
Middleware- Emerging Technology & Its Controls.

Till 1980 s most of computing was based on central host computers equipped
with powerful processors and memory. Users interact with the host through the terminals
that captures keystrokes and sends the information to host. A major bottleneck for this
architecture was that the processing power was limited to that of central host system, over
dependence on the vendor for application software, lack of support for GUI and access to
multiple databases. The mainframes prevalent at that time were based on this
architecture. With advent of PC s the files were downloaded from the shared location,
processed and uploaded back to file server. This had major drawback as it generated too
much of network traffic. However with emergence of client /server architecture, the
computing power or process management was distributed between the client and server.
For example client could query database server using relational database management
system (DBMS) through standard query language (SQL). The results of query are sent to
the client, which then manipulates and processes the data. This two-tier client/server
architecture has limitation as the number of users grows beyond certain limit, due to the
fact that server has to maintain a dialog of connection even when client is idle. Moreover
any changes in application or parameter would entail changes at all clients like a change
in VAT rate would need update on all the users workstation. To overcome these
limitations middle-tier was added between the user system interface client environment
and database management server environment. The middle tier or middleware is now one
of the emerging technologies in client server paradigm. It provides for connectivity
across heterogenous platform and for more generalization of Application Programming
Interface (API) than operating system or network services as shown in
Fig.1

Application Application

API s
Middleware (Distributed System Services)

Platform Interface Platform Interface

Platform Platform
Operating System-I Operating System-II

Fig(1).
It further raises the level of abstraction of programming of distributed applications, as
developer need not worry about the platform or operating systems. It can have various
implementations such as transaction processing monitors, message servers, remote
procedure calls, Object Request Broker or application servers.

Let us have examine each of the implementations in detail-

1. The most basic type of three tier architecture is used in Online Transaction
Processing Technologies (OLTP) applications using middle layer consisting of
Transaction Processing (TP) monitor technology. This is a type of message
queuing, transaction scheduling and prioritization service where the client
connects to the middle tier viz. TP monitor which in turn connects to the back
end database. The transaction is accepted by the monitor, which queues it and
then takes responsibility for managing thus relieving the client. It has ability to
connect to different DBMS s in single transactions irrespective of whether it is
flat file or non-relational DBMS. This architecture is considerably more scalable
than a two tier.

2. Message Servers: This implementation, also known as Message-oriented
middleware (MOM), provides program-to-program data exchange with
intelligent messages sent asynchronously. It is similar to email exchanged
between the programs. It requires recipient programs to interpret these messages
and take appropriate action. MOM increases flexibility of architecture by
enabling applications to exchange messages with each other without need to
bother about the underlying operating system or the processors. MOM is most
appropriate for event-driven applications. For an airline, for example, passenger
ticket reservation and cargo bookings events are source for load factor, flight
arrival and departure events through ground operations, is source for aircraft
movement. All this information moves using MOM. The executive staff can
know the effective aircraft utilization.

3. Remote Procedure Call (RPCs): enables the logic of application to be distributed
across the network. Program logic on remote systems can be executed by simply
calling a routine. For example network printer or shared folder can be located
across the network as locally attached resource

4. Application Servers: There is a shared host on which business logic,
computation and data retrieval engine resides. The GUI component resides on
the front-end client making this architecture highly scalable, secure and lends
itself to changes easily. For example in banking scenario in which interest rates
change frequently. This would entail changing a parameter only on shared host
without change at teller end or at database end. The fig 2 below shows clients
accessing the web server which optimized to serve web pages while application
server based on the inputs from clients and business decision logic residing on it,
queries the database. The results are pushed on the web server for serving to end
user browser.

 Fig. 2

5. Object Request Broker Architecture: This refers to specification and

implementation framework for interoperability and reusability of distributed
objects. These initiatives are driven by two rival camps - Microsoft with
COM/DCOM technology and Object Management Group (OMG) with Common
Object Request Broker Architecture (CORBA). These defines application
program interface (API) through which various components interact independent
of language or platform.

Business Considerations in selecting Middleware:
While middleware increases the level of abstraction, developers need to be
prudent enough in their choice of services in deciding which components are to
placed on which tier. Though the middleware implementations are suppose to be
platform independent, many of these are vendor specific like COM/DCOM from
Microsoft. Thus they need to be compiled for a specific platform or need an
interpreter. The availability of development tools like C++, Visual Basic, Java
are key for customized development middleware services. The components in
general and those that involve business logic should be easily replaceable.
Another consideration is that a good middleware should not be visible to client. It
should seamlessly connect the client to back end. While these are technical and
aesthetic considerations, there are also strategic business factors to be considered.
Normally in an enterprise there are islands of application developed over period
of time. They reside on heterogeneous platform across various functional units of
an organization. As businesses become competitive, there is crucial need by
business owners to have information on state of business at any moment.
Moreover the need for better customer service demands integration of these
applications. This is where middleware has to play an important role in
Enterprise Integration.

 Controls & Security Considerations
The scope of middleware deployment is broad and as such should be

tackled from business perspective rather than from only technical one. When
middleware deployment should focus on these issues:-

The selection of middleware is a crucial decision. While legacy systems are
web enabled leveraging the power of middleware, certain controls existent
may not be relevant or has to be reengineered. Data, which hitherto was
accessible only to select few in an enterprise, there is a risk of it being
available to malicious hackers.
Authentication and Authorization: In message oriented middleware (MOM),
as programs communicate with other programs, messages need to be
authenticated, encrypted and authorized by MOM managers. As various
applications publish their messages, due care has to be taken as which
recipient applications can subscribe to these messages. Similarly in
application servers communication with front end webserver and back-end
database server need to protected from unauthorized access and network
eavesdropping as shown in fig 3

Fig. 3
Similarly in TP monitors, transaction context type in database need to be
secured. In this, the context or permissions to select, insert, update, delete
and execute needs to be controlled.

Auditing: Middleware deployments irrespective of type of implementation
should be auditable through logs and reporting tools. This includes
unauthorized access, enhancing the privilege attempts and application
warning messages. Besides middleware code-review should be done through
assistance of expert application programmers.

Conclusions:
Middleware technology is firmly entrenched in distributed computing

horizon. It is enabler for enterprise application integration in today s state of
business at the moment paradigm. While functional units across the enterprise
may operate independently, middleware technology can be leveraged to provide
integrated solution for better customer service and enhanced management
information services.

Naushad Rajani is working, as IS Security Analyst with Riyad Bank, Saudi
Arabia. He is CISA, CISSP, CCNP, NCSA (NetScreen OS 4.0), MCSE and can be
reached at naushadr@riyadbank.com.

