
Hijacking (Hijacking (Hijacking (Hijacking (XenXenXenXen) Virtual Machine) Virtual Machine) Virtual Machine) Virtual Machine

for Fun and Profitsfor Fun and Profitsfor Fun and Profitsfor Fun and Profits

BelluaBelluaBelluaBellua Security Conference Security Conference Security Conference Security Conference 2007200720072007

NGUYEN Anh Quynh
<aquynh –at- gmail com>

National Insitute of Advanced Industrial Science and Technology, Japan

Who am I?

�Nguyen Anh Quynh, postdoctoral researcher

of National Institute of Advanced Industrial
Science and Technology (AIST), Japan.
Member of VnSecurity group.Member of VnSecurity group.

�Interests: Network/Computer Security, Data
forensic, Trusted Computing, Operating
system, Virtualization

Motivation

�What can we do if we can take over a host

Virtual Machine (VM) with multiple VMs running?

�Explore techniques to dynamically inject code

into any running VM to hijack its execution, in

order to inspect and capture sensitive data.

�� Focus on Xen Virtual Machine case.

� Can be done quietly and secretly without awareness
of VM's owner.

� Require absolutely no modification to hijacked VM or
underlying hypervisor.

� Implementation done in user-space.

� OS independence.

Agenda

�Background on Xen Virtual Machine and

Xen debugging facility.

�Hijacking VM execution techniques.

�Performance evaluation.

�2 demos.

�Cat & Mouse game.

�Related Works.

�Conclusions.

�Q & A.

Part I

BackgroundBackground

� Xen Virtual Machine Architecture

� Xen debugging architecture

Xen 3 Architecture

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Domain-0

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

GuestOS
(XenLinux)

Unmodified
User

Software

Domain-U

Unmodified
GuestOS

Unmodified
User

Software

Domain-U

AGP

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

(XenLinux)

Native
Device
Driver

(XenLinux)

Front-End
Device Drivers

(XenLinux)

Front-End
Device Drivers

GuestOS
(WinXP))

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

VT-x

32/64bit

AGP
ACPI
PCI

SMP

Xen's Future: Bright

�Xen 3.0 was realeased at the end of 2005

�Object: to be gradually merged into Linux kernel in

2007

�In mainline kernel from 2.6.23? (October 2007)�In mainline kernel from 2.6.23? (October 2007)

�Already adopted by ISPs, Data centers, E-

commerce, banks,...

�Will be widely used in the future

Xen Virtualization
�Para-virtualization

�Make VM aware of virtualization

�CPU virtualization on special platform “xen”

�Special IO drivers for better performance

�Require OS kernel customized and �Require OS kernel customized and
recompiled

�Full-virtualization

�Virtualize OS without any modification to OS
kernel

�Need hardware support (Intel VT, AMD SVM)

Debugging Support on Intel

�INT1 & INT3 on Intel architecture for debugging

� INT1: Debug interrupt

� Single-step trace mode

• Turn ON TF flag in EFLAGS• Turn ON TF flag in EFLAGS

� INT3: Breakpoint interrupt

• 0xCC Instruction

Debug handling in Xen

Handling INT1/INT3 in Xen

� When a breakpoint (0xCC) is hit

� Exception #BP raised (INT3)

�Hyperswitch to INT3 handler in hypervisor

� Xen hypervisor intercepts interrupt rather than let � Xen hypervisor intercepts interrupt rather than let
above VM do that

�Hypervisor checks to see if VM is in user mode?

� Yes, return control back to VM

�No (�in kernel mode), pause VM for debugger (gdb?)
to come to inspect

�Handled similarly with INT1 case (triggered by TF flag).

