
Saturday, January 19, 2002 OpenBSD Frequently Asked Questions Page: 1

http://www.openbsd.org/faq/index.html

OpenBSD FAQ

Language: [en]
 [cs] [de] [es] [ja] [ko]

 1.0 Intro to OpenBSD
 2.0 Other resources
 3.0 Obtaining OpenBSD
 4.0 Installation Guide
 5.0 Kernel Configuration
 6.0 Networking Setup
 7.0 Keyboard Controls
 8.0 General Questions
 9.0 Migrating from Linux
 10.0 System Management
 11.0 Performance Tuning
 12.0 For Advanced Users
 13.0 IPsec
 14.0 Disk setup

Previous releases
 OpenBSD 2.4
 OpenBSD 2.5

Back to OpenBSD

Frequently Asked Questions
This FAQ is maintained with information pertaining to the 3.0 release of OpenBSD. Not all
information presented here may be accurate for older releases of OpenBSD, and will not reflect
new features and options of -current. It only attempts to track what has been released on CD.

Information for previous releases is available. You should check
http://www.openbsd.org/errata.html for important updates.

This FAQ will take you through most critical steps to setting up your own OpenBSD system.
The addressed questions range from new to advanced users. Hopefully you will find this FAQ
useful. Downloadable versions of the FAQ are available in text and PDF. These versions may
not be as up-to-date as the HTML versions available from this page.

Text Version
PDF Version

Any questions can be directed to: faq@openbsd.org. If you want to report a bug in OpenBSD,
please read our bug reporting guidelines thoroughly.

Recently updated or added FAQ's
FAQ 6, Packet Filter and NAT.
FAQ 14, Issues with Large Drives and OpenBSD
FAQ 14, Soft updates. Updated to reflect many changes that took place between
OpenBSD 2.8->OpenBSD 2.9
FAQ 7 - Many sections here were updated to reflect the switch from pcvt->wscons.
FAQ 14 - Help! I'm getting errors with PCIIDE!
FAQ 14 - Mounting disk images in OpenBSD.

The Current FAQ maintainers are:
Eric Jackson
Wim Vandeputte
Chris Cappuccio

OpenBSD FAQ Copyright © 1998-2001 OpenBSD
$OpenBSD: index.html,v 1.123 2002/01/13 00:03:45 ericj Exp $
"If you don't find it in the index, look very carefully through the entire catalogue."
Sears, Roebuck, and Co., Consumer's Guide, 1897

Saturday, January 19, 2002 1.0 - Introduction to OpenBSD Page: 1

http://www.openbsd.org/faq/faq1.html

1.0 - Introduction to OpenBSD

Table of Contents

1.1 - What is OpenBSD?
1.2 - On what systems does OpenBSD run?
1.3 - Is OpenBSD really free?
1.4 - Why might I want to use OpenBSD?
1.5 - How can I help support OpenBSD?
1.6 - Who maintains OpenBSD?

1.1 - What is OpenBSD?
The OpenBSD project produces a freely available, multi-platform 4.4BSD-based UNIX-like operating system. Our
goals place emphasis on correctness, security, standardization, and portability. OpenBSD supports binary emulation of
most binaries from SVR4 (Solaris), FreeBSD, Linux, BSDI, SunOS, and HPUX.

1.2 - On what systems does OpenBSD run?
OpenBSD 3.0 runs on the following platforms:

i386 - CD bootable
sparc - CD bootable
sparc64 - CD bootable
hp300
amiga
mac68k
macppc - CD bootable
sun3
mvme68k
alpha
vax

bootable means that OpenBSD will boot directly from the CD. The CD set will boot on several hardware platforms. See
section 3.0 of this FAQ for details of obtaining OpenBSD on CD.

Previous releases of OpenBSD also had a port for:

arc - This port was removed from the 2.4 release. Code can be found in OpenBSD 2.3.
mvme88k
pmax

Multiprocessor support? See 8.12 for more info.

1.3 - Is OpenBSD really free?
OpenBSD is all free. The binaries are free. The source is free. All parts of OpenBSD have reasonable copyright terms
permitting free redistribution. This includes the ability to REUSE most parts of the OpenBSD source tree, either for
personal or commercial purposes. OpenBSD includes NO further restrictions other than those implied by the original

Saturday, January 19, 2002 1.0 - Introduction to OpenBSD Page: 2

http://www.openbsd.org/faq/faq1.html

BSD license. Software which is written under stricter licenses cannot be included in the regular distribution of
OpenBSD. This is intended to safeguard the free use of OpenBSD. For example, OpenBSD can be freely used for
personal use, for academic use, by government institutions, by non-profit making organizations and by commercial
organizations.

For further reading on other popular licenses read: http://www.openbsd.org/policy.html.

The maintainers of OpenBSD support the project largely from their own pockets. This includes the time spent
programming for the project, equipment used to support the many ports, the network resources used to distribute
OpenBSD to you, and the time spent answering questions and investigating users' bug reports. The OpenBSD
developers are not independently wealthy and even small contributions of time, equipment, and resources make a big
difference.

1.4 - Why might I want to use OpenBSD?
New users frequently want to know whether OpenBSD is superior to some other free UNIX-like operating system. That
question is largely un-answerable and is the subject of countless (and useless) religious debates. Do not, under any
circumstances, ask such a question on an OpenBSD mailing list.

Below are some reasons why we think OpenBSD is a useful operating system. Whether OpenBSD is right for you is a
question that only you can answer.

OpenBSD runs on many different hardware platforms.
OpenBSD is thought of by many security professionals to be the most secure UNIX-like operating system as
the result of a 10-member 1.5-year long comprehensive source code security audit.
OpenBSD is a full-featured UNIX-like operating system available in source form at no charge.
OpenBSD integrates cutting-edge security technology suitable for building firewalls and private network
services in a distributed environment.
OpenBSD benefits from strong on-going development in many areas, offering opportunities to work with
emerging technologies with an international community of programmers and end-users.
OpenBSD offers opportunities for ordinary people to participate in the development and testing of the product.

1.5 - How can I help support OpenBSD?
We are greatly indebted to the people and organizations that have contributed to the OpenBSD project. They are
acknowledged by name here:

http://www.openbsd.org/donations.html

OpenBSD has a constant need for several types of support from the user community. If you find OpenBSD useful, you
are strongly encouraged to find a way to contribute. If none of the suggestions below are right for you, feel free to
propose an alternative by sending e-mail to donations@openbsd.org.

Buy an OpenBSD CD. It includes the current full release of OpenBSD, and is bootable on many platforms. It
also generates revenue to support the OpenBSD project, and reduces the strain on network resources used to
deliver the distribution via the Internet. This inexpensive two-CD set includes full source. Remember, your
friends need their own copy!
Donate money. The project has a constant need for cash to pay for equipment, network connectivity, and
expenses relating to CD publishing. Manufacturing CDs requires an up-front out-of-pocket investment for the
OpenBSD developers, without guaranteed return. Send e-mail to donations@openbsd.org to find out how to
contribute. Even small donations make a profound difference.
Donate equipment and parts. The project has a constant need for general and specific hardware. Items such as
IDE and SCSI disks, and various types of RAM are always welcome. For other types of hardware such as
computer systems and motherboards, you should inquire as to current need. Write to donations@openbsd.org
to arrange for shipment.
Donate your time and skills. Programmers who enjoy writing operating systems are naturally always welcome,
but there are literally dozens of other ways that people can be useful. Follow mailing lists and help answer

Saturday, January 19, 2002 1.0 - Introduction to OpenBSD Page: 3

http://www.openbsd.org/faq/faq1.html

new-user questions.
Help maintain documentation by submitting new FAQ material (to faq@openbsd.org). Form a local user group
and get your friends hooked on OpenBSD. Make a case to your employer for using OpenBSD at work. If
you're a student, talk to your professors about using OpenBSD as a learning tool for Computer Science or
Engineering courses. It's also worth mentioning one of the most important ways you should not try to "help"
The OpenBSD project: do not waste your time engaging in operating system flame wars on Usenet
newsgroups. It does not help the project to find new users and can cause substantial harm to important
relationships that developers have with other developers.

1.6 - Who maintains OpenBSD?
OpenBSD is maintained by a development team spread across many different countries. The project is coordinated by
Theo de Raadt, located in Canada.

[To Section 2.0 - Other OpenBSD information resources]

 www@openbsd.org
$OpenBSD: faq1.html,v 1.30 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 2.0 - Other OpenBSD information resources Page: 1

http://www.openbsd.org/faq/faq2.html

2.0 - Other OpenBSD information resources

Table of Contents

2.1 - Web Pages
2.2 - Mailing Lists
2.3 - Manual Pages
2.4 - Reporting Bugs

2.1 - Web Pages of Interest
The official website for the OpenBSD project is located at: http://www.OpenBSD.org

A lot of valuable information can be found here regarding all aspects of the OpenBSD project.

Additional information for laptop users can be found at:
http://www.monkey.org/openbsd-mobile/

2.2 - Mailing Lists
The OpenBSD project maintains several popular mailing lists which users should subscribe to and follow. To subscribe
to a mailing list, send an e-mail message to majordomo@openbsd.org. That address is an automated subscription
service. In the body of your message, on a single line, you should include a subscribe command for the list you wish to
join. For example:

subscribe announce

The list processor will reply to you, asking for confirmation of your intent to join the list. The confirmation you send
back to the list processor will be included in its reply to you. It will look something like this:

auth 90855167 subscribe announce you@example.com

Once you have confirmed your intent to join, you will be immediately added to the list, and the list processor will notify
you that you were successfully added.

To unsubscribe from a list, you will again send an e-mail message to majordomo@openbsd.org. It might look like
this:

unsubscribe announce

If you have any difficulties with the mailing list system, please first read the instructions. They can be obtained by
sending an e-mail message to majordomo@openbsd.org with a message body of "help". These are the
currently-available OpenBSD mailing lists:

announce - Important announcements. This is a low-volume list.
security-announce - Announcements of security issues.
tech - General technical discussions.
misc - User questions and answers.
bugs - Bugs received via sendbug(1) and discussions about them.
source-changes - Automated mailing of CVS source tree changes.

Saturday, January 19, 2002 2.0 - Other OpenBSD information resources Page: 2

http://www.openbsd.org/faq/faq2.html

ports - Discussion of the OpenBSD Ports Tree.
ports-changes - Automated mailing of ports-specific CVS source tree changes.
advocacy - Discussion on advocating OpenBSD.

Archives of the OpenBSD mailing lists can be found by visiting the mailing lists web page:
http://www.openbsd.org/mail.html
You can also get mail archives from http://www.monkey.org/cgi-bin/wilma or
http://www.geocrawler.com/lists/4/OpenBSD. These websites contain searchable archives of the OpenBSD mailing
lists.

Another mailing list that may be of interest is openbsd-mobile@monkey.org. This mailing list is a discussion of the use
of OpenBSD in mobile computing.

To subscribe to this list use:

'echo subscribe | mail "openbsd-mobile-request@monkey.org"'

The archives for that can be found at: http://www.monkey.org/openbsd-mobile/archive/

2.3 - Manual Pages
OpenBSD comes with extensive documentation in the form of manual pages, as well as longer documents relating to
specific applications. To access the manual pages and other documentation, be sure that you installed the man and misc
sets.

Here is a list of some of the most useful manual pages for new users:

help(1) - help for new users and administrators
afterboot(8) - things to check after the first complete boot
boot(8) - system boot strapping procedures
passwd.conf(5) - format of the password configuration file
adduser(8) - command for adding new users
vipw(8) - edit the pass word file
man(1) - display the on-line manual pages
sendbug(1) - send a problem report (PR) about OpenBSD to a central support site.
disklabel(8) - Read and write disk pack label.
ifconfig(8) - configure network interface parameters.
route(8) - manually manipulate the routing tables.
netstat(1) - show network status.
reboot, halt(8) - Stopping and restarting the system.
shutdown(8) - close down the system at a given time.
boot_config(8) - how to change kernel configuration at boot

Also, If you are one of the people who didn't install the man30.tgz package, you can find all the OpenBSD man pages
on the web at http://www.openbsd.org/cgi-bin/man.cgi.

In general, if you know the name of a command or a manual page, you can read it by executing `man command'. For
example: `man vi' to read about the vi editor. If you don't know the name of the command, or if `man command'
doesn't find the manual page, you can search the manual page database by executing `apropos something' or `man
-k something' where something is a likely word that might appear in the title of the manual page you're looking for.
For example:

bsd# apropos "time zone"
tzfile (5) - time zone information
zdump (8) - time zone dumper
zic (8) - time zone compiler

The parenthetical numbers indicate the section of the manual in which that page can be found. In some cases, you may
find manual pages with identical names living in separate sections of the manual. For example, assume that you want to

Saturday, January 19, 2002 2.0 - Other OpenBSD information resources Page: 3

http://www.openbsd.org/faq/faq2.html

know the format of the configuration files for the cron daemon. Once you know the section of the manual for the page
you want, you would execute `man n command' where n is the manual section number.

bsd# man -k cron
cron (8) - daemon to execute scheduled commands (Vixie Cron)
crontab (1) - maintain crontab files for individual users (V3)
crontab (5) - tables for driving cron
bsd# man 5 crontab

In addition to the UNIX manual pages, there is a typesettable document set (included in the misc distribution). It lives in
the /usr/share/doc directory. If you also installed the text distribution, then you can format each document set with a
`make' in the appropriate subdirectory. The psd subdirectory is the Programmer's Supplementary Documents
distribution. The smm subdirectory is the System Manager's Manual. The usd subdirectory is the UNIX User's
Supplementary Documents distribution. You can perform your `make' in the three distribution subdirectories, or you
can select a specific section of a distribution and do a `make' in its subdirectory. Some of the subdirectories are empty.
By default, formatting the documents will result in Postscript output, suitable for printing. The Postscript output can be
quite large -- you should assume 250-300% increase in volume. If you do not have access to a Postscript printer or
display, you may also format the documents for reading on a terminal display. In each Makefile you'll need to add the
flag -Tascii to each instance of the groff(1) commands (or execute it by hand). Some of the documents use the ms
formatting macros, and some use the me macros. The Makefile in each document subdirectory (eg,
/usr/share/doc/usd/04.csh/Makefile) will tell you which one to use. For example:

bsd# cd /usr/share/doc/usd/04.csh
bsd# groff -Tascii -ms tabs csh.1 csh.2 csh.3 csh.4 csh.a csh.g > csh.txt
bsd# more csh.txt

The UNIX manual pages are generally more current and trustworthy than the typesettable documents. The typesettable
documents sometimes explain complicated applications in more detail than the manual pages do.

For many, having a hardcopy of the man page can be useful. Here are the guidelines to making a printable copy of a
man page.

How do I display a man page source file? (i.e. one whose filename ends in a number,
like tcpdump.8).

This is found throughout the src tree. The man pages are found in the tree unformatted, and many times through the use
of CVS, they will be updated. To view these pages simply :

nroff -mdoc <file> | more

How do I get a plain man page with no formatting or control characters?

This is helpful to get the man page straight, with no non-printable characters.
Example:

man <command> | col -b

How can I get a PostScript copy of a man page that's print-ready?

Note that [man_src_file] must be the man page source file (probably a file that ends in a number; e.g., tcpdump.8). The
PostScript versions of the man pages look very nice. They can be printed or viewed on-screen with a program like gv
(GhostView). GhostView can be found in our Ports Tree. Use the following groff(1) command options for getting a
PostScript version from an OpenBSD system man page:

groff -mdoc -Tps [man_src_file] > outfile.ps

The above command line will only work for man pages formatted with the mdoc(7) macro package, used to format the
BSD man pages. For getting a PostScript version from a third party software man page (either self-compiled or installed
from the ports(7) or the packages(7)), do instead:

groff -Tps -mandoc [man_src_file] > outfile.ps

Saturday, January 19, 2002 2.0 - Other OpenBSD information resources Page: 4

http://www.openbsd.org/faq/faq2.html

2.4 - Reporting Bugs
Before submitting any bug report, please read http://www.openbsd.org/report.html

Proper bug reporting is one of the most important responsibilities of end users. Very detailed information is required to
diagnose most serious bugs. Developers frequently get bugs reports via e-mail such as this:

From: joeuser@example.com
To: bugs@openbsd.org
Subject: HELP!!!

I have a PC and it won't boot!!!!! It's a 486!!!!!

Hopefully most people understand why such reports get summarily deleted. All bug reports should contain detailed
information. If Joe User had really expected someone to help find this bug, he or she would have supplied more
information... something like this:

(Note: See report.html for more information on creating and submitting bug reports. Basically, detailed information
about your hardware is necessary if you think the bug is in any way related to your hardware or hardware configuration.
Usually, dmesg(8) output is sufficient in this respect. Next, a detailed description of your problem is necessary.)

From: smartuser@example.com
To: bugs@openbsd.org
Subject: 2.7 panics on an i386

After installing OpenBSD 2.7 from the CD which I purchased via your outstanding
on-line ordering system, I find that the system halts when using any network utilities.
After booting with a bootdisk and escaping to a shell. This is the
dmesg output:

OpenBSD 2.7 (GENERIC) #690: Fri Oct 29 16:32:17 MDT 1999
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
cpu0: F00F bug workaround installed
cpu0: Intel Pentium (P54C) ("GenuineIntel" 586-class) 120 MHz
cpu0: FPU,V86,DE,PSE,TSC,MSR,MCE,CX8
BIOS mem = 654336 conventional, 15728640 extended
real mem = 16384000
avail mem = 11112448
using 225 buffers containing 921600 bytes of memory
mainbus0 (root)
bios0 at mainbus0: AT/286+(63) BIOS, date 08/20/96
bios0: diskinfo 0xe055800c cksumlen 1 memmap 0xe0558088 apminfo 0xe0558134
apm0 at bios0: Power Management spec V1.1
apm0: battery life expectancy 95%
apm0: AC on, battery charge high, charging, estimated 1:27 minutes
pci0 at mainbus0 bus 0: configuration mode 1 (no bios)
pchb0 at pci0 dev 0 function 0 "Toshiba (2nd ID) Host-PCI" rev 0x11
"Chips and Technologies 65550" rev 0x04 at pci0 dev 4 function 0 not configured
isa0 at mainbus0
isadma0 at isa0
wdc0 at isa0 port 0x1f0/8 irq 14
wd0 at wdc0 channel 0 drive 0: <TOSHIBA MK2720FC>
wd0: can use 16-bit, PIO mode 4
wd0: 16-sector PIO, LBA, 1296MB, 2633 cyl, 16 head, 63 sec, 2654280 sectors
sb0 at isa0 port 0x220/24 irq 5 drq 1: dsp v3.02
midi0 at sb0: <SB MIDI UART>
audio0 at sb0
opl0 at sb0: model OPL3
midi1 at opl0: <SB Yamaha OPL3>
wss0 at isa0 port 0x530/8 irq 10 drq 0: CS4232 (vers 63)
audio1 at wss0

Saturday, January 19, 2002 2.0 - Other OpenBSD information resources Page: 5

http://www.openbsd.org/faq/faq2.html

pcppi0 at isa0 port 0x61
midi2 at pcppi0: <PC speaker>
sysbeep0 at pcppi0
npx0 at isa0 port 0xf0/16: using exception 16
pccom0 at isa0 port 0x3f8/8 irq 4: ns16550a, 16 byte fifo
pccom1 at isa0 port 0x2f8/8 irq 3: ns16550a, 16 byte fifo
pccom2: irq 5 already in use
vt0 at isa0 port 0x60/16 irq 1: generic VGA, 80 col, color, 8 scr, mf2-kbd
pms0 at vt0 irq 12
fdc0 at isa0 port 0x3f0/6 irq 6 drq 2
fd0 at fdc0 drive 0: 1.44MB 80 cyl, 2 head, 18 sec
pcic0 at isa0 port 0x3e0/2 iomem 0xd0000/16384
pcic0 controller 0: <Intel 82365SL rev 1> has sockets A and B
pcmcia0 at pcic0 controller 0 socket 0
pcmcia1 at pcic0 controller 0 socket 1
ne3 at pcmcia1 function 0 "Linksys, EtherFast 10/100 PC Card (PCMPC100), " port 0x340/16 irq
ne3: address 00:e0:98:04:95:ba
pcic0: irq 11
biomask 4040 netmask 4240 ttymask 5a42
pctr: 586-class performance counters and user-level cycle counter enabled
dkcsum: wd0 matched BIOS disk 80
root on wd0a
rootdev=0x0 rrootdev=0x300 rawdev=0x302

Thank you!

For more information on getting the dmesg(8) output from a floppy, read FAQ 14.7 and FAQ 4.5.

If Joe User had a working OpenBSD system from which he wanted to submit a bug report, he would have used the
sendbug(1) utility to submit his bug report to the GNATS problem tracking system. Obviously you can't use
sendbug(1) when your system won't boot, but you should use it whenever possible. You will still need to include
detailed information about what happened, the exact configuration of your system, and how to reproduce the problem.
The sendbug(1) command requires that your system be able to deliver electronic mail successfully on the Internet.

If you have submitted a bug report and you want to check its current status without annoying anyone, the best ways are:

Visit the GNATS tracking system: http://cvs.openbsd.org/cgi-bin/wwwgnats.pl.
Look in the bugs@openbsd.org list archives: http://www.openbsd.org/mail.html.

[Back to Main Index] [To Section 1.0 - Introduction to OpenBSD] [To Section 3.0 - Obtaining OpenBSD]

 www@openbsd.org
$OpenBSD: faq2.html,v 1.41 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 3.0 - Obtaining OpenBSD Page: 1

http://www.openbsd.org/faq/faq3.html

3.0 - Obtaining OpenBSD

Table of Contents

3.1 - Buying an OpenBSD CD
3.1.1 - Buying OpenBSD T-Shirts
3.1.2 - Where can I get an OpenBSD iso image?
3.2 - Downloading via FTP or AFS
3.3 - Obtaining Current Source Code

3.1 - Buying an OpenBSD CD
Purchasing an OpenBSD CD is generally the best way to get started. Visit the ordering page to purchase your copy:
http://www.openbsd.org/orders.html.

There are many good reasons to own an OpenBSD CD:

CD sales support on-going development of OpenBSD.
Development of a multi-platform operating system requires constant investment in equipment.
Your support in the form of a CD purchase has a real impact on future development.
The CD contains binaries (and source) for all supported platforms.
The CD is bootable on several platforms, and can be used to bootstrap a machine without a pre-existing installed
operating system.
The CD is useful for bootstrapping even if you choose to install a snapshot.
Installing from CD is faster! Installing from CD preserves network connectivity resources.
OpenBSD CDs always come with very nice stickers. You system isn't fully complete without these. You can
only get these stickers by buying a CD set or donating hardware.

If you're installing a release version of OpenBSD, you should use a CD. Snapshot releases can only be installed over
the network.

3.1.1 - Buying OpenBSD T-Shirts
Yes, OpenBSD now has t-shirts for your wearing enjoyment. You can view these at
http://www.OpenBSD.org/tshirts.html. Enjoy :)

3.1.2 - Does OpenBSD provide an ISO image available for
download?
In a word, no. The OpenBSD project does not make the ISO images used to master the official CDs available for
download. The reason is simply that we would like you to buy the CD sets, helping fund the ongoing OpenBSD
development. The official OpenBSD CD-ROM layout is copyright Theo de Raadt. Theo does not permit people to
redistribute images of the official OpenBSD CDs. As an incentive for people to buy the CD set, some extras are included
in the package as well (artwork, stickers etc).

