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Who am I?

�Nguyen Anh Quynh, postdoctoral researcher

of National Institute of Advanced Industrial
Science and Technology (AIST), Japan.
Member of VnSecurity group.Member of VnSecurity group.

�Interests: Network/Computer Security, Data
forensic, Trusted Computing, Operating
system, Virtualization



Motivation

�What can we do if we can take over a host 

Virtual Machine (VM) with multiple VMs running? 

�Explore techniques to dynamically inject code

into any running VM to hijack its execution, in 

order to inspect and capture sensitive data.

�� Focus on Xen Virtual Machine case.

� Can be done quietly and secretly without awareness 
of VM's owner.

� Require absolutely no modification to hijacked VM or 
underlying hypervisor.

� Implementation done in user-space.

� OS independence.



Agenda

�Background on Xen Virtual Machine and 

Xen debugging facility.

�Hijacking VM execution techniques.

�Performance evaluation.

�2 demos.

�Cat & Mouse game.

�Related Works.

�Conclusions. 

�Q & A.



Part I

BackgroundBackground

� Xen Virtual Machine Architecture

� Xen debugging architecture



Xen 3 Architecture
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Xen's Future: Bright 

�Xen 3.0 was realeased at the end of 2005

�Object: to be gradually merged into Linux kernel in 

2007

�In mainline kernel from 2.6.23? (October 2007)�In mainline kernel from 2.6.23? (October 2007)

�Already adopted by ISPs, Data centers, E-

commerce, banks,...

�Will be widely used in the future



Xen Virtualization
�Para-virtualization

�Make VM aware of virtualization

�CPU virtualization on special platform “xen”

�Special IO drivers for better performance

�Require OS kernel customized and �Require OS kernel customized and 
recompiled

�Full-virtualization

�Virtualize OS without any modification to OS 
kernel

�Need hardware support (Intel VT, AMD SVM)



Debugging Support on Intel 

�INT1 & INT3 on Intel architecture for debugging

� INT1: Debug interrupt

� Single-step trace mode

• Turn ON TF flag in EFLAGS• Turn ON TF flag in EFLAGS

� INT3: Breakpoint interrupt

• 0xCC Instruction



Debug handling in Xen

Handling INT1/INT3 in Xen

� When a breakpoint (0xCC) is hit

� Exception #BP raised (INT3)

�Hyperswitch to INT3 handler in hypervisor

� Xen hypervisor intercepts interrupt rather than let � Xen hypervisor intercepts interrupt rather than let 
above VM do that

�Hypervisor checks to see if VM is in user mode?

� Yes, return control back to VM

�No (�in kernel mode), pause VM for debugger (gdb?)
to come to inspect

�Handled similarly with INT1 case (triggered by TF flag).



Part II

Hijacking VM Execution TechniquesHijacking VM Execution Techniques
• General technique

• Technical issues

– Performance penalty

– Injecting breakpoint place

– Handling breakpoint event



Hijacking VM Execution

Employ the Xen debugging infrastructure to hijack 

VM execution at run-time

�Define our breakpoint handlers and associate them 

with breakpoints � a probe

�Probe point: Inject breakpoint instruction here

�Probe handler: Handle breakpoint event

�Run handlers in user-space of Dom0 

�Let them handle corresponding breakpoint events



Xenprobes Architecture



Injecting Breakpoint

�Insert software breakpoints at the right place into 

VM

�Breakpoint put into VM kernel at run-time

�Associate breakpoint with handler

�Handler defined by us, and run in user-space�Handler defined by us, and run in user-space

of Dom0



Handling Breakpoint Event

�Find corresponding handler of this breakpoint 

event

�EIP (which indicates breakpoint address)  is 

available

�Execute the handler in Dom0’s user-space�Execute the handler in Dom0’s user-space

�Inspect/capture/manipulate VM

�Resume VM (paused at that time)



Implementation Issues

�Pick up breakpoint event ?

�Where to inject the breakpoint ?

�Handling breakpoint event ?



Pick up Breakpoint Event

Exploit of a speacial feature of Xen debugging 

technique

�Xen always sends an event to Dom0 to notify 

potential debugger

�Put VM in debugging mode�Put VM in debugging mode

�Xen hypercall with XEN_DOMCTL_setdebugging

command

�Bind our handler to virtual interrupt VIRQ_DEBUGGER

�Poll for this interrupt to detect breakpoint event



Challange on Injecting Breakpoint

�Where to put the breakpoints?

