
Minemu: The World’s Fastest Taint Tracker

Erik Bosman, Asia Slowinska, and Herbert Bos

Vrije Universiteit Amsterdam

Abstract. Dynamic taint analysis is a powerful technique to detect memory cor-
ruption attacks. However, with typical overheads of an order of magnitude, cur-
rent implementations are not suitable for most production systems. The research
question we address in this paper is whether the slow-down is a fundamental
speed barrier, or an artifact of bolting information flow tracking on emulators re-
ally not designed for it? In other words, we designed a new type of emulator from
scratch with the goal of removing superfluous instructions to propagate taint. The
results are very promising. The emulator, known asMinemu, incurs a slowdown
of 1.5x-3x for real and complex applications and 2.4 for SPEC INT2006, while
tracking taint at byte level granularity.Minemu’s performance is significantly bet-
ter than that of existing systems, despite the fact that we have not applied some
of their optimizations yet. We believe that the new design may be suitable for
certain classes of applications in production systems.

1 Introduction

Fifteen years after Aleph One’s introduction to memory corruption [17], and despite a
plethora of counter-measures (like ASLR [3], PaX/DEP [18],and canaries [7]), buffer
overflows alone rank third in the CWE SANS top 25 most dangeroussoftware errors1.
Dynamic taint analysis (DTA) [16, 6] is very effective at stopping most memory corrup-
tion attacks that divert a program’s control flow. Moreover,the wealth of information
it collects about untrusted data makes it well-suited for forensics and signature gener-
ation [26]. Unfortunately, software DTA is so slow that in practice its use is limited to
non-production machines like honeypots or malware analysis engines.

In this paper, we describeMinemu, a new emulator architecture that speeds up dy-
namic taint analysis by an order of magnitude compared to well-known taint systems
like taint-check [16], Vigilante [6], and Argos [20]. Specifically, Minemubrings down
the slowdown due to taint analysis to 1.5x-3x for real applications. Unless your applica-
tion really starves for performance, a slowdown of, say, 2x to be safe from most memory
corruption attacks might be a reasonable price for many security-sensitive systems.

Current counter measures do not stop memory corruption. Typical memory corruption
attacks overwrite a critical value in memory to divert a program’s flow of control to
code injected or selected by the attacker. We argue that current protection mechanisms
(like PAX/DEP, ASLR, and canaries) are insufficient. Consider for instance, the buffer
underrun vulnerability in Figure 1. The example is from a Webserver request parsing

1 Version 2.0, 2010http://www.sans.org/top25-software-errors/

2

procedure innginx-0.6.32 [1]—in terms of market share across the million busi-
est sites, the third largest Web server in the world2, hosting about 23 million domains
worldwide at the time of writing. The buffer underrun allowsattackers to execute arbi-
trary programs on the system. They do not trample over canaries. They do not execute
code in the data segment. Since they call into libc, they are not stopped by ASLR either.

In reality, the situation is worse. All defense mechanisms used in practice, includ-
ing the three above, have weaknesses that allow attackers tocircumvent them, and/or
situations in which they cannot be applied (e.g., JIT coderequires data pages to be
executable). Moreover, a recent report indicates that manyprograms either do not use
features like DEP or ASLR at all, or use them incorrectly [25]. Finally, legacy binaries
often cannot even be protected using such measures.

Dynamic Taint Analysis (DTA) is one of the few techniques that protect legacy binaries
against all memory corruption attacks on control data. Because of its accuracy, the
technique is very popular in the systems and security community—witness a string
of publications in the last few years in tier-1 venues, including SOSP [6], CCS [30],
NDSS [16], ISCA [9], MICRO [8], EUROSYS [20], ASPLOS [28], USENIX [5, 12],
USENIX Security [29], Security& Privacy [24], and OSDI [13]—it is clearly well liked.

Frustratingly though, DTA is too slow to be used in production systems. In practice,
its use is limited to non-production machines like honeypots or malware analysis en-
gines. With slow-downs that often exceed an order of magnitude, few are keen to apply
taint analysis to, say, their webserver or browser.

Contributions The research question we address in this paper is whether theslow-
down is a fundamental performance barrier, or an artifact ofbolting information flow
tracking on emulators not designed for it? To answer this question, we designed a new
emulator architecture for thex86 architecture from scratch—with the sole purpose of
minimizing the instructions needed to propagate taint. Theemulator,Minemu, reduces
the slowdown of DTA in most real applications to a factor of 1.5 to 3. It is significantly
faster than existing solutions, even though we have not applied some of their most
significant optimizations yet. We believe that the new design may be suitable for certain
classes of applications in production systems.

Specifically, what we did not do is rely on static analysis. Inprinciple, it is possible
to improve performance by means of statically analyzing theprogram to determine
which instructions need taint tracking and which do not. Unfortunately, static analysis
and even static disassembly of stripped binaries is still anunsolved problem. Therefore,
the authors of the best-known work in this category [23], assume the presence of at
least some symbolic information (like the entry points of functions). In practice, this
is typically not available. In fact, we do not even check at (dynamic) translation time
whether the data is tainted (whether we could follow a fast path) as proposed by the
authors of LIFT [22]. In LIFT terminology,Minemualways takes the slow path. As a
result,Minemu’s performance is independent of the amount of taint in the inputs.

2
http://news.netcraft.com/archives/2011/03/09/march-2011-web-server-survey.html#

more-3991

3

We show that, despite not using these optimization techniques and using pure dy-
namic translation,Minemu’s performance exceeds that of even the fastest existing sys-
tems [23, 22, 14].

The first key observation underlyingMinemuis that fast DTA requires a fast emula-
tor. Thus, we designed a new and highly efficientx86 emulator from scratch. Compared
to other emulators like QEMU [2],Minemu translates much larger blocks in one go.
Additionally, the emulator applies caching aggressively throughout the system. While
the emulator is fast, we do not claim it is the fastest in the world. There are several
optimizations left that we have not yet applied. For instance, StarDBT is reportedly
faster [22]. However, by design our emulator is very amenable to arbitrary dynamic in-
strumentation in general and taint analysis in particular.The design of the emulator is
our first contribution.

The second key observation is that current DTA approaches are expensive mainly
because they need many additional instructions to propagate taint. For instance, every
mov andadd incurs substantial overhead.Minemu reduces the number of these addi-
tional instructions at all cost—sacrificing memory for speed, if need be. Thus, by care-
fully designing the memory layout,Minemupropagates taint at a cost of 1-3 additional
instructions. The novel memory layout is our second contribution.