Note that only the CD layout is copyrighted, OpenBSD itself is free. Nothing precludes someone else to just grab
OpenBSD and make their own CD. If for some reason you want to download a CD image, try searching the mailing list
archives for possible sources. Of course, any OpenBSD ISO images available on the Internet either violate Theo de
Raadt's copyright or are not official images. The source of an unofficial image may or may not be trustworthy, it is up to

Saturday, January 19, 2002 3.0 - Obtaining OpenBSD Page: 2

http://www.openbsd.org/faq/faq3.html

you to determine this for yourself. We suggest that people who want to download OpenBSD for free use the FTP install
option.

3.2 - Downloading via FTP or AFS
There are numerous international mirror sites offering FTP access to OpenBSD releases and snapshots. AFS access is
also available. You should always use the site closest to you. Before you begin fetching a release or snapshot, you may
wish to use ping(8) and traceroute(8) to determine which mirror site is nearest to you and whether that nearest mirror is
performing adequately. Of course, your OpenBSD release CD is always closer than any mirror. Access information is
here:

http://www.openbsd.org/ftp.html

3.3 - Obtaining Current Source Code
Source to OpenBSD is freely redistributable and available at no charge. Generally the best way to get started with a
current source tree is to install the source from the most recent CD and then configure AnonCVS to update it regularly.
Information about AnonCVS, including how to set it up, is available here:

http://www.openbsd.org/anoncvs.html.

or check The OpenBSD FAQ

If you don't have sufficient network bandwidth to support AnonCVS, or if your Internet access is via UUCP, you can
still keep your source current by using CTM instead of AnonCVS. If that's your situation, then starting with a recent
release CD is even more important. Information about CTM, including how to set it up, is available here:

http://www.openbsd.org/ctm.html.

Yet another alternative is to get the source code from the web. You can do that through cvsweb at:

http://www.openbsd.org/cgi-bin/cvsweb/

[Back to Main Index] [To Section 2.0 - Other OpenBSD information resources] [To Section 4.0 - Installation Guide]

 www@openbsd.org
$OpenBSD: faq3.html,v 1.23 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 4.0 - Installation Guide Page: 1

http://www.openbsd.org/faq/faq4.html

4.0 - Installation Guide

Table of Contents

4.1 - Overview of the OpenBSD Installation Procedure.
4.2 - What files are needed for Installation?
4.3 - How much space do I need for an OpenBSD installation?
4.4 - Multibooting OpenBSD
4.5 - Sending your dmesg to dmesg@openbsd.org after the install
My install halts at MAKEDEV all on my i386 system with 8meg of RAM.

4.1 - Overview of the OpenBSD installation procedure
This FAQ now contains installation instructions for OpenBSD 2.8. There may be differences between the 2.8
installation and installation of earlier versions of OpenBSD.

OpenBSD has a very robust text-based install procedure. The OpenBSD install procedure was designed to be adaptable
in almost any situation that a user could face. In addition to its robustness, the install procedure can be done using 1
floppy disk. Each architecture's installation procedure is very similar, however a different set of tools will often be
required. Below we will outline the different options that an OpenBSD user has when installing the system.

The following information is architecture independent. Please refer to each architecture's installation page or the
OpenBSD CD cover for architecture dependent installation information.

4.1.1 - Supported OpenBSD Architectures

OpenBSD 2.9 supports a number of architectures listed below in alphabetical order. Please refer to each architecture's
page for specific information on what each architecture supports.

alpha - DEC Alpha-based machines.
amiga - Amiga m68k-based models (MMU required).
hp300 - Hewlett-Packard HP300/HP400 machines.
i386 - Intel based PC's.
mac68k - Most MC680x0-based Apple Macintosh models.
mvme68k -Motorola MVME147/16x/17x 68K VME cards.
macppc - Support for Apple based PowerPC systems.
sparc - SPARC Platform by Sun Microsystems.
sun3 - Sun's 68020 based Sun3 models.
vax - DEC's VAX computers.

4.1.2 - Supported Installation Media

OpenBSD has the ability to install from multiple media types. The most common and architecture independent options
are laid out below. These options can be used after booting from either an OpenBSD CD-ROM or floppy disk. More
information on creating OpenBSD installdisks is located later in this FAQ.

CD-ROM
To do a CD-ROM install, you must have either purchased an Official OpenBSD CD-ROM or created your own OpenBSD CD. This is certainly
the easiest way to install an OpenBSD system.
NOTE: Official OpenBSD CDs are bootable if your bios supports it.

FTP This installation option allows you to install OpenBSD by downloading the installation packages in realtime over the network. With this option
you can choose either a static IP for use or grab an IP via DHCP.

Local Filesystem This option allows you to install from files on a pre-existing filesystem. Support for DOS, EXT2FS and FFS are included on the install disk.

4.1.3 - Creating bootable OpenBSD install floppies.

To create an installation floppy image you must first download the correct boot floppy image from one of the OpenBSD
distribution sites. You can find a list of FTP servers at the OpenBSD FTP Distribution page. Each architecture has one
floppy image for download except the i386 platform, which has 3 images to choose from. The differences between the
i386 platform installation floppies will be outlined below. For the other architectures you will just need to download the
respective floppy28.fs image.
NOTE: The cdrom28.fs image can be used to make a bootable OpenBSD installation CD-ROM.

The i386 platform has 3 separate installation disks that you must choose from. The differences between each are outlined
below.

floppy28.fs supports the following devices XXX -

Ethernet:
NE2000 PCMCIA
3com 3c5xx PCMCIA
Xircom PCMCIA

Disk:
ISAPNP/PCMCIA IDE (all floppy images support ISA and PCI IDE)
BusLogic [57]4X SCSI
Adaptec 154[02] SCSI
Adaptec 174[024] SCSI
Adaptec 274X/284X/2940 SCSI
NCR 538XX SCSI
AdvanSys 1200A/B/Ultra/Ultrawide SCSI
Seagate ST0[12] SCSI

Saturday, January 19, 2002 4.0 - Installation Guide Page: 2

http://www.openbsd.org/faq/faq4.html

floppyB28.fs supports the following devices not supported by floppy28.fs:

Disk:
Qlogic ISP [12]0x0 SCSI/FibreChannel
UltraStor [123]4f SCSI
WD7000/TMC-7000 SCSI

floppyC28.fs supports Cardbus and PCIBIOS.

Ethernet:
3Com 3C575TX, 3C[CX]FE575BT, and 3C[CX3]FE575CT CardBus
3Com 3C[CX]FEM656, 3C[CX]FEM656B, and 3C[CX3]FEM656C CardBus
ADMtek AN985 Centaur-C CardBus
IBM EtherJet 10/100 CardBus
Intel PRO/100 CardBus II

Most i386 users will just use the floppy28.fs installation floppy.

Once you have the correct floppy image, you need to get a clean floppy disk. If there are ANY bad sectors on the floppy
disk, the installation will most likely fail. If you don't know, use the fdformat(1) command to both format and check for
bad sectors.

fdformat /dev/fd0a
Format 1440K floppy `/dev/fd0a'? (y/n): y
Processing VV done.

If your output is like the above example, then your disk is OK. However, if you do not see ALL "V"'s then your disk is
most likely bad, and you should try a new one. If you are formatting in MS-DOS, simply use the DOS format
command.

Once you have a clean, formatted floppy it is time to write the installation image to floppy. If you are creating this on an
OpenBSD machine or another UNIX-like OS, you can use the dd(1) utility. an example usage of dd(1) is below:

dd if=floppy28.fs of=/dev/rfd0c bs=126b

Once the image is written, check to make sure that the copied image is the same as the original with the following
command. If the test passes, you will just see another prompt.

cmp /dev/rfd0c floppy28.fs

Again, if you are creating this image on the Windows/DOS platform you can get tools from the tools directory on any of
the ftp mirrors, or in 2.8/tools directory on CD1 of the OpenBSD CD set. For users of Windows, rawrite will be all
you need to write your boot floppy.

Example usage of rawrite :
C:\> rawrite
RaWrite 1.2 - Write disk file to raw floppy diskette

Enter source file name: floppy28.fs
Enter destination drive: a
Please insert a formatted diskette into drive A: and press -ENTER- : >Enter<

If you use NT, rawrite will not work for you. You can, however, use fdimage or ntrw to write the boot floppy. Both
of which are available on the ftp sites (linked above), or the OpenBSD CD. Here are example usages for each program.

Example Usage of fdimage :
C:\> fdimage -q floppy28.fs a:
Example Usage of ntrw :
C:\> ntrw floppy28.fs a:
3.5", 1.44MB, 512 bytes/sector
bufsize is 9216
1474560 bytes written

4.1.4 - Booting OpenBSD Installation Images.

This section is initially broken down into architecture dependent sections for popular architectures that OpenBSD
supports. This is so we can properly instruct each user on the what to do on their respective platform.

Booting i386

Booting an install image on the i386 architecture is nothing new to most people. If you are using the floppy
disk, simply stick the floppy into your floppy drive and boot your system. Your install image will automatically
load. If you are planning on booting from CD, you must go into your systems BIOS and set the boot options to
allow booting from CD. Some older BIOSs do not have this option, and you must use a floppy for booting
your installation image. Don't worry though, even if you boot from floppy you can still install from the CD.

Booting sparc

To boot from floppy, place your floppy disk with the OpenBSD installation image on it into your floppy drive.
Then use the following command to boot from your floppy:

ok boot floppy

To boot from CD-ROM, place your OpenBSD CD-ROM disk into your drive. If your Sun only has one
CD-ROM drive, then just go to the boot prompt, where you can 'boot cdrom':

ok boot cdrom

Saturday, January 19, 2002 4.0 - Installation Guide Page: 3

http://www.openbsd.org/faq/faq4.html

Of course, this will only work in new command mode. If you are at the old command mode prompt (a right
arrow), type 'n' for the new command mode. (If you are using an old sparc that is pre-sun4c, you probably
don't have a new command mode. In this case, you need to experiment.) If you have multiple CD-ROM
devices, you need to boot from the correct one. Try probe-scsi from the new command mode.

ok probe-scsi
Target 0
Unit 0 Disk QUANTUM LIGHTNING 365S
Target 1
Unit 0 Removable Disk QUANTUM EMPIRE_1080S
Target 3
Unit 0 Removable Disk Joe's CD ROMs

Figure out which disk is the CD ROM you want to boot from. Note the target number.

ok boot /sbus/esp/sd@X,0

Now that your bootdisk has been created, it's time to boot it. When you boot this floppy, the kernel and all of
the programs that OpenBSD uses to install itself are loaded into memory. If problems arise, and your bootdisk
doesn't boot, the problem is probably due to a bad floppy disk. This is an extremely common problem! If your
bootdisk fails to boot, try it a second time, and if it fails again, throw away the floppy and get a new one. When
your floppy fails to boot, even if the floppy worked fine for you before, keep in mind that OpenBSD uses
nearly every single bit available from the floppy! Any error in the disk will prevent OpenBSD from loading.

When your boot is successful, you will see a lot of white on blue text, that text is the kernel telling you what
devices have been found, and where. Then, you will see the following:

rootdev=0x1100 rrootdev=0x2f00 rawdev=0x2f02
Enter pathname of shell or RETURN for sh:
erase ^?, werase ^W, kill ^U, intr ^C
(I)nstall, (U)pgrade or (S)hell? i
==
Welcome to the OpenBSD/i386 2.8 installation program.

This program is designed to help you put OpenBSD on your disk in a simple and
rational way.

As with anything which modifies your disk's contents, this program can cause
SIGNIFICANT data loss, and you are advised to make sure your data is backed
up before beginning the installation process.

Default answers are displayed in brackets after the questions. You can hit
Control-C at any time to quit, but if you do so at a prompt, you may have
to hit return. Also, quitting in the middle of installation may leave your
system in an inconsistent state. If you hit Control-C and restart the
install, the install program will remember many of your old answers.

You can run a shell command at any prompt via '!foo'
or escape to a shell by simply typing '!'.

Specify terminal type [pcvt25]: <Enter>

Depending on the architecture you are using, the terminal type you use might be different. For example,
OpenBSD/sparc uses the "sun" terminal type.

4.1.5 - Setting up disks during installation.

Setting up disks in OpenBSD is fairly similar for each platform. For i386, disk setup is done in two stages. One is with
fdisk(8) and the other with disklabel(8).

The installation program needs to know which disk to consider the root disk.
Note the unit number may be different than the unit number you used in the
boot program (especially on a PC with multiple disk controllers).
Available disks are:

wd0

Which disk is the root disk? [wd0] <Enter>
Do you want to use the *entire* disk for OpenBSD? [no] yes

[...]

This is the section in the install where you choose which disk you want as your "root" disk. Your root disk will be
where the / filesystem and swap will be. wd0 specifies an IDE disk; if your disks are SCSI you will most likely see
sd0. There should be an entry for each disk that OpenBSD finds. If you choose to allot the whole disk to OpenBSD, the
installation program will automatically setup the diskspace for you; however, if you choose not to give the whole disk to
OpenBSD, you will be placed in a disk editor, ie fdisk(8). For more information on using fdisk(8), refer to section
14.2.

NOTE: OpenBSD does NOT support any sort of journaling filesystems like ReiserFS, IBM's JFS or SGI's XFS.
Instead we use Soft Updates. The filesystem for OpenBSD is FFS.

Inside the BIOS 'A6' ('OpenBSD') partition you just created, there resides an
OpenBSD partition table which defines how this BIOS partition is to be split
up. This table declares the offsets and sizes of your / partition, your swap
space, and any other partitions you might create. (NOTE: The OpenBSD disk
label offsets are absolute, ie. relative to the start of the disk... NOT
relative to the start of the BIOS 'A6' partition).

disklabel: no disk label

Saturday, January 19, 2002 4.0 - Installation Guide Page: 4

http://www.openbsd.org/faq/faq4.html

WARNING: Disk wd0 has no label. You will be creating a new one.

If this disk is shared with other operating systems, those operating systems
should have a BIOS partition entry that spans the space they occupy completely.
For safety, also make sure all OpenBSD file systems are within the offset and
size specified in the 'A6' BIOS partition table. (By default, the disklabel
editor will try to enforce this). If you are unsure of how to use multiple
partitions properly (ie. separating /, /usr, /tmp, /var, /usr/local, and other
things) just split the space into a root and swap partition for now.

using MBR partition 3: type A6 off 63 (0x3f) size 16450497 (0xfb03c1)

Treating sectors 63-80041248 as the OpenBSD portion of the disk.
You can use the 'b' command to change this.
Initial label editor (enter '?' for help at any prompt)
> ?

Available commands:
 p [unit] - print label.
 M - show entire OpenBSD man page for disklabel.
 e - edit drive parameters.
 a [part] - add new partition.
 b - set OpenBSD disk boundaries.
 c [part] - change partition size.
 d [part] - delete partition.
 g [d|b] - Use [d]isk or [b]ios geometry.
 m [part] - modify existing partition.
 n [part] - set the mount point for a partition.
 r - recalculate free space.
 u - undo last change.
 s [path] - save label to file.
 w - write label to disk.
 q - quit and save changes.
 x - exit without saving changes.
 X - toggle expert mode.
 ? [cmnd] - this message or command specific help.
Numeric parameters may use suffixes to indicate units:
 'b' for bytes, 'c' for cylinders, 'k' for kilobytes, 'm' for megabytes,
 'g' for gigabytes or no suffix for sectors (usually 512 bytes).
 Non-sector units will be rounded to the nearest cylinder.

Entering '?' at most prompts will give you (simple) context sensitive help.
> p
device: /dev/rwd0c
type: ESDI
disk: ESDI/IDE disk
label: Maxtor 54098U8
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total sectors: 80041248
free sectors: 80041185
rpm: 3600

16 partitions:
size offset fstype [fsize bsize cpg]
a: 16450497 63 unused 0 0
c: 80041248 0 unused 0 0
> d a
> a a
offset: [63] <Enter>
size: [80041185] 80m
Rounding to nearest cylinder: 164241
FS type: [4.2BSD] <Enter>
mount point: [none] /
> a b offset: [164304] <Enter>
size: [79876944] 300m
Rounding to nearest cylinder: 614880 FS type: [swap] <Enter>
> a d
offset: [779184] <Enter>
size: [79262064] 80m
Rounding to nearest cylinder: 164304 FS type: [4.2BSD] <Enter>
mount point: [none] /tmp
> a e
offset: [943488] <Enter>
size: [79097760] 80m
Rounding to nearest cylinder: 164304 FS type: [4.2BSD] <Enter>
mount point: [none] /var
> a g
offset: [1107792] <Enter>
size: [78933456] 350m
Rounding to nearest cylinder: 716688 FS type: [4.2BSD] <Enter>
mount point: [none] /usr
> a h
offset: [1824480] <Enter>
size: [78216768] <Enter>
FS type: [4.2BSD] <Enter>
mount point: [none] /home
> p
device: /dev/rwd0c
type: ESDI
disk: ESDI/IDE disk

Saturday, January 19, 2002 4.0 - Installation Guide Page: 5

http://www.openbsd.org/faq/faq4.html

label: Maxtor 54098U8
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total sectors: 80041248
free sectors: 0
rpm: 3600

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 164241 63 4.2BSD 1024 8192 16 # /
 b: 614880 164304 swap
 c: 80041248 0 unused 0 0
 d: 164304 779184 4.2BSD 1024 8192 16 # /tmp
 e: 164304 943488 4.2BSD 1024 8192 16 # /var
 g: 716688 1107792 4.2BSD 1024 8192 16 # /usr
 h: 78216768 1824480 4.2BSD 1024 8192 16 # /home

> w
> q
No label changes.

Notice how each mount point is split onto its own partition. For a multiuser machine, it is best to make at least five
separate filesystems, one for your / filesystem, one for swap, one for /var, one for /tmp, and one for /usr. If your users
are going to store files of any significant size, you want a separate /home filesystem too.

4.1.6 - Configuring your mount points and formating your filesystems

There are four main reasons for using separate filesystems, instead of shoving everything into one or two filesystems:

Security: You can mark some filesystems as 'nosuid', 'nodev', 'noexec', 'readonly', etc..
Stability: A user, or a misbehaved program, can fill a filesystem with garbage, if they have write permissions
for it. Your critical programs, which of course run on a different filesystem, do not get interrupted.
Speed: A filesystem which gets written to frequently may get somewhat fragmented. (Luckily, the ffs
filesystem, what OpenBSD uses, is not prone to heavy fragmentation.)
Integrity: If one filesystem is corrupted for some reason then your other filesystems are still OK.

Setting up your mount points is much more simple than it looks. After you setup your filesystems with disklabel, you
will see text like the one below. This should be done for you automatically if you configured your mount points via
disklabel(8). If you did not, you can do so here.

You will now have the opportunity to enter filesystem information for wd0.
You will be prompted for the mount point (full path, including the prepending
'/' character) for each BSD partition on wd0. Enter "none" to skip a
partition or "done" when you are finished.

The following partitions will be used for the root filesystem and swap:
 wd0a /
 wd0b swap

Mount point for wd0d (size=82152k) [/tmp, RET, none, or done]? <Enter>
Mount point for wd0e (size=82152k) [/var, RET, none, or done]? <Enter>
Mount point for wd0g (size=358344k) [/usr, RET, none, or done]? <Enter>
Mount point for wd0h (size=39108384k) [/home, RET, none, or done]? <Enter>
Mount point for wd0d (size=82002k) [/tmp, RET, none, or done]? done <Enter>

Now you can select another disk to initialize. (Do not re-select a disk
you have already entered information for). Available disks are:

wd0

Which one? [done] <Enter>

You have configured the following devices and mount points:

wd0a /
wd0d /tmp
wd0e /var
wd0g /usr
wd0h /home

==
The next step will overwrite any existing data on:
 wd0a wd0d wd0e wd0g wd0h

Are you really sure that you're ready to proceed? [n] y
Creating filesystems...
Warning: 64 sector(s) in last cylinder unallocated
/dev/rwd0a: 164240 sectors in 163 cylinders of 16 tracks, 63 sectors
 80.2MB in 11 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)
/dev/rwd0d: 164304 sectors in 163 cylinders of 16 tracks, 63 sectors
 80.2MB in 11 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)
/dev/rwd0e: 164304 sectors in 163 cylinders of 16 tracks, 63 sectors
 80.2MB in 11 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)
/dev/rwd0g: 716688 sectors in 711 cylinders of 16 tracks, 63 sectors
 349.9MB in 45 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)
/dev/rwd0h: 78216768 sectors in 77596 cylinders of 16 tracks, 63 sectors
 38191.8MB in 4850 cyl groups (16 c/g, 7.88MB/g, 1920 i/g)

Notice this answer defaults to no, so you will have to directly tell it to format your labels. If you chose no, you would
simply be dropped into a shell and could start the install again by typing install, or just by rebooting again with your
bootdisk. At this point it will format all filesystems for you. This could take some time depending on the size of your
disk.

Saturday, January 19, 2002 4.0 - Installation Guide Page: 6

http://www.openbsd.org/faq/faq4.html

4.1.7 - Configuring your Network

Now it's time to setup your network configuration. This is extremely important if you are planning on doing any
network based install, considering it will be based upon the information you are about to enter. Here is a walkthrough of
the network configuration section of the install process.

You will now be given the opportunity to configure the network. This will be
useful if you need to transfer the installation sets via FTP, HTTP, or NFS.
Even if you choose not to transfer installation sets that way, this information
will be preserved and copied into the new root filesystem.

Configure the network [y] <Enter>
Enter system hostname (short form): [] mybox
Enter DNS domain name: [] someisp.com

If you have any devices being configured by a DHCP server
it is recommended that you do not enter a default route or
any name servers.

You may configure the following network interfaces (the interfaces
marked with [X] have been successfully configured):

 [] fxp0

Configure which interface? (or, enter 'done') [fxp0] <Enter>
IP address (or 'dhcp') ? [] 199.185.137.55
Symbolic (host) name? [test2] <Enter>
Netmask ? [255.255.255.0] <Enter>
Your use of the network interface may require non-default
media directives. The default media is:
 media: Ethernet autoselect (100baseTX full-duplex)
This is a list of supported media:
 media autoselect
 media 100baseTX mediaopt full-duplex
 media 100baseTX
 media 10baseT mediaopt full-duplex
 media 10baseT
If the default is not satisfactory, and you wish to use another
media, copy that line from above (e.g. "media 100baseTX")
Media directives? [] <Enter>

You may configure the following network interfaces (the interfaces
marked with [X] have been successfully configured):

 [X] fxp0
Configure which interface? (or, enter 'done') [done] <Enter>

In the above example, we use a static IP address. You can choose to use dhcp as well if you wish. In the case of DHCP,
most of this information will be grabbed from a remote dhcp server.

Enter IP address of default route: [none] 199.185.137.128
Enter IP address of primary nameserver: [none] 199.185.137.1
Would you like to use the nameserver now? [y] <Enter>

4.1.8 - Choosing Installation Media

After your network is setup, the install script will give you a chance to make any changes to your network setup.
(Mainly if errors were produced.) Then the filesystems you created will be mounted and a root password set. This will
get your local disks ready for the OpenBSD packages to be installed upon them. After your local disks are ready you
will get a chance to choose your installation media. The options are listed below.

