that should
include all runtime dependencies by default, with no configuration. With the
outputDirectory specified at the binaries level, all dependencies should be
included alongside the module’s own artifact in the same directory, so we don’t
even need to specify that in our dependency set.

Maven Assemblies

303

For the most part, module binaries are fairly straightforward. In both parts - the
main part, concerned with handling the module artifact itself, and the dependency
sets, concerned with the module’s dependencies - the configuration options are
very similar to those in a dependency set. Of course, the binaries section also
provides options for controlling whether dependencies are included, and which
main-project artifact you want to use.

Like the sources section, the binaries section contains a couple of configuration
options that are provided solely for backward compatibility, and should be
considered deprecated. These include the includes and excludes sub-sections.

12.5.5.5. moduleSets, Parent POMs and the binaries Section
Finally, we close the discussion about module handling with a strong warning.
There are subtle interactions between Maven’s internal design as it relates to
parent-module relationships and the execution of a module-set’s binaries section.
When a POM declares a parent, that parent must be resolved in some way or other
before the POM in question can be built. If the parent is in the Maven repository,
there is no problem. However, as of Maven 2.0.9 this can cause big problems if
that parent is a higher-level POM in the same build, particularly if that parent POM
expects to build an assembly using its modules’ binaries.

Maven 2.0.9 sorts projects in a multi-module build according to their
dependencies, with a given project’s dependencies being built ahead of itself. The
problem is the parent element is considered a dependency, which means the parent
project’s build must complete before the child project is built. If part of that
parent’s build process includes the creation of an assembly that uses module
binaries, those binaries will not exist yet, and therefore cannot be included, causing
the assembly to fail. This is a complex and subtle issue, which severely limits the
usefulness of the module binaries section of the assembly descriptor. In fact, it has
been filed in the bug tracker for the Assembly plugin at:
http://jira.codehaus.org/browse/MASSEMBLY-97. Hopefully, future versions of
Maven will find a way to restore this functionality, since the parent-first
requirement may not be completely necessary.

Maven Assemblies

304

http://jira.codehaus.org/browse/MASSEMBLY-97

12.5.6. Repositories Section
The repositories section represents a slightly more exotic feature in the assembly
descriptor, since few applications other than Maven can take full advantage of a
Maven-repository directory structure. For this reason, and because many of its
features closely resemble those in the dependencySets section, we won’t spend too
much time on the repositories section of the assembly descriptor. In most cases,
users who understand dependency sets should have no trouble constructing
repositories via the Assembly plugin. We're not going to motivate the
repositories section; we're not going to go through a the business of setting up a
use case and walking you through the process. We're just going to bring up a few
caveats for those of you who find the need to use the repostiories section.

Having said that, there are a two features particular to the repositories section that
deserve some mention. The first is the includeMetadata flag. When set to true it
includes metadata such as the list of real versions that correspond to -SNAPSHOT

virtual versions, and by default it’s set to false. At present, the only metadata
included when this flag is true is the information downloaded from Maven’s
central repository.

The second feature is called groupVersionAlignments. Again, this section is a list
of individual groupVersionAlignment configurations, whose purpose is to
normalize all included artifacts for a particular groupId to use a single version.
Each alignment entry consists of two mandatory elements - id and version - along
with an optional section called excludes that supplies a list of artifactId string
values which are to be excluded from this realignment. Unfortunately, this
realignment doesn’t seem to modify the POMs involved in the repository, neither
those related to realigned artifacts nor those that depend on realigned artifacts, so
it’s difficult to imagine what the practical application for this sort of realignment
would be.

In general, it’s simplest to apply the same principles you would use in dependency
sets to repositories when adding them to your assembly descriptor. While the
repositories section does support the above extra options, they are mainly provided
for backward compatibility, and will probably be deprecated in future releases.

Maven Assemblies

305

12.5.7. Managing the Assembly’s Root Directory
Now that we’ve made it through the main body of the assembly descriptor, we can
close the discussion of content-related descriptor sections with something lighter:
root-directory naming and site-directory handling.

Some may consider it a stylistic concern, but it’s often important to have control
over the name of the root directory for your assembly, or whether the root directory
is there at all. Fortunately, two configuration options in the root of the assembly
descriptor make managing the archive root directory simple:
includeBaseDirectory and baseDirectory. In cases like executable jar files, you
probably don’t want a root directory at all. To skip it, simply set the
includeBaseDirectory flag to false (it’s true by default). This will result in an
archive that, when unpacked, may create more than one directory in the unpack
target directory. While this is considered bad form for archives that are meant to be
unpacked before use, it’s not so bad for archives that are consumable as-is.

In other cases, you may want to guarantee the name of the archive root directory
regardless of the POM’s version or other information. By default, the
baseDirectory element has a value equal to
${project.artifactId}-${project.version}. However, we can easily set this
element to any value that consists of literal strings and expressions which can be
interpolated from the current POM, such as
${project.groupId}-${project.artifactId}. This could be very good news for
your documentation team! (We all have those, right?)

Another configuration available is the includeSiteDirectory flag, whose default
value is false. If your project build has also constructed a website document root
using the site lifecycle or the Site plugin goals, that output can be included by
setting this flag to true. However, this feature is a bit limited, since it only
includes the outputDirectory from the reporting section of the current POM (by
default, target/site) and doesn’t take into consideration any site directories that
may be available in module projects. Use it if you want, but a good fileSet

specification or moduleSet specification with sources configured could serve
equally well, if not better. This is yet another example of legacy configuration
currently supported by the Assembly plugin for the purpose of backward

Maven Assemblies

306

compatibility. Your mileage may vary. If you really want to include a site that is
aggregated from many modules, you'll want to consider using a fileSet or
moduleSet instead of setting includeSiteDirectory to true.

12.5.8. componentDescriptors and
containerDescriptorHandlers

To round out our exploration of the assembly descriptor, we should touch briefly
on two other sections: containerDescriptorHandlers and
componentDescriptors. The containerDescriptorHandlers section refers to
custom components that you use to extend the capabilities of the Assembly plugin.
Specifically, these custom components allow you to define and handle special files
which may need to be merged from the multiple constituents used to create your
assembly. A good example of this might be a custom container-descriptor handler
that merged web.xml files from constituent war or war-fragment files included in
your assembly, in order to create the single web-application descriptor required for
you to use the resulting assembly archive as a war file.

The componentDescriptors section allows you to reference external
assembly-descriptor fragments and include them in the current descriptor.
Component references can be any of the following:

1. Relative file paths: src/main/assembly/component.xml

2. Artifact references: groupId:artifactId:version[:type[:classifier]]

3. Classpath resources: /assemblies/component.xml

4. URLs: http://www.sonatype.com/component.xml
Incidentally, when resolving a component descriptor, the Assembly plugin tries
those different strategies in that exact order. The first one to succeed is used.

Component descriptors can contain many of the same content-oriented sections
available in the assembly descriptor itself, with the exception of moduleSets,
which is considered so specific to each project that it’s not a good candidate for

Maven Assemblies

307

http://www.sonatype.com/component.xml

reuse. Also included in a component descriptor is the
containerDescriptorHandlers section, which we briefly discussed above.
Component descriptors cannot contain formats, assembly id’s, or any configuration
related to the base directory of the assembly archive, all of which are also
considered unique to a particular assembly descriptor. While it may make sense to
allow sharing of the formats section, this has not been implemented as of the
2.2-beta-2 Assembly-plugin release.

12.6. Best Practices
The Assembly plugin provides enough flexibility to solve many problems in a
number of different ways. If you have a unique requirement for your project,
there's a good chance that you can use the methods documented in this chapter to
achieve almost any assembly structure. This section of the chapter details some
common best practices which, if adhered to, will make your experiences with the
assembly plugin more productive and less painful.

12.6.1. Standard, Reusable Assembly Descriptors
Up to now, we’ve been talking mainly about one-off solutions for building a
particular type of assembly. But what do you do if you have dozens of projects that
all need a particular type of assembly? In short, how can we reuse the effort we’ve
invested to get our assemblies just the way we like them across more than one
project without copying and pasting our assembly descriptor?

The simplest answer is to create a standardized, versioned artifact out of the
assembly descriptor, and deploy it. Once that’s done, you can specify that the
Assembly plugin section of your project’s POM include the assembly-descriptor
artifact as a plugin-level dependency, which will prompt Maven to resolve and
include that artifact in the plugin’s classpath. At that point, you can use the
assembly descriptor via the descriptorRefs configuration section in the Assembly
plugin declaration. To illustrate, consider this example assembly descriptor:

<assembly>
<id>war-fragment</id>
<formats>

Maven Assemblies

308

<format>zip</format>
</formats>

<includeBaseDirectory>false</includeBaseDirectory>
<dependencySets>

<dependencySet>
<outputDirectory>WEB-INF/lib</outputDirectory>

</dependencySet>
</dependencySets>
<fileSets>

<fileSet>
<directory>src/main/webapp</directory>
<outputDirectory>/</outputDirectory>
<excludes>

<exclude>**/web.xml</exclude>
</excludes>

</fileSet>
</fileSets>

</assembly>

Included in your project, this descriptor would be a useful way to bundle the
project contents so that it could be unpacked directly into an existing web
application in order to add to it (for adding an extending feature, say). However, if
your team builds more than one of these web-fragment projects, it will likely want
to reuse this descriptor rather than duplicating it. To deploy this descriptor as its
own artifact, we’re going to put it in its own project, under the
src/main/resources/assemblies directory.

The project structure for this assembly-descriptor artifact will look similar to the
following:

|-- pom.xml
`-- src

`-- main
`-- resources

`-- assemblies
`-- web-fragment.xml

Notice the path of our web-fragment descriptor file. By default, Maven includes
the files from the src/main/resources directory structure in the final jar, which
means our assembly descriptor will be included with no extra configuration on our
part. Also, notice the assemblies/ path prefix, the Assembly plugin expects this
path prefix on all descriptors provided in the plugin classpath. It’s important that
we put our descriptor in the appropriate relative location, so it will be picked up by
the Assembly plugin as it executes.

Maven Assemblies

309

Remember, this project is separate from your actual web-fragment project now;
the assembly descriptor has become its own artifact with its own version and,
possibly, its own release cycle. Once you install this new project using Maven,
you’ll be able to reference it in your web-fragment projects. For clarity, the build
process should look something like this:

$ mvn install
(...)
[INFO] [install:install]
[INFO] Installing (...)/web-fragment-descriptor/target/\

web-fragment-descriptor-1.0-SNAPSHOT.jar
to /Users/~/.m2/repository/org/sonatype/mavenbook/assemblies/\

web-fragment-descriptor/1.0-SNAPSHOT/\
web-fragment-descriptor-1.0-SNAPSHOT.jar

[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 5 seconds
(...)

Since there are no sources for the web-fragment-descriptor project, the resulting
jar artifact will include nothing but our web-fragment assembly descriptor. Now,
let’s use this new descriptor artifact:

<project>
(...)
<artifactId>my-web-fragment</artifactId>
(...)
<build>

<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<version>2.2-beta-2</version>
<dependencies>

<dependency>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<artifactId>web-fragment-descriptor</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>
</dependencies>
<executions>

<execution>
<id>assemble</id>
<phase>package</phase>
<goals>

<goal>single</goal>
</goals>
<configuration>

<descriptorRefs>

Maven Assemblies

310

<descriptorRef>web-fragment</descriptorRef>
</descriptorRefs>

</configuration>
</execution>

</executions>
</plugin>
(...)

</plugins>
</build>
(...)

</project>

Two things are special about this Assembly plugin configuration:

• We have to include a plugin-level dependency declaration on our new
web-fragment-descriptor artifact in order to have access to the assembly
descriptor via the plugin’s classpath.

• Since we’re using a classpath reference instead of a file in the local project
directory structure, we must use the descriptorRefs section instead of the
descriptor section. Also, notice that, while the assembly descriptor is
actually in the assemblies/web-fragment.xml location within the plugin’s
classpath, we reference it without the assemblies/ prefix. This is because
the Assembly plugin assumes that built-in assembly descriptors will always
reside in the classpath under this path prefix.

Now, you’re free to reuse the POM configuration above in as many projects as you
like, with the assurance that all of their web-fragment assemblies will turn out the
same. As you need to make adjustments to the assembly format - maybe to include
other resources, or to fine-tune the dependency and file sets - you can simply
increment the version of the assembly descriptor’s project, and release it again.
POMs referencing the assembly-descriptor artifact can then adopt this new version
of the descriptor as they are able.

One final point about assembly-descriptor reuse: you may want to consider sharing
the plugin configuration itself as well as publishing the descriptor as an artifact.
This is a fairly simple step; you simply add the configuration listed above to the
pluginManagement section of your parent POM, then reference the managed plugin
configuration from your module POM like this:

(...)

Maven Assemblies

311

<build>
<plugins>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
</plugin>

(...)

If you’ve added the rest of the plugin’s configuration - listed in the previous
example - to the pluginManagement section of the project’s parent POM, then each
project inheriting from that parent POM can add a minimal entry like the one
above and take advantage of an advanced assembly format in their own builds.

12.6.2. Distribution (Aggregating) Assemblies
As mentioned above, the Assembly plugin provides multiple ways of creating
many archive formats. Distribution archives are typically very good examples of
this, since they often combine modules from a multi-module build, along with their
dependencies and possibly, other files and artifacts besides these. The distribution
aims to include all these different sources into a single archive that the user can
download, unpack, and run with convenience. However, we also examined some of
the potential drawbacks of using the moduleSets section of the assembly descriptor
- namely, that the parent-child relationships between POMs in a build can prevent
the availability of module artifacts in some cases.

Specifically, if module POMs reference as their parent the POM that contains the
Assembly-plugin configuration, that parent project will be built ahead of the
module projects when the multi-module build executes. The parent’s assembly
expects to find artifacts in place for its modules, but these module projects are
waiting on the parent itself to finish building, a gridlock situation is reached and
the parent build cannot succeed (since it’s unable to find artifacts for its module
projects). In other words, the child project depends on the parent project which in
turn depends on the child project.

As an example, consider the assembly descriptor below, designed to be used from
the top-level project of a multi-module hierarchy:

<assembly>
<id>distribution</id>
<formats>

Maven Assemblies

312

<format>zip</format>
<format>tar.gz</format>
<format>tar.bz2</format>

</formats>

<moduleSets>
<moduleSet>
<includes>

<include>*-web</include>
</includes>
<binaries>

<outputDirectory>/</outputDirectory>
<unpack>true</unpack>
<includeDependencies>true</includeDependencies>
<dependencySets>

<dependencySet>
<outputDirectory>/WEB-INF/lib</outputDirectory>

</dependencySet>
</dependencySets>

</binaries>
</moduleSet>
<moduleSet>
<includes>

<include>*-addons</include>
</includes>
<binaries>

<outputDirectory>/WEB-INF/lib</outputDirectory>
<includeDependencies>true</includeDependencies>
<dependencySets>

<dependencySet/>
</dependencySets>

</binaries>
</moduleSet>

</moduleSets>
</assembly>

Given a parent project - called app-parent - with three modules called app-core,
app-web, and app-addons, notice what happens when we try to execute this
multi-module build:

$ mvn package
[INFO] Reactor build order:
[INFO] app-parent <----- PARENT BUILDS FIRST
[INFO] app-core
[INFO] app-web
[INFO] app-addons
[INFO] ---
[INFO] Building app-parent
[INFO] task-segment: [package]
[INFO] ---
[INFO] [site:attach-descriptor]

Maven Assemblies

313

[INFO] [assembly:single {execution: distro}]
[INFO] Reading assembly descriptor: src/main/assembly/distro.xml
[INFO] ---
[ERROR] BUILD ERROR
[INFO] ---
[INFO] Failed to create assembly: Artifact:
org.sonatype.mavenbook.assemblies:app-web:jar:1.0-SNAPSHOT (included by module)
does not have an artifact with a file. Please ensure the package phase is
run before the assembly is generated.
...

The parent project - app-parent - builds first. This is because each of the other
projects lists that POM as its parent, which causes it to be forced to the front of the
build order. The app-web module, which is the first module to be processed in the
assembly descriptor, hasn’t been built yet. Therefore, it has no artifact associated
with it, and the assembly cannot succeed.

One workaround for this is to remove the executions section of the
Assembly-plugin declaration, that binds the plugin to the package lifecycle phase
in the parent POM, keeping the configuration section intact. Then, execute Maven
with two command-line tasks: the first, package, to build the multi-module project
graph, and a second, assembly:assembly, as a direct invocation of the assembly
plugin to consume the artifacts built on the previous run, and create the distribution
assembly. The command line for such a build might look like this:

$ mvn package assembly:assembly

However, this approach has several drawbacks. First, it makes the
distribution-assembly process more of a manual task that can increase the
complexity and potential for error in the overall build process significantly.
Additionally, it could mean that attached artifacts - which are associated in
memory as the project build executes - are not reachable on the second pass
without resorting to file-system references.

Instead of using a moduleSet to collect the artifacts from your multi-module build,
it often makes more sense to employ a low-tech approach: using a dedicated
distribution project module and inter-project dependencies. In this approach, you
create a new module in your build whose sole purpose is to assemble the
distribution. This module POM contains dependency references to all the other
modules in the project hierarchy, and it configures the Assembly plugin to be

Maven Assemblies

314

bound the package phase of its build lifecycle. The assembly descriptor itself uses
the dependencySets section instead of the moduleSets section to collect module
artifacts and determine where to include them in the resulting assembly archive.
This approach escapes the pitfalls associated with the parent-child relationship
discussed above, and has the additional advantage of using a simpler configuration
section within the assembly descriptor itself to do the job.

To do this, we can create a new project structure that’s very similar to the one used
for the module-set approach above, with the addition of a new distribution project,
we might end up with five POMs in total: app-parent, app-core, app-web,
app-addons, and app-distribution. The new app-distribution POM looks
similar to the following:

<project>
<parent>

<artifactId>app-parent</artifactId>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<version>1.0-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>app-distribution</artifactId>
<name>app-distribution</name>

<dependencies>
<dependency>
<artifactId>app-web</artifactId>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<version>1.0-SNAPSHOT</version>
<type>war</type>

</dependency>
<dependency>
<artifactId>app-addons</artifactId>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<version>1.0-SNAPSHOT</version>

</dependency>
<!-- Not necessary since it's brought in via app-web.
<dependency> [2]
<artifactId>app-core</artifactId>
<groupId>org.sonatype.mavenbook.assemblies</groupId>
<version>1.0-SNAPSHOT</version>

</dependency>
-->

</dependencies>
</project>

Notice that we have to include dependencies for the other modules in the project

Maven Assemblies

315

structure, since we don’t have a modules section to rely on in this POM. Also,
notice that we’re not using an explicit dependency on app-core. Since it’s also a
dependency of app-web, we don’t need to process it (or, avoid processing it) twice.

Next, when we move the distro.xml assembly descriptor into the
app-distribution project, we must also change it to use a dependencySets

section, like this:

<assembly>
...
<dependencySets>

<dependencySet>
<includes>

<include>*-web</include>
</includes>
<useTransitiveDependencies>false</useTransitiveDependencies>
<outputDirectory>/</outputDirectory>
<unpack>true</unpack>

</dependencySet>
<dependencySet>
<excludes>

<exclude>*-web</exclude>
</excludes>
<useProjectArtifact>false</useProjectArtifact>
<outputDirectory>/WEB-INF/lib</outputDirectory>

</dependencySet>
</dependencySets>
...

</assembly>

This time, if we run the build from the top-level project directory, we get better
news:

$ mvn package
(...)
[INFO] ---
[INFO] Reactor Summary:
[INFO] ---
[INFO] module-set-distro-parentSUCCESS [3.070s]
[INFO] app-core SUCCESS [2.970s]
[INFO] app-web SUCCESS [1.424s]
[INFO] app-addons SUCCESS [0.543s]
[INFO] app-distribution SUCCESS [2.603s]
[INFO] ---
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 10 seconds
[INFO] Finished at: Thu May 01 18:00:09 EDT 2008

Maven Assemblies

316

[INFO] Final Memory: 16M/29M
[INFO] ---

As you can see, the dependency-set approach is much more stable and - at least
until Maven’s internal project-sorting logic catches up with the Assembly plugin’s
capabilities, - involves less opportunity to get things wrong when running a build.

12.7. Summary
As we’ve seen in this chapter, the Maven Assembly plugin offers quite a bit of
potential for creating custom archive formats. While the details of these assembly
archives can be complex, they certainly don’t have to be in all cases - as we saw
with built-in assembly descriptors. Even if your aim is to include your project’s
dependencies and selected project files in some unique, archived directory
structure, writing a custom assembly descriptor doesn’t have to be an arduous task.

Assemblies are useful for a wide array of applications, but are most commonly
used as application distributions of various sorts. And, while there are many
different ways to use the Assembly plugin, using standardized assembly-descriptor
artifacts and avoiding moduleSets when creating distributions containing binaries
are two sure ways to avoid problems.

Maven Assemblies

317

Chapter 13. Properties and Resource
Filtering

13.1. Introduction
Throughout this book, you will notice references to properties which can be used
in a POM file. Sibling dependencies in a multi-project build can be referenced
using the ${project.groupId} and ${project.version} properties and any part
of the POM can be referenced by prefixing the variable name with "project.".
Environment variables and Java System properties can be referenced, as well as
values from your ~/.m2/settings.xml file. What you haven't seen yet is an
enumeration of the possible property values and some discussion about how they
can be used to help you create portable builds. This chapter provides such an
enumeration.

If you've been using property references in your POM, you should also know that
Maven has a feature called Resource Filtering which allows you to replace
property references in any resource files stored under src/main/resources. By
default this feature is disabled to prevent accidental replacement of property
references. This feature can be used to target builds toward a specific platform and
to externalize important build variables to properties files, POMs, or profiles. This
chapter introduces the resource filtering feature and provides a brief discussion of
how it can be used to create portable enterprise builds.

13.2. Maven Properties
You can use Maven properties in a pom.xml file or in any resource that is being
processed by the Maven Resource plugin's filtering features. A property is always
surrounded by ${ and }. For example, to reference the project.version property,
one would write:

${project.version}

318

There some implicit properties available in any Maven project, these implicit
properties are:

project.*

Maven Project Object Model (POM). You can use the project.* prefix to
reference values in a Maven POM.

settings.*

Maven Settings. You use the settings.* prefix to reference values from your
Maven Settings in ~/.m2/settings.xml.

env.*

Environment variables like PATH and M2_HOME can be referenced using the
env.* prefix.

System Properties
Any property which can be retrieved from the System.getProperty() method
can be referenced as a Maven property.

In addition to the implicit properties listed above, a Maven POM, Maven Settings,
or a Maven Profile can define a set of arbitrary, user-defined properties. The
following sections provide so detail on the various properties available in a Maven
project.

13.2.1. Maven Project Properties
When a Maven Project Property is referenced, the property name is referencing a
property of the Maven Project Object Model (POM). Specifically, you are
referencing a property of the org.apache.maven.model.Model class which is being
exposed as the implicit variable project. When you reference a property using this
implicit variable, you are using simple dot notation to reference a bean property of
the Model object. For example, when you reference ${project.version}, you are
really invoking the getVersion() method on the instance of Model that is being
exposed as project.

The POM is also represented in the pom.xml document present in all Maven

Properties and Resource Filtering

319

projects. Anything in a Maven POM can be referenced with a property. A complete
reference for the POM structure is available at
http://maven.apache.org/ref/2.0.10/maven-model/maven.html. The following list
shows some common property references from the Maven project.

project.groupId and project.version

Projects in a large, multi-module build often share the same groupId and
version identifiers. When you are declaring interdependencies between two
modules which share the same groupId and version, it is a good idea to use a
property reference for both:

<dependencies>
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>sibling-project</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

project.artifactId

A project's artifactId is often used as the name of a deliverable. For example, in
a project with WAR packaging, you will want to generate a a WAR file without
the version identifiers. To do this, you would reference the
project.artifactId in your POM file like this:

<build>
<finalName>${project.artifactId}</finalName>

</build>

project.name and project.description

The name and project description can often be useful properties to reference
from documentation. Instead of having to worry that all of your site documents
maintain the same short descriptions, you can just reference these properties.

project.build.*

If you are ever trying to reference output directories in Maven, you should
never use a literal value like target/classes. Instead you should use property
references to refer to these directories.

Properties and Resource Filtering

320

http://maven.apache.org/ref/2.0.10/maven-model/maven.html

• project.build.sourceDirectory

• project.build.scriptSourceDirectory

• project.build.testSourceDirectory

• project.build.outputDirectory

• project.build.testOutputDirectory

• project.build.directory

sourceDirectory, scriptSourceDirectory, and testSourceDirectory

provide access to the source directories for the project. outputDirectory and
testOutputDirectory provide access to the directories where Maven is going
to put bytecode or other build output. directory refers to the directory which
contains all of these output directories.

Other Project Property references
There are hundreds of properties to reference in a POM. A complete reference
for the POM structure is available at
http://maven.apache.org/ref/2.0.10/maven-model/maven.html.

For a full list of properties available on the Maven Model object, take a look at the
JavaDoc for the maven-model project here
http://maven.apache.org/ref/2.0.10/maven-model/apidocs/index.html. Once you
load this JavaDoc, take a look at the Model class. From this Model class JavaDoc,
you should be able to navigate to the POM property you wish to reference. If you
needed to reference the output directory of the build, you can use the Maven Model
JavaDoc to see that the output directory is referenced via
model.getBuild().getOutputDirectory(); this method call would be translated
to the Maven property reference ${project.build.outputDirectory}.

For more information about the Maven Model module, the module which defines
the structure of the POM, see the Maven Model project page at
http://maven.apache.org/ref/2.0.10/maven-model.

Properties and Resource Filtering

321

http://maven.apache.org/ref/2.0.10/maven-model/maven.html
http://maven.apache.org/ref/2.0.10/maven-model/apidocs/index.html
http://maven.apache.org/ref/2.0.10/maven-model

13.2.2. Maven Settings Properties
You can also reference any properties in the Maven Local Settings file which is
usually stored in ~/.m2/settings.xml. This file contains user-specific
configuration such as the location of the local repository and any servers, profiles,
and mirrors configured by a specific user.