A third key observation is that many additional instructions are due to register pres-
sure in general and tracking taint in registers in particular. Thus, we use SSE registers
to track the taint for the processor’s general purpose registers—greatly speeding up the
taint analysis. Our use of SSE registers is a third contribution.

Because ofMinemu’s design, the overhead of the taint tracker relative to the emu-
lator is considerably lower than that of other systems, eventhough we did not yet apply
any analysis to prune the taint propagation. Because of this, Minemu’s overall perfor-
mance is also better than that of existing systems, despite the fact that some have faster
emulators [22].

Design issues aside, the concrete outcomes contributed by this paper are a very fast
DTA emulator based on these insights. The emulator providesa sandbox from which
an application cannot escape and offers taint tracking at the byte level. We evaluated
the design elaborately with a host of real-world and complexapplications (Apache,
lighttpd, connections,PHP, PostgreSQL, etc.), as well as SPECint 2006 bench-
marks. For all real applications, the slowdown was always less than 3x. Often less than
2x. Only one of the SPECint 2006 benchmarks incurred a slowdown greater than 4x,
while the overall slowdown across the entire benchmark suite was 2.4x.

Minemu is real Minemu for Linux is available fromhttps://www.minemu.org.
Interested users can install it today to protect mission critical applications (likeApache,
PostgreSQL, orlighttpd) as well as an endless chain of other UNIX tools and shells.
To demonstrate the practicality of our emulator, theMinemusite (lighttpd, php, and
PostgreSQL) itself also runs on theMinemuemulator. Moreover, it provides access to
a vulnerableProFTPD server, running onMinemu, that we encourage readers to attack.

In the remainder of this paper, we discuss the design and implementation ofMinemu
for Linux on 32-bitx86. As Minemudoes not rely on Linux-specific properties, except
the size of the address space, porting the design to Windows should be straightforward.
We also discuss how the design applies to 64-bit systems.

4

A buffer underrun vulnerability in Nginx

Nginx is a web server—in terms of market share across
the million busiest sites, the third largest Web server in
the world. At the time of writing, it hosts about 23 million
domains worldwide. Versions prior to 0.6.38 had a partic-
ularly nasty vulnerability.

When Nginx receives an HTTP request, it
calls ngx http parse complex uri with an
ngx http request t structure 1©. data points to a
buffer, in which the current routine will store a normalized
uri path 2©, while ctx points to an array of pointers to
various context structures3© and 4©. These two buffers
happen to be adjacent in memory. The parsing function
copies the uri path todata, normalizing it at the same
time. When provided with a carefully crafted path, nginx
wrongly computes its beginning, settingdata to a
locationbelow the start of the uri query—somewhere in
the buffer underneath it. Next, the user provided query is
copied to the location pointed to bydata 5©.

exec

argument
for exec

provided by

the attacker

11

original

structure

data

ctx

request

3

5

4

6

2 7

8

Thus, a pointer to a context structurengx output chain ctx t (ctx pointer) is over-
written with a value coming from the network6©. This structure contains a pointer to a function
(output filter), which will eventually be called byNginx. By overwritingctx pointer
with a value that points to an attacker controlled buffer, an attacker controlsthe function pointer,
enabling him to load it with the address of theexec function in libc 7©. An adjacent field con-
tains a pointer to this function argument (filter ctx), again controlled by the attacker8©.
When the function is called, a new program will be executed - picked by the attacker.

Observe that in the above example no code executes in the data segment, so DEP/W⊕X will
not help. Moreover, the attack corrupts no canary value, and as the text segment is typically not
randomized, ASLR does not stop the attack either.

Fig. 1. A vulnerability in Nginx: DEP, ASLR, and canaries do not stop the attack

2 A new emulator design for fast taint tracking

Minemu is a lightweight process-level emulator designed with taint analysis in mind
for the x86 architecture to protect vulnerable Linux applications efficiently, without
special privileges or kernel extensions.Minemuruns standardx86 instructions, so that
the application can be written in any language, including assembly.

Attack detection inMinemu works just like in other DTA approaches, and taint
propagation occurs directly onx86 instructions.Minemupropagates taint as it is copied
through, or used as source operand in ALU operations. In addition, it instruments the
call, ret andjmp instructions to raise an alert when a tainted value is loadedin EIP.
Check [20] for the details of the taint propagation rules. This mechanism lets us detect a
broad range of all memory corruption attacks. To deal also with code-injection attacks,

5

which do not need to overwrite critical values with network data, we have extended
Minemuto check that the memory location loaded onEIP is not tainted.

Fig. 2. Minemu—high-level overview.

Figure 2 illustrates the big picture. We see that at a high-level of abstraction,Minemu
is just like other dynamic translators in that it employs a JIT compiler and caches to em-
ulate the underlying processor efficiently. Since the emulated processor is anx86 itself,
Minemuwill execute as much of the code as possible natively. Whenever Minemuen-
counters an instruction that it has not yet translated, it fetches a large chunk of code to
translate it in one go. It resolves all simple branches with targets in the chunk itself,
while ensuring that for complicated cases (such as indirectbranches), control returns
to the JIT compiler. Initially,Minemuhas not yet translated any instruction, so the first
thing it does is translate a maximum sized chunk of instructions—translating until it
either reaches the end of the memory area, or encounters an illegal instruction. The size
of the translation block is much greater than that of other well-known emulators like
QEMU. The translation process also augments the original code with DTA. By caching
aggressively,Minemu minimizes the overhead of recompilation. Moreover, by using
SSE registers instead of the normal general purpose registers for tainting, it alleviates
the register pressure that might otherwise occur due to DTA.Finally, the memory layout
is especially crafted to make it cheap to propagate taint to the taint map. We discuss all
of these aspects in detail in the remaining sections.

Besides dynamic taint analysis (DTA), effective protection against exploits requires
the emulator to provide sandboxing of data and code. Specifically, it must confine
memory accesses of the emulated process to a designated memory region, to protect
Minemu’s sensitive data (e.g., the internal data structures and taint values). Similarly,
we cannot let the emulated process escape the controlled environment.

In this Section, we discuss the overall design of theMinemuemulator, and we con-
tinue with the dynamic taint analysis part in Section 3.