You will now be given the opportunity to escape to the command shell to do
any additional network configuration you may need. This may include adding
additional routes, if needed. In addition, you might take this opportunity
to redo the default route in the event that it failed above.
Escape to shell? [n] <Enter>

/dev/wd0a on /mnt type ffs (rw, asynchronous, local)
/dev/wd0d on /mnt/tmp type ffs (rw, asynchronous, local)
/dev/wd0e on /mnt/var type ffs (rw, asynchronous, local)
/dev/wd0g on /mnt/usr type ffs (rw, asynchronous, local)
/dev/wd0h on /mnt/home type ffs (rw, asynchronous, local)

Please enter the initial password that the root account will have.
Password (will not echo): <Your Password Here!>
Password (again): <Your Password Here!>

Do you expect to run the X Window System? [y] <Enter>

It is now time to extract the installation sets onto the hard disk. Make sure
the sets are either on a local device (i.e. tape, CD-ROM) or on a network
server. You will have the chance to repeat this step or to extract sets from
several places, so you don't have to try to load all the sets in one try and
can recover from some errors.

Install from (f)tp, (h)ttp, (t)ape, (C)D-ROM, (N)FS or local (d)isk? c

In this example we are installing via CD-ROM. This will bring up a list of devices on your computer identified as a
CD-ROM. Most people will only have one; if you don't, you need to make sure you pick the device which you will use
to install OpenBSD from. After choosing the correct device, you will be prompted for which filesystem the installation
files will reside on. If you are using the OpenBSD CD-ROM you will choose 'c' here, for 'c' represents the whole disk.
Here is an example:

Saturday, January 19, 2002 4.0 - Installation Guide Page: 7

http://www.openbsd.org/faq/faq4.html

The following CD-ROM devices are installed on your system; please make
sure the CD is in the CD-ROM drive and select the device containing
the CD with the installation sets:

cd0

Which CD-ROM contains the installation media? [cd0] <Enter>

Now you will be prompted for which filesystem to use when reading the CD-ROM, and in which directory the
installation files are. If you are using the official OpenBSD CD-ROM, you will use 'cd9660' as your filesystem. (Which
is the default.) You will then be using '/2.8/i386/' as the directory in which the files reside. (Again, this is the default
option.) After this you will get a list of packages to install. You can get a description of these files in section 4.2. Here is
what you will be seeing:

4.1.9 - Choosing installation packages and finishing the install.

Now it's time to choose which packages you will be installing. You can get a description of these files in faq4.2. The
files that the installdisk finds will be shown to you on the screen. Your job is just to specify which files you want. By
default only 4 packages are selected. These are 'base28.tar.gz', 'etc28.tar.gz', 'man28.tar.gz' and 'bsd'. This is
because these first 3 files MUST be present for you to have any sort of a functional system, the 'bsd' file is the kernel of
the system. The rest are left up to your discretion. The example below is that of a full install, minus the games package.

Enter the directory relative to the mount point that
contains the file. [/2.8/i386] <Enter>

You will now be asked for files to extract. In addition to the
files listed in the selector you may enter any file located in
/mnt2//2.8/i386. You can also enter 'all' to install all the standard
sets, or 'list' to list the files available in /mnt2//2.8/i386.
When you are done selecting files, enter 'done'.
Some of these sets are required for your install and some are optional --
You will want at least the base and bsd sets.
Consult the installation notes if you are not sure which sets are required!

The following sets are available for extraction.
Enter filename, `list', `all', or `done'.
You may de-select a set by prepending a '-' to its name.

 [X] base28.tgz
 [X] etc28.tgz
 [] misc28.tgz
 [] comp28.tgz
 [X] man28.tgz
 [] game28.tgz
 [] xbase28.tgz
 [] xshare28.tgz
 [] xfont28.tgz
 [] xserv28.tgz
 [X] bsd
File name? [] *

The following sets are available for extraction.
Enter filename, `list', `all', or `done'.
You may de-select a set by prepending a '-' to its name.

 [X] base28.tgz
 [X] etc28.tgz
 [X] misc28.tgz
 [X] comp28.tgz
 [X] man28.tgz
 [X] game28.tgz
 [X] xbase28.tgz
 [X] xshare28.tgz
 [X] xfont28.tgz
 [X] xserv28.tgz
 [X] bsd
File name? [] -game*

The following sets are available for extraction.
Enter filename, `list', `all', or `done'.
You may de-select a set by prepending a '-' to its name.

 [X] base28.tgz
 [X] etc28.tgz
 [X] misc28.tgz
 [X] comp28.tgz
 [X] man28.tgz
 [] game28.tgz
 [X] xbase28.tgz
 [X] xshare28.tgz
 [X] xfont28.tgz
 [X] xserv28.tgz
 [X] bsd
File name? [] done

Once you have successfully picked which packages you want, you will be prompted to make sure you want to extract
these packages and they will then be installed. A progress bar will be shown that will keep you informed on how much
time it will take. The times range greatly depending on what system it is you are installing OpenBSD on. After this your
configuration files (networking and filesystem) will be moved onto your disks also from the installdisk.

Saturday, January 19, 2002 4.0 - Installation Guide Page: 8

http://www.openbsd.org/faq/faq4.html

/mnt2//2.8/i386/base28.tgz:
100% |**| 21192 KB 00:00 ETA
/mnt2//2.8/i386/etc28.tgz:
100% |**| 987 KB 00:00 ETA
/mnt2//2.8/i386/man28.tgz:
100% |**| 4957 KB 00:00 ETA
/mnt2//2.8/i386/bsd:
100% |**| 3053 KB 00:00 ETA
/mnt2//2.8/i386/misc28.tgz:
100% |**| 1644 KB 00:00 ETA
/mnt2//2.8/i386/comp28.tgz:
100% |**| 14406 KB 00:00 ETA
/mnt2//2.8/i386/xbase28.tgz:
100% |**| 5504 KB 00:00 ETA
/mnt2//2.8/i386/xshare28.tgz:
100% |**| 1538 KB 00:00 ETA
/mnt2//2.8/i386/xfont28.tgz:
100% |**| 6019 KB 00:00 ETA
/mnt2//2.8/i386/xserv28.tgz:
100% |**| 15035 KB 00:00 ETA

Extract more sets? [n] <Enter>

Once this is done, all that's left is to set your timezone and install the bootblocks. Setting your timezone is extremely
easy. Just pick the area you live in and enter the name. That's it!. Only one more question, which is whether or not you
will be running X on this server. If you plan to ever run X on this server you should choose yes, otherwise you might
have to change machdep.allowaperture=0 into machdep.allowaperture=1 in your etc/sysctl.conf(5). After this is all
done, just type 'reboot' at the shell prompt and your machine will be booted with OpenBSD!

Copying fstab, hostname.fxp0, hosts, myname, mygate, resolv.conf, ...done.

Select a time zone for your location. Timezones are represented on the system
by a directory structure rooted in "/usr/share/timezone". Most timezones can
be selected by entering a token like "MET" or "GMT-6". Other zones are
grouped by continent or country, with detailed zone information separated by
a slash ("/"), e.g. "US/Pacific" or "Canada/Mountain".

To get a listing of what's available in /usr/share/zoneinfo, enter "?"
at the prompts below.

What timezone are you in? [`?' for list] [GMT] ?
Africa/ Chile/ GB-Eire Israel NZ-CHAT Turkey
America/ Cuba GMT Jamaica Navajo UCT
Antarctica/ EET GMT+0 Japan PRC US/
Arctic/ EST GMT-0 Kwajalein PST8PDT UTC
Asia/ EST5EDT GMT0 Libya Pacific/ Universal
Atlantic/ Egypt Greenwich MET Poland W-SU
Australia/ Eire HST MST Portugal WET
Brazil/ Etc/ Hongkong MST7MDT ROC Zulu
CET Europe/ Iceland Mexico/ ROK posixrules
CST6CDT Factory Indian/ Mideast/ Singapore
Canada/ GB Iran NZ SystemV/
What timezone are you in? [`?' for list] [GMT] Canada
There are several timezones available within zone 'Canada'
Select a sub-timezone [`?' for list]: ?
Atlantic Eastern Pacific
Central Mountain Saskatchewan
East-Saskatchewan Newfoundland Yukon
There are several timezones available within zone 'Canada'
Select a sub-timezone [`?' for list]: Mountain
You have selected timezone "Canada/Mountain".
Installing timezone link.
Making all device nodes (by running /dev/MAKEDEV all) done.
Installing boot block...
boot: /mnt/boot
proto: /usr/mdec/biosboot
device: /dev/rwd0c
/usr/mdec/biosboot: entry point 0
proto bootblock size 512
room for 12 filesystem blocks at 0x16f
Will load 7 blocks of size 8192 each.
Using disk geometry of 63 sectors and 255 heads.
 0: 20 @(0 108 44) (6847-6866)
 1: 63 @(0 109 1) (6867-6929)
 2: 13 @(0 110 1) (6930-6942)
 3: 5 @(0 9 59) (625-629)
 4: 11 @(0 10 1) (630-640)
/mnt/boot: 5 entries total
using MBR partition 3: type 166 (0xa6) offset 63 (0x3f)

Enabling machdep.allowaperture. Read xf86(4) for more information.

Unmounting filesystems... /mnt/home /mnt/usr /mnt/var /mnt/tmp /mnt ... Done.
Done.

CONGRATULATIONS! You have successfully installed OpenBSD! To boot the
installed system, enter halt at the command prompt. Once the system has
halted, reset the machine and boot from the disk.

reboot

After your reboot

This section will hopefully point you in the right direction for clues on what to do initially after you have installed your
OpenBSD system. This is basically modeled after the afterboot(8) man page. Which should definitely be one of your
first steps after installing OpenBSD. Here is a table which will point you to relevant FAQ sections.

Saturday, January 19, 2002 4.0 - Installation Guide Page: 9

http://www.openbsd.org/faq/faq4.html

Adding users in OpenBSD
Initial Network Setup
Man Pages of popular/useful commands
OpenBSD man pages on the Web
OpenBSD Packages - Precompiled Binary Packages.

Just to remind people, it's important for the OpenBSD developers to keep track of what hardware works, and what
hardware doesn't work perfectly..

A quote from /usr/src/etc/root/root.mail

If you wish to ensure that OpenBSD runs better on your machines, please do us
a favor (after you have your mail system setup!) and type
 dmesg | mail dmesg@openbsd.org
so that we can see what kinds of configurations people are running. We will
use this information to improve device driver support in future releases.
(We would be much happier if this information was for the supplied GENERIC
kernel; not for a custom compiled kernel). The device driver information
we get from this helps us fix existing drivers.

Also check with section 14.7

Make sure you send the email from an account that is able to also receive email, so that developers can contact you back
if they have something they want you to test or change in order to get your setup working. It's not important at all to
send the email from the same machine that is running OpenBSD, so if that machine is unable to receive email, just

 dmesg | mail your-account@yourmail.dom

and then forward that message to

 dmesg@openbsd.org

where your-account@yourmail.dom is your regular email account. (or transfer the dmesg output using
ftp/scp/floppydisk/carrier-pigeon/...)

NOTE - Please send only GENERIC kernel dmesgs. Custom kernels that have device drivers removed are not helpful.

Other Information Resources and Popular Questions
Comprehensive documents already exist for those of you who might have different machines. You can retrieve
these from any of the mirror ftp sites.
INSTALL.i386 - Comprehensive installation document.
INSTALL.linux - Installing OpenBSD along with Linux.
INSTALL.mbr - Explaining the Master Boot Record.
INSTALL.pt - Explaining Partition Tables.
INSTALL.dbr - DOS Floppy Disk Boot Sector.
INSTALL.chs - Explaining CHS Translation.
INSTALL.ata - ATA/ATA-1/ATA-2/IDE/EIDE/etc FAQ
INSTALL.os2br - The os2 Boot Sector.

Question: - Does OpenBSD provide an ISO image available for download?

Answer: - No. The official OpenBSD CD-ROM layout is a copyright of Theo de Raadt, as an incentive for people to
buy the CD set. Note that only the layout is copyrighted, OpenBSD itself is free. Nothing precludes someone else to just
grab OpenBSD and make their own CD.

Question: - I'm having problems installing with 8meg of RAM. What can i do here?

Answer: - Many people are having a problem at the end of the install where the system stalls on MAKEDEV all
There is a workaround for this. Basically you need to turn on swap during the install. To do this do as described below:

Start the Install as normal
Setup your disks via fdisk(8) and disklabel(8) as described above.
After your disks are setup, and AFTER they've been formatted, type <CNTRL>-C to break into a shell.
type reboot to reboot the machine.
This time, skip through the fdisk(8) and disklabel(8) sections. You can do this by typing just exit in fdisk(8)
and by typing q in disklabel(8).
Proceed through the install until you have completed the Networking Section of the install. NOTE: This is
after all packages have been installed. When you get here type <CNTRL>-z , which will put you into a shell.
Here is where swap needs turned on. To do so type /mnt/sbin/swapctl -a /dev/wd0b or /dev/sd0b, or whatever
your swap device is.

If this isn't found, mount your root disk at /mnt .
Now you can type fg to proceed through the rest of the install.

If you followed these instructions and still have problems mail Eric Jackson <ericj@openbsd.org>.

4.2 - What files are needed for Installation?
There are many packages containing the OpenBSD binaries, but which ones do you need to get your system up and
running? Here is an overview of each package.

base28.tgz - Has the base OpenBSD system Required
etc28.tgz - Has all the files in /etc Required
comp28.tz - Has the compiler and its tools, libs. Recommended
man28.tgz - Holds man pages Recommended
misc28.tgz - Holds misc info, setup docs
game28.tgz - Has the games for OpenBSD
xbase28.tgz - Has the base install for X11
xfont28.tgz - Holds X11's font server and fonts
xlink28.tgz - Has the X servers link kit
xserv28.tgz - Has X11's X servers

Saturday, January 19, 2002 4.0 - Installation Guide Page: 10

http://www.openbsd.org/faq/faq4.html

xshare28.tgz - Has manpages, locale settings, includes, etc for X
bsd - This is the Kernel. Required

4.3 - How much space do I need for an OpenBSD installation?
The following are suggested sub-tree sizes for a full system install. The numbers include enough extra space to permit
you to run a typical home system that is connected to the internet.

For a multiuser system, you probably want to triple these values.
If you plan to install a significant amount of third party software, make your /usr partition large! At least triple
these values!
For a system that handles lots of email or web pages (stored, respectively, in /var/mail and /var/www) you will
want to make your /var partition significantly larger.
For a multiuser system which may generate lots of logs, you will still want to make your /var partition
significantly larger (/var/log).

As you read this, keep in mind that /usr and /usr/X11R6 are usually both parts of the same filesystem, that is, /usr, as
there is no big advantage to making them into separate filesystems.

SYSTEM / /usr /var /usr/X11R6
alpha 56M 540M 27M 161M
amiga 45M 399M 24M 36M
hp300 31M 234M 24M 47M
i386 35M 229M 24M 72M
mac68k 29M 232M 24M 36M
mvme68k 29M 232M 24M - (no Xserver)
pmax 50M 355M 24M 60M
sparc 40M 259M 24M 49M

When you are in the disklabel editor, you may choose to make your entire system have just an 'a' (main filesystem) and
'b' (swap) . The 'a' filesystem which you set up in disklabel will become your root partition, which should be the sum
of all the 3 main values above (/, /usr, and /var) plus some space for /tmp. The 'b' partition you set up automatically
becomes your system swap partition -- we recommend a minimum of 32MB but if you have disk to spare make it at least
64MB. If you have lots of disk space to spare, make this 256MB, or even 512MB.

There are four main reasons for using separate filesystems, instead of shoving everything into one or two filesystems:

Security: You can mark some filesystems as 'nosuid', 'nodev', 'noexec', 'readonly', etc..
Stability: A user, or a misbehaved program, can fill a filesystem with garbage, if they have write permissions
for it. Your critical programs, which of course run on a different filesystem, do not get interrupted.
Speed: A filesystem which gets written to frequently may get somewhat fragmented. (Luckily, the ffs
filesystem, what OpenBSD uses, is not prone to heavy fragmentation.)
Integrity: If one filesystem is corrupted for some reason then your other filesystems are still OK.

4.4 - Multibooting OpenBSD (i386, alpha)
OpenBSD & NT

To multiboot OpenBSD and NT, you can use NTloader, the bootloader that NT uses. To multi-boot with NT, you need
a copy of your OpenBSD pbr. After running installboot, you can copy it something like this:

 # dd if=/dev/rsd0a of=openbsd.pbr bs=512 count=1

Now boot NT and put openbsd.pbr in c:. Add a line like this to the end of c:\boot.ini:

 c:\openbsd.pbr="OpenBSD"

When you reboot, you should be able to select OpenBSD from the NT loader menu. There is much more information
available about NTloader at the NTLDR Hacking Guide.

OpenBSD & Windows or DOS (i386)

To boot OpenBSD along with Windows 3.1, Windows95, or DOS you must use a boot loader on the system that can
handle OpenBSD, Windows, and DOS! Some bootloaders of choice are osbs20b8.zip or The Ranish Partition Manager.
Both of these are able to boot OpenBSD partitions.

OpenBSD & Linux (i386)

Please refer to INSTALL.linux, which gives indepth instructions on getting OpenBSD working with Linux.

4.5 - Sending your dmesg to dmesg@openbsd.org after the install
Just to remind people, it's important for the OpenBSD developers to keep track of what hardware works, and what
hardware doesn't work perfectly..

A quote from /usr/src/etc/root/root.mail

If you wish to ensure that OpenBSD runs better on your machines, please do us
a favor (after you have your mail system setup!) and type
 dmesg | mail dmesg@openbsd.org
so that we can see what kinds of configurations people are running. We will
use this information to improve device driver support in future releases.
(We would be much happier if this information was for the supplied GENERIC
kernel; not for a custom compiled kernel). The device driver information
we get from this helps us fix existing drivers.

Also check with section 14.7

Make sure you send email from an account that is able to also receive email so developers can contact you back if they
have something they want you to test or change in order to get your setup working. It's not important at all to send the
email from the same machine that is running OpenBSD, so if that machine is unable to receive email, just

 dmesg | mail your-account@yourmail.dom

Saturday, January 19, 2002 4.0 - Installation Guide Page: 11

http://www.openbsd.org/faq/faq4.html

and then forward that message to

 dmesg@openbsd.org

where your-account@yourmail.dom is your regular email account. (or transfer the dmesg output using
ftp/scp/floppydisk/carrier-pigeon/...)

NOTE - Please send only GENERIC kernel dmesgs. Custom kernels that have device drivers removed are not helpful.

[Back to Main Index] [To Section 3.0 - Obtaining OpenBSD] [To Section 5.0 - Kernel configuration and Disk Setup]

 www@openbsd.org
$OpenBSD: faq4.html,v 1.93 2002/01/14 00:54:14 kjell Exp $

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 1

http://www.openbsd.org/faq/faq5.html

5.0 - Kernel configuration

Table of Contents

5.1 - Why do I need a custom kernel?
5.2 - Kernel configuration Options
5.3 - Building your own kernel
5.4 - Boot-time configuration
5.5 - Getting more verbose output during boot
5.6 - Using config(8) to change your kernel binary

5.1 - Why would I want to create my own custom kernel?
Several reasons, although this practice is generally geared towards knowledgeable users who have a good overall
understanding of the system.

Your computer has a very small amount of RAM and you want to preserve as much as possible by removing
device drivers you don't use
Remove default options or add options which may not have been enabled by default
Enable experimental options

Under most circumstances you will NOT need to compile your own kernel. The GENERIC kernel will usually be all
that you need. In fact, there are several reasons why you do not want to create your own kernel. The main reason is that
it is very easy to make changes to the kernel configuration which look logical, but do not work. This is your danger
sign. If something does not appear to work properly, please try the GENERIC kernel before sending in a bug report.

5.2 - Kernel Configuration Options
Kernel Configuration Options are options that you add to your kernel configuration that place certain features into your
kernel. This allows you to have exactly the support you want, without having support for unneeded devices. There are
multitudes of options that allow you to customize your kernel. Here we will go over only some of them, those that are
most commonly used. Check the options(4) man page for a more complete list of options. You can also check the
example configuration files that are available for your architecture.

Not all kernel options have been tested for compatibility with all other options. Don't put an option in your kernel unless
you actually have a reason to do so! The one kernel configuration which gets the most testing is the GENERIC kernel.
This is usually a combination of the options in /usr/src/sys/arch/<your arch>/conf/GENERIC and
/usr/src/sys/conf/GENERIC.

Alpha Kernel Conf Files
i386 Kernel Configuration files
mac68k Kernel Configuration files
pmax Kernel Configuration Files
sparc Kernel Configuration Files
Other Arch's

Look closely at these files and you will notice a line like:
include "../../../conf/GENERIC"
This means that it is referencing yet another configuration file. This file stores non arch-dependent options. So when
creating your Kernel Config be sure to look through /sys/conf/GENERIC and see what you want. There ARE options in
there that are NEEDED.

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 2

http://www.openbsd.org/faq/faq5.html

All of the options listed below should be placed in your kernel configuration file in the format of:
option OPTION
for example. To place option debug in the kernel, add a line like this:
option DEBUG
Options in the OpenBSD kernel are translated into compiler preprocessor options, therefore an option like DEBUG
would have the source compiled with option -DDEBUG. Which is equivalent to doing a #define DEBUG throughout the
kernel.

OpenBSD has a great many compatibility options which allow you to use binaries from other OS's. Not all are availably
on every architecture, so be sure to read the man pages for each option to see if your arch is supported.

COMPAT_SVR4(8) - Compatibility with SVR4 binaries.
COMPAT_BSDOS(8) - Compatibility with BSD/OS binaries.
COMPAT_LINUX(8) - Compatibility with Linux binaries.
COMPAT_SUNOS(8) - Compatibility with SunOS binaries.
COMPAT_ULTRIX(8) - Compatibility with Ultrix binaries.
COMPAT_FREEBSD(8) - Compatibility with FreeBSD binaries.
COMPAT_HPUX - Compatibility with HP-UX binaries. Only available on some m68k arch's.
COMPAT_IBCS2(8) - Compatibility to run ibcs2 binaries.
COMPAT_OSF1 - Run Digital Unix binaries. Available only on Alpha platform.
COMPAT_43 - Compatibility with 4.3BSD. Use of this is certainly discouraged, But it is needed for our
Navigator port
COMPAT_11 - Compatibility with NetBSD 1.1
COMPAT_NOMID - Compatibility with a.out executables that lack a machine id.

It is always helpful to be able to debug problems with the kernel. But many choose not to put these options in their
kernel because these options add considerable size to the kernel. They are however extremely helpful in a case where a
bug might be present. This well help the developers discover the source of your problems much quicker. Here is a list of
popular debugging options that can be added to your kernel.

DDB - This compiles in the in-kernel debugger. This isn't available on all platforms. So be sure to read before
adding it.
KGDB - Compiles a remote kernel debugger using gdb's `remote target` feature.
makeoptions DEBUG="-g" - Makes bsd.gdb along with bsd. This is useful for debugging crash dumps with
gdb.
DEBUG - Used to put various debugging options in the kernel, where the source has defined them.
KTRACE - Adds hooks for the system call tracing facility. Which allows users to use ktrace(1).
DIAGNOSTIC - Adds code to the kernel that does internal consistency checks.
GPROF - adds code to the kernel for kernel profiling with kgmon(8).
makeoptions PROF="-pg" - The -pg flag causes the kernel to be compiled with support for profiling. Option
GPROF is required to use this option.

Filesystem Options.