A full reference for the Local Settings file and corresponding properties is
available here http://maven.apache.org/ref/2.0.10/maven-settings/settings.html.

13.2.3. Environment Variable Properties
Environment variables can be referenced with the env.* prefix. Some interesting
environment variables are listed in the following list:

env.PATH

Contains the current PATH in which Maven is running. The PATH contains a list
of directories used to locate executable scripts and programs.

env.HOME

(On *nix systems) this variable points to a user's home directory. Instead of
referencing this, you should use the ${user.home}

env.JAVA_HOME

Contains the Java installation directory. This can point to either a Java
Development Kit (JDK) installation or a Java Runtime Environment (JRE).
Instead of using this, you should consider referencing the ${java.home}
property.

env.M2_HOME

Contains the Maven 2 installation directory.
While they are available, you should always use the Java System properties if you
have the choice. If you need a user's home directory use ${user.home} instead of
${env.HOME}. If you do this, you'll end up with a more portable build that is more
likely to adhere to the Write-One-Run-Anywhere (WORA) promise of the Java

Properties and Resource Filtering

322

http://maven.apache.org/ref/2.0.10/maven-settings/settings.html

platform.

13.2.4. Java System Properties
Maven exposes all properties from java.lang.System. Anything you can retrieve
from System.getProperty() you can reference in a Maven property. The
following table lists available properties:

Table 13.1. Java System Properties

System Property Description

java.version Java Runtime Environment version

java.vendor Java Runtime Environment vendor

java.vendor.url Java vendor URL

java.home Java installation directory

java.vm.specification.version Java Virtual Machine specification
version

java.vm.specification.vendor Java Virtual Machine specification vendor

java.vm.specification.name Java Virtual Machine specification name

java.vm.version Java Virtual Machine implementation
version

java.vm.vendor Java Virtual Machine implementation
vendor

java.vm.name Java Virtual Machine implementation
name

java.specification.version Java Runtime Environment specification
version

java.specification.vendor Java Runtime Environment specification
vendor

Properties and Resource Filtering

323

System Property Description

java.specification.name Java Runtime Environment specification
name

java.class.version Java class format version number

java.class.path Java class path

java.ext.dirs Path of extension directory or directories

os.name Operating system name

os.arch Operating system architecture

os.version Operating system version

file.separator File separator ("/" on UNIX, "\" on
Windows)

path.separator Path separator (":" on UNIX, ";" on
Windows)

line.separator Line separator ("\n" on UNIX and
Windows)

user.name User's account name

user.home User's home directory

user.dir User's current working

13.2.5. User-defined Properties
In addition to the implicit properties provided by the POM, Maven Settings,
environment variables, and the Java System properties, you have the ability to
define your own arbitrary properties. Properties can be defined in a POM or in a
Profile. The properties set in a POM or in a Maven Profile can be referenced just
like any other property available throughout Maven. User-defined properties can
be referenced in a POM, or they can be used to filter resources via the Maven

Properties and Resource Filtering

324

Resource plugin. Here's an example of defining some arbitrary properties in a
Maven POM.

Example 13.1. User-defined Properties in a POM

<project>
...
<properties>

<arbitrary.property.a>This is some text</arbitrary.property.a>
<hibernate.version>3.3.0.ga</hibernate.version>

</properties>
...
<dependencies>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>${hibernate.version}</version>

</dependency>
</dependencies>
...

</project>

The previous example defines two properties: arbitrary.property.a and
hibernate.version. The hibernate.version is referenced in a dependency
declaration. Using the period character as a separator in property names is a
standard practice throughout Maven POMs and Profiles. There is nothing special
about using a period as a separator; to Maven "hibernate.version" is just a key used
to retrieve the property value "3.3.0.ga". The next example shows you how to
define a property in a profile from a Maven POM.

Example 13.2. User-defined Properties in a Profile in a POM

<project>
...
<profiles>

<profile>
<id>some-profile</id>
<properties>

<arbitrary.property>This is some text</arbitrary.property>
</properties>

</profile>
</profiles>
...

</project>

Properties and Resource Filtering

325

The previous example demonstrates the process of defining a user-defined property
in a profile from a Maven POM. For more information about user-defined
properties and profiles, see Chapter 11, Build Profiles.

13.3. Resource Filtering
You can use Maven to perform variable replacement on project resources. When
resource filtering is activated, Maven will scan resources for references to Maven
property references surrounded by ${ and }. When it finds these references it will
replace them with the appropriate value in much the same way the properties
defined in the previous section can be referenced from a POM. This feature is
especially helpful when you need to parameterize a build with different
configuration values depending on the target deployment platform.

Often a .properties file or an XML document in src/main/resources will
contain a reference to an external resource such as a database or a network location
which needs to be configured differently depending on the target deployment
environment. For example, a system which reads data from a database has an XML
document which contains the JDBC URL along with credentials for the database.
If you need to use a different database in development and a different database in
production. You can either use a technology like JNDI to externalize the
configuration from the application in an application server, or you can create a
build which knows how to replace variables with different values depending on the
target platform.

Using Maven resource filtering you can reference Maven properties and then use
Maven profiles to define different configuration values for different target
deployment environments. To illustrate this feature, assume that you have a project
which uses a the Spring Framework to configure a BasicDataSource from the
Commons DBCP project. Your project may contain a file in src/main/resources

named applicationContact.xml which contains the XML listed in Example 13.3,
“Referencing Maven Properties from a Resource”.

Example 13.3. Referencing Maven Properties from a Resource

Properties and Resource Filtering

326

http://commons.apache.org/dbcp

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="someDao" class="com.example.SomeDao">
<property name="dataSource" ref="dataSource"/>

</bean>

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>
</beans>

Your program would read this file at runtime, and your build is going to replace
the references to properties like jdbc.url and jdbc.username with the values you
defined in your pom.xml. Resource filtering is disabled by default to prevent any
unintentional resource filtering. To turn on resource filter, you need to use the
resources child element of the build element in a POM. Example 13.4, “Defining
Variables and Activating Resource Filtering” shows a POM which defines the
variables referenced in Example 13.3, “Referencing Maven Properties from a
Resource” and which activates resource filtering for every resource under
src/main/resources.

Example 13.4. Defining Variables and Activating Resource Filtering

<project>
...
<properties>

<jdbc.driverClassName>
com.mysql.jdbc.Driver</jdbc.driverClassName>

<jdbc.url>jdbc:mysql://localhost:3306/development_db</jdbc.url>
<jdbc.username>dev_user</jdbc.username>
<jdbc.password>s3cr3tw0rd</jdbc.password>

</properties>
...
<build>

<resources>
<resource>src/main/resources</resource>
<filtering>true</filtering>

</resources>

Properties and Resource Filtering

327

</build>
...
<profiles>

<profile>
<id>production</id>
<properties>

<jdbc.driverClassName>oracle.jdbc.driver.OracleDriver</jdbc.driverClassName>
<jdbc.url>jdbc:oracle:thin:@proddb01:1521:PROD</jdbc.url>
<jdbc.username>prod_user</jdbc.username>
<jdbc.password>s00p3rs3cr3t</jdbc.password>

</properties>
</profile>

</profiles>
</project>

The four variables are defined in the properties element, and resource filtering is
activated for resources under src/main/resources. Resource filtering is
deactivated by default, and to activate it you must explicitly set filtering to true

for the resources stored in your project. Filtering is deactivated by default to
prevent accidental, unintentional filtering during your build. If you build a project
with the resource from Example 13.3, “Referencing Maven Properties from a
Resource” and the POM from Example 13.4, “Defining Variables and Activating
Resource Filtering” and if you list the contents of the resource in target/classes,
you should see that it contains the filtered resource:

$ mvn install
...
$ cat target/classes/applicationContext.xml
...

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/development_db"/>
<property name="username" value="dev_user"/>
<property name="password" value="s3cr3tw0rd"/>

</bean>
...

The POM in Example 13.4, “Defining Variables and Activating Resource
Filtering” also defines a production profile under the profiles/profile element
which overrides the default properties with values that would be appropriate for a
production environment. In this particular POM, the default values for the database
connection are for a local MySQL database installed on a developer's machine.

Properties and Resource Filtering

328

When the project is built with the production profile activated, Maven will
configure the system to connect to a production Oracle database using a different
driver class, URL, username, and password. If you build a project with the
resource from Example 13.3, “Referencing Maven Properties from a Resource”
and the POM from Example 13.4, “Defining Variables and Activating Resource
Filtering” with the production profile activated and if you list the contents of the
resource in target/classes, you should see that it contains the filtered resource with
production values:

$ mvn -Pproduction install
...
$ cat target/classes/applicationContext.xml
...

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName"
value="oracle.jdbc.driver.OracleDriver"/>

<property name="url" value="jdbc:oracle:thin:@proddb01:1521:PROD"/>
<property name="username" value="prod_user"/>
<property name="password" value="s00p3rs3cr3t"/>

</bean>
...

Properties and Resource Filtering

329

Chapter 14. Maven and Eclipse: m2eclipse
This chapter is deprecated. While the original version of Maven: The Definitive
Guide had an entire chapter dedicated to m2eclipse, Sonatype found that the
content was growing fast enough to deserve its own dedicate title. We've decided
to spin off the content in the Eclipse chapter into a new book called Developing
with Eclipse and Maven.

Click here to read Developing with Eclipse and Maven.

330

http://books.sonatype.com/m2eclipse-book/
http://books.sonatype.com/m2eclipse-book/
http://books.sonatype.com/m2eclipse-book/

Chapter 15. Site Generation

15.1. Introduction
Successful software applications are rarely produced by a team of one. When we're
talking about any software worth writing, we're usually dealing teams of
collaborating developers ranging anywhere in size from a handful of programmers
working in a small team to hundreds or thousands of programmers working in
large distributed environment. Most open source projects (such as Maven) succeed
or fail based on the presence or absence of well written documentation for a
widely-distributed, ad-hoc collection of users and developers. In all environments
it is important for projects to have an easy way to publish and maintain online
documentation. Software development is primarily an exercise in collaboration and
communication, and publishing a Maven site is one way to make sure that your
project is communicating with your end-users.

A web site for an open source project is often the foundation for both the end-user
and developer communities alike. End-users look to a project's web site for
tutorials, user guides, API documentation, and mailing list archives, and
developers look to a project's web site for design documents, code reports, issue
tracking, and release plans. Large open-sources projects may be integrated with
wikis, issue trackers, and continuous integration systems which help to augment a
project's online documentation with material that reflects the current status of
ongoing development. If a new open source project has an inadequate web site
which fails to convey basic information to prospective users, if often is a sign that
the project in question will fail to be adopted. In other words, for an open source
project, the site and the documentation are as important to the formation of a
community as the code itself.

Maven can be used to create a project web site to capture information which is
relevant to both the end-user and the developer audience. Out of the box, Maven
can generate reports on everything from unit test failures to package coupling to
reports on code quality. Maven provides you with the ability to write simple web

331

pages and render those pages against a consistent project template. Maven can
publish site content in multiple formats including XHTML and PDF. Maven can be
used to generate API document and can also be used to embedded Javadoc and
source code in your project's binary release archive. Once you've used Maven to
generate all of your project's end-user and developer documentation, you can then
use Maven to publish your web site to a remote server.

15.2. Building a Project Site with Maven
To illustrate the process of building a project website, create a sample Maven
project with the archetype plugin:

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook -DartifactId=sample-project

This creates the simplest possible Maven project with a one Java class in
src/main/java and a simple POM. You can then build a Maven site by simply
running mvn site. To build the site and preview the result in a browser, you can run
mvn site:run, this will build the site and start an embedded instance of Jetty.

$ cd sample-project
$ mvn site:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'site'.
[INFO] --
[INFO] Building sample-project
[INFO] task-segment: [site:run] (aggregator-style)
[INFO] --
[INFO] Setting property: classpath.resource.loader.class =>

'org.codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.
[INFO] Setting property: velocimacro.messages.on => 'false'.
[INFO] Setting property: resource.loader => 'classpath'.
[INFO] Setting property: resource.manager.logwhenfound => 'false'.
[INFO] [site:run]
2008-04-26 11:52:26.981::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
[INFO] Starting Jetty on http://localhost:8080/
2008-04-26 11:52:26.046::INFO: jetty-6.1.5
2008-04-26 11:52:26.156::INFO: NO JSP Support for /, did not find

org.apache.jasper.servlet.JspServlet
2008-04-26 11:52:26.244::INFO: Started SelectChannelConnector@0.0.0.0:8080

Once Jetty starts and is listening to port 8080, you can see the project's site when
you go to http://localhost:8080/ in a web browser. You can see the results in

Site Generation

332

http://localhost:8080/

Figure 15.1, “Simple Generated Maven Site”.

Figure 15.1. Simple Generated Maven Site

If you click around on this simple site, you'll see that it isn't very helpful as a real
project site. There's just nothing there (and it doesn't look very good). Since the
sample-project hasn't configured any developers, mailing lists, issue tracking
providers, or source code repositories, all of these pages on the project site will
have no information. Even the index page of the site states, "There is currently no
description associated with this project". To customize the site, you'll have to start
add content to the project and to the project's POM.

If you are going to use the Maven Site plugin to build your project's site, you'll
want to customize it. You will want to populate some of the important fields in the
POM that tell Maven about the people participating in the project, and you'll want
to customize the left-hand navigation menu and the links visible in the header of
the page. To customize the contents of the site and affect the contents of the
left-hand navigation menu, you will need to edit the site descriptor.

Site Generation

333

15.3. Customizing the Site Descriptor
When you add content to the site, you are going to want to modify the left-hand
navigation menu that is generated with your site. The following site descriptor
customizes the logo in the upper left-hand corner of the site. In addition to
customizing the header of the site, this descriptor adds a menu section to the
left-hand navigation menu under the heading "Sample Project". This menu
contains a single link to an overview page.

Example 15.1. An Initial Site Descriptor

<project name="Sample Project">
<bannerLeft>

<name>Sonatype</name>
<src>images/logo.png</src>
<href>http://www.sonatype.com</href>

</bannerLeft>
<body>

<menu name="Sample Project">
<item name="Overview" href="index.html"/>

</menu>
<menu ref="reports"/>

</body>
</project>

This site descriptor references one image. This logo.png image should be placed
in ${basedir}/src/site/resources/images. In addition to the change to the site
descriptor, you'll want to create a simple index.apt page in
${basedir}/src/site/apt. Put the following content in index.apt, it will be
transformed to the index.html and serve as the first page a user sees when they
come to your project's Maven-generated web site.

Welcome to the Sample Project, we hope you enjoy your time
on this project site. We've tried to assemble some
great user documentation and developer information, and
we're really excited that you've taken the time to visit
this site.

What is Sample Project

Well, it's easy enough to explain. This sample project is

Site Generation

334

a sample of a project with a Maven-generated site from
Maven: The Definitive Guide. A dedicated team of volunteers
help maintain this sample site, and so on and so forth.

To preview the the site, run mvn clean site followed by mvn site:run:

$ mvn clean site
$ mvn site:run

Once you do this, load the page in a browser by going to http://localhost:8080. You
should see something similar to the screenshot in Figure 15.2, “Customized
Sample Project Web Site”.

Figure 15.2. Customized Sample Project Web Site

15.3.1. Customizing the Header Graphics
To customize the graphics which appear in the upper left-hand and right-hand

Site Generation

335

http://localhost:8080

corners of the page, you can use the bannerLeft and bannerRight elements in a
site descriptor.

Example 15.2. Adding a Banner Left and Banner Right to Site Descriptor

<project name="Sample Project">

<bannerLeft>
<name>Left Banner</name>
<src>images/banner-left.png</src>
<href>http://www.google.com</href>

</bannerLeft>

<bannerRight>
<name>Right Banner</name>
<src>images/banner-right.png</src>
<href>http://www.yahoo.com</href>

</bannerRight>
...

</project>

Both the bannerLeft and bannerRight elements take name, src, and href child
elements. In the site descriptor shown above, the Maven Site plugin will generate a
site with banner-left.png in the left-hand corner of the page and banner-right in
the right-hand corner of the page. Maven is going to look in
${basedir}/src/site/resources/images for these images.

15.3.2. Customizing the Navigation Menu
To customize the contents of the navigation menu, use the menu element with item

child elements. The menu element adds a section to the left-hand navigation menu.
Each item is rendered as a link in that menu.

Example 15.3. Creating Menu Items in a Site Descriptor

<project name="Sample Project">
...
<body>

<menu name="Sample Project">
<item name="Introduction" href="index.html"/>

Site Generation

336

<item name="News" href="news.html"/>
<item name="Features" href="features.html"/>
<item name="Installation" href="installation.html"/>
<item name="Configuration" href="configuration.html"/>
<item name="FAQ" href="faq.html"/>

</menu>
...

</body>
</project>

Menu items can also be nested. If you nest items, you will be creating a collapsible
menu in the left-hand navigation menu. The following example adds a link
"Developer Resources" which links to /developer/index.html. When a user is
looking at the Developer Resources page, the menu items below the Developer
Resources menu item will be expanded.

Example 15.4. Adding a Link to the Site Menu

<project name="Sample Project">
...
<body>

...
<menu name="Sample Project">
...
<item name="Developer Resources" href="/developer/index.html"

collapse="true">
<item name="System Architecture" href="/developer/architecture.html"/>
<item name="Embedder's Guide" href="/developer/embedding.html"/>

</item>
</menu>
...

</body>
</project>

When an item has the collapse attribute set to true, Maven will collapse the item
until a user is viewing that specific page. In the previous example, when the user is
not looking at the Developer Resources page, Maven will not display the System
Architecture and Embedder's Guide links; instead, it will display an arrow pointing
to the Developer Resources link. When the user is viewing the Developer
Resources page it will show these links with an arrow pointing down.

Site Generation

337

15.4. Site Directory Structure
Maven places all site document under src/site. Documents of similar format are
placed in subdirectories of src/site. All APT documents should be in
src/site/apt, all FML documents should be in src/site/fml, and XDoc
documents should be in src/site/xdoc. The site descriptor should be in
src/site/site.xml, and all resources should be stored under
src/site/resources. When the Maven Site plugin builds a web site, it will copy
everything in the resources directory to the root of the site. If you store an image in
src/site/resources/images/test.png, they you would refer to the image from
your site documentation using the relative path images/test.png.

The following examples shows the location of all files in a project which contains
APT, FML, HTML, XHTML, and some XDoc. Note that the XHTML content is
simply stored in the resources directory. The architecture.html file will not be
processed by Doxia, it will simply be copied to the output directory. You can use
this approach if you want to include unprocessed HTML content and you don't
want to take advantage of the templating and formatting capabilities of Doxia and
the Maven Site plugin.

sample-project
+- src/

+- site/
+- apt/
| +- index.apt
| +- about.apt
| |
| +- developer/
| +- embedding.apt
|
+- fml/
| +- faq.fml
|
+- resources/
| +- images/
| | +- banner-left.png
| | +- banner-right.png
| |
| +- architecture.html
| +- jira-roadmap-export-2007-03-26.html
|
+- xdoc/
| +- xml-example.xml

Site Generation

338

|
+- site.xml

Note that the developer documentation is stored in
src/site/apt/developer/embedding.apt. This extra directory below the apt

directory will be reflected in the location of the resulting HTML page on the site.
When the Site plugin renders the contents of the src/site/apt directory it will
produce HTML output in directories relative to the site root. If a file is in the apt
directory it will be in the root directory of the generated web site. If a file is in the
apt/developer directory it will be generated in the developer/ directory of the
web site.

15.5. Writing Project Documentation
Maven uses a documentation-processing engine called Doxia which reads multiple
source formats into a common document model. Doxia can then manipulate
documents and render the result into several output formats, such as PDF or
XHTML. To write document for your project, you will need to write your content
in a format which can be parsed by Doxia. Doxia currently has support for Almost
Plain Text (APT), XDoc (a Maven 1.x documentation format), XHTML, and FML
(useful for FAQ documents) formats.

This chapter has a cursory introduction to the APT format. For a deeper understand
of the APT format, or for an in-depth introduction to XDoc or FML, please see the
following resources:

• APT Reference: http://maven.apache.org/doxia/format.html

• XDoc Reference: http://jakarta.apache.org/site/jakarta-site2.html

• FML Reference: http://maven.apache.org/doxia/references/fml-format.html

15.5.1. APT Example
Example 15.5, “APT Document” shows a simple APT document with an

Site Generation

339

http://maven.apache.org/doxia/format.html
http://jakarta.apache.org/site/jakarta-site2.html
http://maven.apache.org/doxia/references/fml-format.html

introductory paragraph and a simple list. Note that the list is terminated by the
psuedo-element "[]".

Example 15.5. APT Document

Introduction to Sample Project

Brian Fox

26-Mar-2008

Welcome to Sample Project

This is a sample project, welcome! We're excited that you've decided to
read the index page of this Sample Project. We hope you enjoy the simple
sample project we've assembled for you.

Here are some useful links to get you started:

* {{{news.html}News}}

* {{{features.html}Features}}

* {{{faq.html}FAQ}}

[]

If the APT document from Example 15.5, “APT Document” were placed in
src/site/apt/index.apt, the Maven Site plugin will parse the APT using Doxia
and produce XHTML content in index.html.

15.5.2. FML Example
Many projects maintain a Frequently Asked Questions (FAQ) page. Example 15.6,
“FAQ Markup Language Document” shows an example of an FML document.

Example 15.6. FAQ Markup Language Document

<?xml version="1.0" encoding="UTF-8"?>
<faqs title="Frequently Asked Questions">

<part id="General">
<faq id="sample-project-sucks">

Site Generation

340

<question>Sample project doesn't work. Why does sample
project suck?</question>

<answer>
<p>

We resent that question. Sample wasn't designed to work, it was
designed to show you how to use Maven. If you really think
this project sucks, then keep it to yourself. We're not
interested in your pestering questions.

</p>
</answer>

</faq>
<faq id="sample-project-source">
<question>I want to put some code in Sample Project,

how do I do this?</question>
<answer>

<p>
If you want to add code to this project, just start putting
Java source in src/main/java. If you want to put some source
code in this FAQ, use the source element:

</p>
<source>

for(int i = 0; i < 1234; i++) {
// do something brilliant

}
</source>

</answer>
</faq>

</part>
</faqs>

15.6. Deploying Your Project Website
Once your project's documentation has been written and you've creates a site to be
proud of, you will want to deploy it a server. To deploy your site you'll use the
Maven Site plugin which can take care of deploying your project's site to a remote
server using a number of methods including FTP, SCP, and DAV. To deploy the
site using DAV, configure the site entry of the distributionManagement section
in the POM, like this:

Example 15.7. Configuring Site Deployment

<project>
...

Site Generation

341

<distributionManagement>
<site>
<id>sample-project.website</id>
<url>dav:https://dav.sample.com/sites/sample-project</url>

</site>
</distributionManagement>
...

</project>

The url in distribution management has a leading indicator dav which tells the
Maven Site plugin to deploy the site to a URL that is able to understand WebDAV.
Once you have added the distributionManagement section to our
sample-project POM, we can try deploying the site:

$ mvn clean site-deploy

If you have a server configured properly that can understand WebDAV, Maven
will deploy your project's web site to the remote server. If you are deploying this
project to a site and server visible to the public, you are going to want to configure
your web server to access for credentials. If your web server asks for a username
and password (or other credentials, you can configure this values in your
~/.m2/settings.xml).

15.6.1. Configuring Server Authentication
To configure a username/password combination for use during the site
deployment, we'll include the following in $HOME/.m2/settings.xml:

Example 15.8. Storing Server Authentication in User-specific Settings

<settings>
...
<servers>

<server>
<id>sample-project.website</id>
<username>jdcasey</username>
<password>b@dp@ssw0rd</password>

</server>
...

</servers>
...

Site Generation

342

</settings>

The server authentication section can contain a number of authentication elements.
In the event you're using SCP for deployment, you may wish to use public-key
authentication. To do this, specify the publicKey and passphrase elements,
instead of the password element. You may still want to configure the username
element, depending on your server's configuration.

15.6.2. Configuring File and Directory Modes
If you are working in a large group of developers, you'll want to make sure that
your web site's files end up with the proper user and group permissions after they
are published to the remote server. To configure specific file and directory modes
for use during the site deployment, include the following in
$HOME/.m2/settings.xml:

Example 15.9. Configuring File and Directory Modes on Remote Servers

<settings>
...
<servers>

...
<server>
<id>hello-world.website</id>
...
<directoryPermissions>0775</directoryPermissions>
<filePermissions>0664</filePermissions>

</server>
</servers>
...

</settings>

The above settings will make any directories readable and writable by either the
owner or members of the owner's primary group; the anonymous users will only
have access to read and list the directory. Similarly, the owner or members of the
owner's primary group will have access to read and write any files, with the rest of
the world restricted to read-only access.

Site Generation

343

15.7. Customizing Site Appearance
The default Maven template leaves much to be desired. If you wish to customize
your project's website beyond simply adding content, navigational elements, and
custom logos. Maven offers several mechanisms for customizing your website that
offer successively deeper access to content decoration and website structure. For
small, per-project tweaks, providing a custom site.css is often enough. However,
if you want your customizations to be reusable across multiple projects, or if your
customizations involve changing the XHTML that Maven generates, you should
consider creating your own Maven website skin.

15.7.1. Customizing the Site CSS
The easiest way to affect the look and feel of your project's web site is through the
project's site.css. Just like any images or XHTML content you provide for the
website, the site.css file goes in the src/site/resources directory. Maven
expects this file to be in the src/site/resources/css subdirectory. With CSS it is
possible to change text styling properties, layout properties, and even add
background images and custom bullet graphics. For example, if we decided that to
make the menu heading stand out a little more, we might try the following style in
src/site/resources/css/site.css:

#navcolumn h5 {
font-size: smaller;
border: 1px solid #aaaaaa;
background-color: #bbb;
margin-top: 7px;
margin-bottom: 2px;
padding-top: 2px;
padding-left: 2px;
color: #000;

}

When you regenerate the website, the menu headers should be framed by a gray
background and separated from the rest of the menu by some extra margin space.
Using this file, any structure in the Maven-generated website can be decorated with
custom CSS. When you change site.css in a specific Maven project, the changes

Site Generation

344

will apply to that specific project. If you are interested in making changes that will
apply to more than one Maven project, you can create a custom skin for the Maven
Site plugin.