2.1 Memory layout

To provide an effective sandbox and implement taint propagation in an efficient way,
Minemureorganizes the emulated process’ address space.

Figure 3a shows thatMinemudivides a process’ memory into a number of sections.
First, an emulated process can only use memory within one contiguous block which
starts at the lowest mappable address (user memory). It has a size of almost a third of
the whole address space. Further, sinceMinemukeeps a one byte taint tag for every byte

6

Fig. 3. The figure on the left shows the different sections that make up the address space of an
emulated process, while the figure on the right represents the same address space as a circular
buffer. As all pointed arcs inside the grey disc have the same angle, theyrepresent a constant
offset. So the offset from the start of UM to the start of SM is equal to the offset from the
start of RM to the start of UM, etc. We call this distanceTAINT OFFSET. Emulated processes
can access the dark grey chunks, but an access to a light grey chunkcauses a protection error.
Whenever a process writes to an addressp, Minemuadds an instruction to update the taint value
in p+TAINT OFFSET—making taint propagation cheap. Suppose a malicious process tries to
clean the taint at addressp+TAINT OFFSET. Again, during the translationMinemu adds an
instruction to update the taint value at(p+TAINT OFFSET)+TAINT OFFSET. However, this
address is in a protected area (LK) and any attempt to access it leads to a protection error. All
sensitive areas are protected in this way—if the process tries to access anillegal memory location,
either the operation itself or its corresponding taint propagation instruction causes a page fault.

of the emulated process memory, it reserves a chunk of the same size for theshadow
memory to store the taint map. In between these chunks, we reserve some memory
for the translated JIT code andMinemu itself (runtime & JIT code), and finally some
runtime read/writable data (runtime R/W memory). We call the distance between the
beginnings of the user and the shadow memory chunksTAINT OFFSET.

Minemuleaves the two final chunks of the address space (reserved andLinux kernel
memory) unused. All memory accesses in these regions generate a protection fault. The
combined size of LK and RM is exactlyTAINT OFFSET. We will show that reserving
this memory and mapping it unreadable allows to run without any boundary checks
during emulation. Also, since Linux on the i386 already usesa quarter of the address
space for itself, we only reserve/waste a small amount of memory (theRM chunk).

While TaintTrace [4] also uses a constant offset for the shadow memory, our layout
additonally makes it possible to runMinemu without boundary checks during emula-
tion, and still confine memory accesses by an emulated process to user memory (UM).

2.2 Data sandboxing

The memory layout gives each address in user memory a matching one in shadow mem-
ory and the distance between them is equal toTAINT OFFSET. During the translation,
for each memory access by an emulated process,Minemuadds exactly one correspond-
ing memory access which propagates taint to and from the shadow memory. Thus,
taint propagation is extremely cheap, as it mainly consistsof an instruction access-
ing memory at a constant offset relative to the original memory location. For example,
just before an access to($eax), it inserts an instruction to propagate taint, accessing

7

($eax+disp32(TAINT OFFSET)). Similarly, it couples apush instruction with an
access to($esp+disp32(TAINT OFFSET-4)).

For data sandboxing, we must confine memory accesses by an emulated process to
user memory (UM). Figure 3b shows that when a regular instruction accesses UM, its
corresponding taint propagation instruction automatically accesses the corresponding
location in shadow memory. Indeed, both operations access memory in theaccessi-
ble sections. However, if a regular instruction tries to manipulate one of the forbidden
chunks (the runtime R/W memory, the runtime & JIT code, or theshadow memory di-
rectly), the inserted taint propagation instruction will access one of the protected parts
of the address space and generate a protection fault. In Figure 3b, these illegal accesses
are illustrated with arrows having at least one of its ends inan inaccessible light grey
chunk. All illegal memory accesses result in page faults—either because of the instruc-
tion itself or because of the corresponding taint propagation operation.

2.3 Code sandboxing

Minemu is an emulator using fully dynamic just-in-time (JIT) compilation. When a
guest process tries to execute an instruction,Minemutranslates the code starting at this
instruction to produce an equivalent code fragment enhanced with taint tracking. Fi-
nally,Minemujumps to the translated code. After executing, control returns toMinemu
to either locate the next batch of instructions in the cache,or translate them afresh.

A
1

jmp_cache

B
H

A

jmp_cache

B
H
B

codemap

exec_1

codemap

exec_1

2

3

new chunk

A4 5 6

JIT compilation

guest
code

newaddr

newaddr

7 8
execute

Fig. 4. Minemutranslation mechanism.

Translation mechanism Figure 4 sketches the code translation procedure. The key
steps are cache lookup, used to check whether a guest processcode address has been
translated before, and JIT compilation, invoked in the caseof a cache miss in order to
translate a new code chunk. We describe each step below by tracking the wayMinemu
starts executing code that it has not seen before.

In the first step 1©, a guest process jumps to a guest code addressA. Minemu
searches for a translated chunk corresponding toA. It first performs a lookup in the
fast cache,jmp cache 2©—a hashtable to map jump targets in an emulated process
to corresponding addresses in the translated code. SinceA was not translated before,
there is a cache miss, andMinemuexamines the second table,codemap 3©. This table
contains one row per memory mapped (mmap’ed) executable region, and it stores infor-
mation about translated chunks of a corresponding binary.Minemu checks whetherA

8

belongs to one of the already translated code chunks. If so, it finds the address corre-
sponding toA, and inserts a new entry in thejmp cache. In our scenario, however, we
assume another cache miss.

Now the JIT compilation process starts4©. Unlike Qemu, fastBT [19] or HD-
Trans [27],Minemu does not translate small blocks of code. Instead, it keeps going
until it encounters an illegal instruction or the end of themmap’ed region.Minemu
translates from the guest code addressA onwards.

When the JIT compiler hits a direct or relative jump instruction, it adds it to a set of
to be resolved jumps, and continues with the translation5©. In Figure 4, the guest code
chunk has two jumps, indicated with little arrows. Thus,to be resolved jumps contains
two elements, depicted as black rectangles in the new chunk.