Part II

Hijacking VM Execution TechniquesHijacking VM Execution Techniques
• General technique

• Technical issues

– Performance penalty

– Injecting breakpoint place

– Handling breakpoint event

Hijacking VM Execution

Employ the Xen debugging infrastructure to hijack

VM execution at run-time

�Define our breakpoint handlers and associate them

with breakpoints � a probe

�Probe point: Inject breakpoint instruction here

�Probe handler: Handle breakpoint event

�Run handlers in user-space of Dom0

�Let them handle corresponding breakpoint events

Xenprobes Architecture

Injecting Breakpoint

�Insert software breakpoints at the right place into

VM

�Breakpoint put into VM kernel at run-time

�Associate breakpoint with handler

�Handler defined by us, and run in user-space�Handler defined by us, and run in user-space

of Dom0

Handling Breakpoint Event

�Find corresponding handler of this breakpoint

event

�EIP (which indicates breakpoint address) is

available

�Execute the handler in Dom0’s user-space�Execute the handler in Dom0’s user-space

�Inspect/capture/manipulate VM

�Resume VM (paused at that time)

Implementation Issues

�Pick up breakpoint event ?

�Where to inject the breakpoint ?

�Handling breakpoint event ?

Pick up Breakpoint Event

Exploit of a speacial feature of Xen debugging

technique

�Xen always sends an event to Dom0 to notify

potential debugger

�Put VM in debugging mode�Put VM in debugging mode

�Xen hypercall with XEN_DOMCTL_setdebugging

command

�Bind our handler to virtual interrupt VIRQ_DEBUGGER

�Poll for this interrupt to detect breakpoint event

Challange on Injecting Breakpoint

�Where to put the breakpoints?

�Look at the source code to get the idea where is

the appropriate place to put breakpoints

�Kernel compiled with debugging information �

kernel binary with debugged datakernel binary with debugged data

�Retrieve information from DWARF data

format

�Disassemble kernel binary to verify the

correctness

�Kernel symbol file accompanied kernel binary

�/boot/System.map file

Handling Breakpoint Issues

�Original instruction at breakpoint address must be

saved

�Original instruction must be executed after running

the handler

2 schemes to handle original instructions

• Inline-Execution scheme

• Outline-Execution scheme

Inline-Execution Scheme (1)

Execute original instruction at the original place

�Preparation

�Save the original byte overwritten by the

breakpoint

�Handling breakpoint-event�Handling breakpoint-event

�Overwrite the breakpoint instruction with the

original byte

�Decrease EIP by 1, then put VM into single-step

mode, and resume VM

�In the single-step event, recover the breakpoint

and disable single-step mode, then resume VM

Inline-Execution Scheme (2)

Outline-Execution Scheme (1)

Execute original instruction in separate area

�Preparation

�Copy original instruction to a separate area,

called Outline-Execution-Area (OEA)

�OEA must be big enough for an instruction �OEA must be big enough for an instruction

and a JMP instruction

�JMP instruction jumps to the instruction next

to the original instruction

Outline-Execution Scheme (2)

Execute original instruction in a separate area

�Handling breakpoint event

�Point EIP to the corresponding OEA area

�Execute original instruction and jump to the
instruction right after itinstruction right after it

�Resume hijacked VM

Outline-Execution Scheme (3)

OEA Allocation

OEA: execution buffer of original instruction

�Where to get the OEA memory?

�Must stay inside hijacked VM rather than in

Dom0

�Allocation ourself�Allocation ourself

�Pre-allocate OEA memory

�xenprobesU kernel module

�Split it into number of chunks, and allocate one
for each probe

�OEA address and size transmitted to Dom0

�Employ Xenstore to send information

IE versus OE (1)
� IE features?

� Good

� No need cooperation from hijacked VM

� Flexible and easy to deploy

� Bad

� Flaw design with SMP machine/preemptive kernel

What happen if kernel is preemptive and �What happen if kernel is preemptive and

breakpoint-place is hit when the orginal
instruction has been recovered?

� Breakpoint missed

� Slow because always requires single-step mode

� Suffer 2 hyperswitches each time when a

breakpoint is hit

IE versus OE (2)

�OE features?