Tip
There is no good reference for the structure of the default Maven site
template. If you are attempting to customize the style of your Maven
project, you should use a Firefox extension like Firebug as a tool to
explore the DOM for your project's pages.

15.7.2. Create a Custom Site Template
If the default Maven Site structure just doesn't do it for you, you can always
customize the Maven site template. Customizing the Maven Site template gives
you complete control over the ultimate output of the Maven plugin, and it is
possible to customize your project's site template to the point where it hardly
resembles the structure of a default Maven site template.

The Site plugin uses a rendering engine called Doxia, which in turn uses a Velocity
template to render the XHTML for each page. To change the page structure that is
rendered by default, we can configure the site plugin in our POM to use a custom
page template. The site template is fairly complex, and you'll need to have a good
starting point for your customization. Start by copying the default Velocity
template from Doxia's Subversion repository default-site.vm to
src/site/site.vm. This template is written in a templating language called
Velocity. Velocity is a simple templating language which supports simple macro
definition and allows you to access an object's methods and properties using simple
notation. A full introduction is beyond the scope of this book, for more information
about Velocity and a full introduction please go to the Velocity project site at
http://velocity.apache.org.

The default-site.xml template is fairly involved, but the change required to
customize the left-hand menu is relatively straightforward. If you are trying to
change the appearance of a menuItem, locate the menuItem macro. It resides in a

Site Generation

345

http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592
http://velocity.apache.org

section that looks like this:

#macro (menuItem $item)

...

#end

If you replace the macro definition with the macro definition listed below, you will
injects Javascript references into each menu item which will allow the reader to
expand or collapse the menu tree without suffering through a full page reload:

#macro (menuItem $item $listCount)
#set ($collapse = "none")
#set ($currentItemHref = $PathTool.calculateLink($item.href,

$relativePath))
#set ($currentItemHref = $currentItemHref.replaceAll("\\", "/"))

#if ($item && $item.items && $item.items.size() > 0)
#if ($item.collapse == false)
#set ($collapse = "collapsed")

#else
By default collapsed
#set ($collapse = "collapsed")

#end

#set ($display = false)
#displayTree($display $item)

#if ($alignedFileName == $currentItemHref || $display)
#set ($collapse = "expanded")

#end
#end
<li class="$collapse">

#if ($item.img)
#if (! ($item.img.toLowerCase().startsWith("http") ||

$item.img.toLowerCase().startsWith("https")))
#set ($src = $PathTool.calculateLink($item.img, $relativePath))
#set ($src = $item.img.replaceAll("\\", "/"))

#else

#end
#end
#if ($alignedFileName == $currentItemHref)
$item.name

#else
#if ($item && $item.items && $item.items.size() > 0)
<a onclick="expand('list$listCount')"

style="cursor:pointer">$item.name
#else

Site Generation

346

$item.name
#end

#end
#if ($item && $item.items && $item.items.size() > 0)

#if ($collapse == "expanded")
<ul id="list$listCount" style="display:block">
#else
<ul id="list$listCount" style="display:none">
#end
#foreach($subitem in $item.items)

#set ($listCounter = $listCounter + 1)
#menuItem($subitem $listCounter)

#end

#end

#end

This change adds a new parameter to the menuItem macro. For the new
functionality to work, you will need to change references to this macro, or the
resulting template may produce unwanted or internally inconsistent XHTML. To
finish changing these references, make a similar replacement in the mainMenu

macro. Find this macro by looking for something similar to the following template
snippet:

#macro (mainMenu $menus)
...

#end

Replace the mainMenu macro with the following implementation:

#macro (mainMenu $menus)
#set ($counter = 0)
#set ($listCounter = 0)
#foreach($menu in $menus)

#if ($menu.name)
<h5 onclick="expand('menu$counter')">$menu.name</h5>
#end
<ul id="menu$counter" style="display:block">
#foreach($item in $menu.items)

#menuItem($item $listCounter)
#set ($listCounter = $listCounter + 1)

#end

#set ($counter = $counter + 1)

#end
#end

Site Generation

347

This new mainMenu macro is compatible with the new menuItem macro above, and
also provides support for a Javascript-enabled top-level menu. Clicking on a
top-level menu item with children will expand the menu and allow users to see the
entire tree without waiting for a page to load.

The change to the menuItem macro introduced an expand() Javascript function.
This method needs to be added to the main XHTML template at the bottom of this
template file. Find the section that looks similar to the following:

<head>
...
<meta http-equiv="Content-Type"

content="text/html; charset=${outputEncoding}" />
...

</head>

and replace it with this:

<head>
...
<meta http-equiv="Content-Type"

content="text/html; charset=${outputEncoding}" />
<script type="text/javascript">
function expand(item) {

var expandIt = document.getElementById(item);
if(expandIt.style.display == "block") {

expandIt.style.display = "none";
expandIt.parentNode.className = "collapsed";

} else {
expandIt.style.display = "block";
expandIt.parentNode.className = "expanded";

}
}

</script>
#if ($decoration.body.head)
#foreach($item in $decoration.body.head.getChildren())

#if ($item.name == "script")
$item.toUnescapedString()

#else
$item.toString()

#end
#end

#end
</head>

After modifying the default site template, you'll need to configure your project's
POM to reference this new site template. To customize the site template, you'll

Site Generation

348

need to use the templateDirectory and template configuration properties of the
Maven Site plugin.

Example 15.10. Customizing the Page Template in a Project's POM

<project>
...
<build>

<plugins>
<plugin>

<artifactId>maven-site-plugin</artifactId>
<configuration>

<templateDirectory>src/site</templateDirectory>
<template>site.vm</template>

</configuration>
</plugin>

</plugins>
</build>
...

</project>

Now, you should be able to regenerate your project website. When you do so you
may notice that the resources and CSS for the maven site are missing. When a
Maven project customizes the site template, the Site plugin expects the project to
supply all of the default images and CSS. To seed your project's resources, you
may want to copy the resources from the default Doxia site renderer project to your
own project's resources directory by executing the following commands:

$ svn co \
http://svn.apache.org/repos/asf/maven/doxia/doxia-sitetools/\
trunk/doxia-site-renderer

$ rm \
doxia-site-renderer/src/main/resources/org/apache/maven/\

doxia/siterenderer/resources/css/maven-theme.css
$ cp -rf \

doxia-site-renderer/src/main/resources/org/apache/maven/\
doxia/siterenderer/resources/* \

sample-project/src/site/resources

Check out the doxia-site-renderer project, remove the default maven-theme.css
file and then copy all the resources to your project's src/site/resources
directory.

Site Generation

349

When you regenerate the site, you'll notice that a few menu items look like regular
unstyled text. This is caused by a quirky interaction between the site's CSS and our
new custom page template. It can be fixed by modifying our site.css to restore
the proper link color for these menus. Simply add this:

li.collapsed, li.expanded, a:link {
color:#36a;

}

After regenerating the site, the menu's link color should be corrected. If you
applied the new site template to the same sample-project from this chapter, you'll
notice that the menu now consists of a tree. Clicking on "Developer Resources" no
longer takes you to the "Developer Resources" page; in stead, it expands the
sub-menu. Since you've turned the Developer Resources menu-item into a
dynamically-folding sub-menu, you have lost the ability to reach the
developer/index.apt page. To address this change, you should add an Overview
link to the sub-menu which references the same page:

Example 15.11. Adding a Menu Item to a Site Descriptor

<project name="Hello World">
...
<menu name="Main Menu">

...
<item name="Developer Resources" collapse="true">
<item name="Overview" href="/developer/index.html"/>
<item name="System Architecture" href="/developer/architecture.html"/>
<item name="Embedder's Guide" href="/developer/embedding.html"/>

</item>
</menu>
...

</project>

15.7.3. Reusable Website Skins
If your organization is created many Maven project sites, you will likely want to
reuse site template and CSS customizations throughout an organization. If you
want thirty projects to share the same CSS and site template, you can use Maven's

Site Generation

350

support for skinning. Maven Site skins allow you to package up resources and
templates which can be reused by other projects in lieu of duplicating your site
template for each project which needs to be customized.

While you can define your own skin, you may want to consider using one of
Maven's alternate skins. You can choose from several skins. These each provide
their own layout for navigation, content, logos, and templates:

• Maven Classic Skin - org.apache.maven.skins:maven-classic-skin:1.0

• Maven Default Skin - org.apache.maven.skins:maven-default-skin:1.0

• Maven Stylus Skin - org.apache.maven.skins:maven-stylus-skin:1.0.1
You can find an up-to-date and comprehensive listing in the Maven repository:
http://repo1.maven.org/maven2/org/apache/maven/skins/.

Creating a custom skin is a simple matter of wrapping your customized
maven-theme.css in a Maven project, so that it can be referenced by groupId,
artifactId, and version. It can also include resources such as images, and a
replacement website template (written in Velocity) that can generate a completely
different XHTML page structure. In most cases, custom CSS can manage the
changes you desire. To demonstrate, let's create a designer skin for the
sample-project project, starting with a custom maven-theme.css.

Before we can start writing our custom CSS, we need to create a separate Maven
project to allow the sample-project site descriptor to reference it. First, use
Maven's archetype plugin to create a basic project. Issue the following command
from the directory above the sample-project project's root directory:

$ mvn archetype:create -DartifactId=sample-site-skin
-DgroupId=org.sonatype.mavenbook

This will create a project (and a directory) called sample-site-skin. Change
directories to the new sample-site-skin directory, remove all of the source code
and tests, and create a directory to store your skin's resources:

$ cd sample-site-skin
$ rm -rf src/main/java src/test
$ mkdir src/main/resources

Site Generation

351

http://repo1.maven.org/maven2/org/apache/maven/skins/

15.7.4. Creating a Custom Theme CSS
Next, write a custom CSS for the custom skin. A Å file in a Maven site skin should
be placed in src/main/resources/css/maven-theme.css. Unlike the site.css

file, which goes in the site-specific source directory for a project, the
maven-theme.css will be bundled in a JAR artifact in your local Maven repository.
In order for the maven-theme.css file to be included in the skin's JAR file, it must
reside in the main project-resources directory, src/main/resources.

As with the default the default site template, you will want to start customizing
your new skin's CSS from a good starting point. Copy the CSS file used by the
default Maven skin to your project's maven-theme.css. To get a copy of this theme
file, save the contents of maven-theme.css from the maven-default-skin project
to src/main/resources/css/maven-theme.css in our new skin project.

Now that we have the base theme file in place, customize it using the CSS from
our old site.css file. Replace the #navcolumn h5 CSS block with the following:

#navcolumn h5 {
font-size: smaller;
border: 1px solid #aaaaaa;
background-color: #bbb;
margin-top: 7px;
margin-bottom: 2px;
padding-top: 2px;
padding-left: 2px;
color: #000;

}

Once you've customized the maven-theme.css, build and install the
sample-site-skin JAR artifact to your local Maven repository by running:

$ mvn clean install

Once the installation is complete, switch back to the sample-project project
directory, if you already customized the site.css earlier in this chapter, move
site.css to site.css.bak so it no longer affects the output of the Maven Site
plugin:

$ mv src/site/resources/css/site.css src/site/resources/css/site.css.bak

Site Generation

352

http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co

To use the sample-site-skin in the sample-project site, you'll need to add a
reference to the sample-site-skin artifact in the sample-project's site descriptor.
A site references a skin in the site descriptor using the skin element:

Example 15.12. Configuring a Custom Site Skin in Site Descriptor

<project name="Sample Project">
...
<skin>

<groupId>org.sonatype.mavenbook</groupId>
<artifactId>sample-site-skin</artifactId>

</skin>
...

</project>

You can think of a Maven Site skin as a site dependency. Site skins are referenced
as artifacts with a groupId and an artifactId. Using a site skin allows you to
consolidate site customizations to a single project, and makes reusing custom CSS
and site templates as easy as reusing build logic through a custom Maven plugin.

15.7.5. Customizing Site Templates in a Skin
Just as you can customize a the site CSS in a Maven Site skin, you can also
customize the site template. Doxia's site-rendering tools will expect to find a file
called META-INF/maven/site.vm inside the skin JAR. To incorporate a custom
page template, copy the template file into the correct location within the
sample-site-skin. Copy the custom site template developed earlier in the chapter
to src/main/resources/META-INF/maven in sample-site-skin:

$ mv sample-project/src/site/site.vm \
sample-site-skin/src/main/resources/META-INF/maven

If you already customized the site template in sample-project, remove the Site
plugin configuration which pointed to this site template. The Site plugin will
render the site using the site template referenced in the site skin.

<plugin>
<artifactId>maven-site-plugin</artifactId>
<configuration>

Site Generation

353

<templateDirectory>src/site</templateDirectory>
<template>site.vm</template>

</configuration>
</plugin>

A Maven Site skin is expected to include all of the resources it depends on. This
includes CSS, images, and logos. If you already customized the site template
earlier in the chapter, you've already copied the default doxia-site-renderer
resources to the sample-project's src/site/resources directory. You'll need to
move those files out of the sample-project project and into the new
sample-site-skin project by executing the following commands:

$ cd ..
$ mkdir -p sample-site-skin/src/main/resources/css
$ mv sample-project/src/site/resources/css/maven-base.css \

sample-site-skin/src/main/resources/css
$ mkdir -p sample-site-skin/src/main/resources/images
$ mv sample-project/src/site/resources/images/logos \

sample-site-skin/src/main/resources/images
$ mv sample-project/src/site/resources/images/expanded.gif \

sample-site-skin/src/main/resources/images
$ mv sample/src/site/resources/images/collapsed.gif \

sample-site-skin/src/main/resources/images

You've changed the sample-site-skin, so you'll need to install this skin into your
local Maven repository. Once you install the skin locally and rebuild the
sample-project web site. You'll see that the skin's custom site template was
applied to the sample-project's web site. You'll notice that the color of the menu
items may be a little off because you haven't added the necessary CSS to the
collapsed and expanded menu items. To do this, modify
src/main/resources/css/maven-theme.css. Change:

a:link {
...

}

to this:

li.collapsed, li.expanded, a:link {
...

}

Rebuild the skin, then regenerate the website, and you'll see that the menu items

Site Generation

354

have returned to normal. You've successfully created a Maven theme which can be
used to apply CSS and templates to a set of projects.

15.8. Tips and Tricks
This section lists some useful tips and tricks you can use when creating a Maven
site.

15.8.1. Inject XHTML into HEAD
To inject XHTML into the HEAD element, add a head element to the body
element in your project's Site descriptor. The following example adds a feed link to
every page in the sample-project web site.

Example 15.13. Injecting HTML into the HEAD element

<project name="Hello World">
...
<body>

<head>
<link href="http://sample.com/sites/sample-project/feeds/blog"

type="application/atom+xml"
id="auto-discovery"
rel="alternate"
title="Sample Project Blog" />

</head>
...

</body>
</project>

15.8.2. Add Links under Your Site Logo
If you are working on a project which is being developed by an organization, you
may want to add links under your project's logo. Assume that your project is a part
of the Apache Software Foundation, you might want to add a link to the Apache
Software Foundation web site right below your logo, and you might want to add a

Site Generation

355

link to a parent project as well. To add links below your site logo, just add a links
element to the body element in the Site descriptor. Each item element in the links
element will be rendered as a link in a bar directly below your project's logo. The
following example would add a link to the Apache Software Foundation followed
by a link to the Apache Maven project.

Example 15.14. Adding Links Under Your Site Logo

<project name="Hello World">
...
<body>

...
<links>
<item name="Apache" href="http://www.apache.org"/>
<item name="Maven" href="http://maven.apache.org"/>

</links>
...

</body>
</project>

15.8.3. Add Breadcrumbs to Your Site
If your hierarchy exists within a logical hierarchy, you may want to place a series
of breadcrumbs to give the user a sense of context and give them a way to navigate
up the tree to projects which might contain the current project as a subproject. To
configure breadcrumbs, add a breadcrumbs element to the body element in the site
descriptor. Each item element will render a link, and the items in the breadcrumbs

element will be rendered in order. The breadcrumb items should be listed from
highest level to lowest level. In the following site descriptor, the Codehaus item
would be seen to contain the Mojo item.

Example 15.15. Configuring the Site's Breadcrumbs

<project name="Sample Project">
...
<body>

...
<breadcrumbs>
<item name="Codehaus" href="http://www.codehaus.org"/>

Site Generation

356

<item name="Mojo" href="http://mojo.codehaus.org"/>
</breadcrumbs>
...

</body>
</project>

15.8.4. Add the Project Version
When you are documenting a project that has multiple versions, it is often very
helpful to list the project's version number on every page. To display your project's
version on the website, simply add the version element to your site descriptor:

Example 15.16. Positioning the Version Information

<project name="Sample Project">
...
<version position="left"/>
...

</project>

This will position the version (in the case of the sample-project project, it will say
"Version: 1.0-SNAPSHOT") in the upper left-hand corner of the site, right next to
the default "Last Published" date. Valid positions for the project version are:

left
Left side of the bar just below the site logo

right
Right side of the bar just below the site logo

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

Site Generation

357

none
Suppress the version entirely

15.8.5. Modify the Publication Date Format and Location
In some cases, you may wish to reformat or reposition the "Last Published" date
for your project website. Just like the project version tip above, you can specify the
position of the publication date by using one of the following:

left
Left side of the bar just below the site logo

right
Right side of the bar just below the site logo

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

none
Suppress the publication entirely

Example 15.17. Positioning the Publish Date

<project name="Sample Project">
...
<publishDate position="navigation-bottom"/>
...

</project>

By default, the publication date will be formatted using the date format string
MM/dd/yyyy. You can change this format by using the standard notation found in
the JavaDocs for java.text.SimpleDateFormat (see JavaDoc for
SimpleDateFormat for more information). To reformat the date using yyyy-MM-dd,

Site Generation

358

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

use the following publishDate element.

Example 15.18. Configuring the Publish Date Format

<project name="Sample Project">
...
<publishDate position="navigation-bottom" format="yyyy-MM-dd"/>
...

</project>

15.8.6. Using Doxia Macros
In addition to its advanced document rendering features, Doxia also provides a
macro engine that allows each input format to trigger injection of dynamic content.
An excellent example of this is the snippet macro, which allows a document to pull
a code snippet out of a source file that's available via HTTP. Using this macro, a
small fragment of APT can be rendered into XHTML. The following APT code
calls out to the snippet macro. Please note that this code should be on a single
continuous line, the black slash character is inserted to denote a line break so that
this code will fit on the printed page.

%{snippet|id=modello-model|url=http://svn.apache.org/repos/asf/maven/\
archetype/trunk/maven-archetype/maven-archetype-model/src/main/\
mdo/archetype.mdo}

Example 15.19. Output of the Snippet Macro in XHTML

<div class="source"><pre>

<model>
<id>archetype</id>
<name>Archetype</name>
<description><![CDATA[Maven's model for the archetype descriptor.
]]></description>
<defaults>

<default>
<key>package</key>
<value>org.apache.maven.archetype.model</value>

</default>
</defaults>
<classes>

Site Generation

359

<class rootElement="true" xml.tagName="archetype">
<name>ArchetypeModel</name>
<description>Describes the assembly layout and packaging.</description>
<version>1.0.0</version>
<fields>

<field>
<name>id</name>
<version>1.0.0</version>
<required>true</required>
<type>String</type>

</field>
...

</fields>
</class>

</classes>
</model>

</pre></div>

Warning
Doxia macros MUST NOT be indented in APT source documents. Doing
so will result in the APT parser skipping the macro altogether.

For more information about defining snippets in your code for reference by the
snippet macro, see the Guide to the Snippet Macro on the Maven website, at
http://maven.apache.org/guides/mini/guide-snippet-macro.html.

Site Generation

360

http://maven.apache.org/guides/mini/guide-snippet-macro.html

Chapter 16. Repository Management with
Nexus
This chapter is deprecated. While the original version of Maven: The Definitive
Guide had an entire chapter dedicated to the Nexus Repository Manager, Sonatype
found that the content was growing fast enough to deserve its own dedicate title.
We've decided to spin off the content in the Repository Management chapter into a
new book called Repository Management with Nexus. This new book covers both
Nexus Open Source and Nexus Professional, it guides you through the process of
downloading and installing a repository manager, and it provides a detailed survey
of all of the configuration options.

Click here to read Repository Management with Nexus.

Note
In the past, a book was a very static object, it was written, edited,
proofread, and printed. After printing there was little time to reconsider
the structure or content of a book. While the Internet has offered an
opportunity for the real-time, constantly evolving on-demand book, the
publishing industry has yet to come to terms with the idea of a book that
is "alive" - a book that can change the day after it was sent to the print,
and a book that can split into two and continue to grow. We decided to
make this break because it makes sense, if one of our chapters starts to
grow into a hundred-page beast, we're not just going to throw more pages
at an already "thick" reference book. (But then again, this book isn't
"thick" if you are reading it in a web browser, it is all about perspective.)

What's true about software development is also true about writing. If you
start out a project with a single, monolithic project, there is going to
come a time when it makes good sense to refactor a package or collection
of classes into a separate module. That is exactly what we are doing by
spinning the Repository Management chapter into Repository
Management with Nexus. We're "refactoring" the book into two.

361

http://books.sonatype.com/nexus-book/
http://nexus.sonatype.org
http://www.sonatype.com/products/nexus
http://books.sonatype.com/nexus-book

Consider this editor's note to be a deprecation warning. Eventually, we're
going to remove this marker chapter from the book entirely. On the web
it will be a HTTP redirect to the new book, and in the PDF it might be a
place-holder page that references the Nexus book.

Repository Management with Nexus

362

Chapter 17. Writing Plugins

17.1. Introduction
While this chapter covers an advanced topic, don't let the idea of writing a Maven
plugin intimidate. For all of the theory and complexity of this tool, the fundamental
concepts are easy to understand and the mechanics of writing a plugin are
straightforward. After you read this chapter, you will have a better grasp of what is
involved in creating a Maven plugin.

17.2. Programming Maven
Most of this book has dealt with using Maven, and for a book on Maven, you
haven't seen too many code examples dealing with Maven customization. In fact,
you haven't yet seen any. This is by design, 99 out of 100 Maven users will never
need to write a custom plugin to customize Maven; there is an abundance of
configurable plugins, and unless your project has particularly unique requirements,
you will have to work to find a reason to write a new plugin. An even smaller
percentage of people who end up writing custom plugins will ever need to crack
open the source code for Maven and customize a core Maven component. If you
really need to customize the behavior of Maven, then you would write a plugin.
Modifying the core Maven code is as far out of scope for most developers as
modifying the TCP/IP stack on an operating system, it is that abstract for most
Maven users.

On the other hand, if you are going to start writing a custom plugin, you are going
to have to learn a bit about the internals of Maven: How does it manage software
components? What is a Plugin? How can I customize the lifecycle? This section
answers some of those questions, and it introduces a few concepts at the core of
Maven's design. Learning how to write a custom Maven plugin is the gateway to
customizing Maven itself. If you were wondering how to start understanding the
code behind Maven, you've found the proper starting line.

363

17.2.1. What is Inversion of Control?
At the heart of Maven is an Inversion of Control (IoC) container named Plexus.
What does it do? It is a system for managing and relating components. While there
is a canonical essay about IoC written by Martin Fowler, the concept and term
have been so heavily overloaded in the past few years it is tough to find a good
definition of the concept that isn't a self-reference (or just a lazy reference to the
aforementioned essay). Instead of resorting to a Wikipedia quote, we'll summarize
Inversion of Control and Dependency Injection with an analogy.

Assume that you have a series of components which need to be wired together.
When you think about components, think stereo components not software
components. Imagine several stereo components hooked up to a Playstation 3 and a
Tivo that have to interface with both an Apple TV box and a 50" flat panel LCD
TV. You bring everything home from the electronics store and you purchase a
series of cables that you are going to use to connect everything to everything else.
You unpack all of these components, put them in the right place and then get to the
job of hooking up fifty thousand coaxial cables and stereo jacks to fifty thousand
digital inputs and network cables. Step back from your home entertainment center
and turn on the TV, you've just performed dependency injection, and you've just
been an inversion of control container.

So what did that have to do with anything? Your Playstation 3 and a Java Bean
both provide an interface. The Playstation 3 has two inputs: power and network,
and one output to the TV. Your JavaBean has three properties: power, network,
and tvOutput. When you open the box of your Playstation 3, it didn't provide you
with detailed pictures and instructions for how to connect it to every different kind
of TV that might be in every different kind of house, and when you look at your
Java Bean it just provides a set of properties, not an explicit recipe for creating and
managing an entire system of components. In an IoC container like Plexus, you are
responsible for declaring the relationships between a set of components which
simply provide an interface of inputs and outputs. You don't instantiate objects,
Plexus does; your application's code isn't responsible for managing the state of
components, Plexus is. Even though it sounds very cheesy, when you start up
Maven, it is starting Plexus and managing a system of related components just like

Writing Plugins

364

your stereo system.

What are the advantages of using an IoC container? What is the advantage of
buying discrete stereo components? If one component breaks, you can drop in a
replacement for your Playstation 3 without having to spend $20,000 on the entire
system. If you are unhappy with your TV, you can swap it out without affecting
your CD player. Most important to you, your stereo components cost less and are
more capable and reliable because manufacturers can build to a set of known
inputs and outputs and focus on building individual components. Inversion of
Control containers and Dependency Injection encourage Disaggregation and the
emergence of standards. The software industry likes to imagine itself as the font of
all new ideas, but dependency injection and inversion of control are really just new
words for the concepts of Disaggregation and interchangeable machinery. If you
really want to know about DI and IoC, learn about the Model T, the Cotton Gin,
and the emergence of a railroad standard in the late 19th century.

