
SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

1 of 7 13-09-2004 21:01

Metasploit Framework, Part Two
by Pukhraj Singh and K.K. Mookhey
last updated September 8, 2004

Editor's Note: This document has been
completely rewritten, incorporates a few
important bug fixes from the previous
article, and discusses changes with MSF
version 2.2.

1. Introduction

In the first part of this article series, we

discussed how writing exploits is still a
painful and time-consuming process. We

discussed the common obstacles faced
during exploit development and how the

Metasploit Framework can solve some of the

problems. This article will start off with a brief
introduction to the console interface and

explain how to select and use an exploit module. We will then cover the environment system,
how it works, and what features can be enabled through it.

2. Getting Your Feet Wet

The installed MSF has three work environments, the msfconsole, the msfcli interface and the

msfweb interface. However, the primary (and preferred) work area for MSF is the msfconsole.
It is an efficient command-line interface that has its own command set and environment

system. Although the Framework was designed to run on a Unix-like system, such as Linux

or BSD, it will also run on Windows through the Cygwin environment. The Windows installer,
from the metasploit.com web site, includes a pre-configured and stripped down version of

Cygwin.

During the initialization of msfconsole, standard checks are performed. If everything works

out fine we will see the display as shown in Figure 1.

Figure 1

Now the command prompt (msf>) for msfconsole is active. The console is very flexible, and if

the user enters any unknown commands, it will search the PATH environment variable for

any matching executable. If a matching file is found it is executed much like a standard
command prompt.

Instinctively, typing the help command displays a list of commands available as shown in
Figure 2.

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

2 of 7 13-09-2004 21:01

Figure 2

The command show exploits lists out the currently available exploits. There are remote
exploits for various platforms and applications like Windows, Linux, IIS, Apache, and so on,

which help to test the flexibility and understand the working of MSF. This is shown in Figure

3, below.

Figure 3

As you may have noticed, the default installation of the Metasploit Framework 2.0 comes
with 18 exploits and 27 payloads, which is quite an impressive stockpile.

To list out the payloads present, execute the show payloads command. The payloads are

neat, efficient and very well written. These payloads accomplish a wide array of tasks, such
as binding a command shell to a listening port, adding new user accounts, or uploading and

executing the program of your choice. MSF even has support for dynamic payload creation,

using the InlineEgg library as shown in Figure 4.

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

3 of 7 13-09-2004 21:01

Figure 4

Specific information about an exploit can be culled with the command info exploit

exploit_name which provides information such as available targets, exploit requirements,
details of vulnerability itself, and even references where you can find more information! This

is shown in Figure 5.

Figure 5

In the same manner, information about a specific payload can be gained by the command
info payload payload_name. Starting with version 2.2 of MSF, you can use info

module_name, without having to specify the type, as shown in Figure 6.

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

4 of 7 13-09-2004 21:01

Figure 6

3. Using An Exploit

Now we will describe the procedure to select a specific exploit and then run it. The command

use exploit_name activates the exploit environment for the exploit exploit_name.

If you select the Microsoft RPC DCOM MSO3-026 exploit using the name
msrpc_dcom_ms03_026, you may have noticed the prompt changes from msf> to msf

msrpc_dcom_ms03_026 >. This notifies that we are working in the temporary environment of
that exploit. The show command can be used to view information about the current exploit.

The show options command displays the various parameters which are required to be use

the exploit, as shown in Figure 7.

Figure 7

It's clear that this exploit requires two parameters, RHOST (the target's address) and
RPORT (and the target's port, defaults to 135 in this case). The show targets command will

list all available targets for the selected exploit module. As you can see, this module only

has one target, which works on NT 4.0 SP6, plus all versions of Windows 2000, and all
versions of Windows XP.

The show payloads command will list all payloads that are compatible with the selected

exploit. MSF does a good job of preventing you from using the wrong payload for a given
exploit.

We must set each of the options listed as 'required' before we can use this exploit. In this
exploit we only have a single target option, so we set the TARGET variable to 0, with the

command set TARGET 0. Many exploits will choose a reasonable default target for you. We

now set the target server's IP address with the command set RHOST 192.168.0.27.