FFS - Berkeley Fast Filesystem NOTE: This option is required
EXT2FS - Second Extended File System, This is needed for those of you who want to read Linux partitions.
MFS - Memory File System that stores files in swapable memory.
NFS - Network File System, This is needed if you will be using NFS.
CD9660 - This is iso9660 + rockridge filesystem. This is required to read from CDs
MSDOSFS - Needed to read MS-DOS FAT filesystems. Also has support for Windows 95 long name + mixed
case extensions.
FDESC - Includes code for a file system which can be mounted on /dev/fd
KERNFS - Includes code which permits the mounting of a special file system (normally mounted on /kern) in
which files representing various kernel variables and parameters may be found.
NULLFS - Code to have a loopback filesystem. mount_null(8) has more information
PROCFS - Includes code for a special file system (conventionally mounted on /proc)
PORTAL - Includes the (experimental) portal filesystem. This permits interesting tricks like opening TCP
sockets by opening files in the file system.
UMAPFS - Includes a loopback file system in which user and group ids may be remapped -- this can be useful

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 3

http://www.openbsd.org/faq/faq5.html

when mounting alien file systems with different uids and gids than the local system (eg, remote NFS).
UNION - Includes code for the union file system, which permits directories to be mounted on top of each other
in such a way that both file systems remain visible. This code isn't quite stable yet.
XFS - Add hooks for using a filesystem that is compatible with the AFS filesystem. Currently used by the
Arla/AFS code.
LFS - Log Structured Filesystem.
FFS_SOFTUPDATES - Allows for the use of softupdates. To read up on softupdates more read the
Softupdates FAQ section.
NFSSERVER - Allow for the server-side NFS code to be included in the kernel.
NFSCLIENT - Allow for the client-side NFS code to be included in the kernel.
FIFO - Support for FIFOs.. RECOMMENDED.
NVNODE=integer - Where integer is the size of the cache used by the name-to-inode translation routines,
(a.k.a. the namei() cache, though called by many other names in the kernel source).
EXT2FS_SYSTEM_FLAG - This option changes the behavior of the APPEND and IMMUTABLE flags for a
file on an EXT2FS filesystem. Read options(4) for more details.
QUOTA - Support for Filesystem Quota's. To read up on using quotas read FAQ 10

Misc. Options

PCIVERBOSE - Make the boot process more verbose for PCI peripherals.
EISAVERBOSE - Make the boot process more verbose for EISA peripherals.
PCMCIAVERBOSE - Make the boot process more verbose for PCMCIA peripherals.
APERTURE - Provide in-kernel support for VGA framebuffer mapping by user processes. Needed to run X.
XSERVER - Support for the X server console driver. Needed for X.
LKM - Support for Loadable Kernel Modules. Not available on all arch's. Read lkm(4) for more information.
INSECURE - Hardwires the kernel security level to -1. Read init(8) for more information on kernel security
levels.
RAM_DISK_HOOKS - Allows for machine dependent functions to be called when the ramdisk driver is
configured.
RAM_DISK_IS_ROOT - Forces the ramdisk to be root.
CCDNBUF=integer - Set number of component buffers used by CCD(4). Default is 8. For more on CCD read
the CCD(4) man page, or the Performance Tuning FAQ section.
KMEMSTATS - This makes malloc(9), the kernel memory allocator keep statistics on its use. If option
DEBUG is used, this option is automatically turned on by config.
BOOT_CONFIG - Adds support of the -c boot option.

Networking Options
Also check the Networking FAQ or the Networking Performance Tuning FAQ.

GATEWAY - Enables IPFORWARDING and (on most ports) increases the size of NMBCLUSTERS.
NMBCLUSTERS=integer - Controls the size mbuf cluster map.
IPFORWARDING - Enables IP routing behavior. With this option enabled, the machine will forward IP
datagrams between its interfaces that are destined for other machines.
MROUTING - Includes support for IP multicast routers.
INET - Includes support for the TCP/IP protocol stack. This option is REQUIRED
MCLSHIFT=value - This option is the base-2 logarithm of the size of mbuf clusters. Read options(4) for more
information on this option.
NS - Include support for the Xerox XNS protocol stack. See ns(4)
ISO,TPIP - Include support for the ubiquitous OSI protocol stack. See iso(4) for more information.
EON - Include support for OSI tunneling over IP.
CCITT,LLC,HDLC - Include support for the X.25 protocol stack.
IPX, IPXIP - Include support for Internetwork Packet Exchange protocol commonly in use by Novell
NetWare.
NETATALK - Include kernel support for the AppleTalk family of protocols.
TCP_COMPAT_42 - Use of this option is extremely discouraged, so it should not be enabled. TCP bug
compatibility with 4.2BSD. In 4.2BSD, TCP sequence numbers were 32-bit signed values. Modern
implementations of TCP use unsigned values.
TCP_NEWRENO - Turns on NewReno fast recovery phase, which allows one lost segment to be recovered
per round trip time.
TCP_SACK - Turns on selective acknowledgements.

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 4

http://www.openbsd.org/faq/faq5.html

TCP_FACK - Turns on forward acknowledgements allowing a more precise estimate of outstanding data
during the fast recovery phase by using SACK information. This option can be used together with
TCP_SACK.
IPFILTER - This option enables the IP filtering on the packet level using the ipfilter package.
IPFILTER_LOG - This option, in conjunction with IPFILTER, enables logging of IP packets using ip-filter.
IPFILTER_DEFAULT_BLOCK - This option sets the default policy of ip-filter. If it is set, ip-filter will block
packets by default.
PPP_FILTER - This option turns on pcap(3) based filtering for ppp connections.
PPP_BSDCOMP - PPP BSD compression.
PPP_DEFLATE - Used in conjunction with PPP_BSDCOMP.
IPSEC - This option enables IP security protocol support. See ipsec(4) for more details. This now implies
option KEY, which gives support for PFKEYv2.
ENCDEBUG - This option enables debugging information to be conditionally logged in case IPSEC encounters
errors.

SCSI Subsystem Options

SCSITERSE - Terser SCSI error messages. This omits the table for decoding ASC/ASCQ info, saving about 8
bytes or so.
SCSIDEBUG - Prints extra debugging info for the SCSI subsystem to the console.

5.3 - Building your own kernel
Full instructions for creating your own custom kernel are in the afterboot(8) man page.

To compile your kernel from the cdrom you need to first have the source code available. You just need the kernel source
to be able to compile the kernel, and this source code is available on the cd. Here is how to copy the sources from the
cd. This example assumes that CD1 is mounted on /mnt.

mkdir -p /usr/src/sys
cd /mnt/sys
tar cf - . | (cd /usr/src/sys; tar xvf -)

Now to create your custom kernel it is easiest to start with the GENERIC kernel. This is located at
/usr/src/sys/arch/${arch}/conf/GENERIC , where ${arch} is your architecture. There are other sample configurations
available in that directory as well. Here are two examples for compiling your kernel. The first example is compiling your
kernel on a read-only source tree. The second on a writable source tree.

cd /somewhere
cp /usr/src/sys/arch/$ARCH/conf/SOMEFILE .
vi SOMEFILE (to make the changes you want)
config -s /usr/src/sys -b . SOMEFILE

make depend

(The above step is necessary when you have made any changes [including updates
and patches] to your kernel source tree. This step can be ignored
if you follow the next step.)

OR

make clean

(The above step is necessary if you make changes to your kernel configuration
options, and is also recommended if you make major updates to your source tree.
You can ignore this step otherwise, and just use 'make depend'.)

make

To compile a kernel inside a writable source tree do the following:

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 5

http://www.openbsd.org/faq/faq5.html

cd /sys/arch/$ARCH/conf
vi SOMEFILE (to make any changes you want)
config SOMEFILE (read more about it here : config(8))
cd ../compile/SOMEFILE
make

Where $ARCH is the architecture you are using (e.g. i386). You can also do a make depend to make the dependencies
for the next time you compile your kernel.

To move your kernel into place.

cp /bsd /bsd.old
cp /sys/arch/$ARCH/compile/SOMEFILE/bsd /bsd

To revert to your old kernel at boot you need to just

boot> bsd.old

and your old kernel will be loaded instead of /bsd.

Sometimes when you build a new kernel you will be required to install new bootblocks. To do so, read faq14.8 on
OpenBSD's Bootloader. Which will give you an overview on using OpenBSD's Bootloader

5.4 - Boot Time Configuration
Sometimes when booting your system you might notice that the kernel finds your device but maybe at the wrong IRQ.
And maybe you need to use this device right away. Well, without rebuilding the kernel you can use OpenBSD's boot
time kernel configuration. This will only correct your problem for one time. If you reboot, you will have to repeat this
procedure. So, this is only meant as a temporary fix, and you should correct the problem by fixing and recompiling your
kernel. Your kernel does however need option BOOT_CONFIG in the kernel, which GENERIC does have.

Most of this document can be found in the man page boot_config(8)

To boot into the User Kernel Config, or UKC, at boot time us the -c option.

boot> boot wd0a:/bsd -c

Or whichever kernel it is you want to boot. Doing this will bring up a UKC prompt. From here you can issue
commands directly to the kernel specifying devices you want to change or disable or even enable.

Here is a list of common commands in the UKC.

add device - Add a device through copying another

change devno | device - Modify one or more devices

disable devno | device - Disable one or more devices

enable devno | device - Enable one or more devices

find devno | device - Find one or more devices

help - Short summary of these commands

list - List ALL known devices

exit/quit - Continue Booting

show [attr [val]] - Show devices with an attribute and optional with a specified value

Once you get your device configured, use quit or exit and continue booting. After doing so you should correct your

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 6

http://www.openbsd.org/faq/faq5.html

Kernel configuration and Compile a new kernel. Refer to Building your own kernel for help.

5.5 - Getting more verbose output during boot
Getting more verbose output can be very helpful when trying to debug problems when booting. If you have a problem
wherein your boot floppy won't boot and need to get more information, simply reboot. When you get to the "boot>"
prompt, boot with boot -c. This will bring you into the UKC>, then do:

UKC> verbose
autoconf verbose enabled
UKC> quit

Now you will be given extremely verbose output upon boot.

5.6 - Using config(8) to change your kernel
With 2.6 came the introduction of the -e and -u options with config(8). These options can be extremely helpful and save
wasted time compiling your kernel. The -e flag allows you to enter the UKC or User Kernel Config on a running
system. These changes will then take place on your next reboot. The -u flag tests to see if any changes were made to the
running kernel during boot. Meaning you used boot -c to enter the UKC while booting your system.

The following example shows the disabling of the ep* devices from the kernel. For safety's sake you must use the -o
option which writes the changes out to the file specified. For example : config -e -o bsd.new /bsd will write the
changes to bsd.new. The example doesn't use the -o option, therefore changes are just ignored, and not written back to
the kernel binary. For more information pertaining to error and warning messages read the config(8) man page.

$ sudo config -e /bsd
OpenBSD 2.6 (GENERIC) #1: Tue Nov 16 21:25:10 EST 1999
 ericj@oshibana:/usr/src/sys/arch/i386/compile/GENERIC
warning: no output file specified
Enter 'help' for information
ukc> ?
 help Command help list
 add dev Add a device
 base 8|10|16 Base on large numbers
 change devno|dev Change device
 disable attr val|devno|dev Disable device
 enable attr val|devno|dev Enable device
 find devno|dev Find device
 list List configuration
 lines count # of lines per page
 show [attr [val]] Show attribute
 exit Exit, without saving changes
 quit Quit, saving current changes
ukc> list
 0 audio* at sb0|sb*|gus0|pas0|sp0|ess*|wss0|wss*|ym*|eap*|eso*|sv*
 1 midi* at sb0|sb*|opl*|opl*|opl*|ym*|mpu*
 2 nsphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 3 inphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 4 iophy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 5 exphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 6 rlphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 7 icsphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 8 sqphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 9 ukphy* at xe*|ef*|sf*|xl*|tl*|rl*|fxp* phy -1
 10 scsibus* at bt0|bt1|bt2|aha0|aha1|aha*|ahb*|ahc0|ahc*|ahc*|isp*|aic0|aic*|ncr*|adv*|adw*
 11 cd* at scsibus* target -1 lun -1
 12 ch* at scsibus* target -1 lun -1
 13 sd* at scsibus* target -1 lun -1
 14 st* at scsibus* target -1 lun -1
 15 ss* at scsibus* target -1 lun -1
 16 uk* at scsibus* target -1 lun -1
 17 atapiscsi* at wdc0|wdc1|wdc*|wdc*|pciide* channel -1

Saturday, January 19, 2002 5.0 - Kernel configuration Page: 7

http://www.openbsd.org/faq/faq5.html

--- more ---
[snip]
ukc> disable ep
 31 ep0 disabled
 32 ep* disabled
 33 ep* disabled
 87 ep0 disabled
 88 ep0 disabled
 89 ep* disabled
 90 ep* disabled
136 ep* disabled
ukc> quit
not forced

In the above example, all ep* devices are removed from the kernel and will not be probed. In some situations where you
have used the UKC during boot, via boot -c, you will need these changes to be written out permanently. To do this
you need to use the -u option. In the following example, the computer was booted into the UKC and the wi(4) device
was disabled. Since changes made with boot -c are NOT permanent, these changes must be written out. This example
writes the changes made from boot -c into a new kernel binary bsd.new.

$ sudo config -e -u -o bsd.new /bsd
OpenBSD 2.6 (GENERIC) #1: Tue Nov 16 21:25:10 EST 1999
 ericj@oshibana:/usr/src/sys/arch/i386/compile/GENERIC
Processing history...
151 wi* disabled
Enter 'help' for information
ukc> quit

[Back to Main Index] [To Section 4.0 - Installation Guide] [To Section 6.0 - Networking]

 www@openbsd.org
$OpenBSD: faq5.html,v 1.53 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 6.0 - Networking Page: 1

http://www.openbsd.org/faq/faq6.html

6.0 - Networking

Table of Contents

6.0.1 - Before we go any further
6.1 - Initial network setup
6.2 - Packet Filter (PF)
6.3 - Network Address Translation
6.4 - Dynamic Host Configuration Protocol
6.5 - Point to Point Protocol
6.6 - Tuning networking parameters
6.7 - Using NFS
6.8 - Domain Name Service - DNS, BIND, and named
6.9 - Setting up a PPTP connection in OpenBSD

6.0.1 - Before we go any further
For the bulk of this document, it helps if you have read and at least partially understood the Kernel Configuration and
Setup section of the FAQ, and the ifconfig(8) and netstat(1) man pages.

If you are a network administrator, and you are setting up routing protocols, if you are using your OpenBSD box as a
router, if you need to go in depth into IP networking, you really need to read Understanding IP addressing. This is an
excellent document. Understanding IP addressing contains fundamental knowledge to build upon when working with IP
networks, especially when you deal with or are responsible for more than one network.

If you are working with applications such as web servers, ftp servers, and mail servers, you may benefit greatly by
reading the RFCs. Most likely, you can't read all of them. Pick some topics that you are interested in, or that you use in
your network environment. Look them up, find out how they are intended to work. The RFCs define many (thousands
of) standards for protocols on the Internet and how they are supposed to work.

6.1 - Initial Network Setup

6.1.1 - Identifying and Setting Up Your Network Interfaces

To start off, you must first identify your network interface. In OpenBSD, interfaces are named for the type of card, not
for the type of connection. You can see your network card get initialized during the booting process, or after the booting
process using the dmesg(8) command. You also have the chance of seeing your network interface using the ifconfig(8)
command. For example, Here is the output of dmesg for a ne2k network card, which uses the device name ne(4).

ne3 at pcmcia1 function 0 "Linksys, EtherFast 10/100 PC Card (PCMPC100), " port 0x340/16 irq
ne3: address 00:e0:98:04:95:ba

If you don't know what your device name is, here is a list of common cards and their device names.

ne2000 Network Cards - ne
3Com EtherLink III and Fast EtherLink III Ethernet - ep
3Com EtherLink XL and Fast EtherLink XL Ethernet (3C9xx) - xl
Intel 82586 chip Ethernet device driver - ie

Which Includes Cards Such As:
3Com 3C507
AT&T StarLAN 10

Saturday, January 19, 2002 6.0 - Networking Page: 2

http://www.openbsd.org/faq/faq6.html

AT&T EN100
AT&T StarLan Fiber
Intel EtherExpress 16

DEC/Intel 21142/3 and clone 10/100 Ethernet driver - dc
Note: Some drivers which were in OpenBSD 2.6, such as mx, ax, al and pn have been replaced by this driver.
Which Includes Cards Such As:
Intel 21142/21143 (formerly manufactured by DEC)
Macronix 98713, 98713A, 98715, 98715A and 98725
Davicom DM9100 and DM9102
ASIX Electronics AX88140A and AX88141
ADMtek AL981 Comet and AN985 Centaur
Lite-On 82c168 and 82c169 PNIC
Lite-On/Macronix 82c115 PNIC II

If you are upgrading to OpenBSD 3.0 from 2.6 or an older release of OpenBSD, you need to pay
attention here. Any references in /etc/ifaliases , /etc/pf.conf(5), /etc/nat.conf(5) to the old interface
names mx, al, ax, or pn must be replaced with dc. Also, any hostname.xxx files with the old interface
names must be renamed to hostname.dcX to be recognized. Replace the X with the interface number.

Lucent Technologies WaveLAN/IEEE 802.11DS - wi
Aironet Communications 4500/4800 IEEE 802.11DS - an

Again, you can check to see what interfaces have been identified by using the ifconfig(8) utility. Here is output which
will show an ne2k device.

$ ifconfig -a
lo0: flags=8009<UP,LOOPBACK,MULTICAST>
 inet 127.0.0.1 netmask 0xff000000
lo1: flags=8008<LOOPBACK,MULTICAST>
ne3: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST>
 media: Ethernet manual
 inet 10.0.0.38 netmask 0xffffff00 broadcast 10.0.0.255
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST>
sl1: flags=c010<POINTOPOINT,LINK2,MULTICAST>
ppp0: flags=8010<POINTOPOINT,MULTICAST>
ppp1: flags=8010<POINTOPOINT,MULTICAST>
tun0: flags=10<POINTOPOINT>
tun1: flags=10<POINTOPOINT>
enc0: flags=0<>
bridge0: flags=0<>
bridge1: flags=0<>

As you can see here, ifconfig(8) gives us a lot more information than we are needing at this point. But it still allows us
to see our interface. In the above example, the interface card is already configured. You can tell this by seeing that values
are already set in "inet 10.0.0.38 netmask 0xffffff00 broadcast 10.0.0.255", and that the UP and RUNNING flags
are turned on. Also, you will notice many other interfaces. Here is a list of interfaces that will be expected to be there.

lo - Loopback Interface
sl - SLIP Network Interface
ppp - Point to Point Protocol
tun - Tunnel Network Interface
enc - Encapsulating Interface
bridge - Ethernet bridge interface

If you don't have your interface configured, the first step is to create the /etc/hostname.${IF} file. Where the name
of your interface will take the place of ${IF}. From the information in the examples above, the name would be
/etc/hostname.ne3. The layout of this file is like so:
(To read more about the format of this file, reference the hostname.if(5) man page.)

[address_family] [your_ip] [your_netmask] [media options]

So, for the above example, a proper file would look like this:

Saturday, January 19, 2002 6.0 - Networking Page: 3

http://www.openbsd.org/faq/faq6.html

$ cat /etc/hostname.ne3
inet 10.0.0.38 255.255.255.0 NONE

Next step from here is to setup your gateway. To do this, simply put the IP of your gateway in the file /etc/mygate.
This will allow for your gateway to be set upon boot. From here you should setup your nameservers, and your
/etc/hosts file (see the hosts(5) man page). To setup your nameservers, you will create a file called /etc/resolv.conf.
You can read more about the format of this file in the resolv.conf(5) man page. But for a standard usage, here is an
example. In this example your domain servers are 125.2.3.4 and 125.2.3.5. You also belong in the domain
"yourdomain.com".

$ cat /etc/resolv.conf
search yourdomain.com
nameserver 125.2.3.4
nameserver 125.2.3.5
lookup file bind

From here, you can either reboot or run the /etc/netstart script. You can do this by simply typing (as root):

sh /etc/netstart
writing to routing socket: File exists
add net 127: gateway 127.0.0.1: File exists
writing to routing socket: File exists
add net 224.0.0.0: gateway 127.0.0.1: File exists

Notice that a few errors were produced, but they are concerned with the loopback interface, so they can be ignored.
From here your system should be up and running. Again, you can check to make sure that your interface was setup
correctly with ifconfig(8). You can also check your routes via netstat(1) or route(8). Here is an example of viewing your
routing tables using both.

$ netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Interface
default 10.0.0.1 UGS 0 86 - ne3
127/8 127.0.0.1 UGRS 0 0 - lo0
127.0.0.1 127.0.0.1 UH 0 0 - lo0
10.0.0/24 link#1 UC 0 0 - ne3
10.0.0.1 aa:0:4:0:81:d UHL 1 0 - ne3
10.0.0.38 127.0.0.1 UGHS 0 0 - lo0
224/4 127.0.0.1 URS 0 0 - lo0

Encap:
Source Port Destination Port Proto SA(Address/SPI/Proto)

$ route show
Routing tables

Internet:
Destination Gateway Flags
default 10.0.0.1 UG
127.0.0.0 LOCALHOST UG
localhost LOCALHOST UH
10.0.0.0 link#1 U
10.0.0.1 aa:0:4:0:81:d UH
10.0.0.38 LOCALHOST UGH
BASE-ADDRESS.MCA LOCALHOST U

6.1.2 - Setting up your OpenBSD box as a Gateway

This is the basic information you need to set up your OpenBSD box as a gateway (also called a router). If you are using
OpenBSD as a router on the Internet, we suggest that you also read the Packet Filter setup instructions below to block
potentially malicious traffic. Also, due to the low availability of IPv4 addresses from network service providers and
regional registries, you may want to look at Network Address Translation for information on conserving your IP

Saturday, January 19, 2002 6.0 - Networking Page: 4

http://www.openbsd.org/faq/faq6.html

address space.

The GENERIC kernel already has the ability to allow IP Forwarding, but needs to be turned on. You should do this
using the sysctl(8) utility. To change this permanently you should edit the file /etc/sysctl.conf(5) to allow for IP
Forwarding. To do so add this line in that configuration file.

net.inet.ip.forwarding=1

To make this change without rebooting you would use the sysctl(8) utility directly. Remember though that this change
will no longer exist after a reboot, and needs to be run as root.

sysctl -w net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

Now modify the routes on the other hosts on both sides. There are many possible uses of OpenBSD as a router, using
software such as routed(8), gated, mrtd, and zebra. OpenBSD has support in the ports collection for both gated and
mrtd. OpenBSD supports several T1, HSSI, ATM, FDDI, Ethernet, and serial (PPP/SLIP) interfaces.

6.1.3 - Setting up aliases on an interface.

Starting with OpenBSD 2.8, /etc/ifaliases is no longer used!

OpenBSD has a simple mechanism for setting up ip aliases on an interface. To do this simply edit the file
/etc/hostname.<if> . This file is read upon boot by the /etc/rc(8) script, which is part of the rc startup hierarchy. For the
example, we assume that the user has an interface dc0 and is on the network 192.168.0.0. Other important information:

IP for dc0 is 192.168.0.2
NETMASK is 255.255.255.0

A few side notes about aliases. In OpenBSD you use the interface name only. There is no difference between the first
alias and the second alias. Unlike some other operating systems, OpenBSD doesn't refer to them as dc0:0, dc0:1. If you
are referring to a specific aliased IP address with ifconfig, or adding an alias, be sure to say "ifconfig int alias"
instead of just "ifconfig int" at the command line. You can delete aliases with "ifconfig int delete".