17.2.2. Introduction to Plexus
The most important feature of an IoC container implemented in Java is a
mechanism called dependency injection. The basic idea of IoC is that the control of
creating and managing objects is removed from the code itself and placed into the
hands of an IoC framework. Using dependency injection in an application that has
been programmed to interfaces, you can create components which are not bound to
specific implementations of these interfaces. Instead, you program to interfaces
and then configure Plexus to connect the appropriate implementation to the
appropriate component. While your code deals with interfaces, you can capture the
dependencies between classes and components in an XML file that defines
components, implementation classes, and the relationships between your
components. In other words, you can write isolated components, then you can wire
them together using an XML file that defines how the components are wired
together. In the case of Plexus, system components are defined with an XML
document that is found in META-INF/plexus/components.xml.

In a Java IoC container, there are several methods for injecting dependencies
values into a component object: constructor, setter, or field injections. Although

Writing Plugins

365

Plexus is capable of all three dependency injection techniques, Maven only uses
two types: field and setter injection.

Constructor Injection
Constructor injection is populating an object's values through its constructor
when an instance of the object is created. For example, if you had an object of
type Person which had a constructor Person(String name, Job job), you
could pass in values for both name and the job via this constructor.

Setter Injection
Setter injection is using the setter method of a property on a Java bean to
populate object dependencies. For example, if you were working with a Person

object with the properties name and job, an IoC container which uses setter
injection, would create an instance of Person using a no-arg constructor. Once
it had an instance of Person, it would proceed to call the setName() and
setJob() methods.

Field Injection
Both Constructor and Setter injection rely on a call to a public method. Using
Field injection, an IoC container populates a component's dependencies by
setting an object's fields directly. For example, if you were working with a
Person object that had two fields name and job, your IoC container would
populate these dependencies by setting these fields directly (i.e. person.name =

"Thomas"; person.job = job;)

17.2.3. Why Plexus?
Spring does happen to be the most popular IoC container at the moment, and
there's a good argument to be made that it has affected the Java "ecosystem" for the
better forcing companies like Sun Microsystems to yield more control to the open
source community and helping to open up standards by providing a pluggable,
component-oriented "bus". But, Spring isn't the only IoC container in open source.
There are many IoC containers (like PicoContainer).

Years and years ago, when Maven was created, Spring wasn't a mature option. The

Writing Plugins

366

http://www.picocontainer.org/

2"mojo." The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02 Mar. 2008. http://www.answers.com/topic/mojo-1

initial team of committers on Maven were more familiar with Plexus because they
invented it, so they decided to use it as an IoC container. While it might not be as
popular as the Spring Framework, it is no less capable. And, the fact that it was
created by the same person who created Maven makes it a perfect fit. After reading
this chapter you've have an idea of how Plexus works. If you already use an IoC
container you'll notice similarities and differences between Plexus and the
container you currently use.

Note
Just because Maven is based on Plexus doesn't mean that the Maven
community is "anti-Spring" (we've included a whole chapter with a
Spring example in this book, portions of the Spring project are moving to
Maven as a build platform). The question, "Why didn't you use Spring?"
comes up often enough it did make sense to address it here. We know it,
Spring is a rock star, we don't deny it, and it is on our continuing to-do
list to introduce people to (and document) Plexus: choice in the software
industry is always a good thing.

17.2.4. What is a Plugin?
A Maven Plugin is a Maven artifact which contains a plugin descriptor and one or
more Mojos. A Mojo can be thought of as a goal in Maven, and every goal
corresponds to a Mojo. The compiler:compile goal corresponds to the
CompilerMojo class in the Maven Compiler Plugin, and the jar:jar goal
corresponds to the JarMojo class in the Maven Jar Plugin. When you write your
own plugin, you are simply grouping together a set of related Mojos (or goals) in a
single plugin artifact.2

Note
Mojo? What is a Mojo? The word mojo2 is defined as "a magic charm or

Writing Plugins

367

http://www.answers.com/topic/mojo-1

spell", "an amulet, often in a small flannel bag containing one or more
magic items", and "personal magnetism; charm". Maven uses the term
Mojo because it is a play on the word Pojo (Plain-old Java Object).

A Mojo is much more than just a goal in Maven, it is a component managed by
Plexus that can include references to other Plexus components.

17.3. Plugin Descriptor
A Maven plugin contains a road-map for Maven that tells Maven about the various
Mojos and plugin configuration. This plugin descriptor is present in the plugin JAR
file in META-INF/maven/plugin.xml. When Maven loads a plugin, it reads this
XML file, instantiates and configures plugin objects to make the Mojos contained
in a plugin available to Maven.

When you are writing custom Maven plugins, you will almost never need to think
about writing a plugin descriptor. In Chapter 10, The Build Lifecycle, the lifecycle
goals bound to the maven-plugin packaging type show that the
plugin:descriptor goal is bound to the generate-resources phase. This goal
generates a plugin descriptor off of the annotations present in a plugin's source
code. Later in this chapter, you will see how Mojos are annotated, and you will
also see how the values in these annotations end up in the
META-INF/maven/plugin.xml file.

Example 17.1, “Plugin Descriptor” shows a plugin descriptor for the Maven Zip
Plugin. This plugin is a contrived plugin that simply zips up the output directory
and produces an archive. Normally, you wouldn't need to write a custom plugin to
create an archive from Maven, you could simply use the Maven Assembly Plugin
which is capable of producing a distribution archive in multiple formats. Read
through the following plugin descriptor to get an idea of the content it contains.

Example 17.1. Plugin Descriptor

<plugin>
<description></description>

Writing Plugins

368

<groupId>com.training.plugins</groupId>
<artifactId>maven-zip-plugin</artifactId>
<version>1-SNAPSHOT</version>
<goalPrefix>zip</goalPrefix>
<isolatedRealm>false</isolatedRealm>
<inheritedByDefault>true</inheritedByDefault>
<mojos>

<mojo>
<goal>zip</goal>
<description>Zips up the output directory.</description>
<requiresDirectInvocation>false</requiresDirectInvocation>
<requiresProject>true</requiresProject>
<requiresReports>false</requiresReports>
<aggregator>false</aggregator>
<requiresOnline>false</requiresOnline>
<inheritedByDefault>true</inheritedByDefault>
<phase>package</phase>
<implementation>com.training.plugins.ZipMojo</implementation>
<language>java</language>
<instantiationStrategy>per-lookup</instantiationStrategy>
<executionStrategy>once-per-session</executionStrategy>
<parameters>

<parameter>
<name>baseDirectory</name>
<type>java.io.File</type>
<required>false</required>
<editable>true</editable>
<description>Base directory of the project.</description>

</parameter>
<parameter>

<name>buildDirectory</name>
<type>java.io.File</type>
<required>false</required>
<editable>true</editable>
<description>Directory containing the build files.</description>

</parameter>
</parameters>
<configuration>

<buildDirectory implementation="java.io.File">
${project.build.directory}</buildDirectory>

<baseDirectory implementation="java.io.File">
${basedir}</baseDirectory>

</configuration>
<requirements>

<requirement>
<role>org.codehaus.plexus.archiver.Archiver</role>
<role-hint>zip</role-hint>
<field-name>zipArchiver</field-name>

</requirement>
</requirements>

</mojo>
</mojos>
<dependencies>

Writing Plugins

369

<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>

</dependencies>
</plugin>

There are three parts to a plugin descriptor: the top-level configuration of the
plugin which contains elements like groupId and artifactId, the declaration of
mojos, and the declaration of dependencies. Let's examine each of these sections in
more detail.

17.3.1. Top-level Plugin Descriptor Elements
The top-level configuration values in the plugin element are:

description
This element contains a short description of the plugin. In the case of the Zip
plugin, this description is empty.

groupId, artifactId, version
Just like everything else in Maven, plugins need to have a unique coordinate.
The groupId, artifactId, and version are used to locate the plugin artifact in a
Maven repository.

goalPrefix
This element controls the prefix used to reference goals in a particular plugin. If
you were to look at the Compiler plugin's descriptor you would see that
goalPrefix has a value of compile, and if you look at the descriptor for the Jar
plugin, it would have a goalPrefix of jar. It is important that you choose a
distinct goal prefix for your custom plugin.

isolatedRealm (deprecated)
This is a legacy property which is no longer used by Maven. It is still present in
the system to provide for backwards compatibility with older plugins. Earlier
versions of Maven used to provide a mechanism to load a plugin's dependencies

Writing Plugins

370

in an isolated ClassLoader. Maven makes extensive use of a project called
ClassWorlds from the Codehaus community to create hierarchies of
ClassLoader objects which are modeled by a ClassRealm object. Feel free to
ignore this property and always set it to false.

inheritedByDefault
If inheritedByDefault is set to true, any mojo in this plugin which is configured
in a parent project will be configured in a child project. If you configure a mojo
to execute during a specific phase in a parent project and the Plugin has
inheritedByDefault set to true, this execution will be inherited by the child
project. If inheritedByDefault is not set to true, then an goal execution defined
in a parent project will not be inherited by a child project.

17.3.2. Mojo Configuration
Next is the declaration of the each Mojo. The plugin element contains an element
named mojos which contains a mojo element for each mojo present in the Plugin.
Each mojo element contains the following configuration elements:

goal
This is the name of the goal. If you were running the compiler:compile goal,
then compiler is the plugin's goalPrefix and compile would be the name of
the goal.

description
This contains a short description of the goal to display to the use when they use
the Help plugin to generate plugin documentation.

requiresDirectInvocation
If you set this to true, the goal can only be executed if it is explicitly executed
from the command-line by the user. If someone tries to bind this goal to a
lifecycle phase in a POM, Maven will print an error message. The default for
this element is false.

requiresProject

Writing Plugins

371

http://classworlds.codehaus.org/
http://www.codehaus.org

Specifies that a given goal cannot be executed outside of a project. The goal
requires a project with a POM. The default value for this requiresProject is
true.

requiresReports
If you were creating a plugin that relies on the presence of reports, you would
need to set requiresReports to true. For example, if you were writing a
plugin to aggregate information from a number of reports, you would set
requiresReports to true. The default for this element is false.

aggregator
A Mojo descriptor with aggregator set to true is supposed to only run once
during the execution of Maven, it was created to give plugin developers the
ability to summarize the output of a series of builds; for example, to create a
plugin that summarizes a report across all projects included in a build. A goal
with aggregator set to true should only be run against the top-level project in
a Maven build. The default value of aggregator is false. Aggregator is slated
for deprecation in a future release of Maven.

requiresOnline
Specifies that a given goal cannot be executed if Maven is running in offline
mode (-o command-line option). If a goal depends on a network resource, you
would specify a value of true for this element and Maven would print an error
if the goal was executed in offline mode. The default for requiresOnline is
false.

inheritedByDefault
If inheritedByDefault is set to true, a mojo which is configured in a parent
project will be configured in a child project. If you configure a mojo to execute
during a specific phase in a parent project and the Mojo descriptor has
inheritedByDefault set to true, this execution will be inherited by the child
project. If inheritedByDefault is not set to true, then a goal execution defined
in a parent project will not be inherited by a child project.

phase

Writing Plugins

372

If you don't bind this goal to a specific phase, this element defines the default
phase for this mojo. If you do not specify a phase element, Maven will require
the user to explicitly specify a phase in a POM.

implementation
This element tells Maven which class to instantiate for this Mojo. This is a
Plexus component property (defined in Plexus ComponentDescriptor).

language
The default language for a Maven Mojo is java. This controls the Plexus
ComponentFactory used to create instances of this Mojo component. This
chapter focuses on writing Maven plugins in Java, but you can also write
Maven in a number of alternative languages such as Groovy, Beanshell, and
Ruby. If you were writing a plugin in one of these languages you would use a
language element value other than java.

instantiationStrategy
This property is a Plexus component configuration property, it tells Plexus how
to create and manage instances of the component. In Maven, all mojos are
going to be configured with an instantiationStrategy of per-lookup; a new
instance of the component (mojo) is created every time it is retrieved from
Plexus.

executionStrategy
The execution strategy tells Maven when and how to execute a Mojo. The valid
values are once-per-session and always. Honestly, the valid values are
anything, this particular property doesn't do a thing, it is a hold over from an
early design of Maven. This property is slated for deprecation in a future release
of Maven.

parameters
This element describes all of the parameters for this Mojo. What's the name of
the parameter What is the type of parameter? Is it required? Each parameter has
the following elements:

Writing Plugins

373

name
Is the name of the parameter (i.e. baseDirectory)

type
This is the type (Java class) of the parameters (i.e. java.io.File)

required
Is the parameter required? If true, the parameter must be non-null when the
goal is executed.

editable
If a parameter is not editable (if editable is set to false), then the value of the
parameter cannot be set in the POM. For example, if the plugin descriptor
defines the value of buildDirectory to be ${basedir} in the descriptor, a
POM cannot override this value to be another value in a POM.

description
A short description to use when generating plugin documentation (using the
Help Plugin)

configuration
This element provides default values for all of the Mojo's parameters using
Maven property notation. This example provides a default value for the
baseDir Mojo parameter and the buildDirectory Mojo parameter. In the
parameter element, the implementation specifies the type of the parameter (in
this case java.io.File), the value in the parameter element contains either a
hard-coded default or a Maven property reference.

requirements
This is where the descriptor gets interesting. A Mojo is a component that is
managed by Plexus, and, because of this, it has the opportunity to reference
other components managed by Plexus. This element allows you to define
dependencies on other components in Plexus.

While you should know how to read a Plugin Descriptor, you will almost never

Writing Plugins

374

need to write one of these descriptor files by hand. Plugin Descriptor files are
generated automatically off of a set of annotations in the source for a Mojo.

17.3.3. Plugin Dependencies
Lastly, the plugin descriptor declares a set of dependencies just like a Maven
project. When Maven uses a plugin, it will download any required dependencies
before it attempts to execute a goal from this plugin. In this example, the plugin
depends on Jakarta Commons IO version 1.3.2.

17.4. Writing a Custom Plugin
When you write a custom plugin, you are going to be writing a series of Mojos
(goals). Every Mojo is a single Java class which contains a series of annotations
that tell Maven how to generate the Plugin descriptor described in the previous
section. Before you can start writing Mojo classes, you will need to create Maven
project with the appropriate packaging and POM.

17.4.1. Creating a Plugin Project
To create a plugin project, you should use the Maven Archetype plugin. The
following command-line will create a plugin with a groupId of
org.sonatype.mavenbook.plugins and the artifactId of first-maven-plugin:

$ mvn archetype:create \
-DgroupId=org.sonatype.mavenbook.plugins \
-DartifactId=first-maven-plugin \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-mojo

The Archetype plugin is going to create a directory named my-first-plugin which
contains the following POM.

Example 17.2. A Plugin Project's POM

<?xml version="1.0" encoding="UTF-8"?><project>
<modelVersion>4.0.0</modelVersion>

Writing Plugins

375

<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>first-maven-plugin</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>maven-plugin</packaging>
<name>first-maven-plugin Maven Mojo</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>org.apache.maven</groupId>
<artifactId>maven-plugin-api</artifactId>
<version>2.0</version>

</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The most import element in a plugin project's POM is the packaging element
which has a value of maven-plugin. This packaging element customizes the
Maven lifecycle to include the necessary goals to create a plugin descriptor. The
plugin lifecycle was introduce in Section 10.2.3, “Maven Plugin”, it is similar to
the Jar lifecycle with three exceptions: plugin:descriptor is bound to the
generate-resources phase, plugin:addPluginArtifactMetadata is added to the
package phase, and plugin:updateRegistry is added to the install phase.

The other important piece of a plugin project's POM is the dependency on the
Maven Plugin API. This project depends on version 2.0 of the maven-plugin-api

and it also adds in JUnit as a test-scoped dependency.

17.4.2. A Simple Java Mojo
In this chapter, we're going to introduce a Maven Mojo written in Java. Each Mojo
in your project is going to implement the org.apache.maven.plugin.Mojo

interface, the Mojo implementation shown in the following example implements
the Mojo interface by extending the org.apache.maven.plugin.AbstractMojo

class. Before we dive into the code for this Mojo, let's take some time to explore
the methods on the Mojo interface. Mojo provides the following methods:

Writing Plugins

376

void setLog(org.apache.maven.monitor.logging.Log log)

Every Mojo implementation has to provide a way for the plugin to communicate
the progress of a particular goal. Did the goal succeed? Or, was there a problem
during goal execution? When Maven loads and executes a Mojo, it is going to
call the setLog() method and supply the Mojo instance with a suitable logging
destination to be used in your custom plugin.

protected Log getLog()

Maven is going to call setLog() before your Mojo is executed, and your Mojo
can retrieve the logging object by calling getLog(). Instead of printing out
status to Standard Output or the console, your Mojo is going to invoke methods
on the Log object.

void execute() throws

org.apache.maven.plugin.MojoExecutionException

This method is called by Maven when it is time to execute your goal.
The Mojo interface is concerned with two things: logging the results of goal
execution and executing a goal. When you are writing a custom plugin, you'll be
extending AbstractMojo. AbstractMojo takes care of handling the setLog() and
getLog() implementations and contains an abstract execute() method. When you
extend AbstractMojo, all you need to do is implement the execute() method.
Example 17.3, “A Simple EchoMojo” shows a trivial Mojo implement which
simply prints out a message to the console.

Example 17.3. A Simple EchoMojo

package org.sonatype.mavenbook.plugins;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;

/**
* Echos an object string to the output screen.
* @goal echo
* @requiresProject false
*/
public class EchoMojo extends AbstractMojo
{

Writing Plugins

377

/**
* Any Object to print out.
* @parameter expression="${echo.message}" default-value="Hello World..."
*/
private Object message;

public void execute()
throws MojoExecutionException, MojoFailureException

{
getLog().info(message.toString());

}
}

If you create this Mojo in ${basedir} under src/main/java in
org/sonatype/mavenbook/mojo/EchoMojo.java in the project created in the
previous section and run mvn install, you should be able to invoke this goal
directly from the command-line with:

$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo

That large command-line is mvn followed by the
groupId:artifactId:version:goal. When you run this command-line you
should see output that contains the output of the echo goal with the default
message: "Hello Maven World...". If you want to customize the message, you can
pass the value of the message parameter with the following command-line:

$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo \
-Decho.message="The Eagle has Landed"

The previous command-line is going to execute the EchoMojo and print out the
message "The Eagle has Landed".

17.4.3. Configuring a Plugin Prefix
Specifying the groupId, artifactId, version, and goal on the command-line is
cumbersome. To address this, Maven assigns a plugin a prefix. Instead of typing:

$ mvn org.apache.maven.plugins:maven-jar-plugin:2.2:jar

You can use the plugin prefix jar and turn that command-line into mvn jar:jar.

Writing Plugins

378

How does Maven resolve something like jar:jar to
org.apache.mven.plugins:maven-jar:2.3? Maven looks at a file in the Maven
repository to obtain a list of plugins for a specific groupId. By default, Maven is
configured to look for plugins in two groups: org.apache.maven.plugins and
org.codehaus.mojo. When you specify a new plugin prefix like mvn
hibernate3:hbm2ddl, Maven is going to scan the repository metadata for the
appropriate plugin prefix. First, Maven is going to scan the
org.apache.maven.plugins group for the plugin prefix hibernate3. If it doesn't
find the plugin prefix hibernate3 in the org.apache.maven.plugins group it will
scan the metadata for the org.codehaus.mojo group.

When Maven scans the metadata for a particular groupId, it is retrieving an XML
file from the Maven repository which captures metadata about the artifacts
contained in a group. This XML file is specific for each repository referenced, if
you are not using a custom Maven repository, you will be able to see the Maven
metadata for the org.apache.maven.plugins group in your local Maven
repository (~/.m2/repository) under
org/apache/maven/plugins/maven-metadata-central.xml. Example 17.4,
“Maven Metadata for the Maven Plugin Group” shows a snippet of the
maven-metadata-central.xml file from the org.apache.maven.plugin group.

Example 17.4. Maven Metadata for the Maven Plugin Group

<?xml version="1.0" encoding="UTF-8"?>
<metadata>

<plugins>
<plugin>
<name>Maven Clean Plugin</name>
<prefix>clean</prefix>
<artifactId>maven-clean-plugin</artifactId>

</plugin>
<plugin>
<name>Maven Compiler Plugin</name>
<prefix>compiler</prefix>
<artifactId>maven-compiler-plugin</artifactId>

</plugin>
<plugin>
<name>Maven Surefire Plugin</name>
<prefix>surefire</prefix>
<artifactId>maven-surefire-plugin</artifactId>

</plugin>
...

Writing Plugins

379

</plugins>
</metadata>

As you can see in Example 17.4, “Maven Metadata for the Maven Plugin Group”,
this maven-metadata-central.xml file in your local repository is what makes it
possible for your to execute mvn surefire:test. Maven scans
org.apache.maven.plugins and org.codehaus.mojo: plugins from
org.apache.maven.plugins are considered core Maven plugins and plugins from
org.codehaus.mojo are considered extra plugins. The Apache Maven project
manages the org.apache.maven.plugins group, and a separate independent open
source community manages the Codehaus Mojo project. If you would like to start
publishing plugins to your own groupId, and you would like Maven to
automatically scan your own groupId for plugin prefixes, you can customize the
groups that Maven scans for plugins in your Maven Settings.

If you wanted to be able to run the first-maven-plugin's echo goal by running
first:echo, add the org.sonatype.mavenbook.plugins groupId to your
~/.m2/settings.xml as shown in Example 17.5, “Customizing the Plugin Groups
in Maven Settings”. This will prepend the org.sonatype.mavenbook.plugins to
the list of groups which Maven scans for Maven plugins.

Example 17.5. Customizing the Plugin Groups in Maven Settings

<settings>
...
<pluginGroups>

<pluginGroup>org.sonatype.mavenbook.plugins</pluginGroup>
</pluginGroups>

</settings>

You can now run mvn first:echo from any directory and see that Maven will
properly resolve the goal prefix to the appropriate plugin identifiers. This worked
because our project adhered to a naming convention for Maven plugins. If your
plugin project has an artifactId which follows the pattern maven-first-plugin

or first-maven-plugin. Maven will automatically assign a plugin goal prefix of
first to your plugin. In other words, when the Maven Plugin Plugin is generating

Writing Plugins

380

the Plugin descriptor for your plugin and you have not explicitly set the
goalPrefix in your project, the plugin:descriptor goal will extract the prefix
from your plugin's artifactId when it matches the following patterns:

• ${prefix}-maven-plugin, OR

• maven-${prefix}-plugin

If you would like to set an explicit plugin prefix, you'll need to configure the
Maven Plugin Plugin. The Maven Plugin Plugin is a plugin that is responsible for
building the Plugin descriptor and performing plugin specific tasks during the
package and load phases. The Maven Plugin Plugin can be configured just like any
other plugin in the build element. To set the plugin prefix for your plugin, add the
following build element to the first-maven-plugin project's pom.xml.

Example 17.6. Configuring a Plugin Prefix

<?xml version="1.0" encoding="UTF-8"?><project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>first-maven-plugin</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>maven-plugin</packaging>
<name>first-maven-plugin Maven Mojo</name>
<url>http://maven.apache.org</url>
<build>

<plugins>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.3</version>
<configuration>

<goalPrefix>blah</goalPrefix>
</configuration>

</plugin>
</plugins>

</build>
<dependencies>

<dependency>
<groupId>org.apache.maven</groupId>
<artifactId>maven-plugin-api</artifactId>
<version>2.0</version>

</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>

Writing Plugins

381

<scope>test</scope>
</dependency>

</dependencies>
</project>

Example 17.6, “Configuring a Plugin Prefix” sets the plugin prefix to blah. If
you've added the org.sonatype.mavenbook.plugins to the pluginGroups in your
~/.m2/settings.xml, you should be able to execute the EchoMojo by running mvn
echo:blah from any directory.

17.4.4. Logging from a Plugin
Maven takes care of connecting your Mojo to a logging provider by calling
setLog() prior to the execution of your Mojo. It supplies an implementation of
org.apache.maven.monitor.logging.Log. This class exposes methods that you
can use to communicate information back to the user. This Log class provides
multiple levels of logging similar to that API provided by Log4J. Those levels are
captured by a series of methods available for each level: debug, info, error and
warn. To save trees, we've only listed the methods for a single logging level:
debug.

void debug(CharSequence message)

Prints a message to the debug logging level.

void debug(CharSequence message, Throwable t)

Prints a message to the debug logging level which includes the stack trace from
the Throwable (either Exception or Error)

void debug(Throwable t)

Prints out the stack trace of the Throwable (either Exception or Error)
Each of the four levels exposes the same three methods. The four logging levels
serve different purposes. The debug level exists for debugging purposes and for
people who want to see a very detailed picture of the execution of a Mojo. You
should use the debug logging level to provide as much detail on the execution of a
Mojo, but you should never assume that a user is going to see the debug level. The

Writing Plugins

382

http://logging.apache.org/

info level is for general informational messages that should be printed as a normal
course of operation. If you were building a plugin that compiled code using a
compiler, you might want to print the output of the compiler to the screen.

The warn logging level is used for messages about unexpected events and errors
that your Mojo can cope with. If you were trying to run a plugin that compiled
Ruby source code, and there was no Ruby source code available, you might want
to just print a warning message and move on. Warnings are not fatal, but errors are
usually build-stopping conditions. For the completely unexpected error condition,
there is the error logging level. You would use error if you couldn't continue
executing a Mojo. If you were writing a Mojo to compile some Java code and the
compiler wasn't available, you'd print a message to the error level and possibly
pass along an Exception that Maven could print out for the user. You should
assume that a user is going to see most of the messages in info and all of the
messages in error.

17.4.5. Mojo Class Annotations
In first-maven-plugin, you didn't write the plugin descriptor yourself, you relied
on Maven to generate the plugin descriptor from your source code. The descriptor
was generated using your plugin project's POM information and a set of
annotations on your EchoMojo class. EchoMojo only specifies the @goal annotation,
here is a list of other annotations you can place on your Mojo implementation.

@goal <goalName>
This is the only required annotation which gives a name to this goal unique to
this plugin.