�Look at the source code to get the idea where is 

the appropriate place to put breakpoints

�Kernel compiled with debugging information �

kernel binary with debugged datakernel binary with debugged data

�Retrieve information from DWARF data 

format

�Disassemble kernel binary to verify the 

correctness

�Kernel symbol file accompanied kernel binary

�/boot/System.map file



Handling Breakpoint Issues

�Original instruction at breakpoint address must be 

saved

�Original instruction must be executed after running 

the handler

2 schemes to handle original instructions

• Inline-Execution scheme

• Outline-Execution scheme



Inline-Execution Scheme (1)

Execute original instruction at the original place

�Preparation

�Save the original byte overwritten by the 

breakpoint

�Handling breakpoint-event�Handling breakpoint-event

�Overwrite the breakpoint instruction with the 

original byte

�Decrease EIP by 1, then put VM into single-step

mode, and resume VM

�In the single-step event, recover the breakpoint 

and disable single-step mode, then resume VM



Inline-Execution Scheme (2)



Outline-Execution Scheme (1)

Execute original instruction in separate area

�Preparation

�Copy original instruction to a separate area, 

called Outline-Execution-Area (OEA)

�OEA must be big enough for an instruction �OEA must be big enough for an instruction 

and a JMP instruction

�JMP instruction jumps to the instruction next 

to the original instruction



Outline-Execution Scheme (2)

Execute original instruction in a separate area

�Handling breakpoint event

�Point EIP to the corresponding OEA area

�Execute original instruction and jump to the 
instruction right after itinstruction right after it

�Resume hijacked VM



Outline-Execution Scheme (3)



OEA Allocation

OEA: execution buffer of original instruction

�Where to get the OEA memory?

�Must stay inside hijacked VM rather than in 

Dom0

�Allocation ourself�Allocation ourself

�Pre-allocate OEA memory

�xenprobesU kernel module

�Split it into number of chunks, and allocate one 
for each probe

�OEA address and size transmitted to Dom0

�Employ Xenstore to send information 



IE versus OE (1)
� IE features?

� Good

� No need cooperation from hijacked VM

� Flexible and easy to deploy

� Bad

� Flaw design with SMP machine/preemptive kernel

What happen if kernel is preemptive and �What happen if kernel is preemptive and 

breakpoint-place is hit when the orginal 
instruction has been recovered?

� Breakpoint missed

� Slow because always requires single-step mode

� Suffer 2 hyperswitches each time when a 

breakpoint is hit



IE versus OE (2)

�OE features?

� Good

�Work well with SMP/preemptive kernel

� Higher performance than IE scheme

� Twice faster because no need single-step mode 
in most casesin most cases

� It is best to insert breakpoint at "boostable" 
instruction

� Bad

� Need cooperation from hijacked VM

� Not easy to evade VM’s owner



Part III

Performance EvaluationPerformance Evaluation

Native versus IE versus OE



System Configuration

�(guest) Linux VM, Ubuntu Drake Drapper 6.10, 

kernel 2.6.18

�Xen 3.0.4

�Thinkpad x60, memory 2GB, SATA HDD

�Dom0

�Memory: 600MB

�DomU

�Memory: 400MB

�Partition: Tap IO, file-based file-system

�Main partion: 2GB

�Swap partition: 1GB



Microbenchmark
� lmbench to measure latency

� null/read/write/open

benchmarks

� Native vs IE vs OE

� getppid/read/write/open

system-calls

Native IE OE

Null 0.2664 107.6732
(404.17)

48.109
(180.55)

Read 0.4732 129.1951
(273.02)

49.6081
(104.83)

Write 0.4162 108.8627
(261.56)

49.6027
(119.19)

Open 4.0706 117.8936
(28.96)

59.7527
(14.67)



Macrobenchmark
� Unzip Linux kernel source code

� time tar xjvf linux-2.6.17.tar.bz2

� Native vs IE vs OE

� mkdir/chmod/open/

read/write system-calls

Native IE OE

real 76.781 165.187
(115.14%)

94.572
(23.17%)

user 44.870 45.050 44.930

sys 5.260 28.800
(449.04%)

16.000
(204.18%)



Part IV

DemosDemos
1. XenKamera: Capture/replay system consoles 
activities

• Keystrokes/output screen

2. XenRIM: Real-time file-system IDS
• Verify IO activities against security policy



Demo 1 – Blackhat Scenario

� XenKamera: Capturing and replaying keystrokes/output 
screen of VM's consoles

� Hijack TTY subsystem to capture keystrokes/output 
screenscreen

� close/read/write to console devices

� Replay captured data later



TTY input scheme

TTY READ

READ syscall



TTY output scheme

TTY WRITE

WRITE syscall



Demo 2 – White-hat Scenario

� XenRIM: a real-time file-system based IDS

� Hijack I/O file-system to capture file-system events

�mkdir/rmdir/write/chmod/chown/hard-link/sym-

link/unlink/renamelink/unlink/rename

� Verify against security policy to detect illegal 
access/modification

� All files/dirs in {/etc, /boot, /sbin, /usr/sbin, 
/usr/bin} should not be modified.