Next we need to set the required payload (shellcode) for the exploit. Here we set PAYLOAD to

winbind, using the command set PAYLOAD winbind. The payload names may change
between versions of MSF, so always check the output of show payloads after an upgrade.

This particular payload will cause the server to listen on a port and spawn a command shell

when a connection is made. This displays the extensible flexibility of the MSF payload
system. Every single exploit included in MSF allows for arbitrary payloads to be selected and

used, even custom ones you develop yourself. Notice the prompt changes from msf
msrpc_dcom_ms03_026 > to msf msrpc_dcom_ms03_026(winbind) > after selecting a

payload. Now we use the show options command to check which options have been set and

which are required to be set. As we can see, we still need to supply a value for the LPORT
variable as shown in Figure 8. We set it using the command set LPORT 1536.

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

5 of 7 13-09-2004 21:01

Figure 8

The EXITFUNC variable is available for almost every Windows payload. This variable controls

how the payload will clean up after itself once it accomplishes its task. Quite a few

vulnerabilities can be exploited repeatedly, simply by using a different value for EXITFUNC.
Fortunately, you rarely have to worry about this as many exploits automatically select the

best value for you. Unless you know what you are doing, this value should not set. Setting
the wrong value can wreak havoc on the exploited system.

Many exploits and payloads have another set of options, called advanced options. These can

be displayed with the command show advanced. Advanced options can perform tasks such
as modifying an exploit request to avoid an IDS signature, changing brute force settings, or

specifying exact return addresses to use.

At this point, everything is ready and all variables have been set. We make a final check on
the exploit with the show options command and verify that we are good to go.

Everything seems perfect. It's show time!

The exploit command actually launches the attack, doing whatever it needs to do to have
the payload executed on the remote system.

The check command can be used to whether or not the target system is vulnerable to attack.
The check feature is not available with every exploit, but can be useful when you are trying

to determine if a system is patched before trying to exploit it.

4. Adding New Exploits/Modules

Adding new exploits to MSF is a breeze. The MSF-compatible remote exploit for IIS 5.x SSL

PCT Buffer Overflow was publicly released on 24/04/2004
(http://www.k-otik.com/exploits/04242004.iis5x_ssl_pct.pm.php). For the purposes of this

article we will add the exploit to our MSF stockpile.

After downloading the exploit, the user must note the naming of the Perl module for the
exploit. The file name must be the same as the package name, in other words,

Msf::Exploit::iis5x_ssl_pct should be saved as iis5x_ssl_pct.pm. Now copy the module to the
exploits subdirectory (in case you're using Windows it's /home/framework-2.0/exploits). As

soon as the file is copied over, it is ready for use, and you do not even need to restart the

console. Use the show exploits command to verify that the module has been loaded
correctly.

msf > show exploits

Metasploit Framework Loaded Exploits
====================================

apache_chunked_win32 Apache Win32 Chunked Encoding
exchange2000_xexch50 Exchange 2000 MS03-46 Heap Overflow
ia_webmail IA WebMail 3.x Buffer Overflow
iis50_nsiislog_post IIS 5.0 nsiislog.dll POST Overflow
iis50_printer_overflow IIS 5.0 Printer Buffer Overflow
iis50_webdav_ntdll IIS 5.0 WebDAV ntdll.dll Overflow
iis5x_ssl_pct IIS 5.x SSL PCT Overflow
imail_ldap IMail LDAP Service Buffer Overflow
msrpc_dcom_ms03_026 Microsoft RPC DCOM MSO3-026
mssql2000_resolution MSSQL 2000 Resolution Overflow
poptop_negative_read PoPToP Negative Read Overflow
...

The exploit has been successfully added to the list. The exploit is run in the same way as

any other exploit in MSF. Version 2.2 of MSF allows users to keep their own private directory
of exploits, payloads, encoders, and nops. Installing a new exploit can be either

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

6 of 7 13-09-2004 21:01

of exploits, payloads, encoders, and nops. Installing a new exploit can be either

system-wide, or per-user.

5. Console Environments

In previous paragraphs, we made quite a few references to variables and environments,

without explaining what they are. An environment is simply a name space for variables. When
you set a variable in MSF, it creates a new entry in your current environment. Environments

are used to specify exploit parameters and configure various parts of the system. MSF is
divided into two logical environments, the Global Environment and the Temporary

Environment. Each exploit, when selected, has a temporary environment which overrides the

global environment.