@requiresDependencyResolution <requireScope>
Flags this mojo as requiring the dependencies in the specified scope (or an
implied scope) to be resolved before it can execute. Supports compile, runtime,
and test. If this annotation had a value of test, it would tell Maven that the
Mojo cannot be executed until the dependencies in the test scope had been
resolved.

Writing Plugins

383

@requiresProject (true|false)
Marks that this goal must be run inside of a project, default is true. This is
opposed to plugins like archetypes, which do not.

@requiresReports (true|false)
If you were creating a plugin that relies on the presence of reports, you would
need to set requiresReports to true. The default value of this annotation is
false.

@aggregator (true|false)
A Mojo with aggregator set to true is supposed to only run once during the
execution of Maven, it was created to give plugin developers the ability to
summarize the output of a series of builds; for example, to create a plugin that
summarizes a report across all projects included in a build. A goal with
aggregator set to true should only be run against the top-level project in a
Maven build. The default value of aggregator is false.

@requiresOnline (true|false)
When set to true, Maven must not be running in offline mode when this goal is
executed. Maven will throw an error if one attempts to execute this goal offline.
Default: false.

@requiresDirectInvocation
When set to true, the goal can only be executed if it is explicitly executed from
the command-line by the user. Maven will throw an error if someone tries to
bind this goal to a lifecycle phase. The default for this annotation is false.

@phase <phaseName>
This annotation specifies the default phase for this goal. If you add an execution
for this goal to a pom.xml and do not specify the phase, Maven will bind the
goal to the phase specified in this annotation by default.

@execute [goal=goalName|phase=phaseName [lifecycle=lifecycleId]]
This annotation can be used in a number of ways. If a phase is supplied, Maven

Writing Plugins

384

will execute a parallel lifecycle ending in the specified phase. The results of this
separate execution will be made available in the Maven property
${executedProperty}.
The second way of using this annotation is to specify an explicit goal using the
prefix:goal notation. When you specify just a goal, Maven will execute this
goal in a parallel environment that will not affect the current Maven build.

The third way of using this annotation would be to specify a phase in an
alternate lifecycle using the identifier of a lifecycle.

@execute phase="package" lifecycle="zip"
@execute phase="compile"
@execute goal="zip:zip"

If you look at the source for EchoMojo, you'll notice that Maven is not using the
standard annotations available in Java 5. Instead, it is using Commons Attributes.
Commons Attributes provided a way for Java programmers to use annotations
before annotations were a part of the Java language specification. Why doesn't
Maven use Java 5 annotations? Maven doesn't use Java 5 annotations because it is
designed to target pre-Java 5 JVMs. Because Maven has to support older versions
of Java, it cannot use any of the newer features available in Java 5.

17.4.6. When a Mojo Fails
The execute() method in Mojo throws two exceptions MojoExecutionException
and MojoFailureException. The difference between these two exception is both
subtle and important, and it relates to what happens when a goal execution "fails".
A MojoExecutionException is a fatal exception, something unrecoverable
happened. You would throw a MojoExecutionException if something happens
that warrants a complete stop in a build; you re trying to write to disk, but there is
no space left, or you were trying to publish to a remote repository, but you can't
connect to it. Throw a MojoExecutionException if there is no chance of a build
continuing; something terrible has happened and you want the build to stop and the
user to see a "BUILD ERROR" message.

A MojoFailureException is something less catastrophic, a goal can fail, but it

Writing Plugins

385

http://commons.apache.org/attributes/

might not be the end of the world for your Maven build. A unit test can fail, or a
MD5 checksum can fail; both of these are potential problems, but you don't want to
return an exception that is going to kill the entire build. In this situation you would
throw a MojoFailureException. Maven provides for different "resiliency" settings
when it comes to project failure. Which are described below.

When you run a Maven build, it could involve a series of projects each of which
can succeed or fail. You have the option of running Maven in three failure modes:

mvn -ff
Fail-fast mode: Maven will fail (stop) at the first build failure.

mvn -fae
Fail-at-end: Maven will fail at the end of the build. If a project in the Maven
reactor fails, Maven will continue to build the rest of the builds and report a
failure at the end of the build.

mvn -fn
Fail never: Maven won't stop for a failure and it won't report a failure.

You might want to ignore failure if you are running a continuous integration build
and you want to attempt a build regardless of the success of failure of an individual
project build. As a plugin developer, you'll have to make a call as to whether a
particular failure condition is a MojoExecutionException or a
MojoFailureExeception.

17.5. Mojo Parameters
Just as important as the execute() method and the Mojo annotations, a Mojo is
configured via parameters. This section deals with some configuration and topics
surrounding Mojo parameters.

17.5.1. Supplying Values for Mojo Parameters
In EchoMojo we declared the message parameter with the following annotations:

Writing Plugins

386

/**
* Any Object to print out.
* @parameter
* expression="${echo.message}"
* default-value="Hello Maven World"
*/
private Object message;

The default expression for this parameter is ${echo.message}, this means that
Maven will try to use the value of the echo.message property to set the value for
message. If the value of the echo.message property is null, the default-value
attribute of the @parameter annotation will be used instead. Instead of using the
echo.message property, we can configure a value for the message parameter of the
EchoMojo directly in a project's POM.

There are a few ways to populate the message parameter in the EchoMojo. First we
can pass in a value from the command-line like this (assuming that you've added
org.sonatype.mavenbook.plugins to your pluginGroups):

$ mvn first:echo -Decho.message="Hello Everybody"

We could also specify the value of this message parameter, by setting a property in
our POM or in our settings.xml.

<project>
...
<properties>

<echo.message>Hello Everybody</echo.message>
</properties>

</project>

This parameter could also be configured directly as a configuration value for the
plugin. If we wanted to customize the message parameter directly, we could use
the following build configuration. The following configuration bypasses the
echo.message property and populates the Mojo parameter in plugin configuration.

<project>
...
<build>

<plugins>
<plugin>

<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>first-maven-plugin</artifactId>
<version>1.0-SNAPSHOT</version>

Writing Plugins

387

<configuration>
<message>Hello Everybody!</message>

</configuration>
</plugin>

</plugins>
</build>

</project>

If we wanted to run the EchoMojo twice at difference phases in a lifecycle, and we
wanted to customize the message parameter for each execution separately, we
could configure the parameter value at the execution level in a POM like this:

<build>
<build>

<plugins>
<plugin>

<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>first-maven-plugin</artifactId>
<version>1.0-SNAPSHOT</version>
<executions>

<execution>
<id>first-execution</id>
<phase>generate-resources</phase>
<goals>

<goal>echo</goal>
</goals>
<configuration>

<message>The Eagle has Landed!</message>
</configuration>

</execution>
<execution>
<id>second-execution</id>
<phase>validate</phase>
<goals>

<goal>echo</goal>
</goals>
<configuration>

<message>${project.version}</message>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</build>

While this last configuration example seems very verbose, it illustrates the
flexibility of Maven. In the previous configuration example, you've bound the
EchoMojo to both the validate and generate-resources phases in the default

Writing Plugins

388

Maven lifecycle. The first execution is bound to generate-resources, it supplies a
string value to the message parameter of "The Eagle has Landed!". The second
execution is bound to the validate phase, it supplies a property reference to
${project.version}. When you run mvn install for his project, you'll see that the
first:echo goal executes twice and prints out two different messages.

17.5.2. Multi-valued Mojo Parameters
Plugins can have parameters which accept more than one value. Take a look at the
ZipMojo shown in Example 17.7, “A Plugin with Multi-valued Parameters”. Both
the includes and excludes parameters are multivalued String arrays which
specify the inclusion and exclusion patterns for a component that creates a ZIP file.

Example 17.7. A Plugin with Multi-valued Parameters

package org.sonatype.mavenbook.plugins

/**
* Zips up the output directory.
* @goal zip
* @phase package
*/
public class ZipMojo extends AbstractMojo
{

/**
* The Zip archiver.
* @parameter \

expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"
*/
private ZipArchiver zipArchiver;

/**
* Directory containing the build files.
* @parameter expression="${project.build.directory}"
*/
private File buildDirectory;

/**
* Base directory of the project.
* @parameter expression="${basedir}"
*/
private File baseDirectory;

/**
* A set of file patterns to include in the zip.

Writing Plugins

389

* @parameter alias="includes"
*/
private String[] mIncludes;

/**
* A set of file patterns to exclude from the zip.
* @parameter alias="excludes"
*/
private String[] mExcludes;

public void setExcludes(String[] excludes) { mExcludes = excludes; }

public void setIncludes(String[] includes) { mIncludes = includes; }

public void execute()
throws MojoExecutionException

{
try {

zipArchiver.addDirectory(buildDirectory, includes, excludes);
zipArchiver.setDestFile(new File(baseDirectory, "output.zip"));
zipArchiver.createArchive();

} catch(Exception e) {
throw new MojoExecutionException("Could not zip", e);

}
}

}

To configure a multi-valued Mojo parameter, you use a series of elements for each
value. If the name of the multi-valued parameter is includes, you would use an
element includes with child elements include. If the multi-valued parameter is
excludes, you would use an element excludes with child elements exclude. To
configure the ZipMojo to ignore all files ending in .txt and all files ending in a
tilde, you would use the following plugin configuration.

<project>
...
<build>

<plugins>
<plugin>

<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>zip-maven-plugin</artifactId>
<configuration>

<excludes>
<exclude>**/*.txt</exclude>
<exclude>**/*~</exclude>

</excludes>
</configuration>

</plugin>

Writing Plugins

390

</plugins>
</build>

</project>

17.5.3. Depending on Plexus Components
A Mojo is a component managed by an IoC container called Plexus. A Mojo can
depend on other components managed by Plexus by declaring a Mojo parameter
and using the @parameter or the @component annotation. Example 17.7, “A Plugin
with Multi-valued Parameters” shows a ZipMojo which depends on a Plexus
component using the @parameter annotation, this dependency could be declared
using the @component annotation.

Example 17.8. Depending on a Plexus Component

/**
* The Zip archiver.
* @component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"
*/
private ZipArchiver zipArchiver;

When Maven instantiates this Mojo, it will then attempt to retrieve the Plexus
component with the specified role and role hint. In this example, the Mojo will be
related to a ZipArchiver component which will allow the ZipMojo to create a ZIP
file.

17.5.4. Mojo Parameter Annotations
Unless you insist on writing your Plugin descriptors by hand, you'll never have to
write that XML. Instead, the Maven Plugin Plugin has a plugin:descriptor goal
bound to the generate-resources phase. This goal generates the plugin descriptor
from annotations on your Mojo. To configure a Mojo parameter, you should use
the following annotations on either the private member variables for each of your
Mojo's parameters. You can also use these annotations on public setter methods,
but the most common convention for Maven plugins is to annotate private member

Writing Plugins

391

variables directly.

@parameter [alias="someAlias"] [expression="${someExpression}"]
[default-value="value"]
Marks a private field (or a setter method) as a parameter. The alias provides
the name of the parameter. If alias is omitted, Maven will use the name of the
variable as the parameter name. The expression is an expression that Maven
will evaluate to obtain a value. Usually the expression is a property reference
like ${echo.message}. default-value is the value that this Mojo will use if no
value can be derived from the expression or if a value was not explicitly
supplied via plugin configuration in a POM.

@required
If this annotation is present, a valid value for this parameter is required prior to
Mojo execution. If Maven tries to execute this Mojo and the parameter has a
null value, Maven will throw and error when it tries to execute this goal.

@readonly
If this annotation is present, the user cannot directly configuration this
parameter in the POM. You would use this annotation with the expression
attribute of the parameter annotation. For example, if you wanted to make sure
that a particular parameter always had the value of the finalName POM
property, you would list an expression of ${build.finalName} and then add the
@readOnly annotation. If this were the case, the user could only change the
value of this parameter by changing the value of finalName in the POM.

@component
Tells Maven to populate a field with a Plexus Component. A valid value for the
@component annotation would be:

@component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"

This would have the effect of retrieving the ZipArchiver from Plexus. The
ZipArchiver is the Archiver which corresponds to the role hint zip. Instead of
component, you could also use the @parameter annotation with an expression
attribute of:

Writing Plugins

392

@parameter expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"

While the two annotations are effectively the same, the @component annotation
is the preferred way to configure dependencies on Plexus components.

@deprecated
The parameter will be deprecated. Users can continue configuring this
parameter, but a warning message will be displayed.

17.6. Plugins and the Maven Lifecycle
In the Chapter 10, The Build Lifecycle chapter, you learned that lifecycles can be
customized by packaging types. A plugin can both introduce a new packaging type
and customize the lifecycle. In this section, you are going to learn how you can
customize the lifecycle from a custom Maven plugin. You are also some to see
how you can tell a Mojo to execute a parallel lifecycle.

17.6.1. Executing a Parallel Lifecycle
Let's assume you write some goal that depends on the output from a previous build.
Maybe the ZipMojo goal can only run if there is output to include in an archive.
You can specify something like a prerequisite goal by using the @execute

annotation on a Mojo class. This annotation will cause Maven to spawn a parallel
build and execute a goal or a lifecycle in a parallel instance of Maven that isn't
going to affect the current build. Maybe you wrote some Mojo that you can to run
once a day that runs mvn install and then packages up all of the output in some
sort of customized distribution format. Your Mojo descriptor could tell Maven that
before you execute your CustomMojo, you'd like it to execute the default lifecycle
up to the install phase and then expose the results of that project to your Mojo as
the property ${executedProject}. You could then reference properties in that
project to before some sort of post processing.

Another possibility is that you have a goal that does something completely
unrelated to the default lifecycle. Let's consider something completely unexpected,

Writing Plugins

393

maybe you have a goal that turns a WAV file into an MP3 using something like
LAME, but before you do that, you want to step through a lifecycle that turns a
MIDI file to a WAV. (You can use Maven for anything, this isn't that "far out".)
You've created a "midi-sound" lifecycle, and you want to include the output of the
midi-sound lifecycle's install phase in your web application project which has a
war packaging type. Since your project is running in the war packaging lifecycle,
you'll need to have goal that effectively forks off an isolated build and runs through
the midi-source lifecycle. You would do this by annotating your mojo with
@execute lifecycle="midi-source" phase="install".

@execute goal="<goal>"
This will execute the given goal before execution of this one. The goal name is
specified using the prefix:goal notation.

@execute phase="<phase>"
This will fork an alternate build lifecycle up to the specified phase before
continuing to execute the current one. If no lifecycle is specified, Maven will
use the lifecycle of the current build.

@execute lifecycle="<lifecycle>" phase="<phase>"
This will execute the given alternate lifecycle. A custom lifecycle can be
defined in META-INF/maven/lifecycle.xml.

17.6.2. Creating a Custom Lifecycle
A custom lifecycle must be packaged in the plugin under the
META-INF/maven/lifecycle.xml file. You can include a lifecycle under
src/main/resources in META-INF/maven/lifecycle.xml. The following
lifecycle.xml declares a lifecycle named zipcycle that contains only the zip

goal in a package phase.

Example 17.9. Define a Custom Lifecycle in lifecycle.xml

<lifecycles>
<lifecycle>

<id>zipcycle</id>

Writing Plugins

394

<phases>
<phase>

<id>package</id>
<executions>

<execution>
<goals>

<goal>zip</goal>
</goals>

</execution>
</executions>

</phase>
</phases>

</lifecycle>
</lifecycles>

If you wanted to execute the zipcycle phase within another build, you could then
create a ZipForkMojo which uses the @execute annotation to tell Maven to step
through the zipcycle phase to package when the ZipForkMojo is executed.

Example 17.10. Forking a Customer Lifecycle from a Mojo

/**
* Forks a zip lifecycle.
* @goal zip-fork
* @execute lifecycle="zipcycle" phase="package"
*/
public class ZipForkMojo extends AbstractMojo
{

public void execute()
throws MojoExecutionException

{
getLog().info("doing nothing here");

}
}

Running the ZipForkMojo will fork the lifecycle. If you've configured your plugin
to execute with the goal prefix zip, running zip-fork should produce something
similar to the following output.

$ mvn zip:zip-fork
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'zip'.
[INFO] --
[INFO] Building Maven Zip Forked Lifecycle Test

Writing Plugins

395

[INFO] task-segment: [zip:zip-fork]
[INFO] --
[INFO] Preparing zip:zip-fork
[INFO] [site:attach-descriptor]
[INFO] [zip:zip]
[INFO] Building zip: \

~/maven-zip-plugin/src/projects/zip-lifecycle-test/target/output.zip
[INFO] [zip:zip-fork]
[INFO] doing nothing here
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 1 second
[INFO] Finished at: Sun Apr 29 16:10:06 CDT 2007
[INFO] Final Memory: 3M/7M
[INFO] ---

Calling zip-fork spawned another lifecycle, Maven executed the zipcycle

lifecycle then it printed out the message from ZipFormMojo's execute method.

17.6.3. Overriding the Default Lifecycle
Once you've created your own lifecycle and spawned it from a Mojo. The next
question you might have is how do you override the default lifecycle. How do you
create custom lifecycles and attach them to projects? In Chapter 10, The Build
Lifecycle, we saw that the packaging of a project defines the lifecycle of a project.
There's something different about almost every packaging type; war attached
different goals to package, custom lifecycles like swf from the Israfil Flex 3 plugin
attach different goals to the compile phase. When you create a custom lifecycle,
you can attach that lifecycle to a packaging type by supplying some Plexus
configuration in your plugin's archive.

To define a new lifecycle for a new packaging type, you'll need to configure a
LifecycleMapping component in Plexus. In your plugin project, create a
META-INF/plexus/components.xml under src/main/resources. In components.xml
add the content from Example 17.11, “Overriding the Default Lifecycle”. Set the
name of the packaging type under role-hint, and the set of phases containing the
coordinates of the goals to bind (omit the version). Multiple goals can be
associated with a phase using a comma delimited list.

Writing Plugins

396

Example 17.11. Overriding the Default Lifecycle

<component-set>
<components>

<component>
<role>org.apache.maven.lifecycle.mapping.LifecycleMapping</role>
<role-hint>zip</role-hint>
<implementation>

org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
</implementation>
<configuration>

<phases>
<process-resources>
org.apache.maven.plugins:maven-resources-plugin:resources

</process-resources>
<compile>
org.apache.maven.plugins:maven-compiler-plugin:compile

</compile>
<package>org.sonatype.mavenbook.plugins:maven-zip-plugin:zip</package>

</phases>
</configuration>

</component>
</components>

</component-set>

If you create a plugin which defines a new packaging type and a customized
lifecycle, Maven won't know anything it until you add the plugin to your project's
POM and set the extensions element to true. Once you do this, Maven will scan
your plugin for more than just Mojos to execute, it will look for the
components.xml under META-INF/plexus, and it will make the packaging type
available to your project.

Example 17.12. Configuring a Plugin as an Extension

<project>
...
<build>

...
<plugins>
<plugin>

<groupId>com.training.plugins</groupId>
<artifactId>maven-zip-plugin</artifactId>
<extensions>true</extensions>

</plugin>
</plugins>

Writing Plugins

397

</build>
</project>

Once you add the plugin with the extensions element set to true, you can use the
custom packaging type and your project will be able to execute the custom
lifecycle associated with that packaging type.

Writing Plugins

398

Chapter 18. Writing Plugins in Alternative
Languages
You can write a Mojo in Java, or you can write a Mojo in an alternative language.
Maven has support for a number of implementation languages, and this chapter is
going to show you how to create plugins in three languages: Groovy, Ant, and
Ruby plugins.

18.1. Writing Plugins in Ant
Ant isn't a language as much as it is a build tool which allows you to describe a
build as a set of tasks grouped into build targets. Ant then allows you to declare
dependencies between build targets; for example, in Ant you are essentially
creating your own lifecycle. An Ant build.xml might have an install target which
depends on a test target which depends on a compile target. Ant is something of a
ancestor to Maven, it was the ubiquitous procedural build tool that almost every
project used before Maven introduced the concept of wide-scale reusability of
common build plugins and the concept of a universal lifecycle.

While Maven is an improvement on Ant, Ant can still be useful when describing
parts of the build process. Ant provides a set of tasks which can come in handy
when you need to perform file operations or XSLT transformations or any other
operation you could think of. There is a large library of available Ant tasks for
everything from running JUnit tests to transforming XML to copying files to a
remote server using SCP. An overview of available Ant tasks can be found online
in the Apache Ant Manual. You can use these tasks as a low-level build
customization language, and you can also write a Maven plugin where, instead of a
Mojo written in Java, you can pass parameters to a Mojo which is an Ant build
target.

18.2. Creating an Ant Plugin

399

http://ant.apache.org/manual/tasksoverview.html

To create a Maven plugin using Ant, you will need to have a pom.xml and a single
Mojo implemented in Ant. To get started, create a project directory named
firstant-maven-plugin. Place the following pom.xml in this directory.

Example 18.1. POM for an Ant Maven Plugin

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>firstant-maven-plugin</artifactId>
<name>Example Ant Mojo - firstant-maven-plugin</name>
<packaging>maven-plugin</packaging>
<version>1.0-SNAPSHOT</version>
<dependencies>

<dependency>
<groupId>org.apache.maven</groupId>
<artifactId>maven-script-ant</artifactId>
<version>2.0.10</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.4</version>
<dependencies>

<dependency>
<groupId>org.apache.maven.plugin-tools</groupId>
<artifactId>maven-plugin-tools-ant</artifactId>
<version>2.4</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

Next, you will need to create your Ant Mojo. An Ant mojo consists of two parts:
the Ant tasks in an XML file, and a file which supplies Mojo descriptor
information. The Ant plugin tools are going to look for both of these files in
${basedir}/src/main/scripts. One file will be named echo.build.xml and it
will contain the Ant XML.

Example 18.2. Echo Ant Mojo

Writing Plugins in Alternative Languages

400

<project>
<target name="echotarget">

<echo>${message}</echo>
</target>

</project>

The other file will describe the Echo Ant Mojo and will be in the echo.mojos.xml

file also in ${basedir}/src/main/scripts.

Example 18.3. Echo Ant Mojo Descriptor

<pluginMetadata>
<mojos>

<mojo>
<goal>echo</goal>
<call>echotarget</call>
<description>Echos a Message</description>
<parameters>

<parameter>
<name>message</name>
<property>message</property>
<required>false</required>
<expression>${message}</expression>
<type>java.lang.Object</type>
<defaultValue>Hello Maven World</defaultValue>
<description>Prints a message</description>

</parameter>
</parameters>

</mojo>
</mojos>

</pluginMetadata>

This echo.mojos.xml file configures the Mojo descriptor for this plugin. It
supplies the goal name "echo", and it tells Maven what Ant task to call in the call
element. In addition to configuring the description, this XML file configures the
message parameter to use the expression ${message} and to have a default value of
"Hello Maven World."

If you've configured your plugin groups in ~/.m2/settings.xml to include
org.sonatype.mavenbook.plugins, you can install this Ant plugin by executing
the following command at the command-line:

$ mvn install
[INFO] --

Writing Plugins in Alternative Languages

401

[INFO] Building Example Ant Mojo - firstant-maven-plugin
[INFO] task-segment: [install]
[INFO] --
[INFO] [plugin:descriptor]
[INFO] Using 3 extractors.
[INFO] Applying extractor for language: java
[INFO] Extractor for language: java found 0 mojo descriptors.
[INFO] Applying extractor for language: bsh
[INFO] Extractor for language: bsh found 0 mojo descriptors.
[INFO] Applying extractor for language: ant
[INFO] Extractor for language: ant found 1 mojo descriptors.
...
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Note that the plugin:descriptor goal found a single Ant mojo descriptor. To run
this goal, you would execute the following command-line:

$ mvn firstant:echo
...
[INFO] [firstant:echo]

echotarget:
[echo] Hello Maven World

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

The echo goal executed and printed out the default value of the message parameter.
If you are used to Apache Ant build scripts, you will notice that Ant prints out the
name of the target executed and then adds a logging prefix to the output of the
echo Ant task.

18.3. Writing Plugins in JRuby
Ruby is an object-oriented scripting language which provides a rich set of facilities
for meta-programming and reflection. Ruby's reliance on closures and blocks make
for a programming style that is both compact and powerful. Although Ruby has
been around since 1993, most people came to know Ruby after it was made
popular by a Ruby-based web framework known as Ruby on Rails. JRuby is a
Ruby interpreter written in Java. For more information about the Ruby language,

Writing Plugins in Alternative Languages

402

see: http://www.ruby-lang.org/, and for more information about JRuby, see:
http://jruby.codehaus.org/.

18.3.1. Creating a JRuby Plugin
To create a Maven plugin using JRuby, you will need to have a pom.xml and a
single Mojo implemented in Ruby. To get started, create a project directory named
firstruby-maven-plugin. Place the following pom.xml in this directory.

Example 18.4. POM for a JRuby Maven Plugin

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>firstruby-maven-plugin</artifactId>
<name>Example Ruby Mojo - firstruby-maven-plugin</name>
<packaging>maven-plugin</packaging>
<version>1.0-SNAPSHOT</version>
<dependencies>

<dependency>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jruby-maven-plugin</artifactId>
<version>1.0-beta-4</version>
<scope>runtime</scope>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.4</version>
<dependencies>

<dependency>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jruby-maven-plugin</artifactId>
<version>1.0-beta-4</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

Next, you will need to create a Mojo implemented in Ruby. Maven is going to look
for a Ruby Mojo in ${basedir}/src/main/scripts. Put the following Ruby class

Writing Plugins in Alternative Languages

403

http://www.ruby-lang.org/
http://jruby.codehaus.org/

in ${basedir}/src/main/scripts/echo.rb.