� Good

�Work well with SMP/preemptive kernel

� Higher performance than IE scheme

� Twice faster because no need single-step mode
in most casesin most cases

� It is best to insert breakpoint at "boostable"
instruction

� Bad

� Need cooperation from hijacked VM

� Not easy to evade VM’s owner

Part III

Performance EvaluationPerformance Evaluation

Native versus IE versus OE

System Configuration

�(guest) Linux VM, Ubuntu Drake Drapper 6.10,

kernel 2.6.18

�Xen 3.0.4

�Thinkpad x60, memory 2GB, SATA HDD

�Dom0

�Memory: 600MB

�DomU

�Memory: 400MB

�Partition: Tap IO, file-based file-system

�Main partion: 2GB

�Swap partition: 1GB

Microbenchmark
� lmbench to measure latency

� null/read/write/open

benchmarks

� Native vs IE vs OE

� getppid/read/write/open

system-calls

Native IE OE

Null 0.2664 107.6732
(404.17)

48.109
(180.55)

Read 0.4732 129.1951
(273.02)

49.6081
(104.83)

Write 0.4162 108.8627
(261.56)

49.6027
(119.19)

Open 4.0706 117.8936
(28.96)

59.7527
(14.67)

Macrobenchmark
� Unzip Linux kernel source code

� time tar xjvf linux-2.6.17.tar.bz2

� Native vs IE vs OE

� mkdir/chmod/open/

read/write system-calls

Native IE OE

real 76.781 165.187
(115.14%)

94.572
(23.17%)

user 44.870 45.050 44.930

sys 5.260 28.800
(449.04%)

16.000
(204.18%)

Part IV

DemosDemos
1. XenKamera: Capture/replay system consoles
activities

• Keystrokes/output screen

2. XenRIM: Real-time file-system IDS
• Verify IO activities against security policy

Demo 1 – Blackhat Scenario

� XenKamera: Capturing and replaying keystrokes/output
screen of VM's consoles

� Hijack TTY subsystem to capture keystrokes/output
screenscreen

� close/read/write to console devices

� Replay captured data later

TTY input scheme

TTY READ

READ syscall

TTY output scheme

TTY WRITE

WRITE syscall

Demo 2 – White-hat Scenario

� XenRIM: a real-time file-system based IDS

� Hijack I/O file-system to capture file-system events

�mkdir/rmdir/write/chmod/chown/hard-link/sym-

link/unlink/renamelink/unlink/rename

� Verify against security policy to detect illegal
access/modification

� All files/dirs in {/etc, /boot, /sbin, /usr/sbin,
/usr/bin} should not be modified.

XenRIM Detect Intrusion
[2007-6-31 08:44:54] UNLINK /etc/issue 2679, uid 1� POLICY VIOLATION

Simple policy

- No write to critical directories

- No change to any things in critical directories

�/bin: system binaries (for users)

�/sbin: system binaries (for root)

�/etc: system configuration files

�/boot: kernel binaries and boot loader

Real-time IDS vs Tripwire
� Advantages

� Real-time detection

� Get notified immediately when incident happens

� Zero-cost deployment

� No need baseline database

� Richer intrusion evidence

� Information about environment available at incident time� Information about environment available at incident time

� More invisible to attacker

� No code running in user-space

� Attack resistance

� No (IDS binary & security policy) staying inside VM.

� Disadvantages

� Any? ☺

Part V

Cat & Mouse gameCat & Mouse game

Detect and Anti-detect VM hijacking

Detect Hijacking from Host VM

� Hijacked VM must be in Debugged Mode

� Suspicious VM in Debugged Mode for no reason?

�Which processes access /dev/xen/evtchn?

� Can be tricked by rootkit in Dom0

� Rootkit detection problem� Rootkit detection problem

Detect Hijacking from Guest VM

� Has kernel access?

� Scan for 0xCC at abnormal place

� Look for suspicious kernel module of OEA

� No kernel access?� No kernel access?