XenRIM Detect Intrusion
[2007-6-31 08:44:54] UNLINK  /etc/issue  2679, uid 1� POLICY VIOLATION



Simple policy

- No write to critical directories

- No change to any things in critical directories

�/bin: system binaries (for users)

�/sbin: system binaries (for root)

�/etc: system configuration files

�/boot: kernel binaries and boot loader



Real-time IDS vs Tripwire
� Advantages

� Real-time detection

� Get notified immediately when incident happens

� Zero-cost deployment

� No need baseline database

� Richer intrusion evidence

� Information about environment available at incident time� Information about environment available at incident time

� More invisible to attacker

� No code running in user-space

� Attack resistance

� No (IDS binary & security policy) staying inside VM. 

� Disadvantages

� Any? ☺



Part V

Cat & Mouse gameCat & Mouse game

Detect and Anti-detect VM hijacking



Detect Hijacking from Host VM

� Hijacked VM must be in Debugged Mode

� Suspicious VM in Debugged Mode for no reason?

�Which processes access /dev/xen/evtchn?

� Can be tricked by rootkit in Dom0

� Rootkit detection problem� Rootkit detection problem



Detect Hijacking from Guest VM

� Has kernel access?

� Scan for 0xCC at abnormal place

� Look for suspicious kernel module of OEA

� No kernel access?� No kernel access?

�Microbenchmark to detect hight latency

� But what to benchmark?

� Look for suspicious kernel module of OEA

� But kernel module can be hidden



Anti-detect Techniques (1)

Blackhat view

� IE needs nothing to be loaded inside hijacked VM

� But more vulnerable to latency benchmark

�OE cannot be used by attacker?

� Yes, it is possible ☺

� Exploit unused kernel code for OEA ☺� Exploit unused kernel code for OEA ☺

� Unused system-calls (vm86old, olduname, 

oldolduname, oldfstat, oldfstat, oldstat)

� Can be detected with crafted applications that 
call these system-calls

� Exploit padding memory in kernel module ☺

� Kernel module can be unloaded?

� Not with critical kernel modules



Anti-detect Techniques (2)

White-hat view

� Intruder can detect OE by looking for LKM?

� LKM can be unloaded, as we only need to allocate 

memory ☺

� Allocate memory for OEA

� Inform Dom0 using XenBus/XenStore� Inform Dom0 using XenBus/XenStore

� Dom0 removes related XenStore nodes after 
picking up information

� Unload LKM without deallocating memory



Part VI

Related WorksRelated Works



Related Works (1)

� K.Asrigo et al, Virtual machine-based honeypot monitoring, 
Proceedings of Virtual Execution Environment 2006

� Insert breakpoint handlers into hypervisor layer

� Handler cannot be easily programmed and modified

� Require modification to hijacked VM in source code� Require modification to hijacked VM in source code

� New hypercall to send security policy to 

hypervisor

� Require modification to hypervisor

� Accommodate handlers & new hypercall



Related Works (2) 

� Kprobes framework, Linux kernel

� Probe handler must be in kernel code

� Kernel-space programming is restricted and 

complicated

�Not easy to transmit recorded information to out of �Not easy to transmit recorded information to out of 
probed VM

� A.Mavinakayanahalli et al, Probing the Guts of Kprobes, 
Proceedings of the Linux Symposium 2006

� Present the architecture and implementation of Kprobes 
in Linux kernel



Related Works (3) 

�Nitin A.Kamble et al, Evolution in Kernel debugging using 
hardware virtualization with Xen, Proceedings of Linux 

Symposium 2006

� Present the infrastructure supported for debugging Xen 

VMs

�N.A.Quynh et al, Xenprobes, a lightweight user-space �N.A.Quynh et al, Xenprobes, a lightweight user-space 
framework for Xen Virtual Machine, Proceedings of Usenix 
Annual Technical Conference 2007

�Develop OE scheme to be a framework � xenprobes

� Aim for purpose of debugging/profiling VM

� Available as a user-space library, ready to use

� To be released under GPL license



Xenprobes Framework

� Xenprobes code is available in a library

� libxenprobes 0.2

� C library

�Going to be released soon under GPL license

�http://xenprobes.sf.net�http://xenprobes.sf.net
�Works well with all Xen 3.x version

� Xen 2.x is not supported because Xen 2 handles 

breakpoints differently

� Possible but not desired

� Samples available

� I386 supported. X86_64 on the work



Part VII

ConclusionsConclusions



Conclusions

� It is possible to hijack VM execution

without awareness of VM's owner

• No need coopeartion from VM

• OS independence and OS configuration independence

• Done in user-space � easy to implement

� As a customer, should we trust our rented � As a customer, should we trust our rented 

VM?

• No, as everything happening in our VM can be
monitored. The control stay in hosted VM instead of
in our hand.

� Lesson learned: Keep your host VM (Dom0

in Xen case) as secure as you can!!!
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