Assuming you are using multiple IP addresses which are in the same IP subnet with aliases, your netmask setting for
each alias becomes 255.255.255.255. They do not need to follow the netmask of the first IP bound to the interface. In
this example, /etc/hostname.dc0 , two aliases are added to the device dc0, which, by the way, was configured as
192.168.0.2 netmask 255.255.255.0.

cat /etc/hostname.dc0
inet 192.168.0.2 255.255.255.0 media 100baseTX
inet alias 192.168.0.3 255.255.255.255 NONE
inet alias 192.168.0.4 255.255.255.255 NONE

Once you've made this file, it just takes a reboot for it to take effect. You can, however, bring up the aliases by hand
using the ifconfig(8) utility. To bring up the first alias you would use the command:

ifconfig dc0 inet alias 192.168.0.3 netmask 255.255.255.255

To view these aliases you must use the command:

$ ifconfig -A
dc0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST>
 media: Ethernet manual
 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
 inet 192.168.0.3 netmask 0xffffffff broadcast 192.168.0.3

6.2 - Packet Filter (PF)
Note: Packet Filter is the filtering system in OpenBSD 3.0 and later. If you are looking for the IPF/IPNAT FAQ
for OpenBSD 2.9 and before, click here.

Saturday, January 19, 2002 6.0 - Networking Page: 5

http://www.openbsd.org/faq/faq6.html

The Packet Filter subsystem was created to handle two tasks, dealing with packet level forwarding permissions and
mapping hosts/subnets to a range of external addresses. The configuration files for these two services are
/etc/pf.conf(5) and /etc/nat.conf(5) .

To start these services with your system, you need to edit /etc/rc.conf(8) and set the line to:

pf=YES

If you are using NAT, you will most likely also need to set the sysctl(8) value net.inet.ip.forwarding to 1. You can
do this by uncommenting the relevant lines in /etc/sysctl.conf(5) and rebooting your computer.

If you have Packet Filter compiled into your kernel, but you don't have it turned on in your /etc/rc.conf(8) file, you can
still activate it with the pfctl(8) command.

pfctl -R /etc/pf.conf
pfctl -N /etc/nat.conf
pfctl -e

The first line sets up filtering, using /etc/pf.conf and the second sets up NAT, using /etc/nat.conf (more on NAT later
in Section 6.3, NAT), and finally, the last line activates PF.

This can also be combined into one command line:

pfctl -R /etc/pf.conf -N /etc/nat.conf -e

If you make changes to /etc/pf.conf after PF is started, you can reload your rules by reloading the appropriate file:

pfctl -R /etc/pf.conf

This document will cover some basic pf.conf(5) and nat.conf(5) configurations below. You can also look at the
resulting ruleset that includes all the tweaks explained below in more detail. You can find other Packet Filter information
at the Packet Filter web site and in the Packet Filter HOWTO.

Packet Filter

In order to enable Packet Filter at boot, you will need to modify /etc/rc.conf so that it reads pf=YES. Packet Filter (pf) is
controlled by /etc/pf.conf , which is read at boot. For a more detailed explanation, see pf.conf(5). In the examples that
follow, fxp0 will represent the external interface to the internet. It will be different for you, based on the ethernet adapter
present in your computer. These rules will assume full-time internet connectivity, such as you would see on a
webserver.

Packet Filter rules are processed sequentially from top to bottom; it helps to visualize each packet having to traverse
every rule before it reaches its destination.

For example, the default ruleset provided allows all packets to travel in, and all packets to travel out:

pass out all
pass in all

This is shorthand, for:

pass in from any to any
pass out from any to any

which can be read as "pass incoming packets from any source to any destination", with an implied "on any interface
(which is always implied if a specific interface isn't specified) of any address family, inet (v4) or inet6 (v6)".

Obviously, this isn't much of a filter. More useful filtering will be based on the address family (IPv4 or IPv6),
protocol(s) and port(s) used by the services you wish to filter. Any of the protocols listed in /etc/protocols(5) can be
specified, by either name or number, but we will concern ourselves with tcp(4), udp(4) and icmp(4).

Saturday, January 19, 2002 6.0 - Networking Page: 6

http://www.openbsd.org/faq/faq6.html

Now let's say we don't want to allow any incoming IPv4 connections to TCP port 3306 (MySQL) because the database
should only be connected to from localhost. Our ruleset would look like this:

pass out all
pass in all
block in on fxp0 inet proto tcp from any to any port = 3306

This says "block in all IPv4 (inet) incoming packets, from any source to any destination bound for tcp port 3306." Note
that it is required that you specify a protocol with any port-based filter, and recommended that you specify the address
family. For services defined in the /etc/services(5) file, you can also use the service names, such as www or mysql . A
packet destined for tcp port 3306 on interface fxp0 will pass the first "pass in" rule and then be dropped by the "block in
port = 3306" rule. If you reversed the order of our incoming rules (remember, order is important):

pass out all
block in on fxp0 inet proto tcp from any to any port = 3306
pass in all

Packets destined for tcp port 3306 would pass because the last rule in the set allows all packets to pass. It is important to
keep this in mind when writing packet filter rules: The last matching rule wins.

Of course, there are exceptions to every rule. The quick option drops the packet at the first rule that matches. Let's look
at our above flawed example, if we add quick to the "block in" rule:

pass out all
block in quick on fxp0 inet proto tcp from any to any port = 3306
pass in all

A packet destined for our host on tcp port 3306 will hit the "block in quick" rule and be dropped immediately. All
packets destined for other ports or protocols won't find a rule match until they reach our "pass in" rule that allows all
packets to pass.

Default Deny

The safest packet filtering policy is a default deny policy. All traffic not explicitly allowed is denied. This policy is far
safer than explicitly denying each protected service, allows for smaller rulesets, and can protect from an accidentally
misconfigured service that has been left exposed.

Let's now look at another example ruleset and explain things line by line. Here's an example for a webserver with a
default deny policy that only allows ssh connections (for administration) and connections to http (port 80) and https
(port 443).

pass in quick on fxp0 inet proto tcp from any to any port = 22
pass in quick on fxp0 inet proto tcp from any to any port = 80
pass in quick on fxp0 inet proto tcp from any to any port = 443
block in quick on fxp0 from any to any
pass out on fxp0 from any to any

This will allow incoming connections from anywhere to tcp ports 22(ssh), 80(http), and 443(https). It will drop all other
connection attempts, and allow all outgoing connections. This is a pretty tight ruleset. But what if you only wanted to
allow internal hosts on your 1.1.1.0 address block to connect to ssh, but allow outside connections to http and https?

pass in quick on fxp0 inet proto tcp from 1.1.1.0/24 to any port = 22
pass in quick on fxp0 inet proto tcp from any to any port = 80
pass in quick on fxp0 inet proto tcp from any to any port = 443
block in quick on fxp0 from any to any
pass out on fxp0 from any to any

Pretty good, but what if we only want to allow one machine (1.1.1.1) to administer the web server remotely? In that
case, we can change this:

pass in quick on fxp0 inet proto tcp from 1.1.1.0/24 to any port = 22

Saturday, January 19, 2002 6.0 - Networking Page: 7

http://www.openbsd.org/faq/faq6.html

to this:

pass in quick on fxp0 inet proto tcp from 1.1.1.1/32 to any port = 22

Sample Rules

Here are some good rules for everyone to use (assuming that fxp0 is the external internet-connected interface). First we
will set up a simple address spoofing protection. These addresses shouldn't (normally) be floating around the Internet,
and if they are, it is rarely good, so we block them:

block in quick on fxp0 inet from 127.0.0.0/8 to any
block in quick on fxp0 inet from 192.168.0.0/16 to any
block in quick on fxp0 inet from 172.16.0.0/12 to any
block in quick on fxp0 inet from 10.0.0.0/8 to any
block out quick on fxp0 inet from any to 127.0.0.1/8
block out quick on fxp0 inet from any to 192.168.0.0/16
block out quick on fxp0 inet from any to 172.16.0.0/12
block out quick on fxp0 inet from any to 10.0.0.0/8

Our ruleset is starting to look pretty good; when we put it together, here is what it looks like:

don't allow anyone to spoof non-routeable addresses
block in quick on fxp0 inet from 127.0.0.0/8 to any
block in quick on fxp0 inet from 192.168.0.0/16 to any
block in quick on fxp0 inet from 172.16.0.0/12 to any
block in quick on fxp0 inet from 10.0.0.0/8 to any
block out quick on fxp0 inet from any to 127.0.0.1/8
block out quick on fxp0 inet from any to 192.168.0.0/16
block out quick on fxp0 inet from any to 172.16.0.0/12
block out quick on fxp0 inet from any to 10.0.0.0/8

only allow our administration machine to connect via ssh
pass in quick on fxp0 inet proto tcp from 1.1.1.1/32 to any port = 22

allow others to use http and https
pass in quick on fxp0 inet proto tcp from any to any port = 80
pass in quick on fxp0 inet proto tcp from any to any port = 443

finally lock the rest down with a default deny
block in quick on fxp0 from any to any

and let out-going traffic out
pass out on fxp0 from any to any

Packet Logging

Now that's pretty good, but it could be better. What if we want to log any connection attempts to port 22(ssh) that get
blocked by our firewall? Easy, Packet Filter can handle this with the log keyword:

pass in quick on fxp0 inet proto tcp from 1.1.1.1/32 to any port = 22
block in log quick on fxp0 inet proto tcp from any to any port = 22

This rule will allow our remote administration machine to connect to port 22, but deny and log all other attempts to
connect to port 22.

Logged packets are sent to the pflog0 interface, which is monitored by pflogd(8), which typically dumps the packets to
/var/log/pflog in tcpdump(8) binary format. pflogd(8) is started by default by /etc/rc(8) if pf is enabled in
/etc/rc.conf(8) . You can read these log files using the following command:

tcpdump -n -e -ttt -r /var/log/pflog

One should be aware that using tcpdump to watch the pflog file does NOT give a real-time display. If you wish a
real-time display, you can use this command:

Saturday, January 19, 2002 6.0 - Networking Page: 8

http://www.openbsd.org/faq/faq6.html

tcpdump -i pflog0

One could also use tcpdump to narrow down the focus to facilitate debugging:

tcpdump -e -i pflog0 port 80

Doing this does NOT impact the data that is put to the file /var/log/pflog .

When examining one's logs, especial care should be taken with tcpdump's verbose protocol decoding (activated via the
-v command line option). Tcpdump's protocol decoders do not have a perfect security history. At least in theory, a
delayed attack could be possible via the partial packet payloads recorded by the logging device.

Additional care should be taken about access to the logs. Pflogd will capture 96 bytes of the packet and log it. Access to
the logs could provide partial access to sensitive packet payloads (like telnet(1) or ftp(1) logins).

Multiple Protocols

What if we need to allow connections to a service running over multiple protocols, such as bind, which uses TCP and
UDP? Packet filter lets you lump options together into sets (more on this later):

Pass DNS traffic for BIND
pass in quick on fxp0 inet proto { tcp, udp } from any to any port = 53

Notice the spaces on both sides of the '{ }' characters. This is neater than the alternative you might otherwise have to
use:

pass in quick on fxp0 inet proto tcp from any to any port = 53
pass in quick on fxp0 inet proto udp from any to any port = 53

Packet Normalization

As some OSs and applications have trouble with abnormal or fragmented packets, it is sometimes beneficial to normalize
the packets before they are passed on to their ultimate destination. This is done with the scrub directive, used as here:

scrub in all

As this does put additional load on the system, there is no reason to use this command unless this system is protecting a
computer with a poor TCP/IP implementation

IP Options

By default, PF blocks packets with IP options set. This can make the job more difficult for "OS fingerprinting" utilities
like nmap. If you have an application that requires the passing of these packets, such as multicast or IGMP, you can use
the allow-opts directive:

pass in quick on fxp0 allow-opts

TCP Flags, established connections and keeping state

Packet Filter can also filter packets based on TCP flags and maintain established connections and connection state. It is
recommend that all users who wish to filter packets based on TCP flags understand what role each flag plays. For
instance, if you wanted to deny all packets with the FIN, URG, and PSH flags set (like for instance an nmap OS
fingerprinting attempt) you could use a rule like this:

block in quick on fxp0 inet proto tcp from any to any flags FUP/FUP

(Thanks to Kyle Hargraves for that tip)

Packet Filter's next cool trick is its ability to maintain state. Maintaining state has been described as "not speaking until
spoken to"; in other words, once a connection is established, packets no longer have to traverse rulesets. This is a very
powerful feature allowing much simpler and more secure rule writing.

Saturday, January 19, 2002 6.0 - Networking Page: 9

http://www.openbsd.org/faq/faq6.html

For example, let's see how we can apply state to our previous example ruleset (confused yet?). To review, we are
allowing management access from our Class C to port 22(ssh) and allowing all incoming web traffic on ports 80(http)
and 443(https). We are blocking all other traffic. But, what if I want to ssh(1) out of the webserver? What if I need to
use lynx(1) to look up something in the FAQ? Well, I can't because I have blocked all incoming connections other than
those on the specified ports. While this is the safest route, it can be quite inconvenient. By adding the keep state
keywords to our "pass out" rule, we can automagically allow incoming connections in response to connections we
initiate, such as when web browsing. Remember, we do need to specify what protocol we are keeping state for.

pass in quick on fxp0 inet proto tcp from 1.1.1.0/24 to any port = 22
pass in quick on fxp0 from any to any port = 80
pass in quick on fxp0 from any to any port = 443
block in quick on fxp0 from any to any
pass out on fxp0 inet proto tcp from any to any keep state

This little change will dramatically increase the flexibility and security of our ruleset: for instance, in the above ruleset,
we are allowing all tcp traffic into ports 80 & 443. We can tighten this up even more. In order for a tcp connection to be
established, we only need to allow the initial handshake to occur; once that occurs, we can block traffic to that port and
allow our "keep state" rule to manage the connection. To allow the initial handshake to complete, we need only allow
packets with the SYN and SYNACK flags set. By passing only packets with SYN and SYNACK set, we can prevent
many forms of portscanning such as FIN scanning. The rules now look like this:

pass in quick on fxp0 inet proto tcp from 1.1.1.0/24 to any port = 22
pass in quick on fxp0 inet proto tcp from any to any port = 80 flags S/SA
pass in quick on fxp0 inet proto tcp from any to any port = 443 flags S/SA
block in quick on fxp0 from any to any
pass out on fxp0 proto tcp from any to any keep state

Let's start to tie things together by putting all of the rules we have so far into a ruleset. This ruleset will support IPv4,
have a default deny policy, allow management connections from an internal network only (via ssh) and allow incoming
traffic on ports 80(http) and 443(https). It will also protect against spoofed non-routeable ip addresses, and drop all
packets that are too fragmented to inspect. A pretty comprehensive setup for a public webserver. Here's what
/etc/pf.conf could look like:

Clean up fragmented and abnormal packets
scrub in all

don't allow anyone to spoof non-routeable addresses
block in quick on fxp0 inet from 127.0.0.0/8 to any
block in quick on fxp0 inet from 192.168.0.0/16 to any
block in quick on fxp0 inet from 172.16.0.0/12 to any
block in quick on fxp0 inet from 10.0.0.0/8 to any
block out quick on fxp0 inet from any to 127.0.0.1/8
block out quick on fxp0 inet from any to 192.168.0.0/16
block out quick on fxp0 inet from any to 172.16.0.0/12
block out quick on fxp0 inet from any to 10.0.0.0/8

only allow our machines to connect via ssh
pass in quick on fxp0 inet proto tcp from 1.1.1.0/24 to any port = 22

allow others to use http and https
pass in quick on fxp0 inet proto tcp from any to any port = 80 flags S/SA
pass in quick on fxp0 inet proto tcp from any to any port = 443 flags S/SA

finally lock the rest down with a default deny
block in quick on fxp0 from any to any

and let out-going traffic out and maintain state on established connections
pass out on fxp0 from any to any keep state

While this may look good, there are some things Packet Filter will let you do to make your pf.conf file look neater and
easier to maintain.

Sets

Saturday, January 19, 2002 6.0 - Networking Page: 10

http://www.openbsd.org/faq/faq6.html

Sets are useful "shortcuts" for writing simple and clear rules in PF. For example, what if we need to allow connections
to a service running over multiple protocols, such as BIND, which uses TCP and UDP? Normally, you would have to
do something like this:

pass in quick on fxp0 inet proto tcp from any to any port = 53
pass in quick on fxp0 inet proto udp from any to any port = 53

but instead, you could use PF's set notation to simplify this:

pass in quick on fxp0 inet proto { tcp, udp } from any to any port = 53

Note the spaces on both sides of the '{ }' characters.

Groups of related IPs can be clustered together into sets, which can be used anywhere a single IP could be used. For
example, looking at our anti-spoofing rules above:

don't allow anyone to spoof non-routeable addresses
block in quick on fxp0 inet from 127.0.0.0/8 to any
block in quick on fxp0 inet from 192.168.0.0/16 to any
block in quick on fxp0 inet from 172.16.0.0/12 to any
block in quick on fxp0 inet from 10.0.0.0/8 to any
block out quick on fxp0 inet from any to 127.0.0.1/8
block out quick on fxp0 inet from any to 192.168.0.0/16
block out quick on fxp0 inet from any to 172.16.0.0/12
block out quick on fxp0 inet from any to 10.0.0.0/8

they could be consolidated into two lines:

block in quick on fxp0 inet from { 127.0.0.1/8, 192.168.0.0/16, \
172.16.0.0/12, 10.0.0.0/8 } to any
block out quick on fxp0 inet from any to { 127.0.0.1/8, 192.168.0.0/16, \
172.16.0.0/12, 10.0.0.0/8 }

Variable Expansion

One problem with the above sample pf.conf file is that should you need to change your NIC, or change an IP address,
you would need to change a number of lines. This can be lessened by using variable expansion:

NoRouteIPs="{ 127.0.0.1/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"
ExtIF="fxp0"
block in quick on $ExtIF from $NoRouteIPs to any
block out quick on $ExtIF from any to $NoRouteIPs

Putting it all together

Now, let's put it all together, and look at the elegance of the file:

Define useful variables
ExtIF="fxp0" # External Interface
IntNet="1.1.1.0/24" # Our internal network
NoRouteIPs="{ 127.0.0.1/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"
Services="{ www, https }"

Clean up fragmented and abnormal packets
scrub in all

don't allow anyone to spoof non-routeable addresses
block in quick on $ExtIF from $NoRouteIPs to any
block out quick on $ExtIF from any to $NoRouteIPs

only allow our machines to connect via ssh
pass in quick on $ExtIF inet proto tcp from $IntNet to any port = 22

allow others to use http and https

Saturday, January 19, 2002 6.0 - Networking Page: 11

http://www.openbsd.org/faq/faq6.html

pass in quick on $ExtIF inet proto tcp from any to any port $Services flags S/SA

finally lock the rest down with a default deny
block in quick on $ExtIF from any to any

and let out-going traffic out and maintain state on established connections
pass out on $ExtIF from any to any keep state

If you experience problems, you may want to enable logging on individual rules to effectively troubleshoot. ie:

pass in log quick on fxp0 from 1.1.1.0/24 to any port = 22

pflogd(8) will write to ip log entries to /var/log/pflog . Remember that /var/log/pflog is a binary file, intended to be read
by tcpdump(8), NOT directly by humans.

When you modify the configuration file to log packets, don't forget to pfctl -R /etc/pf.conf for the changes to take
affect!

Differences between PF and IPF

Packet Filter (PF) was designed to be very compatible with IPF's ipf.rules file. However, PF is not, nor was it
intended to be, a drop-in replacement for IPF. This section details some of the differences between these systems.

group and head: These options are no longer used, as the filter rules are optimized on the fly. If you are
migrating your old rulesets from IPF, you should delete any group or head definitions and manually reorder
your rules, making sure their semantics haven't changed.
level: When logging, PF does not accept a level option to the log keyword, as logging is not performed by
syslogd(8), but by a separate logging daemon. To examine a particular kind of traffic, as might have been done
with level option, use any of the available options of tcpdump(8).
keep frags: This has been replaced by the normalization the scrub option performs.
@n Rules: PF does not support prepending rules with @n to insert them into particular points in the rule list
as IPF does. To view the rule numbers PF has assigned, use the command pfctl -sr

6.3 - NAT
Note: Packet Filter is the filtering system in OpenBSD 3.0 and later. If you are looking for the IPF/IPNAT FAQ
for OpenBSD 2.9 and before, click here.

6.3.1 NAT Introduction

Based on RFC 1631, NAT provides an easy way to map internal networks to a single routeable ("real") internet address.
This is very useful if you don't have officially assigned addresses for every host on your internal network. When you
set up private/internal networks, you can take advantage of reserved address blocks (assigned in RFC 1918), such as:

10.0.0.0/8 (10.0.0.0 - 10.255.255.255)
172.16.0.0/12 (172.16.0.0 - 172.31.255.255)
192.168.0.0/16 (192.168.0.0 - 192.168.255.255)

The user is assumed to have already set up and configured an OpenBSD machine with two network cards (one
connected to the Internet and the other to the local network).

Configuration

For the purpose of example, we will use the system described below. Your setup will almost certainly vary from this, so
be very careful in typing anything you see here literally into your system and expecting it to work as you desire.

Computer Operating System: OpenBSD v3.0 i386

NICs:

Saturday, January 19, 2002 6.0 - Networking Page: 12

http://www.openbsd.org/faq/faq6.html

Intel EtherExpress Pro/100 fxp0
Connected to the EXTERNAL LAN (or WAN)
IP Address: 24.5.0.5
Netmask: 255.255.255.0

Compaq Netelligent 10/100Mb tl0
Connected to the INTERNAL LAN
IP Address: 192.168.1.1
Netmask: 255.255.255.0

External, Internet-routeable IP (provided by ISP, in this example, a cable modem provider)
IP Address: 24.5.0.5
Netmask: 255.255.255.0
Gateway: 24.5.0.1

Local Area Network
In this example environment, machines on the internal network use the IP addressing scheme
192.168.1.xxx (where xxx is a unique number). There could be a variety of different operating
systems on the internal network, such as Windows 98, Windows NT, OpenBSD and Linux, but the
client OS is not an issue for NAT. For the examples, the client we will look at on the internal network
will be assumed to have an IP address of 192.168.1.40.

Diagram of Configuration

+-----+ +---------+ +----------+
| Hub |--------- tl0 | NAT | fxp0 ----| Internet |
+-----+ +---------+ +----------+
| |
| +-- Client A
+---- More clients

 +--------------------------+
 | LEGEND |
 +--------------------------+
 | NIC fxp0 - 24.5.0.5 |
 | NIC tl0 - 192.168.1.1 |
 | Client A - 192.168.1.35 |
 +--------------------------+

6.3.2 Network Address Translation

Introduction to NAT

Each node on the Internet requires a unique IP address. At least with IPv4, there is a very finite number of distinct IP
addresses available, and as a result, they are not free. Most "low-cost" ISPs will limit a site to anywhere from 1 to 30
addresses, and while larger budget organizations may be able to afford a larger block, in most cases, there are relatively
few benefits and considerable risks to having each computer individually addressable on the Internet.

Network Address Translation, or NAT, (also known as "IP Masquerading" if you are coming from a Linux
background) allows multiple computers to be located "behind" one (or a small number of) IP address. Each "internal"
computer has a locally assigned, unregistered IP address (per RFC 1918), and all utilize the same external IP address,
simultaneously.