Once the translation of a chunk of code is complete,Minemuexamines which jump
targets in theto be resolved jumps set can be resolved immediately,6©. Basically, the
JIT compiler determines new jump targets in the translated code for all direct and rel-
ative jumps to the samemmap’ed executable region. The rare case of relative jumps
across separatelymmap’ed sections of a binary is handled separately, but the explana-
tion is beyond the scope of this paper.Minemuresolves indirect jumps at runtime. Once
hit by an emulated process, they pass the control back toMinemu. The emulator han-
dles such jump targets in exactly the same way as the addressA in Figure 4.Minemu
searches the code cache, and provides an appropriate translated chunk to be executed.

When JIT compilation is finished,Minemu inserts the newly translated code chunk
to bothjmp cache andcodemap 7©. Finally, it starts the execution8©.

Additional optimizations To further improve performance, we added a few additional
optimizations. The main ones include translated code and return caching.

Translated code caching An optional file-backed caching mechanism can store the
translated code. When the executable files of an emulated process are mapped at exactly
the same locations as in a previous run of the program, this mechanism allows for
reusing code chunks translated earlier. Doing so speeds up programs by eliminating
double work. Note however, that we cannot use this optimization in the presence of
address space layout randomization.

Return caching The ret instruction is the most common form of an indirect jump.
To improve performance,Minemuexploits the protocol between thecall andret in-
structions. Whenever the program executes acall, we can expect a correspondingret
instruction jumping to the program counter following thecall instruction. Since the
translated return address is known at compile time, the JIT compiler simply inserts the
right mapping tojmp cache. If necessary later,Minemu is able to retrieve it quickly,
without performing a lookup in thecodemap cache.

2.4 System calls

Minemu catches all systems calls and wraps them to return the control flow to trans-
lated code once the execution has completed. Some of them require special handling

9

by the emulator. For example, when the emulated program invokesmmap to allocate
new executable memory pages,Minemuexamines the translated code cache and invali-
dates entries in this memory region. Specific system calls, e.g.,read are marked as the
sources of taint (e.g., if an emulated process reads from a network socket). It is easy to
change the sources of taint in case of different needs for information flow tracking.

2.5 Signal handling

Single instructions from the original program can become multiple instructions in the
translated JIT code. This can lead to the kernel delivering asignal whileMinemuis in a
state the original program could never experience. Especially troublesome is the jump
cache (jmp cache). If a signal happens in the midst of writing a jump mapping toour
cache and the emulated program’s signal handler would in themeanwhile look up that
address, it could start executing the wrong code.

In order to solve this problem we have implemented a wrapper around signals which
allows us to guarantee that signals always get to see a consistent state, as if the program
were run natively. The emulator’s signal handler uses an alternate stack so as not to
disturb any user memory. When a signal comes in, the signal handler checks whether
the instruction pointer is between translated instructions that belong to the same original
instruction, and whether it is in runtime code.

If the instruction pointer is in the midst of executing an emulated instruction, a
JIT translation for that single instruction is made and executed, returning to our signal
handler when it is done. In case the instruction pointer is inruntime code or might jump
there, we temporarily replace the instruction at which the runtime code jumps back into
the JIT code to one that returns to our signal handler.

When the emulator is in a consistent state again, a signal stackframe is copied from
the emulator’s alternative stack to user memory as if the kernel wrote it there. The orig-
inal stack frame is then modified to make it reflect the processor state and signal mask
as it should be when delivering the user signal so that the following call to sigreturn
will actually deliver the signal to the user process’ handler.

2.6 Usage

Minemu is a process-based all-user-space emulator. Its invocation is similar to ex-
ecutable wrappers likenice and strace. Instead of executing the given program,
Minemuloads it in its own address space and starts emulating it while doing taint track-
ing at the same time. Child processes and programs started from within Minemu will
also be emulated the same way. For instance, this is how we start the apache webserver:

./minemu -cache /jitcache/ -dump /memdumps/ /etc/init.d/apache start

3 Register tagging in Minemu

Much of the overhead of earlier DTA systems (e.g., [16, 6, 20]) stems from the large
number of additional instructions needed to propagate taint—not just for memory ac-
cesses, but also for the registers. Worse still, as the additional instructions require com-
putation to find the location of the taint tags, they typically also increase the pressure

10

on thex86’s already scarce registers. While liveness analysis on registers can mitigate
the problem [21], the overhead is still considerable.

By explicitly targeting thex86, Minemu is able to exploit architectural features to
reduce both the number of additional instructions and the register pressure caused by the
instrumentation. Specifically,Minemuuses SSE registers to hold the taint information
for the general purpose registers to minimize register swapping. As a result, the instruc-
tions in need of taint propagation, require as few as1 − 3 extra instructions. In this
section, we discuss details ofMinemu’s register tagging and taint tracking procedure.

xmm5

xmm6

xmm7

128 bits

(a)

xmm5

xmm6

xmm7

t_ebx 0 0 0scratch register

(b)

Taint tracking:

Instruction executed:

t_eax = t_eax|t_ebx

xmm6 = xmm6|xmm5

128 bits

Fig. 5. SSE registers used byMinemu. (a)Minemuuses three SSE registers to store taint tags of
the general purposex86 registers.t eax, t ebx, and so on, denote taint tags associated with
the corresponding general purpose registers. (b) An example usage of the scratch register.

3.1 SSE registers used by Minemu

To minimize register swapping,Minemu emulates a processor without SSE registers,
and uses instead three SSE registers to hold the taint information for the general purpose
registers. As shown in Figure 5a, two 128 bit registers,xmm6 andxmm7, hold taint values
for the eight general purpose registers. Both are conceptually split into four 32 bit parts,
and each of these holds the taint value for one of the general purpose registers. We
name the taint tagst eax, t ecx, and so on.xmm5 is used as an auxiliary buffer, and
we call it the scratch register. Note that register tagging inMinemuis more fine-grained
than in most DTA implementations [16, 6, 20]: each individual byte of a register has an
associated taint tag, instead of one tag per register.

3.2 Taint tracking

Taint propagation rules inMinemu do not differ from those of existing DTA engines.
We copy tags on data move operations,or them onALU operations, and clean tags on
commonia32 idioms to zero memory, such asxor $eax,$eax.

What is distinctive aboutMinemuis the way it tracks taint: it does so without swap-
ping outany registers. The reason is twofold. First, we use SSE registers to store the
general purpose register tags. Second, we do not need to perform any additional com-
putations to determine relevant addresses in the shadow memory. As a result, there is no
need to change (and thus to save and restore) the contents of general purpose registers.