Example 18.5. The Echo Ruby Mojo

Prints a message
@goal "echo"
@phase "validate"
class Echo < Mojo

@parameter type="java.lang.String" default-value="Hello Maven World" \
expression="${message}"

def message
end

def execute
info $message

end

end

run_mojo Echo

The Echo class must extend Mojo, and it must override the execute() method. At
the end of the echo.rb file, you will need to run the mojo with "run_mojo Echo".
To install this plugin, run mvn install:

$ mvn install
[INFO] Scanning for projects...
[INFO] --
[INFO] Building Example Ruby Mojo - firstruby-maven-plugin
[INFO] task-segment: [install]
[INFO] --
...
[INFO] [plugin:descriptor]
...
[INFO] Applying extractor for language: jruby
[INFO] Ruby Mojo File: /echo.rb
[INFO] Extractor for language: jruby found 1 mojo descriptors.
...
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

During the build, you should see that the Maven Plugin Plugin's descriptor goal
applies the JRuby extractor to create a plugin.xml which captures the annotations
in the Echo class. If you've configured your default plugin groups to include

Writing Plugins in Alternative Languages

404

org.sonatype.mavenbook.plugins, you should be able to run this echo goal with
the following command-line:

$ mvn firstruby:echo
...
[INFO] [firstruby:echo]
[INFO] Hello Maven World
...

18.3.2. Ruby Mojo Implementations
Ruby Mojos are annotated using comments in Ruby source files. A single
annotation like @parameter takes a number of attributes, and each of these
attributes must be specified on the same line. There can be no line-breaks between
an annotations attribute in the Ruby source. Both classes and parameters are
annotated. Parameters are annotated with four annotations: @parameter,
@required, @readonly, and @deprecated. The @parameter attribute takes the
following attributes:

alias
An alias for the parameter. An alternate name which can be used to populate the
same parameter.

default-value
Provides a default value to the parameter if the supplied value or the parameter
expression produces a null result. In echo.rb, we specify the default as "Hello
Maven World".

expression
Contains an expression which can resolve to a Maven property or a System
property.

type
The fully qualified Java type of the parameter. If the type is not specified it will
default to java.lang.String.

In addition to the @parameter annotation, a parameter can take the following

Writing Plugins in Alternative Languages

405

annotations:

@required "<true|false>"
Marks the parameter as being required. The default value is false.

@readonly "<true|false>"
Marks the parameter as read-only. If this is true, you may not override the
default value or the value from the expression from the command line. The
default value is false.

@deprecated "<true|false>"
Marks the parameter as deprecated. The default value is false.

Putting this altogether, a fully annotated message parameter from echo.rb would
look like the following code:

@parameter type="java.lang.String" default-value="Hello Maven World" \
expression="${message}"

@readonly true
@required false
@deprecated false
def message
end

Ruby Mojo classes are annotated with the following attributes:

@goal
Specifies the name of the goal.

@phase
The default phase to bind this goal to.

@requiresDependencyResolution
True if the Mojo requires that dependencies be resolved before execution.

@aggregator
Marks this mojo as an aggregator.

@execute

Writing Plugins in Alternative Languages

406

Provides the opportunity to execute a goal or lifecycle phase before executing
this Mojo. The @execute annotation takes the following attributes:

goal
Name of the goal to execute

phase
Name of the lifecycle phase to execute

lifecycle
Name of the lifecycle (if other than default)

For an example of an annotated Mojo class, consider the following code example:

Completes some build task
@goal custom-goal
@phase install
@requiresDependencyResolution false
@execute phase=compile
class CustomMojo < Mojo

...
end

Mojo parameters can reference Java classes and Maven properties. The following
example shows you how to get access to the Maven Project object from a Ruby
Mojo.

Example 18.6. Referencing a Maven Project from a Ruby Mojo

This is a mojo description
@goal test
@phase validate
class Test < Mojo

@parameter type="java.lang.String" default-value="nothing" alias="a_string"
def prop
end

@parameter type="org.apache.maven.project.MavenProject" \
expression="${project}"

@required true
def project
end

def execute
info "The following String was passed to prop: '#{$prop}'"
info "My project artifact is: #{$project.artifactId}"

Writing Plugins in Alternative Languages

407

end
end

run_mojo Test

In the previous example, we can access properties on the Project class using
standard Ruby syntax. If you put test.rb in firstruby-maven-plugin's
src/main/scripts directory, install the plugin, and then run it, you will see the
following output:

$ mvn install
...
[INFO] [plugin:descriptor]
[INFO] Using 3 extractors.
[INFO] Applying extractor for language: java
...
[INFO] Applying extractor for language: jruby
[INFO] Ruby Mojo File: /echo.rb
[INFO] Ruby Mojo File: /test.rb
[INFO] Extractor for language: jruby found 2 mojo descriptors.
...
$ mvn firstruby:test
...
[INFO] [firstruby:test]
[INFO] The following String was passed to prop: 'nothing'
[INFO] My project artifact is: firstruby-maven-plugin

18.3.3. Logging from a Ruby Mojo
To log from a Ruby Mojo, call the info(), debug(), and error() methods with a
message.

Tests Logging
@goal logtest
@phase validate
class LogTest < Mojo

def execute
info "Prints an INFO message"
error "Prints an ERROR message"
debug "Prints to the Console"

end

end

run_mojo LogTest

Writing Plugins in Alternative Languages

408

18.3.4. Raising a MojoError
If there is an unrecoverable error in a Ruby Mojo, you will need to raise a
MojoError. Example 18.7, “Raising a MojoError from a Ruby Mojo” shows you
how to raise a MojoError. This example mojo prints out a message and then raises
a MojoError.

Example 18.7. Raising a MojoError from a Ruby Mojo

Prints a Message
@goal error
@phase validate
class Error < Mojo

@parameter type="java.lang.String" default-value="Hello Maven World" \
expression="${message}"

@required true
@readonly false
@deprecated false
def message
end

def execute
info $message
raise MojoError.new("This Mojo Raised a MojoError")

end

end

run_mojo Error

Running this Mojo, produces the following output:

$ mvn firstruby:error
...
INFO] [firstruby:error]
[INFO] Hello Maven World
[ERROR] This Mojo Raised a MojoError

18.3.5. Referencing Plexus Components from JRuby

Writing Plugins in Alternative Languages

409

A Ruby Mojo can depend on a Plexus component. To do this, you would use the
expression attribute of the @parameter annotation to specify a role and a hint for
Plexus. The following example Ruby Mojo, depends upon an Archiver component
which Maven will retrieve from Plexus.

Example 18.8. Depending on a Plexus Component from a Ruby Mojo

This mojo tests plexus integration
@goal testplexus
@phase validate
class TestPlexus < Mojo

@parameter type="org.codehaus.plexus.archiver.Archiver" \
expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"

def archiver
end

def execute
info $archiver

end
end

run_mojo TestPlexus

Please note that the attributes for an annotation in a Ruby Mojo cannot span
multiple lines. If you were to run this goal, you would see Maven attempt to
retrieve a component from Plexus with a role of
org.codehaus.plexus.arhiver.Archiver and a hint of zip.

18.4. Writing Plugins in Groovy
Groovy is a dynamic language based on the Java Virtual Machine which compiles
to Java bytecode. Groovy is a project in the Codehaus community. If you are fluent
in Java, Groovy will seem like a natural choice for a scripting language. Groovy
takes the features of Java, pares down the syntax a bit, and adds features like
closures, duck-typing, and regular expressions. For more information about
Groovy, please see the Groovy web site at http://groovy.codehaus.org.

Writing Plugins in Alternative Languages

410

http://groovy.codehaus.org

18.4.1. Creating a Groovy Plugin
To create a Maven Plugin using Groovy, you only need two files: a pom.xml and a
single Mojo implemented in Groovy. To get started, create a project directory
named firstgroovy-maven-plugin. Place the following pom.xml in this directory.

Example 18.9. POM for a Groovy Maven Plugin

<?xml version="1.0" encoding="UTF-8"?>
<project>

<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.plugins</groupId>
<artifactId>firstgroovy-maven-plugin</artifactId>
<name>Example Groovy Mojo - firstgroovy-maven-plugin</name>
<packaging>maven-plugin</packaging>
<version>1.0-SNAPSHOT</version>
<dependencies>

<dependency>
<groupId>org.codehaus.mojo.groovy</groupId>
<artifactId>groovy-mojo-support</artifactId>
<version>1.0-beta-3</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.4</version>

</plugin>
<plugin>

<groupId>org.codehaus.mojo.groovy</groupId>
<artifactId>groovy-maven-plugin</artifactId>
<version>1.0-beta-3</version>
<extensions>true</extensions>
<executions>

<execution>
<goals>

<goal>generateStubs</goal>
<goal>compile</goal>
<goal>generateTestStubs</goal>
<goal>testCompile</goal>

</goals>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Writing Plugins in Alternative Languages

411

What's going on in this POM? First, notice that the packaging of the POM is
maven-plugin because we are creating a project that will package a Maven plugin.
Next, note that the project depends on the groovy-mojo-support artifact in the
org.codehaus.mojo.groovy group.

Then under src/main/groovy in a directory org/sonatype/mavenbook/plugins,
create a file named EchoMojo.groovy which contains the EchoMojo class.

Example 18.10.

package org.sonatype.mavenbook.plugins

import org.codehaus.mojo.groovy.GroovyMojo

/**
* Example goal which echos a message
*
* @goal echo
*/
class EchoMojo extends GroovyMojo {

/**
* Message to print
*
* @parameter expression="${echo.message}"
* default-value="Hello Maven World"
*/
String message

void execute() {
log.info(message)

}
}

Writing Plugins in Alternative Languages

412

Chapter 19. Using Maven Archetypes
Warning
This chapter hasn't reached Draft status yet, it is in a pre-alpha stage. I'm
publishing works in progress because I believe that transparency in
writing benefits both the author and the community. A book is much
more than the pages (or web pages) it is printed on, and the true meaning
of a book is captured in both the content and conversation it provokes.

As this is a pre-alpha release of a chapter, don't worry about reporting
typos. Expect them until a quality beta version of this chapter is released.
If you do care to provide any feedback, tell me what you want to read. If,
after reading this pre-alpha chapter you are longing to know how to X, Y,
or Z. Go over to our Get Satisfaction page and file a suggestion or an
idea. We're very interested in the feedback.

Don't expect this chapter to be in pre-alpha for weeks and weeks, one
thing I'm particularly disinterested in is leaving readers with cliffhanger
endings - sections that provide 95% of the essential information only to
leave them with a table that hasn't been completed or a section that was
written in a hurry. This is a new practice of "Agile Writing", and I've
taken care to publish complete sections. While the enumeration of
third-party plugins isn't complete and this chapter lacks a section on
generating artifacts, the paragraphs and third-level sections that have
been published are in this version because I didn't want to sit on the
content for weeks and weeks.

Xpect ah lott of tipos inh this chapther(, but don't report 'em yet).

Monday, October 13, 2008 - Tim O'Brien

19.1. Introduction to Maven Archetypes
An archetype is a template for a Maven project which is used by the Maven

413

Archetype plugin to create new projects. Archetypes are useful for open source
projects such as Apache Wicket or Apache Cocoon which want to present
end-users with a set of baseline projects that can be used as a foundation for new
applications. Archetypes can also be useful within an organization that wants to
encourage standards across a series of similar and related projects. If you work in
an organization with a large team of developers who all need to create projects
which follow a similar structure, you can publish an archetype that can be used by
all other members of the development team. You can create a new product from an
archetype using the Maven Archetype plugin from the command line or by using
the project creation wizard in the m2eclipse plugin introduced in Chapter 14,
Maven and Eclipse: m2eclipse.

19.2. Using Archetypes
You can use an archetype by invoking the generate goal of the Archetype plugin
via the command-line or with m2eclipse.

19.2.1. Using an Archetype from the Command Line
The following command line can be used to generate a project from the quickstart
archetype.

mvn archetype:generate \
-DgroupId=org.sonatype.mavenbook \
-DartifactId=quickstart \
-Dversion=1.0-SNAPSHOT \
-DpackageName=org.sonatype.mavenbook \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DarchetypeVersion=1.0 \
-DinteractiveMode=false

The generate goal accepts the following parameters:

groupId

The groupId for the project you are creating.

Using Maven Archetypes

414

artifactId

The artifactId for the project you are creating.

version

The version for the project you are creating (defaults to 1.0-SNAPSHOT).

packageName

The default package for the project you are creating (defaults to groupId).

archetypeGroupId

The groupId of the archetype you wish to use for project generation.

archetypeArtifactId

The artifactId of the archetype you wish to use for project generation.

archetypeVersion

The version of the archetype you wish to use for project generation.

interactiveMode

When the generate goal is executed in interactive mode, it will prompt the user
for all the previously listed parameters. When interactiveMode is false, the
generate goal will use the values passed in from the command line.

Once you run the generate goal using the previously listed command line, you
will have a directory named quickstart which contains a new Maven project. The
command line you had to suffer through in this section is difficult to manage. In
the next section we generate the same project running the generate goal in an
interactive mode.

19.2.2. Using the Interactive generate Goal
The simplest way to use the Maven Archetype plugin to generate a new Maven
project from an archetype is to run the archetype:generate goal in interactive
mode. When interactiveMode is set to true, the generate goal will present you
with a list of archetypes and prompt you to select an archetype and supply the

Using Maven Archetypes

415

necessary identifiers. Since the default value of the parameter interactiveMode is
true, all you have to do to generate a new Maven project is run mvn
archetype:generate.

$ mvn archetype:generate
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:generate] (aggregator-style)
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart
Choose archetype:
1: internal -> appfuse-basic-jsf
2: internal -> appfuse-basic-spring
3: internal -> appfuse-basic-struts
4: internal -> appfuse-basic-tapestry
5: internal -> appfuse-core
6: internal -> appfuse-modular-jsf
7: internal -> appfuse-modular-spring
8: internal -> appfuse-modular-struts
9: internal -> appfuse-modular-tapestry
10: internal -> maven-archetype-j2ee-simple
11: internal -> maven-archetype-marmalade-mojo
12: internal -> maven-archetype-mojo
13: internal -> maven-archetype-portlet
14: internal -> maven-archetype-profiles
15: internal -> maven-archetype-quickstart
16: internal -> maven-archetype-site-simple
17: internal -> maven-archetype-site
18: internal -> maven-archetype-webapp
19: internal -> jini-service-archetype
20: internal -> softeu-archetype-seam
21: internal -> softeu-archetype-seam-simple
22: internal -> softeu-archetype-jsf
23: internal -> jpa-maven-archetype
24: internal -> spring-osgi-bundle-archetype
25: internal -> confluence-plugin-archetype
26: internal -> jira-plugin-archetype
27: internal -> maven-archetype-har
28: internal -> maven-archetype-sar
29: internal -> wicket-archetype-quickstart
30: internal -> scala-archetype-simple
31: internal -> lift-archetype-blank
32: internal -> lift-archetype-basic
33: internal -> cocoon-22-archetype-block-plain
34: internal -> cocoon-22-archetype-block
35: internal -> cocoon-22-archetype-webapp
36: internal -> myfaces-archetype-helloworld
37: internal -> myfaces-archetype-helloworld-facelets
38: internal -> myfaces-archetype-trinidad
39: internal -> myfaces-archetype-jsfcomponents
40: internal -> gmaven-archetype-basic

Using Maven Archetypes

416

41: internal -> gmaven-archetype-mojo
Choose a number: 15

The first thing that the archetype:generate goal does in interactive mode is to
print out a list of archetypes that it is aware of. The Maven Archetype plugin ships
with an archetype catalog which includes a reference to all of the standard, simple
Maven archetypes (10-18). The plugin's archetype catalog also contains a number
of references to compelling third party archetypes such as archetypes which can be
used to create AppFuse projects, Confluence and JIRA plugins, Wicket
applications, Scala applications, and Groovy projects. For a brief overview of these
third-party archetypes, see Section 19.3.2, “Notable Third-Party Archetypes”.

Once you select an archetype, the Maven Archetype plugin downloads the
archetype, and then asks you to supply the following values for your new project:

• groupId

• artifactId

• version

• package

[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: checking for updates from central
Downloading: http://repo1.maven.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archetype-quickstart-1.0.jar
4K downloaded
Define value for groupId: : org.sonatype.mavenbook
Define value for artifactId: : quickstart
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.mavenbook: : org.sonatype.mavenbook
Confirm properties configuration:
groupId: org.sonatype.mavenbook
artifactId: quickstart
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook
Y: : Y

Once this interactive portion of the archetype:generate goal execution is
finished, the Maven Archetype plugin will generate the project in a directory
named after the artifactId you supplied.

[INFO] --
[INFO] Using following parameters for creating OldArchetype: maven-archetype-quickstart:RELEASE

Using Maven Archetypes

417

[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/tmp
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: quickstart
[INFO] ********************* End of debug info from resources from generated POM ***********************
[INFO] OldArchetype created in dir: /Users/tobrien/tmp/quickstart
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 minute 57 seconds
[INFO] Finished at: Sun Oct 12 15:39:14 CDT 2008
[INFO] Final Memory: 8M/15M
[INFO] --

19.2.3. Using an Archetype from m2eclipse
m2eclipse makes creating a new Maven project from a Maven Archetype very easy
by providing an intuitive wizard for searching for, selecting, and configuring a
Maven Archetype. For more information about generating a Maven project form a
Maven Archetype using m2eclipse, see ???.

19.3. Available Archetypes
As more and more projects adopt Maven, more and more artifacts are being
published by projects as a way to provide users with a quick way of creating
projects from existing templates. This section discusses some of the simple core
archetypes from the Apache Maven as well as providing a survey of some
interesting third-party archetypes.

19.3.1. Common Maven Archetypes
Some of the most straightforward Maven archetypes are contained in the
org.apache.maven.archetypes groupId. Most of the basic archetypes under
org.apache.maven.archetypes are very basic templates that include few options.
You'll use them only to provide the most basic features that distinguish a Maven

Using Maven Archetypes

418

project from a non-Maven project. For example, the webapp archetype plugin
described in this section just includes a stub of a web.xml file in
${basedir}/src/main/webapp/WEB-INF, and it doesn't even go as far as providing
a Servlet for you to customize. In Section 19.3.2, “Notable Third-Party
Archetypes” you'll see a quick survey of some of the more notable third-party
archetype such as the AppFuse and Cocoon artifacts.

The following archetypes can be found in the groupId
org.apache.maven.archetypes:

19.3.1.1. maven-archetype-quickstart
The quickstart archetype is a simple project with JAR packaging and a single
dependency on JUnit. After generating a project with the quickstart archetype, you
will have a single class named App in the default package with a main() method
that prints "Hello World!" to standard output. You will also have a single JUnit test
class named AppTest with a testApp() method with a trivial unit test.

19.3.1.2. maven-archetype-webapp
This archetype creates a simple project with WAR packaging and a single
dependency on JUnit. ${basedir}/src/main/webapp contains a simple shell of a
web application: an index.jsp page and the simplest possible web.xml file. Even
though the archetype includes a dependency on JUnit, this archetype does not
create any unit tests. If you were looking for a functional web application, this
archetype is going to disappoint you. For more relevant web archetypes, see
Section 19.3.2, “Notable Third-Party Archetypes”.

19.3.1.3. maven-archetype-mojo
This archetype creates a simple project with maven-plugin packaging and a single
mojo class named MyMojo in the project's default package. The MyMojo class
contains a touch goal which is bound to the process-resources phase, it creates a
file named touch.txt in the target/ directory of the new project when it is
executed. The new project will have a dependency on maven-plugin-api and JUnit.

Using Maven Archetypes

419

19.3.2. Notable Third-Party Archetypes
This section is going to give you a brief overview of some of the archetypes
available from third-parties not associated with the Apache Maven project. If you
are looking for a more comprehensive list of available archetypes, take a look at
the list of archetypes in m2eclipse. m2eclipse allows you to create a new Maven
project from an ever growing list of approximately 80 archetypes which span an
amazing number of projects and technologies. ??? contains a list of archetypes
which are immediately available to you when you use m2eclipse. The archetypes
listed in this section are available on the default list of archetypes generated by the
interactive execution of the generate goal.

19.3.2.1. AppFuse
AppFuse is an application framework developed by Matt Raible. You can think of
AppFuse as something of a Rosetta Stone for a few very popular Java technologies
like the Spring Framework, Hibernate, and iBatis. Using AppFuse you can very
quickly create an end-to-end multi-tiered application that can plugin into several
front-end web frameworks like Java Server Faces, Struts, and Tapestry. Starting
with AppFuse 2.0, Matt Raible has been transitioning the framework to Maven 2 to
take advantage of the dependency management and archetype capabilities.
AppFuse 2 provides the following archetypes all in the groupId
org.appfuse.archetypes:

appfuse-basic-jsf and appfuse-modular-jsf

End-to-end application using Java Server Faces in the presentation layer

appfuse-basic-spring and appfuse-modular-spring

End-to-end application using Spring MVC in the presentation layer

appfuse-basic-struts and appfuse-modular-struts

End-to-end application using Struts 2 in the presentation layer

appfuse-basic-tapestry and appfuse-modular-tapestry

End-to-end application using Tapestry in the presentation layer

Using Maven Archetypes

420

appfuse-core

Persistence and object model without the presentation layer
Archetypes following the appfuse-basic-* pattern are entire end-to-end
applications in a single Maven project, and archetypes following the
appfuse-modular-* pattern are end-to-end applications in a multimodule Maven
project which separates the core model objects and persistence logic from the web
front-end. Here's an example from generating a project to running a web
application for the modular Spring MVC application:

$ mvn archetype:generate \
-DarchetypeArtifactId=appfuse-modular-spring \
-DarchetypeGroupId=org.appfuse.archetypes \
-DgroupId=org.sonatype.mavenbook \
-DartifactId=mod-spring \
-Dversion=1.0-SNAPSHOT \
-DinteractiveMode=false[INFO] Scanning for projects...

...
[INFO] [archetype:generate]
[INFO] Generating project in Batch mode
[INFO] Archetype [org.appfuse.archetypes:appfuse-modular-spring:RELEASE] found in catalog internal
[INFO] --
[INFO] Using following parameters for creating OldArchetype: appfuse-modular-spring:RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/tmp
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: mod-spring
...
[INFO] OldArchetype created in dir: /Users/tobrien/tmp/mod-spring
[INFO] --
[INFO] BUILD SUCCESSFUL
$ cd mod-spring
$ mvn
... (an overwhelming amount of activity ~5 minutes)
$ cd web
$ mvn jetty:run-war
... (Maven Jetty plugin starts a Servlet Container on port 8080)

From generating a project with the AppFuse archetype to running a web
application with a authentication and user-management system takes all of 5
minutes. This is the real power of using a Maven Archetype as a foundation for a
new application. We oversimplified the AppFuse installation process a bit and left

Using Maven Archetypes

421

out the important part where you download and install a MySQL database, but
that's easy enough to figure out by reading the AppFuse Quickstart Documentation.

19.3.2.2. Confluence and JIRA plugins
Atlassian has created some archetypes for people interested in developing plugins
for both Confluence and JIRA. Confluence and JIRA are, respectively, a Wiki and
an issue tracker both of which have gained a large open source user base through
granting free licenses for open source projects. Both the jira-plugin-archetype

and the confluence-maven-archetype artifacts are under the
com.atlassian.maven.archetypes groupId. When you generate a Confluence plugin,
the archetype will generate a pom.xml which contains the necessary references to
the Atlassian repositories and a dependency on the confluence artifact. The
resulting Confluence plugin project will have a single example macro class and an
atlassian-plugin.xml descriptor. Generating a project from the Jira archetype
creates a project with a single, blank MyPlugin class and an atlassian-plugin.xml
descriptor in ${basedir}/src/main/resources.

fr more information about developing Confluence plugins with Maven 2, see
Developing Confluence Plugins with Maven 2 on the Confluence project's Wiki.
For more information about developing Jira plugins with Maven 2, see How to
Build and Atlassian Plugin on the Atlassian Developer Network.

19.3.2.3. Wicket
Apache Wicket is a component-oriented web framework which focused on
managing the server-side state of a number of components written in Java and
simple HTML. Where a framework like Spring MVC or Ruby on Rails focuses on
merging objects within a request with a series of page templates, Wicket is very
strongly focused on capturing interactions and page structure in a series of POJO
Java classes. In an age where hype-driven tech media outlets are proclaiming the
"Death of Java", Wicket is a contrarian approach to the design and assembly of
web applications. To generate a Wicket project with the Maven Archetype plugin:

$ mvn archetype:generate
... (select the "wicket-archetype-quickstart" artifact from the interactive menu) ...
... (supply a groupId, artifactId, version, package) ...
... (assuming the artifactId is "ex-wicket") ...

Using Maven Archetypes

422

http://appfuse.org/display/APF/AppFuse+QuickStart
http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin

$ cd ex-wicket
$ mvn install
... (a lot of Maven activity) ...
$ mvn jetty:run
... (Jetty will start listening on port 8080) ...

Just like the AppFuse archetype, this archetype creates a shell web application
which can be immediately executed with the Maven Jetty plugin. If you hit
http://localhost:8080/ex-wicket, you be able to see the newly created web
application in a servlet container.

Note
Think about the power of Maven Archetypes versus the copy and paste
approach that has characterized the last few years of web development.
Six years ago, without the benefit of something like the Maven
Archetype plugin, you would have had to slog through a book about
AppFuse or a book about Wicket and followed circuitous pedagogy about
the framework before you could actually fire it up in servlet container. It
was either that or just copying an existing project and customizing it for
your needs. With the Maven Archetype plugin, framework developers
can now give you a working, customized shell for an application in a
matter of minutes. This is a sea change that has yet to hit the enterprise
development space, and you can expect that this handful of available
third-party artifacts will balloon to hundreds within the next few years.

19.4. Publishing Archetypes
Once you've generated a good set of artifacts, you will probably want to share them
with the world. To do this, you'll need to create something called an Archetype
catalog. An Archetype catalog is an XML file which the Maven Archetype plugin
can consult to locate archetypes in a repository. Example 19.1, “Archetype Catalog
for the Apache Cocoon Project” shows the contents of the Archetype catalog for
the Apache Cocoon project which can be found at
http://cocoon.apache.org/archetype-catalog.xml.