The way NAT works is rather simple. When a client on the LAN wants to connect to a machine on the Internet, it sends
out a TCP packet with a request to connect. Inside the TCP packet header is the client's IP address (e.g. 192.168.1.40)
and the requested host's IP address (e.g. 123.45.67.89). The machine running NAT intercepts this TCP packet and
changes the client's IP address from 192.168.1.40 to the IP address of the Internet-connected machine (e.g. 24.5.0.5).
This effectively tricks the host machine into thinking the actual connection is from the NAT machine, not the actual

Saturday, January 19, 2002 6.0 - Networking Page: 13

http://www.openbsd.org/faq/faq6.html

client's machine. The host then sends back responses to the NAT machine like it was the one connecting. When the
NAT machine receives the responses it quickly translates the destination IP address back from itself to the client's
machine and sends the packet to the client. The client normally does not have any idea what happened and the apparent
Internet connectivity is transparent to the user and user's applications.

The example below shows NAT a little more clearly:

Client ----------------- tl0 [NAT] fxp0 ---------- Internet Host
192.168.1.35 --- 192.168.1.1 [NAT] 24.5.0.5 --- 123.45.67.89

OUTGOING TCP Packet OUTGOING TCP Packet
From: 192.168.1.35 >>=== NAT ===>> From: 24.5.0.5
To: 123.45.67.89 To: 123.45.67.89

INCOMING TCP Packet INCOMING TCP Packet
From: 123.45.67.89 From: 123.45.67.89
To: 192.168.1.40 <<=== NAT ===<< To: 24.5.0.5

Why use NAT?

When presented with a cable modem in my new apartment I was also presented with another minor problem. How to get
Internet access for my roommates, when the cable modem resides in my room? There were a few options I could
implement, ranging from obtaining extra IP addresses, to setting up a proxy server, to setting up NAT. (Don't let the
home cable modem example fool you. NAT is powerful enough to masquerade a large network with hundreds or even
thousands of computers!)

There are many reasons why I wanted to set up NAT. The number one reason is to save money. There are two
roommates in my house, splitting the cost is certainly attractive. Further, as each roommate has their own PC and I have
three, we had five computers to connect, but my ISP only allows for three IP addresses per household. This means that
there weren't enough IP addresses to allow every machine simultaneous direct Internet access.

By using NAT each machine will have a unique internal IP address but share the one IP address given to me by my ISP.
The cost goes down.

Setup

In order to enable NAT on your OpenBSD machine you will need to turn on PF. This is easily accomplished by editing
the files listed below (make the changes to the file so it looks like the options below):

/etc/rc.conf (this file used to start services at boot time)

pf=YES

/etc/sysctl.conf

net.inet.ip.forwarding=1

After these changes are made, the machine is now ready for the configuration of NAT.

Configuration

The first step is to configure the PF configuration file (/etc/pf.conf). For the purposes of this document we will allow
traffic to pass through this firewall without any interference. The file should look like this:

pass in all
pass out all

Again, for more information you can read FAQ 6.2

Saturday, January 19, 2002 6.0 - Networking Page: 14

http://www.openbsd.org/faq/faq6.html

The NAT configuration file (/etc/nat.conf). has a very simple syntax. For the configuration set forth above, the file
should contain the following entry:

nat on fxp0 from 192.168.1.0/24 to any -> 24.5.0.5

Here is an explanation for the above lines.

"nat"

This indicates the command you are giving is a NAT rule.

"fxp0"

This is the network interface that is connected to the Internet.

"192.168.1.0/24"

the IP address and netmask (the netmask is in CIDR format). Combined they state "any IP address of value
192.168.1.1 through 192.168.1.254" should be mapped.

"24.5.0.5"

This is the external IP address the internal IP addresses will be mapped to.

Running

Once the configuration is complete, there are two ways to enable NAT. The first (and best way if possible) is to reboot
your OpenBSD machine. This is accomplished with the command "reboot ".

If you would like to configure NAT from the command line, use the following commands:

pfctl -N /etc/nat.conf
pfctl -e

The first line is to load a set of NAT rules into PF (and flushing any old rules), the second line enables PF. Again,
though, rebooting is the best way to ensure that everything will startup from a reboot as you expect.

Note: in order to reload the NAT settings (in case you edit the file but don't want to reboot) just execute the first
command over again. The settings will be flushed and reloaded.

6.3.3 Nat Knowledge Base

Checking NAT Status

To find out how NAT is doing or make sure the settings have taken effect, you use the "-ss" option. This option will list
all the current sessions that NAT is running:

pfctl -ss
TCP 192.168.1.35:2132 -> 24.5.0.5:53136 -> 65.42.33.245:22 TIME_WAIT:TIME_WAIT
TCP 192.168.1.35:2492 -> 24.5.0.5:55011 -> 65.42.33.245:22 ESTABLISHED:ESTABLISHED
UDP 192.168.1.35:2491 -> 24.5.0.5:60527 -> 24.2.68.33:53 2:1

Explanations (first line, others are similar):

"192.168.1.35:2132"

This tells you the IP address of the machine on the LAN that is using NAT (192.168.1.35). The port number
used to make the connection (2132) is displayed afterwards.

Saturday, January 19, 2002 6.0 - Networking Page: 15

http://www.openbsd.org/faq/faq6.html

"24.5.0.5:53136"

This denotes that the connection is going to the Internet via IP address 24.5.0.5 and using port 53136.

"65.42.33.245:22"

The IP address and the port being connected to.

"TIME_WAIT:TIME_WAIT"

This indicates what state PF believes the TCP connection to be in.

Issues with FTP and NAT

There are a few limitations of NAT, the most commonly encountered is with FTP. You can use FTP in two ways:
passive and active. Of these, passive FTP is generally considered more secure.

With active FTP, when a user connects to a remote FTP server and requests information or file, the FTP client sends the
server a random port number that the the FTP server will make a connection to on the client and transfer the info. This is
a problem for users attempting to gain access to FTP servers from within the LAN. When the FTP server sends its
information it sends it to the external NIC at a random port. The NAT machine will receive this, but because it has no
mappings for the unknown packet and doesn't have any mappings for that port, it will drop the packet and won't deliver
it.

With passive mode FTP (the default with OpenBSD ftp(1) client), the client requests that the server picks up a random
port that it will listen on for the data connection. The server informs the client of the port it has chosen, and the client
connects to this port to transfer the data. Unfortunately, this is not always possible or desirable. ftp(1) uses this mode by
default; to force active mode FTP, use the -A flag to ftp, or set the passive mode to off by issuing the command

passive off

at the ftp> prompt.

Packet Filter provides another solution for this situation, redirecting FTP traffic through an FTP proxy server, a process
which acts to "guide" your FTP traffic through the filters. The FTP proxy used by OpenBSD and PF is ftp-proxy(8). To
activate it, put something like this in your /etc/nat.conf file:

rdr on tl0 from any to any port 21 -> 127.0.0.1 port 8081

Short explanation of this line is, "Traffic on the internal interface is redirected to the proxy server running on this
machine which is listening at port 8081".

Hopefully, it is apparent the proxy server has to be started and running on the OpenBSD box, this is done by inserting
the following line in /etc/inetd.conf :

8081 stream tcp nowait root /usr/libexec/ftp-proxy ftp-proxy

and either rebooting the system or sending a 'HUP' signal to inetd(8). One way to send the 'HUP' signal is with the
command:

kill -HUP `cat /var/run/inetd.pid`

You will note that ftp-proxy is listening on port 8081, the same port the above rdr statement was sending FTP traffic to.
The choice of port 8081 is arbitrary, though 8081 is a good choice, as it is not defined for any other application.

Redirecting Traffic

For some applications, you may need to redirect incoming or outgoing traffic for a certain protocol and/or port to a
particular machine behind the filtering system. An example of this would be a computer residing inside the local network

Saturday, January 19, 2002 6.0 - Networking Page: 16

http://www.openbsd.org/faq/faq6.html

running a web server which was to be accessed by the outside world, (or of course, the already discussed ftp-proxy(8)).
Incoming connections to your valid Internet IP will find that unless your NAT box is also running a web server, no
connection can be made. For this purpose we use the NAT 'rdr' directive in the rules file to instruct where to redirect a
particular connection to.

For our example, lets say a web server resides on the LAN with IP address of 192.168.1.80. The NAT rules file needs
a new directive to handle this. Add a line similar to the following one to your /etc/nat.conf :

rdr on fxp0 from any to any port 80 -> 192.168.1.80 port 80

The explanation for each part of this line:

"rdr"

This is the command you are giving NAT. It is telling NAT that this entry is an entry to redirect a connection.

"on fxp0"

This is the network interface that is connected to the Internet.

"from any to any"

This indicates which IP addresses to redirect (from any coming in on fxp0, as indicated above, to any
destination IP)

"port 80"

This is the incoming port (80) that should be redirected. The number "80" didn't have to be used. You can use
"port www" also to specify a redirection of port 80. If you would like to use a name instead of a number, the
service name and corresponding port, must exist in the file /etc/services .

"192.168.1.80 port 80"

The IP address of the LAN machine which the packets are redirected to. Note that the destination port does
NOT need to match the incoming port. For example, the following is valid, and even potentially useful:

rdr on fxp0 from any to any port 8080 -> 192.168.1.35 port 80

This line would redirect incoming traffic on port 8080 to a webserver running on a machine in the internal
network, at the "standard" port 80.

When the addition is complete reload the NAT rules, and the redirection will start immediately.

Negation

Sometimes, you need to make exceptions to a NAT or redirection rule. Here's an example. AOL Instant Messenger is
noted for sneaking out firewalls through any available port. You may find that the ftp-proxy is interfering with AIM
when it chooses to go out to remote port 21. In the event you consider this bad (many people spend considerable time
trying to block AIM!), you might wish to exclude the IP addresses used by the AIM servers from the traffic redirected
by our above ftp-proxy line. You can do this with the following line:

rdr on tl0 from any to ! 64.12.163.199 port 21 -> 127.0.0.1 port 8081

Interpretation: Redirect traffic coming in on tl0 going to port 21 but NOT to 64.12.163.199 (the AIM server users were
having trouble with) to localhost port 8081 (where hopefully ftp-proxy is waiting). Now, be advised that there are many
AIM servers, if this application interests you, you will probably have to play with these IP addresses (64.12.0.0/16
might be more productive, though probably also interferes with some non-AOL sites)

NAT versus Proxy

Saturday, January 19, 2002 6.0 - Networking Page: 17

http://www.openbsd.org/faq/faq6.html

The difference between NAT and an application-based proxy is that the proxy software acts as a middle-man between
the Internet and the machines connected on the LAN. This is fine, however each application you want to run on your
machine and connect to the Internet through the proxy server MUST be proxy-aware (be able to use a proxy server).
Not all applications are able to do this (especially games). Furthermore, there simply are not proxy server applications
for all of the Internet services out there. NAT transparently maps your internal network so that it may connect to the
Internet. The only security advantage to using a proxy software over NAT is that the proxy software may have been
made security aware, and can filter based on content, to keep your Windows machine from getting a macro virus, it can
protect against buffer overflows to your client software, and more. To maintain these filters is often a high-maintenance
job.

6.3.4 Links and Cross-References

OpenBSD files:

/etc/nat.conf - NAT rules file
/etc/rc.conf - need to edit to start up NAT and PF at boot time
/etc/sysctl.conf - need to edit to enable IP forwarding

NAT Internet Links:

nat.conf man page
pfctl man page
http://www.geektools.com/rfc/rfc1631.txt

6.4 - DHCP

6.4.1 DHCP Client

To use the DHCP client dhclient(8) included with OpenBSD, edit /etc/hostname.xl0 (this is assuming your main ethernet
interface is xl0. Yours might be ep0 or fxp0 or something else!) All you need to put in this hostname file is 'dhcp'

echo dhcp >/etc/hostname.xl0

This will cause OpenBSD to automatically start the DHCP client on boot. OpenBSD will gather its IP address, default
gateway, and DNS servers from the DHCP server.

If you want to start a dhcp client from the command line, make sure /etc/dhclient.conf exists, then try:

dhclient fxp0

Where fxp0 is the interface that you want to receive dhcp on.

No matter how you start the dhclient, you can edit the /etc/dhclient.conf file to not update your DNS according to the
dhcp server's idea of DNS by first uncommenting the 'require' lines in it (they are examples of the default settings, but
you need to uncomment them to override dhclient's defaults.)

request subnet-mask, broadcast-address, time-offset, routers,
 domain-name, domain-name-servers, host-name, lpr-servers, ntp-servers;

and then remove domain-name-servers. Of course, you may want to remove hostname, or other settings too.

6.4.2 DHCP Server

If you want to use OpenBSD as a DHCP server dhcpd(8), edit /etc/rc.conf. Set it up so that dhcpd_flags="-q" instead of
dhcpd_flags=NO. Put the interfaces that you want dhcpd to listen on in /etc/dhcpd.interfaces.

echo xl1 xl2 xl3 >/etc/dhcpd.interfaces

Then, edit /etc/dhcpd.conf. The options are pretty self explanatory.

Saturday, January 19, 2002 6.0 - Networking Page: 18

http://www.openbsd.org/faq/faq6.html

 option domain-name "xyz.mil";
 option domain-name-servers 192.168.1.3, 192.168.1.5;

 subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;

 range 192.168.1.32 192.168.1.127;
 }

This will tell your dhcp clients that the domain to append to DNS requests is xyz.mil (so, if the user types in 'telnet joe'
then it will send them to joe.xyz.mil). It will point them to DNS servers 192.168.1.3 and 192.168.1.5. For hosts that
are on the same network as an ethernet interface on the OpenBSD machine, which is in the 192.168.1.0/24 range, it will
assign them an IP address between 192.168.1.32 and 192.168.1.127. It will set their default gateway as 192.168.1.1.

If you want to start dhcpd from the command line, after editing /etc/dhcpd.conf, try:

dhcpd -q fxp0

Where fxp0 is an interface that you want to start serving dhcp on. The -q flag makes dhcpd quiet, otherwise it is very
noisy.

If you are serving DHCP to a Windows box, you may want to dhcpd to give the client a 'WINS' server address. To
make this happen, just the following line to your /etc/dhcpd.conf:

option netbios-name-servers 192.168.92.55;

(where 192.168.92.55 is the IP of your Windows or Samba server.) See dhcp-options(5) for more options that your
DHCP clients may want.

6.5 - PPP
Point-to-Protocol is generally what is used to create a connection to your ISP via your modem. OpenBSD has 2 ways of
doing this.

pppd(8) - Which is the kernel ppp daemon.
ppp(8) - Which is the userland ppp daemon.

The first one we will cover will be the userland PPP daemon. To start off you will need some simple information about
your isp. Here is a list of helpful information that you will need.

Your ISP's dialup number
Your nameserver
Your username and password.
Your gateway

Some of these you can do without, but would be helpful in setting up your ppp. The userland PPP daemon uses the file
/etc/ppp/ppp.conf as its configuration file. There are many helpful files in /etc/ppp that can have different setups for
many different situations. You should take a browse though that directory.

Also, make sure, that if your not using a GENERIC kernel, that you have this line in your configuration file:

pseudo-device tun 2

Initial Setup - for PPP(8)

Initial Setup for the userland PPP daemon consists of editing your /etc/ppp/ppp.conf file. This file doesn't exist by
default, but there is a file /etc/ppp/ppp.conf.sample in which you can simply edit to create your own ppp.conf
file. Here I will start with the simplist setup and probably most used setup. Here is a quick ppp.conf file that will
simply connect to your ISP and set your default routes and nameserver. With this file all the information you need is

Saturday, January 19, 2002 6.0 - Networking Page: 19

http://www.openbsd.org/faq/faq6.html

your ISP's phone number and your username and password.

default:
set log Phase Chat LCP IPCP CCP tun command
set device /dev/cua01
set speed 115200
set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \"\" AT OK-AT-OK ATE1Q0 OK\\dATDT\\T TIMEO

NOTICE - On OpenBSD 2.6, the system shipped with a /etc/ppp/ppp.conf.example that had an incorrect setting for
device. The device was "set device /dev/cuaa0" . This should be /dev/cua00 which would correspond to serial device 1.
(COM1). Your device might not be on COM1, however the naming scheme was wrong.

The section under the default: tag will get executed each time. Here we setup all our critical information. Here with "set
log" we set our logging levels. This can be changed, refer to ppp(8) for more info on setting up logging levels. Our
device gets set with "set device". This is the device that the modem is on. In this example the modem is on com port 2.
Therefore com port 1 would be /dev/cua00. With "set speed" we set the speed of our dialup connection and with "set
dial" we set our dialup parameters. With this we can change our timeout time, etc. This line should stay pretty much as it
is though.

Now we can move on and setup our information specific to our ISP. We do this by adding another tag under our
default: section. This tag can be called anything you want, easiest to just use the name of your ISP. Here I will use
myisp: as our tag referring to our ISP. Here is a simple setup incorporating all we need to get ourselves connected.

myisp:
set phone 1234567
set login "ABORT NO\\sCARRIER TIMEOUT 5 ogin:--ogin: ppp word: ppp"
set timeout 120
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0
add default HISADDR
enable dns

Here we have setup essential info for that specific ISP. The first option "set phone" sets your ISP's dialup number. The
"set login" sets our login options. Here we have the timeout set to 5, this means that we will abort our login attempt after
5 seconds if no carrier. Otherwise it will wait for "login:" to be sent and send in your username and password. In this
example our Username = ppp and Password = ppp. These values will need to be changed. The line "set timeout" sets
the idle timeout for the entire connection duration to 120 seconds. The "set ifaddr" line is a little tricky. Here is a more
extensive explanation.

set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0

In the above line, we have it set in the format of "set ifaddr [myaddr[/nn] [hisaddr[/nn] [netmask
[triggeraddr]]]]". So the first IP specified is what we want as our IP. If you have a static IP address, you set it here.
In our example we use /0 which says that no bits of this ip address need to match and the whole thing can be replaced.
The second IP specified is what we expect as their IP. If you know this you can specify it. Again in our line we don't
know what will be assigned, so we let them tell us. The third option is our netmask, here set to 255.255.255.0.If
triggeraddr is specified, it is used in place of myaddr in the initial IPCP negotiation. However, only an address in the
myaddr range will be accepted. This is useful when negotiating with some PPP implementations that will not assign an
IP number unless their peer requests ``0.0.0.0''.

The next option used "add default HISADDR" sets our default route to their IP. This is 'sticky', meaning that if their IP
should change, our route will automatically be updated. With "enable dns" we are telling our ISP to authenticate our
nameserver addresses. Do NOT do this if you are running an local DNS, as ppp will simply circumvent its use by
entering some nameserver lines in /etc/resolv.conf.

Using PPP(8)

Now that we have our ppp.conf file setup we can start trying to make a connection to our ISP. I will detail some
commonly used arguments with ppp.

ppp -auto myisp - This will run ppp, configure your interfaces and connect to your isp and then go into the
background.

Saturday, January 19, 2002 6.0 - Networking Page: 20

http://www.openbsd.org/faq/faq6.html

ppp -ddial myisp - This is similar to -auto, but if your connection is dropped it will try and reconnect.

By using /usr/sbin/ppp with no options will put you into interactive mode. From here you can interact directly with
the modem, it is great for debugging problems in your ppp.conf file.

ppp(8) extras

In some situations you might want commands executed as your connection is made or dropped. There are two files you
can create for just these situations. /etc/ppp/ppp.linkup and /etc/ppp/ppp.linkdown. Sample configurations can
be viewed here:

ppp.linkup
ppp.linkdown

Extended information can be found at http://www.freebsd.org/handbook/userppp.html or
http://www.freebsd.org/faq/userppp.html.

6.6 - Tuning networking parameters

6.6.1 - How can I tweak the kernel so that there are a higher number of retries and
longer timeouts for TCP sessions?

You would normally use this to allow for routing or connection problems. Of course, for it to be most effective, both
sides of the connection need to use similar values.

To tweak this, use sysctl and increase the values of:

net.inet.tcp.keepinittime
net.inet.tcp.keepidle
net.inet.tcp.keepintvl

Using sysctl -a, you can see the current values of these (and many other) parameters. To change one, use sysctl -w,
as in sysctl -w net.inet.tcp.keepidle=28800.

6.6.2 - How can I turn on directed broadcasts?

Normally, you don't want to do this. This allows someone to send traffic to the broadcast address(es) of your connected
network(s) if you are using your OpenBSD box as a router.

There are some instances, in closed networks, where this may be useful, particularly when using older implementations
of the NetBIOS protocol. This is another sysctl. sysctl -w net.inet.ip.directed-broadcast=1 turns this on.
Read about smurf attacks if you want to know why it is off by default.

6.6.3 - I don't want the kernel to dynamically allocate a certain port

There is a sysctl for this also. From sysctl(8):

Set the list of reserved TCP ports that should not be allocated by the
kernel dynamically. This can be used to keep daemons from stealing a
specific port that another program needs to function. List elements may
be separated by commas and/or whitespace.

 sysctl -w net.inet.tcp.baddynamic=749,750,751,760,761,871

It is also possible to add or remove ports from the current list.

 sysctl -w net.inet.tcp.baddynamic=+748
 sysctl -w net.inet.tcp.baddynamic=-871

Saturday, January 19, 2002 6.0 - Networking Page: 21

http://www.openbsd.org/faq/faq6.html

6.7 - Simple NFS usage
NFS, or Network File System, is used to share a filesystem over the network. A few choice man pages to read before
trying to setup a NFS server are:

nfsd(8)
mountd(8)
exports(5)

This section will go through the steps for a simple setup of NFS. This example details a server on a LAN, with clients
accessing NFS on the LAN. It does not talk about securing NFS. We presume you have already setup packet filtering or
other firewalling protection, to prevent outside access. If you are allowing outside access to your NFS server, and you
have any kind of sensitive data stored on it, we strongly recommend that you employ IPsec. Otherwise, people can
potentially see your NFS traffic. Someone could also pretend to be the IP address which you are allowing into your
NFS server. There are several attacks that can result. When properly configured, IPsec protects against these types of
attacks.

Another important security note. Don't just add a filesystem to /etc/exports without some kind of list of allowed host(s).
Without a list of hosts which can mount a particular directory, anyone on who can reach your host will be able to mount
your NFS exports.

The setup consists of a server with the ip 10.0.0.1. This server will be serving NFS only to clients within that
network. The first step to setting up NFS is to setup your /etc/exports file. This file lists which filesystems you wish to
have accessible via NFS and defines who is able to access them. There are many options that you can use in your
/etc/exports file, and it is best that you read the exports(5) man page. For this example we have an /etc/exports that
looks like this:

#
NFS exports Database
See exports(5) for more information. Be very careful, misconfiguration
of this file can result in your filesystems being readable by the world.
/work -alldirs -ro -network 10.0.0 -mask 255.255.255.0

This means that the local filesystem /work will be made available via NFS. -alldirs specifies that clients will be able to
mount at any point under the /work mount point. -ro specifies that it will only be allowed to be mounted read-only.
The last two arguments specify that only clients within the 10.0.0.0 network using a netmask of 255.255.255.0 will be
authorized to mount this filesystem. This is important for some servers that are accessible by different networks.