11

As ALU operations are (slightly) more complicated than, say, moves, we will use
them as an example. When the emulated process executesALU operations such as
add, sub, and or xor, Minemu inserts instructions to mark the destination operand
as tainted if at least one of the source operands is tainted. The tags are thusor’ed.
Depending on the instruction performed by an emulated process, the destination of
a taint propagationor instruction inserted byMinemu can be either a register or a
memory location. For example, an instruction like$eax:=$eax+$ebx is coupled with
t eax|=t ebx, and($eax):=($eax)+$ebx with memory tag($eax)|=t ebx, i.e.,
($eax+TAINT OFFSET)|=t ebx.

For efficiency reasons, we use the scratch register to temporarily store one of the
arguments of the taint propagation operation. Since both cases are handled in a similar
fashion, let us assume that the destination of the instruction is a register. As depicted in
Figure 5b, we first load the taint value associated with the source operand in the scratch
register, and place it in the part corresponding to the destination register. The remaining
part of the scratch register is zeroed. Now, it suffices to perform anor operation on two
SSE registers: the scratch registerxmm5, and eitherxmm6 or xmm7. By usingxmm5 as an
auxiliary buffer, we again manage to avoid swapping out the general purpose registers.

3.3 Is it safe to use SSE registers?

Minemu emulates a processor without SSE registers and instead usesthree SSE reg-
isters to hold the taint information for the general purposeregisters. As not all IA32
processors have SSE registers, compilers and software distributers are often usually
very conservative about using them. Even when they are used,there’s almost always
fallback code for processors that do not support it. If a processdoes try to execute an
SSE instruction,Minemucurrently generates an illegal instruction exception. There is
nothing fundamental about this, as it is possible to also translate SSE instructions, by
swapping in the contents of the original registers when needed. However, while we have
not measured it, it is quite likely that with the swapping overhead, fallback code which
does not assume SSE instructions performs better.

4 Evaluation

We evaluate bothMinemueffectiveness in detecting attacks (Section 4.2) and its perfor-
mance (Section 4.3). Besides our own measurements, we compare Minemuwith other
fast taint tracking tools (Section 4.4). We also want to mention thatMinemu is robust.
All tested applications worked out of the box.

4.1 Test environment

Our test platform is a quad-core system with an Intel i5-750 CPU clocked at 2.67GHz
with 256KB per-CPU cache and 8MB of shared cache. The system holds 4G of DDR3-
1333 memory. For our performance tests we used a 32 bit DebianGNU/Linux 6.0
install. Because of library dependencies, some of the olderexploits were tested using

12

Debian GNU/Linux 5.0 or a chrooted Ubuntu 6.06 base install.We tested network ap-
plications over the local network loopback device so that our results do not get skewed
by bandwidth limitations of the network hardware. We ran each experiment multiple
times and present the median. Across all experiments, the 90th percentiles were typi-
cally within 10% and never more than 20% off the mean.

In our experiments we mark all input to an application as tainted. Note however,
that unlike the other fast tainting approaches ([22, 23, 14]) for Minemu the amount of
taint does not change the performance at all.

4.2 Effectiveness

Table 1 shows the effectiveness ofMinemu in detecting a wide range of real-life soft-
ware vulnerabilities that trigger arbitrary code execution. We mention that, due to the
reliability of DTA, Minemudid not generate any false positives during any of our exper-
iments. Overall,Minemusuccessfully detects all attacks listed in Table 1. It spotsthat
the program counter is affected by tainted input, and raisesan alert preventing the mali-
cious code from executing. Our evaluation shows thatMinemudetects various types of
attacks in real-world scenarios. For example, the vulnerabilities in Proftpd andCyrus
imapd are exploited to overwrite the return address on the stack and allow remote at-
tackers to execute arbitrary code. For the 2010Samba vulnerability, the attacker uses
a buffer overflow to overwrite a destructor callback function. ForNginx, an underflow
bug on the heap allows attackers to modify a function pointer(as explained in Figure 1).
In Socat andTipxd it is possible to control thefmt parameter to a call tosprintf,
enabling the attacker to write to arbitrary locations in memory—in this case the return
address of a function call.

Application Vector Vulnerability Security adv. Application Vector Vulnerability Security adv.
Snort 2.4.0 Remote Stack overflow CVE-2005-3252 Aspell 0.50.5 Local Stack overflowCVE-2004-0548
Cyrus imapd 2.3.2Remote Stack overflow CVE-2006-2502 Htget 0.93 Local Stack overflowCVE-2004-0852
Samba 3.0.22 Remote Heap overflow CVE-2007-2446 Socat 1.4 Local Format string CVE-2004-1484
Nginx 0.6.32 RemoteBuffer underrunCVE-2009-2629 Aeon 0.2a Local Stack overflowCVE-2005-1019
Proftpd 1.3.3a Remote Stack overflow CVE-2010-4221 Exim 4.41 Local Stack overflowEDB-ID#796
Samba 3.2.5 Remote Heap overflow CVE-2010-2063 Htget 0.93 Local Stack overflow
Ncompress 4.2.4 Local Stack overflow CVE-2001-1413 Tipxd 1.1.1 Local Format string OSVDB-ID#12346
Iwconfig V.26 Local Stack overflow CVE-2003-0947

Table 1. Tested control flow diversion vulnerabilities

4.3 Minemuperformance

We evaluate the performance ofMinemu with a variety of applications—all of the
SPECint 2006 benchmarks, and a wide range of real world programs. The slowdown
incurred for the SPECint 2006 benchmark is on average 2.4x. The suite of tested real-
world applications, in addition to single programs such asgzip andlighttpd, con-
tains an entire web stack serving over HTTPS. We show that dueto the novel emulator
architecture, the slowdown incurred for these real-world scenarios is always less than

13

2.8x, with 1.6x forgzip, and less than 1.5x for HTTP/lighttpd. In our opinion, the
results demonstrate the practicality of our emulator.

Figure 4.3 presents detailed results of our evaluation. They-axes of all graphs show
how many times slower a test was, compared with the same test run natively. In order
to measure the overhead ofMinemu’s binary translator, all of our measurements were
done both with and without taint tracking.

In addition to testing single applications, such asgzip, lighttpd, andApache, we
also tested an entire web stack serving over HTTPS. For this test, we chose a PHP-based
MediaWiki install running onlighttpd andPostgreSQL. For Apache, lighttpd
and the MediaWiki web stack we usedapachebench, and we pinnedapachebench
to a different core than the webserver. For the web stack we also gavePostgreSQL a
separate core. Doing so decreases request times for both emulated and native runs and
reflects what real installations would do.