�Microbenchmark to detect hight latency

� But what to benchmark?

� Look for suspicious kernel module of OEA

� But kernel module can be hidden

Anti-detect Techniques (1)

Blackhat view

� IE needs nothing to be loaded inside hijacked VM

� But more vulnerable to latency benchmark

�OE cannot be used by attacker?

� Yes, it is possible ☺

� Exploit unused kernel code for OEA ☺� Exploit unused kernel code for OEA ☺

� Unused system-calls (vm86old, olduname,

oldolduname, oldfstat, oldfstat, oldstat)

� Can be detected with crafted applications that
call these system-calls

� Exploit padding memory in kernel module ☺

� Kernel module can be unloaded?

� Not with critical kernel modules

Anti-detect Techniques (2)

White-hat view

� Intruder can detect OE by looking for LKM?

� LKM can be unloaded, as we only need to allocate

memory ☺

� Allocate memory for OEA

� Inform Dom0 using XenBus/XenStore� Inform Dom0 using XenBus/XenStore

� Dom0 removes related XenStore nodes after
picking up information

� Unload LKM without deallocating memory

Part VI

Related WorksRelated Works

Related Works (1)

� K.Asrigo et al, Virtual machine-based honeypot monitoring,
Proceedings of Virtual Execution Environment 2006

� Insert breakpoint handlers into hypervisor layer

� Handler cannot be easily programmed and modified

� Require modification to hijacked VM in source code� Require modification to hijacked VM in source code

� New hypercall to send security policy to

hypervisor

� Require modification to hypervisor

� Accommodate handlers & new hypercall

Related Works (2)

� Kprobes framework, Linux kernel

� Probe handler must be in kernel code

� Kernel-space programming is restricted and

complicated

�Not easy to transmit recorded information to out of �Not easy to transmit recorded information to out of
probed VM

� A.Mavinakayanahalli et al, Probing the Guts of Kprobes,
Proceedings of the Linux Symposium 2006

� Present the architecture and implementation of Kprobes
in Linux kernel

Related Works (3)

�Nitin A.Kamble et al, Evolution in Kernel debugging using
hardware virtualization with Xen, Proceedings of Linux

Symposium 2006

� Present the infrastructure supported for debugging Xen

VMs

�N.A.Quynh et al, Xenprobes, a lightweight user-space �N.A.Quynh et al, Xenprobes, a lightweight user-space
framework for Xen Virtual Machine, Proceedings of Usenix
Annual Technical Conference 2007

�Develop OE scheme to be a framework � xenprobes

� Aim for purpose of debugging/profiling VM

� Available as a user-space library, ready to use

� To be released under GPL license

Xenprobes Framework

� Xenprobes code is available in a library

� libxenprobes 0.2

� C library

�Going to be released soon under GPL license

�http://xenprobes.sf.net�http://xenprobes.sf.net
�Works well with all Xen 3.x version

� Xen 2.x is not supported because Xen 2 handles

breakpoints differently

� Possible but not desired

� Samples available

� I386 supported. X86_64 on the work

Part VII

ConclusionsConclusions

Conclusions

� It is possible to hijack VM execution

without awareness of VM's owner

• No need coopeartion from VM

• OS independence and OS configuration independence

• Done in user-space � easy to implement

� As a customer, should we trust our rented � As a customer, should we trust our rented

VM?

• No, as everything happening in our VM can be
monitored. The control stay in hosted VM instead of
in our hand.

� Lesson learned: Keep your host VM (Dom0

in Xen case) as secure as you can!!!

Hijacking (Xen) Virtual MachineHijacking (Xen) Virtual MachineHijacking (Xen) Virtual MachineHijacking (Xen) Virtual Machine

for Fun and Profitsfor Fun and Profitsfor Fun and Profitsfor Fun and Profits

NGUYEN Anh Quynh
<aquynh –at- gmail com>

Question/Comment ?