5.1 Global Environment

The global environment is accessed through the setg and unsetg commands. Calling setg
displays the current global environment and calling unsetg flushes out all global environment

settings.

As shown below in Figure 9, we set the value of LHOST, LPORT and PAYLOAD in the global
environment to permanent values and save the changes with the save command.

Figure 9

The save command writes out all the current environments to a file on disk. Versions 2.0 and

2.1 place this data into the file $HOME/.msfconfig, and version 2.2 places the saved

environments into $HOME/.msf/config. The saved environments are loaded the next time
any of the MSF user interfaces are started. It is common practice to set global environments

such as LHOST and LPORT and save them to disk, removing the need to set them on a
per-exploit basis.

5.2 Temporary Environment

The temporary environments are sub-environments which override global settings. The
Temporary environment is tied to the currently selected exploit. Every exploit's environment

is isolated from the rest, allowing the user to easily switch between preconfigured exploits

with the use command.

5.3 Advanced Environment Settings

MSF provides quite a few advanced settings which are configured through environment
variables. These settings include the logging system, socket options, and debugging

parameters.

5.3.1 Logging Options

The logging features can be activated by setting the Logging (global as well as temporary

name) variable to a non-zero value. The directory for logs is set by changing the LogDir

(global as well as temporary name) variable which defaults $HOME/.msflogs . The msflogdump
utility can be used to view the session logs. Starting with version 2.2, the logs are stored in

$HOME/.msf/logs .

5.3.2 Socket Options

The various timeout and proxy settings can be changed by setting the following environment

SecurityFocus HOME Infocus: Metasploit Framework, Part 2 http://www.securityfocus.com/infocus/1790

7 of 7 13-09-2004 21:01

The various timeout and proxy settings can be changed by setting the following environment

variables.

Msf::Socket::Proxies (global name) or Proxies (temporary name): This variable can used to set

the proxy (SOCKS4 and HTTP) settings for network connections. It supports proxy chains

which can be specified in the format chain type:host:port and is separated by commas for
each proxy server.

Msf::Socket::RecvTimeout (global name) or RecvTimeout (temporary name): This specifies the
maximum number of seconds allowed for reading from a socket.

Msf::Socket::ConnectTimeout (global name) or ConnectTimeout (temporary name): This is to

specify the connect timeout period of a socket (defaults to 10 seconds).

Msf::Socket::RecvTimeoutLoop (global name) or RecvTimeoutLoop (temporary name): Set the

maximum time (in seconds) to wait for a connection before the socket is closed. This loop is

reactivated at every data receive.

5.3.3 Debugging Options

The environment variable DebugLevel sets the debugging level and the verbosity options for

the Framework and modules. The verbosity increases depending on the value of the variable,
which ranges between 0 and 5.

5.3.4 Payload Options

By default, the encoding process will cycle through all the modules until it finds one that

avoids the particular restricted character set for the current exploit. The precedence of

encoding modules can be set in an order separated by commas in the environment variable
Encoding. In the same way, the Nop variable is used to specify the nop generating routine

precedence. This can be useful when you need to avoid certain IDS signatures.

The RandomNops variable tells the nop generator module to use randomizes sequences of
nop-like instructions instead of the standard nop opcode. This can be also be used to avoid

IDS signatures. Version 2.2 includes support for smart random nop generation, where each
exploit can specify the registers which should not be modified by the nop-like opcodes.

6. Conclusion

After reading the second part of this article, you should have a solid grasp of what the

Metasploit Framework is and how you can start using it. We described the msfconsole

interface, the general process for selecting and using an exploit, and how environment
system works.

This article paves the way for the third and final part, to be published later this week, which
will explain the other user interfaces, the included helper utilities, and some basic guidelines

for developing your own exploit modules. We will discuss its future potential by anticipating

the new features which will be added to the framework.

References

About the authors

Pukhraj Singh is a security researcher at Network Intelligence (I) Pvt. Ltd. His areas of
interest include working with exploits, monitoring honeypots, intrusion analysis and

penetration testing.

K. K. Mookhey is the CTO and Founder of Network Intelligence.