We observe that the slowdown incurred bylighttpd serving HTTP is minimal,
always less than 1.5x, and decreasing with the size of a request. This illustrates that
for IO-bound applications, like serving documents over HTTP, the cost of taint tracking
usingMinemu is minimal. In the case of HTTPS, the slowdown increases withthe size
of a request, but is still less than 2.8x for large files.

We also ran the whole SPECint 2006 to see the effect ofMinemu on applications
which do not spend a lot of time waiting for input. Because theSPECint 2006 bench-
marks are CPU intensive, and spend most of their time doing hard computations, we
expect these results to represent worst case scenarios. Nevertheless, only one of the
SPECint 2006 benchmarks,h264ref - performing video compression, incurred a slow-
down greater than 4x. Moreover, eight out of twelve benchmarks incur a slowdown
ranging from 1.7x to 2.3x.

4.4 How does Minemucompare to related work?

In this section, we compare the performance ofMinemu with three systems that are
the most relevant to our work, PTT [14], the dynamic taint tracking tool by Saxena et
al. [23], and LIFT [22]. We refrain from discussing the details of these projects until
Section 6 and focus on performance only. We will see thatMinemuoutperforms all. In
all graphs in this section,Minemu-T, andMinemu-NT denote the results ofMinemu
with- and without taint tracking, respectively.

PTT PTT [14] is a taint tracking system which, similarly to [15],dynamically switches
execution between a heavily instrumented QEMU and fast Xen,depending on whether
tracking is required. As we shall see, even though PTT has numerous optimizations to
reduce the performance overhead,Minemu is much faster.

To evaluate the performance of PTT, its authors present three benchmarks: local
copy, compression and searching. Local copy involves copying of a 4 MB file using the
cp command, and compression - compressing a 4 MB file withgzip. As for search-
ing, thegrep command is used to search the input data for a single word. Theinput
data set is a 100 MB text corpus spread across 100 equal-sizedfiles. Figure 7 compares
the slowdowns incurred by PTT, andMinemu. Since thecp a-4MB-file operation

14

 0

 1

 2

 3

1KB
10KB

100KB
1MB

10MB
1KB

10KB
100KB

1MB
10MB

N
or

m
al

iz
ed

 r
un

tim
e

HTTP Request times for static files

ApacheLighttpd

 0

 1

 2

 3

1KB
10KB

100KB
1MB

10MB
1KB

10KB
100KB

1MB
10MB

N
or

m
al

iz
ed

 r
un

tim
e

HTTPS Request times for static files

ApacheLighttpd

 0

 1

 2

 3

gzip OpenSSH
(scp+sshd)

PostgreSQL
(pgbench)

MediaWiki
(HTTP)

MediaWiki
(HTTPS)

N
or

m
al

iz
ed

 r
un

tim
e

Other applications

 0

 1

 2

 3

 4

 5

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

overall

N
or

m
al

iz
ed

 r
un

tim
e

SPEC INT2006 results

native
Minemu without taint tracking
Minemu with taint tracking

Fig. 6. Overhead of emulation and taint-tracking inMinemu, compared to the native execution.

15

is dominated by the initialization time, we also presentMinemu overhead for acp
a-100MB-file operation. We can see that in all cases,Minemu significantly outper-
forms PTT. Note, however, that PTT does full system emulation rather than process
emulation.

 0

 5

 10

 15

 20

gzip
cp-4MB

cp-100MB

grep

N
or

m
al

iz
ed

 r
un

tim
e

native
PTT
Minemu-T

Fig. 7. Comparison of performance
overhead incurred by PTT and
Minemu.

 0

 1

 2

 3

 4

 5

 6

gzip
parser

ammp
art equake

N
or

m
al

iz
ed

 r
un

tim
e

native
Saxena-FP
Saxena-T
Minemu-NT
Minemu-T

Fig. 8. Comparison of performance overhead
incurred by Saxena et al. [23] andMinemu.
gzip andparser come from SPECint 2000,
ammp, art andequake from SPECfp 2000.

Saxena et al. The fast taint tracking system by Saxena et al. [23] builds onsmart
static analysis. This may be a problem, because as we discussfurther in Section 6, the
information required by the static analysis is not always available in practice.

To evaluate the performance of the system, the authors run a rather eclectic mix
of ten SPEC benchmarks. As some of them are so old as to be hard to find (SPEC 92
and SPEC 95), we were not able to fully compareMinemuwith [23]. Four of the ap-
plications evaluated in [23] are SPECfp benchmarks. Since FPU registers are rarely, if
ever, involved in attacks, most taint tracking systems, including Minemu and Saxena
et al. [23], ignore them by default. Thus, the overhead stemsonly from theusual taint
tracking instructions, such as data movement, arithmetic or logic instructions. For the
sake of comparison only, we presentMinemuresults for these applications as well.

Figure 8 compares slowdowns for the benchmarks which we had available. The
results show the overhead of [23] in two cases, first, optimized taint-tracking (Saxena-
T), and second,fastpath (Saxena-FP). Similar to LIFT, [23] also optionally implements
fastpath. Before executing a basic block it checks whether the data involved is tainted or
not. If not, execution follows a fast binary version withoutany information flow track-
ing. The authors of the system measured the performance of the fastpath and slowpath
code separately, where the fastpath results do not involve tainted data tracking. When-
ever we do have means for comparison,Minemu is significantly faster. Even with full
taint tracking,Minemuperforms better than the Fastpath version of [23].

LIFT LIFT [22] implements taint analysis in Intel’s highly optimized StarDBT binary
translator and applies three taint tracking performance optimizations. We show that

16

although currentlyMinemudoes not apply any of these optimizations, in most cases it
performs better. We also point out that the overhead added bythe taint tracking relative
to the performance of the bare emulator is significantly lower in the case ofMinemu.