Using Maven Archetypes

423

http://localhost:8080/ex-wicket
http://cocoon.apache.org/archetype-catalog.xml

Example 19.1. Archetype Catalog for the Apache Cocoon Project

<archetype-catalog>
<archetypes>

<archetype>
<groupId>org.apache.cocoon</groupId>
<artifactId>cocoon-22-archetype-block-plain</artifactId>
<version>1.0.0</version>
<description>Creates an empty Cocoon block; useful if you want to add another block to a Cocoon application</description>

</archetype>
<archetype>
<groupId>org.apache.cocoon</groupId>
<artifactId>cocoon-22-archetype-block</artifactId>
<version>1.0.0</version>
<description>Creates a Cocoon block containing some small samples</description>

</archetype>

<archetype>
<groupId>org.apache.cocoon</groupId>
<artifactId>cocoon-22-archetype-webapp</artifactId>
<version>1.0.0</version>
<description>Creates a web application configured to host Cocoon blocks. Just add the block dependencies</description>

</archetype>
</archetypes>

</archetype-catalog>

To generate such a catalog, you'll need crawl a Maven repository and generate this
catalog XML file. The Archetype plugin has a goal named crawl which does just
this, and it assumes that it has access to the file system that hosts a repository. If
you run archetype:crawl from the command line with no arguments, the Archetype
plugin will crawl your local repository searching for Archetypes and it will create
an archetype-catalog.xml in ~/.m2/repository.

[tobrien@MACBOOK repository]$ mvn archetype:crawl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:crawl] (aggregator-style)
[INFO] --
[INFO] [archetype:crawl]
repository /Users/tobrien/.m2/repository
catalogFile null
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.5/ant-1.5.jar
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.5.1/ant-1.5.1.jar
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.6/ant-1.6.jar

Using Maven Archetypes

424

[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.6.5/ant-1.6.5.jar
...
[INFO] Scanning /Users/tobrien/.m2/repository/xmlrpc/xmlrpc/1.2-b1/xmlrpc-1.2-b1.jar
[INFO] Scanning /Users/tobrien/.m2/repository/xom/xom/1.0/xom-1.0.jar
[INFO] Scanning /Users/tobrien/.m2/repository/xom/xom/1.0b3/xom-1.0b3.jar
[INFO] Scanning /Users/tobrien/.m2/repository/xpp3/xpp3_min/1.1.3.4.O/xpp3_min-1.1.3.4.O.jar
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 31 seconds
[INFO] Finished at: Sun Oct 12 16:06:07 CDT 2008
[INFO] Final Memory: 6M/12M
[INFO] --

If you are interested in creating an Archetype catalog it is usually because you are
an open source project or organization which has a set of archetypes to share.
These archetypes are likely already available in a repository, and you need to crawl
this repository and generate a catalog in a file system. In other words, you'll
probably want to scan a directory on an existing Maven repository and generate an
Archetype plugin at the root of the repository. To do this, you'll need to pass in the
catalog and repository parameters to the archetype:crawl goal.

The following command line assumes that you are trying to generate a catalog file
in /var/www/html/archetype-catalog.xml for a repository hosted in
/var/www/html/maven2.

$ mvn archetype:crawl -Dcatalog=/var/www/html/archetype-catalog.xml \
[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:crawl] (aggregator-style)
[INFO] --
[INFO] [archetype:crawl]
repository /Users/tobrien/tmp/maven2
catalogFile /Users/tobrien/tmp/blah.xml
[INFO] Scanning /Users/tobrien/tmp/maven2/com/discursive/cas/extend/cas-extend-client-java/2.1.1/cas-extend-client-java-2.1.1.jar
[INFO] Scanning /Users/tobrien/tmp/maven2/com/discursive/cas/extend/cas-extend-client-java/2.2/cas-extend-client-java-2.2.jar
-Drepository=/var/www/html/maven2
...

Using Maven Archetypes

425

Chapter 20. Developing with Flexmojos

20.1. Introduction
This chapter provides an overview of the Flexmojos project for people interested in
helping to develop and customize the plugin.

20.2. Configuring Build Environment for
Flexmojos
The Flexmojos build uses Maven, but before you attempt to compile with Maven,
you will need to configure you Maven settings to reference a repository which
contains the latest dependencies. To setup your Maven environment, you have two
options. You can install a simple ~/.m2/setting.xml file which references the
Sonatype public repository directly, or you can install Nexus and add the Sonatype
public repository as a proxy repository in your own repository manager. While the
most straightfoward option is to just drop the XML shown in section
Section 20.2.1, “Using Sonatype's Repository Directly” into a
~/.m2/settings.xml file, downloading and installing Nexus will give you the
control and flexibility you need to cache and manage artifacts generated by your
own build. If you are just interested in getting up and running with Flexmojos, read
section Section 20.2.1, “Using Sonatype's Repository Directly” next. If you are
interested in a long-term solution which can be deployed to support a development
team, continue to section Section 20.2.2, “Proxying Sonatype's Repository with
Nexus”.

If your organization is already using Sonatype Nexus to proxy remote repositories,
you probably already have a customized ~/.m2/settings.xml file which points to
a single Nexus group. If this is your situation, you should add a Proxy repository
for the Sonatype public repository group at
http://repository.sonatype.com/content/groups/public. Adding a proxy repository

426

http://repository.sonatype.com/content/groups/public

for this remote group and then adding this group to your Nexus installation's public
repository group will give clients of your Nexus instance access to the artifacts
from the Sonatype repository.sonatype.com Nexus instance.

20.2.1. Using Sonatype's Repository Directly
Before you run Maven against Flexmojos, you need to configure you
~/.m2/settings.xml to contain the following XML:

Example 20.1. Settings XML for Sonatype Repository

<settings>
<mirrors>

<mirror>
<!--This sends everything else to /public -->
<id>nexus</id>
<mirrorOf>*</mirrorOf>
<url>http://repository.sonatype.org/content/groups/public</url>

</mirror>
</mirrors>
<profiles>

<profile>
<id>nexus</id>
<!—-Enable snapshots for the built in central repo to direct -->
<!--all requests to nexus via the mirror -->
<repositories>

<repository>
<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</pluginRepository>
</pluginRepositories>

</profile>
</profiles>
<activeProfiles>

<!—-make the profile active all the time -->
<activeProfile>nexus</activeProfile>

</activeProfiles>
</settings>

Developing with Flexmojos

427

Note
We suggest that you place the contents of Example 20.1, “Settings XML
for Sonatype Repository” in you ~/.m2/settings.xml because it is the
default location for Maven Settings. But, if you have already customized
your ~/.m2/settings.xml you can also put the the contents of this file in
another settings file such as ~/.m2/sonatype-settings.xml. If you do
this, you just have to rememebr to specify the location of the settings file
on every Maven command line. For example, mvn install would become
mvn -s ~/.m2/sonatype-settings.xml install.

The XML shown in Example 20.1, “Settings XML for Sonatype Repository”, will
configure Maven to retrieve all artifacts from the Sonatype Nexus installation
which is available at http://repository.sonatype.org. This Nexus installation
provides a public group which combines a number of different repositories into a
single repository group. Instead of configuring your clients to retrieve artifacts
from several different repositories, the Sonatype Nexus repository manager allows
you centralizing clients to one point-of-contact: a single Nexus repository group.
Builds with use the Flexmojos plugin rely on Flex artifacts which are not yet
available from standard repositories like the Central Maven Repository. Pointing
your build at the Sonatype repository allows you to retrieve the necessary libraries,
SWFs, and SWCs which are required when building Flex applications.

20.2.2. Proxying Sonatype's Repository with Nexus
Instead of pointing directly at the Sonatype public repository, Sonatype
recommends that you install a repository manager and proxy the Sonatye public
repository. When you proxy a remote repository with a repository manager such as
Nexus, you gain a level of control and stability not possible when your build relies
directly on external resources. In addition to this control and stability, a repository
manager also provides you with an deployment target for binary artifacts generated
by your own builds. For instructions on downloading, installing, and configuring

Developing with Flexmojos

428

http://repository.sonatype.org

Nexus, refer to the Installation chapter in Repository Management with Nexus.
Once Nexus is installed and started, complete the following steps to add a proxy
repository for the Sonatype public repository.

To add a new proxy repository, click on the Repositories link under
Views/Repositories in the Nexus menu on the left-hand side of the Nexus user
interface. Clicking on Repositories will load the Repositories panel. In the
Repositories panel, click on the Add.. button and select Proxy Repository as shown
in Figure 20.1, “Adding a Proxy Repository to Sonatype Nexus”.

Figure 20.1. Adding a Proxy Repository to Sonatype Nexus

Once you've created a new Proxy repository, you will need to configure it to point
to the Sonatype public repository. Select the new repository, and then select the
Configuration tab in the lower half of the window. Populate the following field
with the values shown in Figure 20.2, “Configuring the Sonatype Public Proxy
Repository”.

• Repository ID is "sonatype-public"

• Repository Name is "Sonatype Public Proxy"

Developing with Flexmojos

429

http://www.sonatype.com/books/nexus-book/reference/install.html

• The Remore Storage Location is
http://repository.sonatype.org/content/groups/public

Figure 20.2. Configuring the Sonatype Public Proxy Repository

Once you have populated the fields shown in Figure 20.2, “Configuring the
Sonatype Public Proxy Repository” click the Save button to save the proxy
repository and start proxying the Sonatype public repository. Nexus ships with a
public repository group, which combines several repositories into a single
point-of-contact for Maven clients. To complete our setup of the new proxy

Developing with Flexmojos

430

http://repository.sonatype.org/content/groups/public

repository, you should add this new proxy repository to the Nexus public group. To
do this, return to the list of repositories which should now be visible in the upper
half of the Repositories panel as shown in Figure 20.2, “Configuring the Sonatype
Public Proxy Repository”. Click on the Public Repositories group and then click on
the Configuration tab in the lower half of the Repository panel. Clicking the
Configuration tab will expose the Group configuration form shown in Figure 20.3,
“Adding the Sonatype Public Proxy to the Public Repositories Group”.

Figure 20.3. Adding the Sonatype Public Proxy to the Public Repositories
Group

Developing with Flexmojos

431

To add the Sonatype Public Proxy to the Public Repositories group simply drag
and drop the Sonatype Public Proxy repository from the Available Repositories list
to the Ordered Group Repositories list. Click Save, and you have successfully
added a proxy of the Sonatype public repository to your Nexus installation.
Whenever a client requests an artifact from this repository group, if Nexus has not
already cached a matching artifact, it will query the Sonatype public repository at
http://repository.sonatype.org/content/groups/public. Your Nexus installation will
maintain a local cache of all artifacts retrieved from the Sonatype repository. This
local cache gives you more control and contributes to a more stable build
environment. If you are setting up a group of developers to rely upon artifacts from
the Sonatype public repository, you'll have a completely self-contained build
environment that won't be subject to the availability of the Sonatype repository.

The final step to connecting your Maven installation to the Nexus instance you just
configured is to update your Maven Settings to use your Nexus repository group as
a mirror for all repositories. To do this, you need to put the following XML in your
~/.m2/settings.xml file.

Example 20.2. Settings XML for Local Nexus Instance

<settings>
<mirrors>

<mirror>
<!--This sends everything else to /public -->
<id>nexus</id>
<mirrorOf>*</mirrorOf>
<url>http://localhost:8081/nexus/content/groups/public</url>

</mirror>
</mirrors>
<profiles>

<profile>
<id>nexus</id>
<!—-Enable snapshots for the built in central repo to direct -->
<!--all requests to nexus via the mirror -->
<repositories>

<repository>
<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>

Developing with Flexmojos

432

http://repository.sonatype.org/content/groups/public

<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</pluginRepository>
</pluginRepositories>

</profile>
</profiles>
<activeProfiles>

<!—-make the profile active all the time -->
<activeProfile>nexus</activeProfile>

</activeProfiles>
</settings>

This XML file configures Maven to consult a single public repository group for all
configured repositories and plugin repositories. It is a simple way to guarantee that
every request for an artifact is made through your Nexus installation.

Note
The only difference between Example 20.2, “Settings XML for Local
Nexus Instance” and Example 20.1, “Settings XML for Sonatype
Repository” is the settings/mirrors/mirror/url element. The first example
addresses the Sonatype public repository directly which the second
example references a public group on a Nexus instance you maintain.
You use Nexus because it allows you to control the repositories and
artifacts that are used in your build system. You can think of Nexus as
something of a firewall or a centralized point-of-contact between your
builds and the external environment.

20.3. Creating a Flex Mojos Project
Flexmojos has a set of archetypes which can be used to quickly create a new Flex
project. The following archetypes are all in the org.sonatype.flexmojos group with
a version of 3.1.0:

flexmojos-archetypes-library

Developing with Flexmojos

433

Creates a simple Flex Library project which produces a SWC

flexmojos-archetypes-application
Creates a simple Flex Application with produces a SWF

flexmojos-archetypes-modular-webapp
Creates a Multimodule project which consists of a project that produces a SWC
which is consumed by a project which produces a SWF that is ultimately
presented in a project that generates a WAR

20.3.1. Creating a Flex Library
To create a Flex Library Project, execute the following command at the
command-line:

$ mvn archetype:generate \
-DarchetypeRepository=http://repository.sonatype.org/content/groups/public \
-DarchetypeGroupId=org.sonatype.flexmojos \
-DarchetypeArtifactId=flexmojos-archetypes-library \
-DarchetypeVersion=3.1.0

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-library
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
Y: : Y
[INFO] --
[INFO] Using following parameters for creating OldArchetype: flexmojos-archetypes-library:3.1.0
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-library

Developing with Flexmojos

434

[INFO] --
[INFO] BUILD SUCCESSFUL

If you look in the directory sample-library/ you will see that the project consists of
the directory structure shown in Figure 20.4, “Flexmojo Library Archetype File
Structure”.

Figure 20.4. Flexmojo Library Archetype File Structure

The product of the simple Flex library archetype only contains three files: a POM,
one source, and a unit test. Let's examine each of these files. First, the Project
Object Model (POM).

Example 20.3. Project Object Model for Flex Library Archetype

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

Developing with Flexmojos

435

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.sonatype.flexmojos</groupId>
<artifactId>flexmojos-flex-super-pom</artifactId>
<version>3.1.0</version>

</parent>

<groupId>org.sonatype.test</groupId>
<artifactId>sample-library</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>swc</packaging>

<name>sample-library Flex</name>

<build>
<!-- this is a workaround due to archetype plugin problems. Can be removed! -->
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>

</build>

</project>

Example 20.3, “Project Object Model for Flex Library Archetype” is very simple,
but this simplicity masks the complexity that Maven manages by allowing this
POM to inherit dependencies and plugin definitions from the parent POM. If you
look at the parent element in Example 20.3, “Project Object Model for Flex
Library Archetype”, you will notice that it references flexmojos-flex-super-pom,
this parent POm adds the dependencies on the flex framework and the flexmojos
unit testing support components. If you are interested in seeing some of these
dependencies, run mvn help:effective-pom. Running this command will ask Maven
to merge this POM with every parent POM it inherits to show you the effective
end-product of that merge between parent and child.

In Example 20.3, “Project Object Model for Flex Library Archetype”, the parent
element is critical and the packaging is very critical. A POMs packaging type
controls the lifecycle it uses to produce build output. The value swc in the
packaging element is Maven's cue to look for the Flex-specific lifecycle
customizations which are provided by the flexmojos-maven-plugin. The other
important part of this POM is the build element which specifies the location of the
Flex source code and the Flex unit tests. Next, let's take a quick look at
Example 20.4, “Flex Library Archetype's Sample App Cliass” which contains the

Developing with Flexmojos

436

sample Actionscript which was created by this archetype.

Example 20.4. Flex Library Archetype's Sample App Cliass

package org.sonatype.test {
public class App {

public static function greeting(name:String):String {
return "Hello, " + name;

}
}

}

While this code is underwhelming, it does provide you with a quick model and a
quick pointer: "Place More Code Here". While it might seem silly to test code this
simple, a sample test named TestApp.as is provides in the src/test/flex

directory. This test is shown in Example 20.5, “Unit Test for Library Archetype's
App Class”.

Example 20.5. Unit Test for Library Archetype's App Class

package org.sonatype.test {

import flexunit.framework.TestCase;

public class TestApp extends TestCase {

/**
* Tests our greeting() method
*/
public function testGreeting():void {
var name:String = "Buck Rogers";
var expectedGreeting:String = "Hello, Buck Rogers";

var result:String = App.greeting(name);
assertEquals("Greeting is incorrect", expectedGreeting, result);

}
}

}

To run this build, go to the sample-library project directory and run mvn install.

$ mvn install
[INFO] Scanning for projects...
[INFO] --

Developing with Flexmojos

437

[INFO] Building sample-library Flex
[INFO] task-segment: [install]
[INFO] --
[INFO] [resources:resources]
[INFO] [flexmojos:compile-swc]
[INFO] flexmojos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file
[WARNING] Nothing expecified to include. Assuming source and resources folders.
[INFO] Flex compiler configurations:
-compiler.headless-server=false
-compiler.keep-all-type-selectors=false
-compiler.keep-generated-actionscript=false
-compiler.library-path ~/.m2/repository/com/adobe/flex/framework/flex/3.2.0.3958...
-compiler.namespaces.namespace http://www.adobe.com/2006/mxml target/classes/configs/mxml-manifest.xml
-compiler.optimize=true
-compiler.source-path src/main/flex
...
[INFO] [resources:testResources]
[WARNING] Using platform encoding (MacRoman actually) to copy filtered resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory src/test/resources
[INFO] [flexmojos:test-compile]
[INFO] flexmojos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file
[INFO] Flex compiler configurations:
-compiler.include-libraries ~/.m2/repository/org/sonatype/flexmojos/flexmojos-unittest-support...
-compiler.keep-generated-actionscript=false
-compiler.library-path ~/.m2/repository/com/adobe/flex/framework/flex/3.2.0.3958/flex-3.2.0....
-compiler.optimize=true
-compiler.source-path src/main/flex target/test-classes src/test/flex
-compiler.strict=true
-target-player 9.0.0
-use-network=true
-verify-digests=true -load-config=
[INFO] Already trust on target/test-classes/TestRunner.swf
[INFO] [flexmojos:test-run]
[INFO] flexmojos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file
[INFO] flexunit setup args: null
[INFO] --
[INFO] Tests run: 1, Failures: 0, Errors: 0, Time Elpased: 0 sec
[INFO] [install:install]

When you ran mvn install on this project, you should notice in the output that
Maven and Flexmojos plugin is take care of managing all of the libraries and the
dependencies for the Flex compiler. Much like Maven excels at helping Java
developers manage the contents of a Java classpath, Maven can help Flex
developers manage the complex of compile paths. You also might have been
shocked when the Flexmojos project started a web browser or the Flash Player and
used it to execute the TestApp.as class against the project's source code.

Developing with Flexmojos

438

20.3.2. Creating a Flex Application
To create a Flex application from a Maven archetype, execute the following
command:

$ mvn archetype:generate \
-DarchetypeRepository=http://repository.sonatype.com/content/groups/public \
-DarchetypeGroupId=org.sonatype.flexmojos \
-DarchetypeArtifactId=flexmojos-archetypes-application \
-DarchetypeVersion=3.1.0

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-application
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
Y: : Y
[INFO] --
[INFO] Using following parameters for creating OldArchetype: flexmojos-archetypes-application:3.1.0
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim/flex-sample
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-application
[INFO] BUILD SUCCESSFUL

If you look in the directory sample-application/ you will see the filesystem shown
in Figure 20.5, “Directory Structure for Flex Application Archetype”.

Developing with Flexmojos

439

Figure 20.5. Directory Structure for Flex Application Archetype

Building an application from the Application archetype produces the following
POM.

Example 20.6. POM for Flex Application Archetype

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.sonatype.flexmojos</groupId>
<artifactId>flexmojos-flex-super-pom</artifactId>
<version>3.1.0</version>

</parent>

<groupId>org.sonatype.test</groupId>
<artifactId>sample-application</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>swf</packaging>

<name>sample-application Flex</name>

Developing with Flexmojos

440

<build>
<!-- this is a workaround due to archetype plugin problems. Can be removed! -->
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>

</build>

</project>

The sample Main.mxml application is in src/main/flex.

Example 20.7. Sample Application Main.mxml

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">
<mx:Text text="Hello World!"/>

</mx:Application>

And, the sample unit test is in src/test/flex/org/sonatype/test.

Example 20.8. Unit Test for Main.mxml

package org.sonatype.test
{

import flexunit.framework.TestCase;
import Main;

public class TestApp extends TestCase
{

public function testNothing():void
{

//TODO un implemented
trace("Hello test");

}
}

}

20.3.3. Creating a Multi-module Project: Web
Application with a Flex Dependency

Developing with Flexmojos

441

To create a multi-module project consisting of a Flex Library project referenced by
a Flex Application, referenced by a Web Application.

$ mvn archetype:generate \
-DarchetypeRepository=http://repository.sonatype.org/content/groups/public \
-DarchetypeGroupId=org.sonatype.flexmojos \
-DarchetypeArtifactId=flexmojos-archetypes-modular-webapp \
-DarchetypeVersion=3.1.0

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-multimodule
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
Y: : Y
[INFO] --
[INFO] Using following parameters for creating OldArchetype: flexmojos-archetypes-modular-webapp:3.1.0
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-multimodule
[INFO] --
[INFO] BUILD SUCCESSFUL

If you look in the sample-multimodule/ directory, you will see a directory structure
which contains three projects swc, swf, and war.

Developing with Flexmojos

442

Figure 20.6. Directory Structure for Flex Multimodule Archetype

20.4. Developing and Customizing Flexmojos
The following sections guide you through some of first steps toward customizing
or contributing to the Flexmojos project. Flexmojos is more than just a tool for
people who are interested in compiling Actionscript into SWF and SWC artifacts,
it is a community of developers. This section isn't for everyone, but, if you have an
itch to scratch and you wish to participate, come on in.

20.4.1. Get the Flexmojos Source Code
Flexmojos is an open source project hosted on the Sonatype Forge, and the source
code for Flexmojos is stored in the Sonatype Forge Subversion repository. You can
browse the contents of the Flexmojos Subversion repository by opening

Developing with Flexmojos

443

http://svn.sonatype.org/flexmojos/trunk in a web browser.

Figure 20.7. Flexmojos Subversion Repository

If you are interested in participating in the Flexmojos project, you will likely want
to checkout the current Flexmojos source code to your local machine. To checkout
the Flexmojos source using Subversion, execute the followings command at the
command line:

$ svn co http://svn.sonatype.org/flexmojos/trunk flexmojos
A flexmojos
...
$ ls
COPYRIGHT flexmojos-sandbox pom.xml
flexmojos-archetypes flexmojos-super-poms src
flexmojos-maven-plugin flexmojos-testing
flexmojos-parent flexmojos-touchstone

Developing with Flexmojos

444

http://svn.sonatype.org/flexmojos/trunk

Appendix A. Appendix: Settings Details

A.1. Quick Overview
The settings element in the settings.xml file contains elements used to define
values which configure Maven execution. Settings in this file are settings which
apply to many projects and which should not be bundled to any specific project, or
distributed to an audience. These include values such as the local repository
location, alternate remote repository servers, and authentication information. There
are two locations where a settings.xml file may live:

• Maven Installation Directory: $M2_HOME/conf/settings.xml

• User-specific Settings File: ~/.m2/settings.xml
Here is an overview of the top elements under settings:

Example A.1. Overview of top-level elements in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<usePluginRegistry/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors/>
<proxies/>
<profiles/>
<activeProfiles/>

</settings>

A.2. Settings Details
445

A.2.1. Simple Values
Half of the top-level settings elements are simple values, representing a range of
values which configure the core behavior of Maven:

Example A.2. Simple top-level elements in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository>${user.dir}/.m2/repository</localRepository>
<interactiveMode>true</interactiveMode>
<usePluginRegistry>false</usePluginRegistry>
<offline>false</offline>
<pluginGroups>

<pluginGroup>org.codehaus.mojo</pluginGroup>
</pluginGroups>
...

</settings>

The simple top-level elements are:

localRepository
This value is the path of this build system's local repository. The default value
is ${user.dir}/.m2/repository.

interactiveMode
true if Maven should attempt to interact with the user for input, false if not.
Defaults to true.

usePluginRegistry
true if Maven should use the ${user.dir}/.m2/plugin-registry.xml file to
manage plugin versions, defaults to false.

offline
true if this build system should operate in offline mode, defaults to false. This
element is useful for build servers which cannot connect to a remote repository,

Appendix: Settings Details

446

either because of network setup or security reasons

pluginGroups
This element contains a list of pluginGroup elements, each contains a groupId.
The list is searched when a plugin is used and the groupId is not provided in the
command line. This list contains org.apache.maven.plugins by default.

A.2.2. Servers
The distributionManagement element of the POM defines the repositories for
deployment. However, certain settings such as security credentials should not be
distributed along with the pom.xml. This type of information should exist on the
build server in the settings.xml.

Example A.3. Server configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<servers>

<server>
<id>server001</id>
<username>my_login</username>
<password>my_password</password>
<privateKey>${user.home}/.ssh/id_dsa</privateKey>
<passphrase>some_passphrase</passphrase>
<filePermissions>664</filePermissions>
<directoryPermissions>775</directoryPermissions>
<configuration></configuration>

</server>
</servers>
...

</settings>

The elements under server are:

id
This is the id of the server (not of the user to login as) that matches the

Appendix: Settings Details

447

distributionManagement repository element's id.

username, password
These elements appear as a pair denoting the login and password required to
authenticate to this server.

privateKey, passphrase
Like the previous two elements, this pair specifies a path to a private key
(default is ${user.home}/.ssh/id_dsa) and a passphrase, if required. The
passphrase and password elements may be externalized in the future, but for
now they must be set plain-text in the settings.xml file.

filePermissions, directoryPermissions
When a repository file or directory is created on deployment, these are the
permissions to use. The legal values of each is a three digit number
corresponding to *nix file permissions, i.e. 664, or 775.

A.2.3. Mirrors

Example A.4. Mirror configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<mirrors>

<mirror>
<id>planetmirror.com</id>
<name>PlanetMirror Australia</name>
<url>http://downloads.planetmirror.com/pub/maven2</url>
<mirrorOf>central</mirrorOf>

</mirror>
</mirrors>
...