Once your /etc/exports file is setup, you can go ahead and setup your NFS server. You should first make sure that
options NFSSERVER & NFSCLIENT are in your kernel configuration. (GENERIC kernel has these options included.)
Next, you should set nfs_server=YES in /etc/rc.conf . This will bring up both nfsd(8) and mountd(8) when you
reboot. Now, you can go ahead and start the daemons yourself. These daemons need to be started as root, and you need
to make sure that portmap(8) is running on your system. Here is an example of starting nfsd(8) which serves on both
TCP and UDP using 4 daemons. You should set an appropriate number of NFS server daemons to handle the maximum
number of concurrent client requests that you want to service.

/sbin/nfsd -tun 4

Not only do you have to start the nfsd(8) server, but you need to start mountd(8). This is the daemon that actually
services the mount requests on NFS. To start mountd(8), simply type:

/sbin/mountd

If you make changes to /etc/exports while NFS is already running, you need to make mountd aware of this! Just HUP it:

kill -HUP `cat /var/run/mountd.pid`

Checking Stats on NFS

From here, you can check to make sure that all these daemons are up and registered with RPC. To do this, use
rpcinfo(8).

Saturday, January 19, 2002 6.0 - Networking Page: 22

http://www.openbsd.org/faq/faq6.html

$ rpcinfo -p 10.0.0.1
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100005 1 udp 633 mountd
 100005 3 udp 633 mountd
 100005 1 tcp 916 mountd
 100005 3 tcp 916 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs

During normal usage, there are a few other utilities that allow you to see what is happening with NFS. One is
showmount(8) , which allows you to view what is currently mounted and who is mounting it. There is also nfsstat(8)
which shows much more verbose statistics. To use showmount(8), try /usr/bin/showmount -a host. For example:

$ /usr/bin/showmount -a 10.0.0.1
All mount points on 10.0.0.1:
10.0.0.37:/work

Mounting NFS Filesystems

NFS filesystems should be mounted via mount(8), or more specifically, mount_nfs(8). To mount a filesystem /work on
host 10.0.0.1 to local filesystem /mnt, do this (note that you don't need to use an IP address, mount will resolve host
names):

mount -t nfs 10.0.0.1:/work /mnt

To have your system mount upon boot, add something like this to your /etc/fstab :

10.0.0.1:/work /mnt nfs rw 0 0

It is important that you use 0 0 at the end of this line so that your computer does not try to fsck the NFS filesystem on
boot!!!! The other standard security options, such as noexec, nodev, and nosuid, should also be used where applicable.
Such as:

10.0.0.1:/work /mnt nfs rw,nodev,nosuid 0 0

This way, no devices or setuid programs on the NFS server can subvert security measures on the NFS client. If you are
not mounting programs which you expect to run on the NFS client, add noexec to this list.

6.8 - Domain Name Service - DNS, BIND, and named

6.8.1 What is DNS?

Domain Name Service is a network facility allowing IP network domains to provide name-to-IP address resolution and
IP address-to-name resolution in response to a query. Your OpenBSD installation is configured by default as a DNS
client but not as a DNS server. That is, your OpenBSD installation can perform a DNS query against a domain name
server for the address of a machine, but it cannot answer such DNS queries itself unless you specifically configure it to
do so.

My OpenBSD machine is currently connected to the Internet via my ISP, so I can use the nslookup(8) utility to execute
the DNS query:

$ nslookup www.openbsd.org
Server: ns4.us.prserv.net
Address: 165.87.201.244

Non-authoritative answer:
Name: www.openbsd.org

Saturday, January 19, 2002 6.0 - Networking Page: 23

http://www.openbsd.org/faq/faq6.html

Address: 129.128.5.191

165.87.201.244 is the name server which answered, because it is the nameserver that my ISP told me to use with my
account and whose number is entered in /etc/resolv.conf. But the answer was not authoritative. For an authoritative
answer, let's find which is the authoritative DNS server for the openbsd.org domain and ask it for the address of
www.openbsd.org :

Identify the name servers for openbsd.org
with the help of my ISP's name server.
$ nslookup -type=NS openbsd.org
Server: ns4.us.prserv.net
Address: 165.87.201.244

Non-authoritative answer:
openbsd.org nameserver = cvs.openbsd.org
openbsd.org nameserver = gandalf.sigmasoft.com
openbsd.org nameserver = cs.colorado.edu
openbsd.org nameserver = ns.appli.se
openbsd.org nameserver = zeus.theos.com

Authoritative answers can be found from:
cvs.openbsd.org internet address = 199.185.137.3
gandalf.sigmasoft.com internet address = 198.144.202.98
cs.colorado.edu internet address = 128.138.243.151
ns.appli.se internet address = 194.198.196.230
zeus.theos.com internet address = 199.185.137.1

Use the info gained to query for an authoritative
resolution: query the authoritative zeus.theos.com.
$ nslookup www.openbsd.org zeus.theos.com
Server: zeus.theos.com
Address: 199.185.137.1

Name: www.openbsd.org
Address: 129.128.5.191

zeus.theos.com is, one would suppose, running OpenBSD and is properly configured to be a DNS server for the
openbsd.org domain.

6.8.1.1 Where can I learn all about DNS and its implementation under OpenBSD?

See RFCs 1033, 1034, and 1035 for more information on the Internet name-domain system.
Read the O'Reilly Associates book DNS and BIND .
Read the OpenBSD Manual especially the pages for

dig(1)
nslookup(8)
gethostbyname(3)
named(8)
resolver(3)
resolver(5)

The dig(1) command is especially useful, because it can query a domain and return information in much the same record
format as required in BIND configuration files. You can use dig(1) to examine name servers you know to be operating
properly as a way of comparing your setup to theirs.

6.8.2 Does my machine need to be a domain name server?

If you aren't sure that you need your machine to perform the role of DNS server, don't configure it as one. The
OpenBSD installation does not, by default, activate your machine as a domain name server, though all necessary files
are installed. For most workstations, just the /etc/hosts file naming local machines' IP addresses and the /etc/resolv.conf
file for indicating which DNS servers serve you out on the intranet or internet is sufficient.

Saturday, January 19, 2002 6.0 - Networking Page: 24

http://www.openbsd.org/faq/faq6.html

On the other hand, you might need to set up a machine as a domain name server:

If you have an IP LAN on which you do not wish to replicate "hosts" files of local addresses machine by
machine. In such a case, you may configure your OpenBSD machine as a DNS server and serve queries from
the other machines on your LAN.

Note: There is no practical restriction on the number of DNS servers on a LAN. Any or all machines
on the LAN may offer DNS service if they are so configured. Whether any such server is considered
authoritative from outside your LAN (or is even known from outside your LAN) is a configuration
factor which typically is controlled at the next level up from your LAN in the domain hierarchy.

If you have an IP LAN on which reside machines you will wish to be findable via DNS query by machines on
another IP LAN or WAN.
If you experience difficulties resolving the local hostname to an IP address, or resolving other local names to IP
addresses even though you have correct /etc/hosts and /etc/resolv.conf (E.g., Netscape on OpenBSD
sometimes exhibits this behavior because it implements its own resolver instead of just using gethostbyname(3)
to look up addresses.)

One more consideration is speed of execution. Since name resolution is an iterative process, in which the name server
makes repeated queries to other nameservers for addresses in remote domains, name resolution may take slightly longer
if you have a modem connection to the Internet and are querying your own DNS server for remote addresses (which will
then iteratively query remote name servers via the modem) than if you are querying your ISP's name server (which
probably has a faster connection to remote name servers).

6.8.3 What are the software components of the DNS server?

named ("name daemon")
Configuration files in the directory hierarchy under /var/named/

6.8.3.1 What level of BIND is supported?

BIND is the name of the behavioral specification of a domain name server. Domain name server components exist to
collectively implement BIND.

There are three distinct BIND specifications:

1. BIND 4
2. BIND 8
3. BIND 9

As installed, OpenBSD named supports BIND 4.x.

6.8.3.2 What are some of the alternatives to providing DNS via the default BIND 4.x
implementation?

The BIND 9.x implementation in /usr/ports/net/bind9 .(See ports)

6.8.3.2.1 Security note

If you use these alternative implementations of domain name service, you are providing a critical network service using
software which may not have been subject to quite the same level of scrutiny as the security-audited named name
daemon in the base installation. This is a significant consideration, since if a domain name server is compromised,
resolvers using that name server can be re-directed to impostor sites.

6.8.4 How much do I have to install?

If the default networking setup was installed properly at OpenBSD installation time, everything is already installed. You
just have to configure the name daemon ("named").

6.8.5 How do I configure DNS?

You configure OpenBSD DNS by editing and/or creating files that control the name daemon named. These files reside

Saturday, January 19, 2002 6.0 - Networking Page: 25

http://www.openbsd.org/faq/faq6.html

by default in the directory /var/named and its subdirectories, especially the file /var/named/named.boot which is the
initialization file for named. There are also a couple of other configuration steps to be taken in /etc .

In this document, we will configure the name daemon on nemo.yewtopia.com be the primary nameserver for the (very
small!) domain yewtopia.com . The address of nemo.yewtopia.com is 192.168.1.9 . Two other machines are on that
subnet, crater.yewtopia.com at 192.168.1.1 and earhart.yewtopia.com at 192.168.1.2.

6.8.5.1 Configuration in /var/named

6.8.5.1.1 /var/named/named.boot

; tell what subdir has the lookup database files
directory /namedb

; type domain source host/file backup file
cache . root.cache
primary 0.0.127.IN-ADDR.ARPA localhost.rev

; example primary server config:
primary yewtopia.com yewtopia
primary 1.168.192.IN-ADDR.ARPA yewtopia.rev

This tells the initialization process in what subdirectory and under which filenames to find the configuration files for
yewtopia.com .

6.8.5.1.2 /var/named/namedb/localhost .rev

; Reverse lookup for localhost interface
@ IN SOA nemo.yewtopia.com.
your_id.nemo.yewtopia.com. (
 14 ; Serial
 3600 ; Refresh
 900 ; Retry
 3600000 ; Expire
 3600) ; Minimum
 IN NS nemo.yewtopia.com.
1 IN PTR localhost.yewtopia.com.

6.8.5.1.3 /var/named/namedb/yewtopia

; yewtopia.com domain database
yewtopia.com. IN SOA nemo.yewtopia.com.
your_id.nemo.yewtopia.com. (
 14 ; Serial
 3600 ; Refresh
 900 ; Retry
 3600000 ; Expire
 3600) ; Minimum
 IN NS nemo.yewtopia.com.

; Addresses
localhost.yewtopia.com. IN A 127.0.0.1
crater.yewtopia.com. IN A 192.168.1.1
earhart.yewtopia.com. IN A 192.168.1.2
nemo.yewtopia.com. IN A 192.168.1.9

6.8.5.1.4 /var/named/namedb/yewtopia.rev

; yewtopia domain reverse lookup database
1.168.192.in-addr.arpa. IN SOA nemo.yewtopia.com.
your_id.nemo.yewtopia.com. (
 14 ; Serial
 3600 ; Refresh
 900 ; Retry

Saturday, January 19, 2002 6.0 - Networking Page: 26

http://www.openbsd.org/faq/faq6.html

 3600000 ; Expire
 3600) ; Minimum
1.168.192.in-addr.arpa. IN NS nemo.yewtopia.com.

; Addresses
1.1.168.192.in-addr.arpa. IN PTR crater.yewtopia.com.
2.1.168.192.in-addr.arpa. IN PTR earhart.yewtopia.com.
9.1.168.192.in-addr.arpa. IN PTR nemo.yewtopia.com.

6.8.5.2 Configuration in /etc

6.8.5.2.1 / e tc / reso lv .conf

Make sure /etc/resolv.conf now points to the domain of local machine (instead of, for example, your ISP's name
server) so that name resolution requests actually get sent to the named you have configured!

domain yewtopia.com
lookup file bind

6.8.5.2.2 /e tc /hosts

If you previously had added the addresses of various machines to the /etc/hosts file, you might consider shortening
your /etc/hosts file back to the default:

Host addresses
127.0.0.1 localhost localhost.localdomain
192.168.1.9 nemo nemo.yewtopia.com

So that named isn't bypassed in favor of (possibly outdated) addresses in the /etc/hosts file. Make sure you have at
least the default localhost entry or your network won't start properly! Note also nemo must appear in its own hosts file
or you will see a (mostly harmless) error message at bootup when /etc/netstart invokes route(8) in order to add nemo
(whose name appears in /etc/myname).

6.8.5.3 Using dig(1) to examine the results.

$ dig @nemo.yewtopia yewtopia any any

; <<>> DiG 2.2 <<>> @nemo.yewtopia yewtopia any any
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59904
;; flags: qr rd ra; Ques: 1, Ans: 2, Auth: 0, Addit: 1
;; QUESTIONS:
;; yewtopia, type = ANY, class = ANY

;; ANSWERS:
yewtopia. 3600 SOA nemo.yewtopia.
your_id.nemo.yewtopia. (
 14 ; serial
 3600 ; refresh (1 hour)
 900 ; retry (15 mins)
 3600000 ; expire (41 days 16 hours)
 3600) ; minimum (1 hour)
yewtopia. 3600 NS nemo.yewtopia.

;; ADDITIONAL RECORDS:
nemo.yewtopia. 3600 A 192.168.1.9

;; Total query time: 4 msec
;; FROM: nemo to SERVER: nemo.yewtopia. 192.168.1.9
;; WHEN: Tue May 2 23:47:19 2000
;; MSG SIZE sent: 25 rcvd: 102

Saturday, January 19, 2002 6.0 - Networking Page: 27

http://www.openbsd.org/faq/faq6.html

6.8.6 How and when do I start and stop DNS?

6.8.6.1 Starting DNS

The name daemon named is launched during system startup from /etc/rc if the line installed by default in /etc/rc.conf.

named_flags=NO # for normal use: ""

is changed to

named_flags="" # for normal use: ""

Also, examine these lines in /etc/rc.conf:

named_user=named # Named should not run as root unless necessary
named_chroot=/var/named # Where to chroot named if not empty

These defaults will be correct for nearly all setups.

To start named by hand, use the ndc(8) command. For example:

ndc start
 or
ndc restart

6.8.6.2 Stopping DNS

The best way to stop the name daemon is to use the ndc(8) command. For example:

ndc stop

If this fails to work, find the process id of named and use the kill(1) command to end that process. The PID for named
while it is running is found as the first line in the file /var/named/named.pid

cat /var/named/named.pid
4608
named -t /var/named -u named
kill -KILL 4608

6.8.6.3 Restarting DNS with an altered configuration

To cause a running instance of the name daemon to restart itself reloading its configuration after you have made changes,
send it a "hangup" signal:

kill -HUP 4608

or by using the ndc(8) command. For example:

ndc reload

6.8.7 How do I block AXFR queries?

example:

garden:/home/jeremy$ host -l openssh.com
openssh.com. NS zeus.theos.com.
openssh.com. NS cvs.openbsd.org.
openssh.com. NS gandalf.sigmasoft.com.
openssh.com. NS cs.colorado.edu.
openssh.com. NS ns.appli.se.
openssh.com. A 199.185.137.4
cvs.openssh.com. A 199.185.137.4

Saturday, January 19, 2002 6.0 - Networking Page: 28

http://www.openbsd.org/faq/faq6.html

localhost.openssh.com. A 127.0.0.1

This information is useful for debugging DNS, but in some instances you may not want this output publicly offered. If
you are using classless in-addr(rfc2317) for reverse, host -l may report every domain that your system hosts! This can
easily be remedied by the 'allow-transfer' clause in your zone file.

If you're using Bind8 you need to specify the hosts you want to allow to transfer zones in your individual zone file(s):

zone "foo.com" in {
 type master;
 file "directory/zonefile";
 allow-transfer {
 127.0.0.1;
 10.0.0.6;
 10.0.255.12;
 };
};

You can also block transfers for all domains by editing /var/named.conf and add the 'allow-transfer' parameter to the
'options' section of the configuration file:

 options {
 allow-transfer { 127.0.0.1; };
 };

The Bind8 method also works with Bind9.
If you are using Bind 4 (default in OpenBSD) you can edit /var/named/named.boot and use the 'xfrnets' option.

xfrnets 209.142.221.5 12.7.96.7
; type domain source host/file backup file
cache . root.cache
primary 0.0.127.IN-ADDR.ARPA localhost.rev

Bind 4 allows transfers from entire classes so it is not as exact. Typically, the only hosts that need to perform transfers
are your DNS slaves and hosts you may want to debug from (127.0.0.1 is usually a good host to allow transfers from!)
Blocking AXFR queries adds an extra level of privacy, but can hinder useful DNS debugging. (Thanks to Nicholas
Tang for that tip)

6.8.8 What didn't you tell me about setting up DNS?

There's a lot we didn't tell you, for example, how to set up DNS so that queries for intranet domains that aren't visible
from the root of the domain hierarchy get relayed to servers within your enterprise. Read the documents we
recommended for more information on DNS.

6.9 - Setting up a PPTP connection in OpenBSD
NOTE: This does not apply to ALL ADSL providers, but much information can be gleaned from the setup here. This
is known to work for Inode, an ADSL provider in Austria.

To start off, you need to install pptp. A port was added to the OpenBSD ports tree AFTER the release of OpenBSD 2.8
and works fine with with the OpenBSD 2.8 ports tree. The port is located at /usr/ports/net/pptp . Read FAQ 8.6 for
more information on the OpenBSD ports tree.

Because of a conflict between the In-Kernel gre(4) support and pptp, you will need to re-compile your kernel, removing
support for gre(4).

Patch to remove GRE(4) support.

Index: sys/conf/GENERIC
===
RCS file: /cvs/src/sys/conf/GENERIC,v

Saturday, January 19, 2002 6.0 - Networking Page: 29

http://www.openbsd.org/faq/faq6.html

retrieving revision 1.66
diff -u -r1.66 GENERIC
--- sys/conf/GENERIC 2000/10/13 04:21:14 1.66
+++ sys/conf/GENERIC 2000/12/26 19:55:31
@@ -97,6 +97,6 @@
 pseudo-device ksyms 1 # kernel symbols device
 pseudo-device bridge 2 # network bridging support
 #pseudo-device vlan 2 # IEEE 802.1Q VLAN
-pseudo-device gre 1 # GRE encapsulation interface
+#pseudo-device gre 1 # GRE encapsulation interface

 option BOOT_CONFIG # add support for boot -c

To recompile your kernel, check out OpenBSD 2.8-stable via cvs (refer to OpenBSD Stable web page for more
information), apply the following patch, and rebuild your kernel as per FAQ 5.3.

After you have the pptp package installed and a new kernel, you need to edit a few files to setup for your connection.
This packages uses the in-house OpenBSD ppp(8), so if you are familiar with ppp(8), much of the setup is the same.
Also, refer to FAQ 6.5.

1 - /etc/ppp/options
2 - /etc/ppp/pap-secrets

For the /etc/ppp/options file, a setup like below will most likely do all that you need:

cat /etc/ppp/options
name "LOGINNAME"
noauth
noipdefault
defaultroute
debug

LOGINNAME should be replaced with your User-ID.

The /etc/ppp/pap-secrets a line like:

cat /etc/ppp/pap-secrets
LOGINNAME 10.0.0.138 PASSWORD

Where LOGINNAME is your User-ID and PASSWORD is your password. 10.0.0.138 is the IP assigned to your
MODEM in the case that you are using ADSL, etc. Make sure this file stays readonly by root (mode 600).

6.9.1 - Assigning an address to your Network Interface

In the above example, our modem came with a preconfigured interface of 10.0.0.138. We now need to assign an
address to OUR interface, It's best to pick an IP close to the one given by your MODEM, or use the static IP assigned to
you. Read more about setting up interfaces in FAQ 6.1.

Once your interface is setup, you should be able to create a pptp connection with the command.

/usr/local/sbin/pptp 10.0.0.138 &

Since this uses the in-house OpenBSD ppp(8), two processes are started. You can kill pptp by killing both these
processes:

kill -9 [pid of pppd]
% kill -9 [pid of pptp]

It is recommended to open /var/log/messages in a extra terminal window, to recognize possible problems.

tail -f /var/log/messages

We also suggest that you put the startup command in /etc/rc.local so that you automatically connect on reboot.

Saturday, January 19, 2002 6.0 - Networking Page: 30

http://www.openbsd.org/faq/faq6.html

[Back to Main Index] [To Section 5.0 - Kernel configuration and Disk Setup] [To Section 7.0 - Keyboard controls]

 www@openbsd.org
$OpenBSD: faq6.html,v 1.119 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 7.0 - Keyboard controls Page: 1

http://www.openbsd.org/faq/faq7.html

7.0 - Keyboard Controls

Table of Contents

7.1 - How do I remap the keyboard?
7.2 - Is there gpm or the like in OpenBSD?
7.3 - How do I clear the console each time a user logs out?
7.4 - Accessing the console scrollback buffer.
7.5 - Why doesn't F9 through F12 switch consoles on i386 anymore?

7.1 - How do I remap the keyboard? (wscons specific)
The ports that use the wscons(4) console driver: alpha, i386, and macppc.

For OpenBSD 3.0 and after:

Since OpenBSD 2.9, OpenBSD changed to using the wscons(4) console driver. In OpenBSD 2.8 and earlier, the
pcvt(4) console driver was used.

With wscons(4) consoles, most options can be controlled using the wsconsctl(8) utility. For example, to change
keymappings with wsconsctl(8) one would execute the following:

wsconsctl -w keyboard.encoding=uk

In the next example, we will remap "Caps Lock" to be "Control L":

wsconsctl -w keyboard.map+="keysym Caps_Lock = Control_L"

For OpenBSD 2.9:

OpenBSD 2.9 expected slightly different arguments for the wsconsctl command; in specific, you didn't need to prepend
the ``keyboard'' keyword, but to specify that the command applied to the keyboard portion of the device with the ``-k''
flag.

wsconsctl -k -w encoding=uk

and

wsconsctl -k -w map+="keysym Caps_Lock = Control_L"

For OpenBSD 2.8 and earlier:

By using kcon(1), "kcon - keyboard control and remapping for the pcvt driver".
Before you can use this, you need to turn on character mapping with scon(1).

Example:

scon -o
kcon -m gb

This will load the keycap file for Great Britain. Note that if you run scon -o again, this will turn character mapping
back off, which you probably don't want to do if you are using kcon for remapping. Keep this in mind if you use scon
in any automated fashion, such as in scripts.

Saturday, January 19, 2002 7.0 - Keyboard controls Page: 2

http://www.openbsd.org/faq/faq7.html

These commands can only be executed from a pcvt virtual terminal.

7.2 - Is there gpm or the like in OpenBSD?
For platforms using the wscons(4) console driver, there is a port of FreeBSD's moused(8). The original port of
moused(8) was done for OpenBSD 2.7 using the pcvt(4) console driver, it was then later changed to use wscons. The
daemon was renamed to wsmoused(8), and is packaged with OpenBSD 2.9 and later by default.

The architectures that wsmoused(8) should work on are: alpha, i386, and macppc.

7.3 - Clearing the console each time a user logs out.
To do this you must add a line in /etc/gettytab(5). Change the current section:

P|Pc|Pc console:\
 :np:sp#9600:

adding the line ":cl=\E[H\E[2J:" at the end, so that it ends up looking like this:

P|Pc|Pc console:\
 :np:sp#9600:\
 :cl=\E[H\E[2J:

7.4 - Accessing the Console Scrollback Buffer (alpha/macppc/i386
specific)
Ever since OpenBSD 2.6, there has been the ability to access the console scrollback buffer. This allows you to see
information that has already scrolled past your screen. To be able to move up and down in the buffer, simply use the key
combination:

To move up:

"[shift]+[pgup]"

To move back down:

"[shift]+[pgdn]"

The default scrollback buffer, or the amount of pages that you can move up and view, is 8.