To evaluate the performance of LIFT, its authors measured the throughput and re-
sponse time of theApacheweb server, and run 7 (out of 12) SPECint 2000 benchmarks.
Refer to Figure 9 for slowdown comparisons. The overall overhead incurred byMinemu
is much lower than that of LIFT withgcc as the only exception.Minemu’s performance
when runninggcc ranges from 2x to 3.9x (Minemucompiles itself in about 2x native
on our Intel i5-750 CPU), and differs from system to system for the same program.
Since the performance is also poor forMinemu without taint analysis, it is not likely
to be caused by the working set not fitting into cache memory. Rather, it is probably
an emulator problem. Other emulators, such as StarDBT, perform better on this bench-
mark. It shows that there is room for improvement in our emulator implementation. We
also observe that even though StarDBT is mostly faster than our pure emulator, the taint
tracking mechanism implemented inMinemu incurs less additional overhead.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

throughput

response

gzip
vpr gcc bzip2

crafty
twolf

mcf

N
or

m
al

iz
ed

 r
un

tim
e

Apache

native
StarDBT
LIFT
Minemu-NT
Minemu-T

Fig. 9. Comparison of performance overhead incurred by LIFT [22] andMinemu.

5 Limitations and Future work

Limitations Minemusuffers from the same drawbacks as most other DTA implemen-
tations: it does not track implicit flows, and it does not detect non-control data attacks.
In addition, Minemu consumes more memory than existing approaches. Extremely
memory-hungry applications may not be very suitable forMinemu in its current form.
In the next section, we discuss how theMinemuarchitecture applies to 64-bit architec-
tures with larger address spaces.

Also, Minemucurrently does not support self-modifying code. A possiblesolution
is to use the write protection mechanism. Executable pages are marked unwritable, so
that whenever an emulated process modifies the original code, Minemu would take
control of the execution. By removing all entries which correspond to the modified user
code page from the translated code cache, the new code will betranslated by the JIT
compiler before the emulated process executes it. We leave it as future work.

17

Finally, the current implementation does not work for applications that insist on
using SSE instructions. However, we do not consider this a fundamental problem, as it
is straightforward to implement register swapping for these cases.

Minemufor a 64-bit architecture Although our approach is particularly well suited for
32 bit x86 code, we believe we can make it work efficiently on 64 bitx86 also. The
main obstacle is that while on a 32 bit system we can easily pretend that our emulated
CPU does not support SSE extensions, they come standard on 64bit x86. As a result,
any compiler is free to make use of them without any feature checking. Fortunately, the
latest Intel and AMD processors come with even wider vector registers suitable to hold
taint data3. However, because the lower 128 bits of these registers map to the old SSE
registers, we will need some swapping for lesser-used registers.

A second problem is that the 32 bit displacement in Intel’s addressing mode used
for TAINT OFFSET is not large enough to hold the whole address space. This is no
problem as long as a program does not try to allocate consecutive regions of memory of
more than 2G in size. By interleaving normal memory and shadow memory in chunks
of 2G we can still use the same mechanism for tainting. If we want to support more
than 2G of consecutive memory, the emulator should reserve one (less-used) general
purpose register to holdTAINT OFFSET. Memory accesses which do not use base-index
addressing can be translated into a base-index address withTAINT OFFSET as base.
Accesses which do use base-index addressing will need an additional lea instruction.

6 Related work

Binary instrumentation for taint tracking Dynamic taint analysis builds on seminal
work by Peter and Dorothy Denning on information flow tracking in the 70s [10].
Since then we have witnessed a string of publications discussing taint tracking, e.g.,
TaintCheck [16], Vigilante [6], XenTaint [15], and Argos [20]. As all these systems,
however, are too slow to be used in production systems, researchers started working on
optimizations that would render dynamic taint analysis useful in real world scenarios. In
this section, we discuss three recent approaches which aim at decreasing the overhead
incurred by DTA: the work by Saxena et al. [23], LIFT [22], andPTT [14]. We com-
pared the performance ofMinemu with these systems in Section 4.4, and we showed
thatMinemuoutperforms all of them. We focus on the architecture of these tools now.

State-of-the-art performance optimization for taint analysis by Saxena et al. [23]
builds on smart static analysis. Prior to execution, it translates the original binary to a
completely new binary that adds highly optimized instrumentation code only to instruc-
tions that really need it. Unfortunately, even static disassembly of stripped binaries is
still an unsolved problem. For this reason, the analysis assumes the presence of at least
some symbolic information (like the entry points of functions), which is typically not
available in practice.

LIFT [22] implements taint analysis in Intel’s highly optimized StarDBT binary
translator. StarDBT uses additional dedicated registers for taint tracking. Specifically, it

3
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/

lin/intref cls/common/intref avx details.htm

18

translates the IA32 instructions to EM64T binary code. Since the EM64T architecture
has more registers than the IA32, StarDBT does not need to spill registers, giving a
significant performance gain. As a consequence, however, LIFT will not work on an 32
bit installation. LIFT applies three additional performance optimizations. First, before
executing a basic block LIFT checks whether the data involved is tainted or not. If not,
execution follows a fast binary version without any information flow tracking. Second,
LIFT coalesces data safety checks from multiple consecutive basic blocks into one.
Third, LIFT reduces the overhead of switching between the emulated program and the
instrumentation code by using cheaper instructions and status register liveness analysis,
respectively. WhileMinemu does not apply any of these optimizations (yet), in most
cases it performs better already. If anything, they show that Minemu’s performance can
be improved even more. Also, our overhead for (just) the taint tracking is lower.

PTT [14] is a taint tracking system which, similarly to [15],dynamically switches
execution between a heavily instrumented QEMU and fast Xen,depending on whether
tracking is required. To improve performance, PTT tracks taint tags at a higher ab-
straction level and in an asynchronous manner. In some more details, instead of in-
strumenting the micro instructions generated by QEMU, PTT creates a separate stream
of tag tracking instructions from thex86 instruction stream itself. Since the emulation
and taint tracking are now largely separable, PTT executes the taint tracking stream in
a parallel asynchronous fashion. This results in a significant performance gain. Still,
Minemugreatly outperforms PTT.

Binary translation Binary translation has been an important research topic forat least
30 years [11] now. In this section, we limit ourselves to two systems which are most
similar toMinemu, fastBT [19] and HDTrans [27]. Both systems are light-weight pro-
cess emulators that use code caches for translated code, andapply efficient optimiza-
tions for indirect jumps. SinceMinemu is more than an emulator - it employs binary
translation to provide efficient taint tracking - we cannot perform a comprehensive com-
parison with the aforementioned emulators. We focus the discussion on the main design
decisions. Whenever relevant, we also refer to QEMU [2]. Eventhough QEMU uses bi-
nary translation to implement full system virtualization,it has been used as a basis for
multiple taint tracking tools, e.g., Argos [20].