</settings>

id, name

Appendix: Settings Details

448

The unique identifier of this mirror. The id is used to differentiate between
mirror elements.

url
The base URL of this mirror. The build system will use prepend this URL to
connect to a repository rather than the default server URL.

mirrorOf
The id of the server that this is a mirror of. For example, to point to a mirror of
the Maven central server (http://repo1.maven.org/maven2), set this element to
central. This must not match the mirror id.

A.2.4. Proxies

Example A.5. Proxy configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<proxies>

<proxy>
<id>myproxy</id>
<active>true</active>
<protocol>http</protocol>
<host>proxy.somewhere.com</host>
<port>8080</port>
<username>proxyuser</username>
<password>somepassword</password>
<nonProxyHosts>*.google.com|ibiblio.org</nonProxyHosts>

</proxy>
</proxies>
...

</settings>

id
The unique identifier for this proxy. This is used to differentiate between proxy
elements.

Appendix: Settings Details

449

http://repo1.maven.org/maven2

active
true if this proxy is active. This is useful for declaring a set of proxies, but only
one may be active at a time.

protocol, host, port
The protocol://host:port of the proxy, separated into discrete elements.

username, password
These elements appear as a pair denoting the login and password required to
authenticate to this proxy server.

nonProxyHosts
This is a list of hosts which should not be proxied. The delimiter of the list is
the expected type of the proxy server; the example above is pipe delimited -
comma delimited is also common.

A.2.5. Profiles
The profile element in the settings.xml is a truncated version of the pom.xml

profile element. It consists of the activation, repositories,
pluginRepositories and properties elements. The profile elements only include
these four elements because they concern themselves with the build system as a
whole (which is the role of the settings.xml file), not about individual project
object model settings.

If a profile is active from settings, its values will override any equivalent profiles
which matching identifiers in a POM or profiles.xml file.

A.2.6. Activation
Activations are the key of a profile. Like the POM's profiles, the power of a profile
comes from its ability to modify some values only under certain circumstances;
those circumstances are specified via an activation element.

Appendix: Settings Details

450

Example A.6. Defining Activation Parameters in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<profiles>

<profile>
<id>test</id>
<activation>

<activeByDefault>false</activeByDefault>
<jdk>1.5</jdk>
<os>

<name>Windows XP</name>
<family>Windows</family>
<arch>x86</arch>
<version>5.1.2600</version>

</os>
<property>

<name>mavenVersion</name>
<value>2.0.3</value>

</property>
<file>

<exists>${basedir}/file2.properties</exists>
<missing>${basedir}/file1.properties</missing>

</file>
</activation>
...

</profile>
</profiles>
...

</settings>

Activation occurs when all specified criteria have been met, though not all are
required at once.

jdk
activation has a built in, Java-centric check in the jdk element. This will activate
if the test is run under a jdk version number that matches the prefix given. In the
above example, 1.5.0_06 will match.

os
The os element can define some operating system specific properties shown

Appendix: Settings Details

451

above.

property
The profile will activate if Maven detects a property (a value which can be
dereferenced within the POM by ${name}) of the corresponding name=value
pair.

file
Finally, a given filename may activate the profile by the existence of a file, or if
it is missing.

The activation element is not the only way that a profile may be activated. The
settings.xml file's activeProfile element may contain the profile's id. They
may also be activated explicitly through the command line via a comma separated
list after the P flag (e.g. -P test).

To see which profile will activate in a certain build, use the maven-help-plugin.

mvn help:active-profiles

A.2.7. Properties
Maven properties are value placeholder, like properties in Ant. Their values are
accessible anywhere within a POM by using the notation ${X}, where X is the
property. They come in five different styles, all accessible from the settings.xml
file:

env.X

Prefixing a variable with env. will return the shell’s environment variable. For
example, ${env.PATH} contains the $path environment variable. (%PATH% in
Windows.)

project.x

A dot-notated (.) path in the POM will contain the corresponding elements
value.

settings.x

Appendix: Settings Details

452

A dot-notated (.) path in the settings.xml will contain the corresponding
elements value.

Java system properties
All properties accessible via java.lang.System.getProperties() are
available as POM properties, such as ${java.home}.

x

Set within a properties element or an external file, the value may be used as
${someVar}.

Example A.7. Setting the ${user.install} property in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<profiles>

<profile>
...
<properties>

<user.install>${user.dir}/our-project</user.install>
</properties>
...

</profile>
</profiles>
...

</settings>

The property ${user.install} is accessible from a POM if this profile is active.

A.2.8. Repositories
Repositories are remote collections of projects from which Maven uses to populate
the local repository of the build system. It is from this local repository that Maven
calls it plugins and dependencies. Different remote repositories may contain
different projects, and under the active profile they may be searched for a matching
release or snapshot artifact.

Appendix: Settings Details

453

Example A.8. Repository Configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<profiles>

<profile>
...
<repositories>

<repository>
<id>codehausSnapshots</id>
<name>Codehaus Snapshots</name>
<releases>
<enabled>false</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>

</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
<checksumPolicy>fail</checksumPolicy>

</snapshots>
<url>http://snapshots.maven.codehaus.org/maven2</url>
<layout>default</layout>

</repository>
</repositories>
<pluginRepositories>

...
</pluginRepositories>
...

</profile>
</profiles>
...

</settings>

releases, snapshots
These are the policies for each type of artifact, Release or snapshot. With these
two sets, a POM has the power to alter the policies for each type independent of
the other within a single repository. For example, one may decide to enable
only snapshot downloads, possibly for development purposes.

enabled

Appendix: Settings Details

454

true or false for whether this repository is enabled for the respective type
(releases or snapshots).

updatePolicy
This element specifies how often updates should attempt to occur. Maven will
compare the local POMs timestamp to the remote. The choices are: always,
daily (default), interval:X (where X is an integer in minutes) or never.

checksumPolicy
When Maven deploys files to the repository, it also deploys corresponding
checksum files. Your options are to ignore, fail, or warn on missing or
incorrect checksums.

layout
In the above description of repositories, it was mentioned that they all follow a
common layout. This is mostly correct. Maven 2 has a default layout for its
repositories; however, Maven 1.x had a different layout. Use this element to
specify which if it is default or legacy. If you are upgrading from Maven 1 to
Maven 2, and you want to use the same repository which was used in your
Maven 1 build, list the layout as legacy.

A.2.9. Plugin Repositories
The structure of the pluginRepositories element block is similar to the
repositories element. The pluginRepository elements each specify a remote
location of where Maven can find plugins artifacts.

Example A.9. Plugin Repositories in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<profiles>

<profile>
...
<repositories>

...

Appendix: Settings Details

455

</repositories>
<pluginRepositories>

<pluginRepository>
<id>codehausSnapshots</id>
<name>Codehaus Snapshots</name>
<releases>
<enabled>false</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>

</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
<checksumPolicy>fail</checksumPolicy>

</snapshots>
<url>http://snapshots.maven.codehaus.org/maven2</url>
<layout>default</layout>

</pluginRepository>
</pluginRepositories>
...

</profile>
</profiles>
...

</settings>

A.2.10. Active Profiles

Example A.10. Setting active profiles in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<activeProfiles>

<activeProfile>env-test</activeProfile>
</activeProfiles>

</settings>

The final piece of the settings.xml puzzle is the activeProfiles element. This
contains a set of activeProfile elements, which each have a value of a profile id.
Any profile id defined as an activeProfile will be active, regardless of any
environment settings. If no matching profile is found nothing will happen. For

Appendix: Settings Details

456

example, if env-test is an activeProfile, a profile in a pom.xml (or
profile.xml with a corresponding id it will be active. If no such profile is found
then execution will continue as normal.

Appendix: Settings Details

457

Appendix B. Appendix: Sun Specification
Alternatives
The Apache Geronimo project maintains implementations of various enterprise
Java specifications. Table B.1, “Alternate Spec Implementations Artifacts” lists the
artifactId and artifact version for all of the specifications implemented by the
Geronimo project. To use one of these dependencies, use a groupId of
org.apache.geronimo.specs, locate the version of the Specification you want to
use and reference the dependency with the Artifact Id and Artifact Version listed in
Table B.1, “Alternate Spec Implementations Artifacts”.

Note
All artifacts in Table B.1, “Alternate Spec Implementations Artifacts”,
have a groupId of org.apache.geronimo.specs.

Table B.1. Alternate Spec Implementations Artifacts

Specification Spec
Version

Artifact Id Artifact
Version

Activation 1.0.2 geronimo-activation_1.0.2_spec 1.2

Activation 1.1 geronimo-activation_1.1_spec 1.0.1

Activation 1.0 geronimo-activation_1.0_spec 1.1

CommonJ 1.1 geronimo-commonj_1.1_spec 1.0

Corba 2.3 geronimo-corba_2.3_spec 1.1

Corba 3.0 geronimo-corba_3.0_spec 1.2

EJB 2.1 geronimo-ejb_2.1_spec 1.1

EJB 3.0 geronimo-ejb_3.0_spec 1.0

EL 1.0 geronimo-el_1.0_spec 1.0

458

Specification Spec
Version

Artifact Id Artifact
Version

Interceptor 3.0 geronimo-interceptor_3.0_spec 1.0

J2EE Connector 1.5 geronimo-j2ee-connector_1.5_spec 1.1.1

J2EE Deployment 1.1 geronimo-j2ee-deployment_1.1_spec 1.1

J2EE JACC 1.0 geronimo-j2ee-jacc_1.0_spec 1.1.1

J2EE Management 1.0 geronimo-j2ee-management_1.0_spec 1.1

J2EE Management 1.1 geronimo-j2ee-management_1.1_spec 1.0

J2EE 1.4 geronimo-j2ee_1.4_spec 1.1

JACC 1.1 geronimo-jacc_1.1_spec 1.0

JEE Deployment 1.1MR3geronimo-javaee-deployment_1.1MR3_spec 1.0

JavaMail 1.3.1 geronimo-javamail_1.3.1_spec 1.3

JavaMail 1.4 geronimo-javamail_1.4_spec 1.2

JAXR 1.0 geronimo-jaxr_1.0_spec 1.1

JAXRPC 1.1 geronimo-jaxrpc_1.1_spec 1.1

JMS 1.1 geronimo-jms_1.1_spec 1.1

JPA 3.0 geronimo-jpa_3.0_spec 1.1

JSP 2.0 geronimo-jsp_2.0_spec 1.1

JSP 2.1 geronimo-jsp_2.1_spec 1.0

JTA 1.0.1B geronimo-jta_1.0.1B_spec 1.1.1

JTA 1.1 geronimo-jta_1.1_spec 1.1

QName 1.1 geronimo-qname_1.1_spec 1.1

SAAJ 1.1 geronimo-saaj_1.1_spec 1.1

Servlet 2.4 geronimo-servlet_2.4_spec 1.1.1

Appendix: Sun Specification Alternatives

459

Specification Spec
Version

Artifact Id Artifact
Version

Servlet 2.5 geronimo-servlet_2.5_spec 1.1.1

STaX API 1.0 geronimo-stax-api_1.0_spec 1.0.1

WS Metadata 2.0 geronimo-ws-metadata_2.0_spec 1.1.1

Note
The version numbers in the Artifact Version column may be out of date
by the time you read this book. To check on the version number, visit
http://repo1.maven.org/maven2/org/apache/geronimo/specs/ in a web
browser, and click on the artifactId you want to add. Choose the highest
version of the spec you want to depend upon.

To illustrate how one would use Table B.1, “Alternate Spec Implementations
Artifacts”, if we wanted to write some code in our project which interacted with
the JTA 1.0.1B specification, we would need to add the following dependency to
our project:

Example B.1. Adding JTA 1.0.1B to a Maven Project

<dependency>
<groupId>org.apache.geronimo.specs</groupId>
<artifactId>geronimo-jta_1.0.1B_spec</artifactId>
<version>1.1.1</version>

</dependency>

Notice how the version of the artifact isn't going to line up with the version of the
specification—the previous dependency configuration adds version 1.0.1B of the
JTA specification using the artifact version of 1.1.1. Be aware of this when
depending on the alternate Geronimo implementations, and always double check
that you are using the latest artifact version number for your specifications.

Appendix: Sun Specification Alternatives

460

http://repo1.maven.org/maven2/org/apache/geronimo/specs/

	Maven: The Definitive Guide
	Table of Contents
	Copyright
	1. Creative Commons BY-ND-NC

	Foreword: 0.3
	Preface
	1. How to Use this Book
	2. Your Feedback
	3. Font Conventions
	4. Maven Writing Conventions
	5. Acknowledgements

	Chapter 1. Introducing Apache Maven
	1.1. Maven... What is it?
	1.2. Convention Over Configuration
	1.3. A Common Interface
	1.4. Universal Reuse through Maven Plugins
	1.5. Conceptual Model of a "Project"
	1.6. Is Maven an alternative to XYZ?
	1.7. Comparing Maven with Ant
	1.8. Summary

	Chapter 2. Installing and Running Maven
	2.1. Verify your Java Installation
	2.2. Downloading Maven
	2.3. Installing Maven
	2.3.1. Installing Maven on Mac OSX
	2.3.1.1. Installing Maven on OSX using MacPorts

	2.3.2. Installing Maven on Microsoft Windows
	2.3.3. Installing Maven on Linux
	2.3.4. Installing Maven on FreeBSD or OpenBSD

	2.4. Testing a Maven Installation
	2.5. Maven Installation Details
	2.5.1. User-specific Configuration and Repository
	2.5.2. Upgrading a Maven Installation
	2.5.3. Upgrading from Maven 1.x to Maven 2.x

	2.6. Uninstalling Maven
	2.7. Getting Help with Maven
	2.8. Using the Maven Help Plugin
	2.8.1. Describing a Maven Plugin

	2.9. About the Apache Software License

	Part I. Maven by Example
	Chapter 3. A Simple Maven Project
	3.1. Introduction
	3.1.1. Downloading this Chapter's Example

	3.2. Creating a Simple Project
	3.3. Building a Simple Project
	3.4. Simple Project Object Model
	3.5. Core Concepts
	3.5.1. Maven Plugins and Goals
	3.5.2. Maven Lifecycle
	3.5.3. Maven Coordinates
	3.5.4. Maven Repositories
	3.5.5. Maven's Dependency Management
	3.5.6. Site Generation and Reporting

	3.6. Summary

	Chapter 4. Customizing a Maven Project
	4.1. Introduction
	4.1.1. Downloading this Chapter's Example

	4.2. Defining the Simple Weather Project
	4.2.1. Yahoo! Weather RSS

	4.3. Creating the Simple Weather Project
	4.4. Customize Project Information
	4.5. Add New Dependencies
	4.6. Simple Weather Source Code
	4.7. Add Resources
	4.8. Running the Simple Weather Program
	4.8.1. The Maven Exec Plugin
	4.8.2. Exploring Your Project Dependencies

	4.9. Writing Unit Tests
	4.10. Adding Test-scoped Dependencies
	4.11. Adding Unit Test Resources
	4.12. Executing Unit Tests
	4.12.1. Ignoring Test Failures
	4.12.2. Skipping Unit Tests

	4.13. Building a Packaged Command Line Application
	4.13.1. Attaching the Assembly Goal to the Package Phase

	Chapter 5. A Simple Web Application
	5.1. Introduction
	5.1.1. Downloading this Chapter's Example

	5.2. Defining the Simple Web Application
	5.3. Creating the Simple Web Project
	5.4. Configuring the Jetty Plugin
	5.5. Adding a Simple Servlet
	5.6. Adding J2EE Dependencies
	5.7. Conclusion

	Chapter 6. A Multi-module Project
	6.1. Introduction
	6.1.1. Downloading this Chapter's Example

	6.2. The Simple Parent Project
	6.3. The Simple Weather Module
	6.4. The Simple Web Application Module
	6.5. Building the Multimodule Project
	6.6. Running the Web Application

	Chapter 7. Multi-module Enterprise Project
	7.1. Introduction
	7.1.1. Downloading this Chapter's Example
	7.1.2. Multi-module Enterprise Project
	7.1.3. Technology Used in this Example

	7.2. The Simple Parent Project
	7.3. The Simple Model Module
	7.4. The Simple Weather Module
	7.5. The Simple Persist Module
	7.6. The Simple Web Application Module
	7.7. Running the Web Application
	7.8. The Simple Command Module
	7.9. Running the Simple Command
	7.10. Conclusion
	7.10.1. Programming to Interface Projects

	Chapter 8. Optimizing and Refactoring POMs
	8.1. Introduction
	8.2. POM Cleanup
	8.3. Optimizing Dependencies
	8.4. Optimizing Plugins
	8.5. Optimizing with the Maven Dependency Plugin
	8.6. Final POMs
	8.7. Conclusion

	Part II. Maven Reference
	Chapter 9. The Project Object Model
	9.1. Introduction
	9.2. The POM
	9.2.1. The Super POM
	9.2.2. The Simplest POM
	9.2.3. The Effective POM
	9.2.4. Real POMs

	9.3. POM Syntax
	9.3.1. Project Versions
	9.3.1.1. Version Build Numbers
	9.3.1.2. SNAPSHOT Versions
	9.3.1.3. LATEST and RELEASE Versions

	9.3.2. Property References

	9.4. Project Dependencies
	9.4.1. Dependency Scope
	9.4.2. Optional Dependencies
	9.4.3. Dependency Version Ranges
	9.4.4. Transitive Dependencies
	9.4.4.1. Transitive Dependencies and Scope

	9.4.5. Conflict Resolution
	9.4.6. Dependency Management

	9.5. Project Relationships
	9.5.1. More on Coordinates
	9.5.2. Multi-module Projects
	9.5.3. Project Inheritance

	9.6. POM Best Practices
	9.6.1. Grouping Dependencies
	9.6.2. Multi-module vs. Inheritance
	9.6.2.1. Simple Project
	9.6.2.2. Multi-module Enterprise Project
	9.6.2.3. Prototype Parent Projects

	Chapter 10. The Build Lifecycle
	10.1. Introduction
	10.1.1. Clean Lifecycle (clean)
	10.1.2. Default Lifecycle (default)
	10.1.3. Site Lifecycle (site)

	10.2. Package-specific Lifecycles
	10.2.1. JAR
	10.2.2. POM
	10.2.3. Maven Plugin
	10.2.4. EJB
	10.2.5. WAR
	10.2.6. EAR
	10.2.7. Other Packaging Types

	10.3. Common Lifecycle Goals
	10.3.1. Process Resources
	10.3.2. Compile
	10.3.3. Process Test Resources
	10.3.4. Test Compile
	10.3.5. Test
	10.3.6. Install
	10.3.7. Deploy

	Chapter 11. Build Profiles
	11.1. What Are They For?
	11.1.1. What is Build Portability
	11.1.1.1. Non-Portable Builds
	11.1.1.2. Environment Portability
	11.1.1.3. Organizational (In-House) Portability
	11.1.1.4. Wide (Universal) Portability

	11.1.2. Selecting an Appropriate Level of Portability

	11.2. Portability through Maven Profiles
	11.2.1. Overriding a Project Object Model

	11.3. Profile Activation
	11.3.1. Activation Configuration
	11.3.2. Activation by the Absence of a Property

	11.4. Listing Active Profiles
	11.5. Tips and Tricks
	11.5.1. Common Environments
	11.5.2. Protecting Secrets
	11.5.3. Platform Classifiers

	11.6. Summary

	Chapter 12. Maven Assemblies
	12.1. Introduction
	12.2. Assembly Basics
	12.2.1. Predefined Assembly Descriptors
	12.2.2. Building an Assembly
	12.2.3. Assemblies as Dependencies
	12.2.4. Assembling Assemblies via Assembly Dependencies

	12.3. Overview of the Assembly Descriptor
	12.4. The Assembly Descriptor
	12.4.1. Property References in Assembly Descriptors
	12.4.2. Required Assembly Information

	12.5. Controlling the Contents of an Assembly
	12.5.1. Files Section
	12.5.2. FileSets Section
	12.5.3. Default Exclusion Patterns for fileSets
	12.5.4. dependencySets Section
	12.5.4.1. Customizing Dependency Output Location
	12.5.4.2. Interpolation of Properties in Dependency Output Location
	12.5.4.3. Including and Excluding Dependencies by Scope
	12.5.4.4. Fine Tuning: Dependency Includes and Excludes
	12.5.4.5. Transitive Dependencies, Project Attachments, and Project Artifacts
	12.5.4.6. Advanced Unpacking Options
	12.5.4.7. Summarizing Dependency Sets

	12.5.5. moduleSets Sections
	12.5.5.1. Module Selection
	12.5.5.2. Sources Section
	12.5.5.3. Interpolation of outputDirectoryMapping in moduleSets
	12.5.5.4. Binaries section
	12.5.5.5. moduleSets, Parent POMs and the binaries Section

	12.5.6. Repositories Section
	12.5.7. Managing the Assembly’s Root Directory
	12.5.8. componentDescriptors and containerDescriptorHandlers

	12.6. Best Practices
	12.6.1. Standard, Reusable Assembly Descriptors
	12.6.2. Distribution (Aggregating) Assemblies

	12.7. Summary

	Chapter 13. Properties and Resource Filtering
	13.1. Introduction
	13.2. Maven Properties
	13.2.1. Maven Project Properties
	13.2.2. Maven Settings Properties
	13.2.3. Environment Variable Properties
	13.2.4. Java System Properties
	13.2.5. User-defined Properties

	13.3. Resource Filtering

	Chapter 14. Maven and Eclipse: m2eclipse
	Chapter 15. Site Generation
	15.1. Introduction
	15.2. Building a Project Site with Maven
	15.3. Customizing the Site Descriptor
	15.3.1. Customizing the Header Graphics
	15.3.2. Customizing the Navigation Menu

	15.4. Site Directory Structure
	15.5. Writing Project Documentation
	15.5.1. APT Example
	15.5.2. FML Example

	15.6. Deploying Your Project Website
	15.6.1. Configuring Server Authentication
	15.6.2. Configuring File and Directory Modes

	15.7. Customizing Site Appearance
	15.7.1. Customizing the Site CSS
	15.7.2. Create a Custom Site Template
	15.7.3. Reusable Website Skins
	15.7.4. Creating a Custom Theme CSS
	15.7.5. Customizing Site Templates in a Skin

	15.8. Tips and Tricks
	15.8.1. Inject XHTML into HEAD
	15.8.2. Add Links under Your Site Logo
	15.8.3. Add Breadcrumbs to Your Site
	15.8.4. Add the Project Version
	15.8.5. Modify the Publication Date Format and Location
	15.8.6. Using Doxia Macros

	Chapter 16. Repository Management with Nexus
	Chapter 17. Writing Plugins
	17.1. Introduction
	17.2. Programming Maven
	17.2.1. What is Inversion of Control?
	17.2.2. Introduction to Plexus
	17.2.3. Why Plexus?
	17.2.4. What is a Plugin?

	17.3. Plugin Descriptor
	17.3.1. Top-level Plugin Descriptor Elements
	17.3.2. Mojo Configuration
	17.3.3. Plugin Dependencies

	17.4. Writing a Custom Plugin
	17.4.1. Creating a Plugin Project
	17.4.2. A Simple Java Mojo
	17.4.3. Configuring a Plugin Prefix
	17.4.4. Logging from a Plugin
	17.4.5. Mojo Class Annotations
	17.4.6. When a Mojo Fails

	17.5. Mojo Parameters
	17.5.1. Supplying Values for Mojo Parameters
	17.5.2. Multi-valued Mojo Parameters
	17.5.3. Depending on Plexus Components
	17.5.4. Mojo Parameter Annotations

	17.6. Plugins and the Maven Lifecycle
	17.6.1. Executing a Parallel Lifecycle
	17.6.2. Creating a Custom Lifecycle
	17.6.3. Overriding the Default Lifecycle

	Chapter 18. Writing Plugins in Alternative Languages
	18.1. Writing Plugins in Ant
	18.2. Creating an Ant Plugin
	18.3. Writing Plugins in JRuby
	18.3.1. Creating a JRuby Plugin
	18.3.2. Ruby Mojo Implementations
	18.3.3. Logging from a Ruby Mojo
	18.3.4. Raising a MojoError
	18.3.5. Referencing Plexus Components from JRuby

	18.4. Writing Plugins in Groovy
	18.4.1. Creating a Groovy Plugin

	Chapter 19. Using Maven Archetypes
	19.1. Introduction to Maven Archetypes
	19.2. Using Archetypes
	19.2.1. Using an Archetype from the Command Line
	19.2.2. Using the Interactive generate Goal
	19.2.3. Using an Archetype from m2eclipse

	19.3. Available Archetypes
	19.3.1. Common Maven Archetypes
	19.3.1.1. maven-archetype-quickstart
	19.3.1.2. maven-archetype-webapp
	19.3.1.3. maven-archetype-mojo

	19.3.2. Notable Third-Party Archetypes
	19.3.2.1. AppFuse
	19.3.2.2. Confluence and JIRA plugins
	19.3.2.3. Wicket

	19.4. Publishing Archetypes

	Chapter 20. Developing with Flexmojos
	20.1. Introduction
	20.2. Configuring Build Environment for Flexmojos
	20.2.1. Using Sonatype's Repository Directly
	20.2.2. Proxying Sonatype's Repository with Nexus

	20.3. Creating a Flex Mojos Project
	20.3.1. Creating a Flex Library
	20.3.2. Creating a Flex Application
	20.3.3. Creating a Multi-module Project: Web Application with a Flex Dependency

	20.4. Developing and Customizing Flexmojos
	20.4.1. Get the Flexmojos Source Code

	Appendix A. Appendix: Settings Details
	A.1. Quick Overview
	A.2. Settings Details
	A.2.1. Simple Values
	A.2.2. Servers
	A.2.3. Mirrors
	A.2.4. Proxies
	A.2.5. Profiles
	A.2.6. Activation
	A.2.7. Properties
	A.2.8. Repositories
	A.2.9. Plugin Repositories
	A.2.10. Active Profiles

	Appendix B. Appendix: Sun Specification Alternatives