Compared to these three system,Minemu translates the longest chunks of code
at a time. It stops only at the end of a memory region or at an illegal instruction. In
principle QEMU and fastBT translate basic blocks, while HDTrans stops at conditional
jumps or return instructions. Another important aspect of binary translation tools is the
way they handle indirect jumps, and the issue of return caching.Minemu’s handling of
indirect jumps is most similar to HDTrans - both systems use alookup table that maps
locations in the code cache to locations in the original program. Keep in mind however,
that inMinemutranslated code chunks are much longer than in HDTrans, so that many
jump targets are located inside chunks. As for the return caching mechanism, all three
emulators implement mechanisms that exploit the relationship betweencall andret
instructions to efficiently cache the return address.

19

7 Conclusions

In this paper, we explored the research question of whether or not the slowness of
software dynamic taint analysis is fundamental. We believethat we have (at least par-
tially) answered this question in the negative. An emulatorthat is carefully designed
explicitly for taint analysis, achieves significant speed-ups. We developedMinemu, a
fast taint-trackingx86 emulator and showed that the slow-down caused by the com-
bination of taint analysis and emulation ranges between 1.5x and 3x for real appli-
cations. The design introduces a novel memory layout that minimizes the overhead
for propagating taint in memory operations. In addition, ituses SSE registers to al-
leviate potential register pressure due to the instrumentation. We evaluated our solu-
tion with standard benchmarks as well as suites of real and complex software stacks.
Finally, we compared our results with other approaches towards speeding up DTA
and show thatMinemu is significantly faster.Minemu is available for download from
https://www.minemu.org. Because of its excellent performance, we believe that
Minemumay make DTA suitable for production machines.

Acknowledgments

This work is supported by the European Research Council through project ERC-2010-
StG 259108-ROSETTA, as well as by the European Commission through projects[iCode]
and FP7-ICT-257007 SYSSEC. This publication reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of the
information contained therein. We are grateful to David Brumley and his team for sev-
eral of the local exploits we used to evaluateMinemu. We would like to thank Georgios
Portokalidis for fruitful discussions, and the anonymous reviewers for useful comments.

References

1. CVE-2009-2629: Buffer underflow vulnerability in nginx. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-2629, 2009.

2. F. Bellard. QEMU, a fast and portable dynamic translator. InProc. of the USENIX Annual
Technical Conference, 2005.

3. S. Bhatkar, D. D. Varney, and R. Sekar. Address obfuscation: an efficient approach to combat
a broad range of memory error exploits. InProc. of the 12th USENIX Security Symposium,
pages 105–120, August 2003.

4. W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficientflow tracing with dynamic
binary rewriting. InProc. of the 11th Symposium on Computers and Communications, 2006.

5. J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program analysis from execution
in virtual environments. InUSENIX Annual Technical Conference, 2008. Best Paper Award.

6. M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vigi-
lante: end-to-end containment of internet worms. InProc. of SOSP’05, 2005.

7. C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. Stackguard: Automatic adaptive detection and preventionof buffer-overflow
attacks. In7th USENIX Security Symposium, 1998.

20

8. J. Crandall and F. Chong. Minos: Control data attack prevention orthogonal to memory
model. In37th Interational Symposium on Microarchitecture, 2004.

9. M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible information flow architec-
ture for software security. InProceedings of the 34th annual international symposium on
Computer architecture, ISCA ’07, 2007.

10. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Commun. ACM, 20(7):504–513, 1977.

11. L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80 system. In
Proc. of the 11th Symposium on Principles of programming languages (POPL), 1984.

12. M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic Spyware Analysis. In
ATC’07: 2007 USENIX Annual Technical Conference, 2007.

13. W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smart phones. In
Proceedings of OSDI’10, Vancouver, BC, October 2010.

14. A. Ermolinskiy, S. Katti, S. Shenker, L. L. Fowler, and M. McCauley. Towards practical taint
tracking. Technical Report UCB/EECS-2010-92, University of California, 2010.

15. A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practicaltaint-based protection
using demand emulation. InProc. ACM SIGOPS EUROSYS’2006, 2006.

16. J. Newsome and D. Song. Dynamic taint analysis: Automatic detection,analysis, and signa-
ture generation of exploit attacks on commodity software. InProc. of NDSS, 2005.

17. A. One. Smashing the stack for fun and profit.Phrack, 7(49), 1996.
18. PaX. Pax.http://pax.grsecurity.net/, 2000.
19. M. Payer and T. R. Gross. Generating low-overhead dynamic binary translators. InProceed-

ings of the 3rd Annual Haifa Experimental Systems Conference, 2010.
20. G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting zero-day

attacks. InProc. ACM SIGOPS EUROSYS’2006, 2006.
21. M. Probst, A. Krall, and B. Scholz. Register liveness analysis for optimizing dynamic binary

translation. InProc. of WCRE’02, 2002.
22. F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT: A low-overhead practical

information flow tracking system for detecting security attacks. InProc. of MICRO, 2006.
23. P. Saxena, R. Sekar, and V. Parunik. Efficient fine-grained instrumentation with applications

to tain-tracking. InIn Proc. of ACM CGO’08, Boston, MA, April 2008.
24. E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic

taint analysis and forward symbolic execution (but might have been afraid to ask). InPro-
ceedings of the IEEE Symposium on Security and Privacy, SP’10, 2010.

25. Secunia. DEP/ASLR implementation progress in popular third-party windows applications.
http://secunia.com/gfx/pdf/DEPASLR2010paper.pdf, June 2010.

26. A. Slowinska and H. Bos. The Age of Data: Pinpointing guilty bytes in polymorphic buffer
overflows on heap or stack. InProc. of ACSAC’07, 2007.

27. S. Sridhar, J. S. Shapiro, and E. Northup. Hdtrans: An open source, low-level dynamic
instrumentation system. InProc. of VEE’06, 2006.

28. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic
information flow tracking. InASPLOS-XI. ACM, 2004.

29. W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a practical approach
to defeat a wide range of attacks. In15th USENIX Security Symposium, 2006.

30. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-wide
information flow for malware detection and analysis. InCCS ’07. ACM, 2007.