7.5 - Why doesn't F9 through F12 switch consoles anymore? (i386
specific)
In OpenBSD 2.6 and below, the pcvt console driver on the i386 port allowed you to press F9, F10, F11, F12 and get
corresponding virtual terminals 1, 2, 3, and 4. In 2.7 and above, this behavior is removed, because several applications
use these keys for input.

[Back to Main Index] [To Section 6.0 - Networking] [To Section 8.0 - General Questions]

 www@openbsd.org
$OpenBSD: faq7.html,v 1.32 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 8.0 - General Questions Page: 1

http://www.openbsd.org/faq/faq8.html

8.0 - General Questions

Table of Contents

8.1 - What are these kerberos warnings when I first login?
8.2 - How do I change virtual terminals? (I386 ONLY)
8.3 - I forgot my root password..... What do I do!
8.4 - X won't start, I get lots of error messages
8.5 - What is CVS, and how do I use it?
8.6 - What is the ports tree?
8.7 - What are packages?
8.8 - Is there any way to use my floppy drive if it's not attached during boot?
8.9 - OpenBSD Bootloader (i386 specific)
8.10 - Using S/Key on your OpenBSD system
8.11 - Why is my Macintosh losing so much time?
8.12 - Will OpenBSD run on multiprocessor machines?
8.13 - I sometimes get Input/output error when trying to use my tty devices
8.14 - Where can I find a Netscape binary for OpenBSD?
8.15 - How do I use the mg editor?
8.16 - Ksh does not appear to read my .profile!
8.17 - Why does my /etc/motd file get written over when I modified it?
8.18 - Why does www.openbsd.org run on Solaris?
8.19 - I'm having problems with PCI devices being detected in OpenBSD 2.8.
8.20 - Antialiased and TrueType fonts in OpenBSD 2.9/XFree86
8.21 - Does OpenBSD support any journaling fileystems ?

8.1 - What are these Kerberos warning when I first login?
NB: This section 8.1 becomes obsolete if you have upgraded to 2.8-stable or later. (patch:
ftp://ftp.openbsd.org/pub/OpenBSD/patches/2.8/common/008_kerberos.patch).

When you first install your system you will most likely notice a warning message that is something like this:

Warning: no Kerberos tickets issued.

THIS WARNING IS COMPLETELY IRRELEVANT AND SHOULD ONLY BE REMOVED IF
COMPLETELY NECESSARY

Well since you probably haven't set up Kerberos on your system, you wouldn't be getting a ticket. If you do have
Kerberos running, you need to check into that. See faq10 Kerberos Setup FAQ. If you can't STAND that warning and
never plan on using Kerberos here is how to get rid of it for good.

Make sure you have the source code.
Edit /usr/share/mk/bsd.own.mk and set KERBEROS to 'no', or create an /etc/mk.conf file that does this.
cd /usr/src/usr.bin/login ; make clean ; make ; make install

8.2 - How do I change virtual terminals?
Simply type [ctrl] - [alt] - [One of the function keys] (i386)

Only the i386 arch has virtual terminal capabilities. You can also use virtual terminals when using X. For example, If
you start X on term 1, and switch with [ctrl]-[alt]-[F2] to term 2, X will seem to disappear and will not come back by
simply switching back to term 1. You must [ctrl]-[alt]-[F5] to get your X display back.

8.3 - I forgot my root password, what do I do now?

Saturday, January 19, 2002 8.0 - General Questions Page: 2

http://www.openbsd.org/faq/faq8.html

A few steps to recovery

1. Boot into single user mode. For i386 arch type boot -s at the boot prompt.
2. mount the drives.

bsd# fsck -p / && mount -u /
3. If /usr is not the same partition that / is (and it shouldn't be) then you will need to mount it, also

bsd# fsck -p /usr && mount /usr
4. run passwd(1)
5. boot into multiuser mode.. and remember your password!

8.4 - X won't start, I get lots of error messages
If you have X completely set up and you are using an XF86Config that you know works then the problem most likely
lies in the machdep.allowaperture. You also need to make sure that both:

option XSERVER
option APERTURE

are in your kernel configuration. [BOTH of these are in the GENERIC kernel]

Then you need to edit /etc/sysctl.conf and set machdep.allowaperture=1. This will allow X to access the aperture
driver. This would be set up if the question during install about whether or not you would be running X was answered
correctly. OpenBSD requires for all X servers that the aperture driver be set, because it controls access to the I/O ports
on video boards.

For other X problems on the i386, consult the XFree86 Online Documentation at http://www.xfree86.org/support.html.

8.5 - What is CVS? and How do I use it?
CVS is what the OpenBSD project uses to control changes to the source code. CVS stands for Concurrent Versions
System. You can read more about CVS at http://www.cvshome.org/. CVS can be used by the end user to keep up to
date with source changes, and changes in the ports tree. CVS makes it extremely simple to download the source via one
of the many CVS mirrors for the project.

How to initially setup your CVS environment

There are a few ways to initially set up your CVS environment. To start off, you will need an initial CVS checkout of
the sources. If you bought the CD, you're in luck, because it holds the CVS checkout for that release. You can extract it
from your CD by doing one of the following:

1) copy the tree off it, (assuming the CD is mounted on /mnt):

mkdir /usr/src
cd /mnt; cp -Rp CVS Makefile bin distrib etc games gnu \
include kerberosIV lib libexec lkm regress sbin share \
sys usr.bin usr.sbin /usr/src

2) Or, alternatively, use a union mount with the CD below a writable directory. However, be aware that the union
filesystem code is not flawless.

mkdir /usr/src
mount -t union -o -b /mnt /usr/src

after this, /usr/src will be a nice checkout area where all cvs(1) commands will work OK.

If you don't have an OpenBSD CD, you will have to retrieve the sources from on of the OpenBSD AnonCVS servers.
These servers are listed on http://www.openbsd.org/anoncvs.html. Once you have chosen a server you need to choose
which module you are going to retrieve. There are three main modules available for checkout from the CVS tree. These
are:

src - The src module has the complete source code for OpenBSD. This includes userland and kernel sources.
ports - The ports module holds all you need to have the complete OpenBSD ports tree. To read more on the
OpenBSD ports tree, read Section 8.6 of the OpenBSD FAQ.
www - The www module contains all OpenBSD web pages, including this FAQ.

Now that you have decided which module that you wish to retrieve, there is one more step left before you can retrieve it.
You must decide which method to use. CVS by default retrieves files using rsh(1), but some AnonCVS servers don't
allow for this so in most cases it's best to use ssh. For those of you behind a firewall there are also the options of

Saturday, January 19, 2002 8.0 - General Questions Page: 3

http://www.openbsd.org/faq/faq8.html

pserver and some AnonCVS servers run ssh on port 2022. Be sure to check http://www.openbsd.org/anoncvs.html for
which servers support what protocols. Next I will show how to do a simple source checkout. Here I will be using an
AnonCVS server located in the U.S., but remember that if you are outside of the U.S you need to use a server that is
located nearby. There are many AnonCVS servers located throughout the world, so choose one nearest you. I will also
be using ssh to retrieve the files.

ericj@oshibana:~> export CVS_RSH=/usr/bin/ssh
ericj@oshibana:~> echo $CVS_RSH
/usr/bin/ssh
ericj@oshibana:~> export CVSROOT=anoncvs@anoncvs.usa.openbsd.org:/cvs
ericj@oshibana:~> cvs get src
Warning: Remote host denied X11 forwarding, perhaps xauth program could not be run on the server side.
cvs checkout: in directory src:
cvs checkout: cannot open CVS/Entries for reading: No such file or directory
cvs server: Updating src
U src/Makefile
[snip]

Notice here also that I set the CVSROOT environmental variable. This is the variable that tells cvs(1) which AnonCVS
server to use. This can also be specified using the -d option. For example:

ericj@oshibana:~>cvs -d anoncvs@anoncvs.usa.openbsd.org:/cvs get src

These commands should be run in /usr , which will then create the directories of /usr/src , /usr/ports , and /usr/www .
Depending, of course, on which module you checkout. You can download these modules to anywhere, but if you
wanted to do work with them (ie make build), it is expected that they be at the place above.

Keeping your CVS tree up-to-date

Once you have your initial tree setup, keeping it up-to-date is the easy part. You can update your tree at any time you
choose, some AnonCVS servers update more often then others, so again check http://www.openbsd.org/anoncvs.html.
In this example I will be updating my www module from anoncvs.usa.openbsd.org. Notice the -q option that I use, this
makes the output not so verbose coming from the server.

ericj@oshibana:~> echo $CVSROOT
anoncvs@anoncvs.usa.openbsd.org:/cvs
ericj@oshibana:~> cvs -q up -PAd www
Warning: Remote host denied X11 forwarding, perhaps xauth program could not be run on the server side.
U www/want.html
M www/faq/faq8.html
ericj@oshibana:~>

Other cvs options

For some, bandwidth and time are serious problems when updating repositories such as these. So CVS has a -z[1-9]
option which uses gzip to compress the data. To use it, do -z[compression-level], for instance, -z3 for a compression
level of 3.

8.6 - What is the ports tree?
The ports tree is a set of Makefiles that download, patch, configure and install userland programs so you can run them in
OpenBSD environment without having to do all that by hand. You can get the ports tree from any of the OpenBSD ftp
servers in /pub/OpenBSD/3.0/ports.tar.gz. The most recent ports are available via the 'ports' cvs tree, or
/pub/OpenBSD/snapshots/ports.tar.gz. For most of you however, packages will be a much better option.
Packages are created from ports and are already compiled and ready to use. To read more on packages read FAQ8.7.

Obtaining the Latest Version of the Ports Tree

If you are planning on running the latest version of the Ports Tree, you should have the latest release of OpenBSD. This
is because of constant changing and fixing of the ports tree to help with its interaction with the rest of your OpenBSD
system. If you don't follow this guideline, you can expect some minor problems while upgrading.

The best way to stay current with your OpenBSD Ports Tree is to use via cvs(1). OpenBSD has a whole group of
Anonymous CVS servers that are available to anyone. To read more about cvs look over
www.openbsd.org/anoncvs.html and Faq8.5.

Though, if you do not have the ports tree at all, you can download it via any of OpenBSD's ftp servers. You can get a
list at www.openbsd.org/ftp.html. From here download /pub/OpenBSD/3.0/ports.tar.gz and untar this in /usr/ports .
For example:

Saturday, January 19, 2002 8.0 - General Questions Page: 4

http://www.openbsd.org/faq/faq8.html

ericj@oshibana> ftp ftp://ftp.openbsd.org/pub/OpenBSD/3.0/ports.tar.gz
ericj@oshibana> sudo cp ports.tar.gz /usr
ericj@oshibana> cd /usr; sudo tar xfz ports.tar.gz

Once this is done, you can use cvs(1) to update your Ports Tree. If you started with a base Ports Tree of 3.0 there will
be a few changes that you will need to make. Most notably /usr/share/mk , which holds files used by make(1) , will
need to be updated. If you have the src tree on your system, you can update /usr/share/mk via cvs(1) and simply:

ericj@oshibana> cd /usr/src/share/mk; sudo make install

This will put the proper files into place. After this is done, you might also need the latest version of the make(1) binary.
You will have to create this, if you don't have the src tree on your system you can grab it via cvs(1) and compile it.
Example:

ericj@oshibana> export CVS_RSH=/usr/bin/ssh
ericj@oshibana> cvs -danoncvs@any.anoncvs.server:/cvs get src/usr.bin/make
cvs server: Updating src/usr.bin/make
U src/usr.bin/make/Makefile
U src/usr.bin/make/Makefile.boot
U src/usr.bin/make/arch.c
U src/usr.bin/make/bit.h
U src/usr.bin/make/buf.c
U src/usr.bin/make/buf.h
U src/usr.bin/make/compat.c
[SNIP]
ericj@oshibana> cd src/usr.bin/make; sudo make install

If you already have the src on your machine, simply update make and install it. For now, this should be all you need to
do to have the ports tree working properly.

A snapshot of the ports tree is also created daily and can be downloaded from any of the OpenBSD ftp servers as
/pub/OpenBSD/snapshots/ports.tar.gz.

What ports are available? and how do i find them?

Use the ports tree to search for keywords. To do this use make search key="searchkey". Here is an example of a
search for 'samba':

ericj@oshibana> make search key="samba"
Port: samba-2.2.2
Path: net/samba
Info: SMB and CIFS client and server for UNIX
Maint: Daniel Hartmeier
Index: net
B-deps: devel/autoconf
R-deps:
Archs: any

Port: ADMsmb-0.2
Path: /usr/ports/security/ADMsmb
Info: Samba security scanner
Maint: dugsong@monkey.org
Index: security
B-deps:
R-deps:
Archs: any

Installing Ports

Ports are set up to be EXTREMELY easy to make and install. Here is an example install for someone wanting to install
the X11 program xfig. You'll notice the dependencies are automatically detected and completed:

First you need to cd to the dir of the program you want. If you are searching for a program, you can either update your
locate database, or use the search function talked about below. Once you are in the dir of the program you want, you can
just type make install. For example.

fenetyllin:/usr/ports/graphics/xfig# make install
===> Extracting for xfig-3.2.2
===> xfig-3.2.2 depends on shared library: jpeg.62. - /usr/local/lib/libjpeg.so.62.0 found
===> xfig-3.2.2 depends on shared library: Xaw3d.6. - not found

Saturday, January 19, 2002 8.0 - General Questions Page: 5

http://www.openbsd.org/faq/faq8.html

===> Verifying install for Xaw3d.6. in /usr/ports/x11/Xaw3d
>> Xaw3d-1.3.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://crl.dec.com/pub/X11/contrib/widgets/Xaw3d/R6.1/.
Connected to crl.dec.com.
220 crl.dec.com FTP server (Digital UNIX Version 5.60) ready.
331 Guest login ok, send ident as password.
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type set to I.
250 CWD command successful.
250 CWD command successful.
Retrieving pub/X11/contrib/widgets/Xaw3d/R6.1/Xaw3d-1.3.tar.gz
local: Xaw3d-1.3.tar.gz remote: Xaw3d-1.3.tar.gz
227 Entering Passive Mode (192,58,206,2,5,14)
150 Opening BINARY mode data connection for Xaw3d-1.3.tar.gz (0.0.0.0,0) (290277 bytes).
100% |**| 283 KB 00:00 ETA
226 Transfer complete.
290277 bytes received in 101.09 seconds (2.80 KB/s)
221 Goodbye.
===> Extracting for Xaw3d-1.3
/bin/mkdir -p /usr/ports/x11/Xaw3d/work/xc/lib/Xaw3d/X11/Xaw3d
cd /usr/ports/x11/Xaw3d/work/xc/lib/Xaw3d/X11/Xaw3d; ln -sf ../../*.h .
===> Patching for Xaw3d-1.3
===> Configuring for Xaw3d-1.3
mv -f Makefile Makefile.bak
imake -DUseInstalled -I/usr/X11R6/lib/X11/config
make Makefiles
[snip]

Listing Installed ports/packages

You can see a list of both ports and packages by using the pkg_info command.

bsd# /usr/sbin/pkg_info
zsh-4.0.4 The Z shell.
screen-3.9.1 A multi-screen window manager.
emacs-20.7 GNU editing macros.
tcsh-6.10.00 An extended C-shell with many useful features.
bash-1.14.7 The GNU Borne Again Shell.
zip-2.3 Create/update ZIP files compatible with pkzip.
ircii-20011210 An enhanced version of ircII, the Internet Relay Chat client
ispell-3.1.20 An interactive spelling checker.
tin-1.4.5 TIN newsreader (termcap based)
procmail-3.21 A local mail delivery agent.
strobe-1.06 Fast scatter/gather TCP port scanner
lsof-4.57B Lists information about open files.
ntp-4.1.72 Network Time Protocol Implementation.
ncftp-3.0.4 ftp replacement with advanced user interface
nmh-1.0.4 The New MH mail handling program
bzip2-1.0.1 A block-sorting file compressor

Other Information

More information about the ports can be found in the ports(7) man page.

Our ports tree is constantly being expanded, and if you would like to help please see:
http://www.openbsd.org/ports.html

8.7 - What are packages?
Packages are the precompiled binaries of some of the most used programs. They are ready for use on an OpenBSD
system. Again, like the ports, packages are very easy to maintain and update. Packages are constantly being added so be
sure to check each release for additional packages.

Here is a list of tools used in managing packages.

pkg_add(1) - a utility for installing software package distributions
pkg_create(1) - a utility for creating software package distributions
pkg_delete(1) - a utility for deleting previously installed software package distributions

Saturday, January 19, 2002 8.0 - General Questions Page: 6

http://www.openbsd.org/faq/faq8.html

pkg_info(1) - a utility for displaying information on software packages

Where to find packages

If you are a smart user and bought one of the OpenBSD CD, then packages can be found on both CDs depending on
your architecture. If you don't have an OpenBSD CD in your possession you can download packages from any of the
ftp mirrors. You can get a list of mirrors http://www.openbsd.org/ftp.html. Packages are located at
/pub/OpenBSD/3.0/packages from there packages are broken down depending on architecture.

Installing Packages

To install packages, the utility pkg_add(1) is used. pkg_add(1) is an extremely easy utility to use, in the following two
examples pkg_add(1) will be used to install a package. The first example will show pkg_add(1) installing a package that
resides on a local disk, the second example will show an installation of a package via ftp. In both examples screen-3.9.1
will be installed.

Installing via local disk

$ sudo pkg_add -v screen-3.9.1.tgz
Requested space: 749864 bytes, free space: 2239117312 bytes in /var/tmp/instmp.cpsHA27596
Running install with PRE-INSTALL for `screen-3.9.1'
extract: Package name is screen-3.9.1
extract: CWD to /usr/local
extract: /usr/local/bin/screen-3.9.1
extract: execute 'ln -sf screen-3.9.1 /usr/local/bin/screen'
extract: /usr/local/man/man1/screen.1
extract: /usr/local/info/screen.info
extract: execute '[-f /usr/local/info/dir] || sed -ne '1,/Menu:/p' /usr/share/info/dir > /usr/local/in
extract: execute 'install-info /usr/local/info/screen.info /usr/local/info/dir'
extract: /usr/local/lib/screen/screencap
extract: /usr/local/lib/screen/screenrc
extract: CWD to .
Running mtree for `screen-3.9.1'
mtree -q -U -f +MTREE_DIRS -d -e -p /usr/local
Running install with POST-INSTALL for `screen-3.9.1'

+---------------
| The file /etc/screenrc has been created on your system.
| You may want to verify/edit its contents
|
| The file /usr/local/lib/screen/screencap contains a
| termcap like description of the screen virtual terminal.
| You may use it to update your terminal database.
| See termcap(5).
+---------------

Attempting to record package into `/var/db/pkg/screen
Package `screen-3.9.1' registered in `/var/db/pkg/screen-3.9.1'

In this example the -v flag was used to give a more verbose output, this option is not needed, but is helpful for
debugging and was used here to give a little more insight into what pkg_add(1) is actually doing. Notice however, that
there are some valid messages given out mentioning /etc/screenrc . Messages like this will be given to you whether or
not you use the -v flag.

Installing via ftp

$ sudo pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/3.0/packages/i386/screen-3.9.1.tgz
>>> ftp -o - ftp://ftp.openbsd.org/pub/OpenBSD/3.0/packages/i386/screen-3.9.1.tgz

+---------------
| The file /etc/screenrc has been created on your system.
| You may want to verify/edit its contents
|
| The file /usr/local/lib/screen/screencap contains a
| termcap like description of the screen virtual terminal.
| You may use it to update your terminal database.
| See termcap(5).
+---------------

In this example you can see that I installed the i386 package, you should substitute this with your architecture. Notice:
Not all architectures have the same packages. Some ports don't work on certain architectures. In this example the -v flag

Saturday, January 19, 2002 8.0 - General Questions Page: 7

http://www.openbsd.org/faq/faq8.html

wasn't used, so only NEEDED messages are shown.

Viewing and Deleting Installed Packages

The utility pkg_info(1) is used to view a list of packages that are already installed on your system. This is usually
needed to find out the correct name of a package before you remove that package. To see what packages are installed on
your system simple use:

$ pkg_info
mpg123-0.59r mpeg audio 1/2 layer 1, 2 and 3 player
nmap-2.54BETA25 port scanning large networks
ircii-20011210 enhanced version of ircII (internet relay chat)
screen-3.9.1 multi-screen window manager
unzip-5.42 extract, list & test files in a ZIP archive
ntp-4.1.72 Network Time Protocol implementation
icb-5.0.9 Internet CB - mostly-defunct chat client

To delete a package, simple take the proper name of the package as shown by pkg_info(1) and use pkg_delete(1) to
remove the package. In the below example, the screen package is being removed. Notice that on some occasions there
are instructions of extra objects that need to be removed that pkg_delete(1) did not remove for you. As with the
pkg_add(1) utility, you can use the -v flag to get more verbose output.

$ sudo pkg_delete screen-3.9.1

+---------------
| To completely deinstall the screen-3.9.1 package you need to perform
| this step as root:
|
| rm -f /etc/screenrc
|
| Do not do this if you plan on re-installing screen-3.9.1
| at some future time.
+---------------

8.8 - Is there any way to use my floppy drive if it's not attached
during boot?
Sure. You need to add "flags 0x20" at the end of the fd* entry and recompile your kernel. The line should be read:

 fd* at fdc? drive ? flags 0x20

After that you would be able to use the floppy drive all the times. It doesn't matter if you plugged it in after boot.

8.9 - Boot time Options - Using the OpenBSD bootloader
When booting your OpenBSD system, you have probably noticed the boot prompt.

boot>

For most people, you won't have to do anything here. It will automatically boot if no commands are given. But
sometimes problems arise, or special functions are needed. That's where these options will come in handy. To start off,
you should read through the boot(8) man page. Here we will go over the most common used commands for the
bootloader.

To start off, if no commands are issued, the bootloader will automatically try to boot /bsd. If that fails it will try /obsd,
and so on till it finds a bootable kernel. You can specify this by hand by typing:

boot> boot wd0a:/bsd

or

boot> b /bsd

This will work if device wd0a is configured as your root device.

Here is a brief list of options you can use with the OpenBSD kernel.

-a : This will allow you to specify an alternate root device after booting the kernel.

Saturday, January 19, 2002 8.0 - General Questions Page: 8

http://www.openbsd.org/faq/faq8.html

-c : This allows you to enter the boot time configuration. Check the Boot Time Config section of the faq.
-s : This is the option to boot into single user mode.
-d : This option is used to dump the kernel into ddb. Keep in mind that you must have DDB built into the
kernel.

These are entered in the format of: boot [image [-acds]]

For further reading you can read boot_i386(8) man page

8.10 - S/Key
S/Key is a ``one-time password'' scheme. This allows for one-time passwords for use on un-secured channels. This
can come very handy for those who don't have the ability to use ssh or any other encrypted channels. OpenBSD's
S/Key implementation can use a variety of algorithms as the one-way hash. Here is the list of algorithms available:

md4
md5
sha1
rmd160.

Setting up S/Key - The first steps

To start off the file /etc/skeykeys must exist. If this file is not in existence, have the super-user create it. This can be
done simply by doing:

touch /etc/skeykeys

Once that file is in existence, you can initialize your S/Key. To do this you will have to use skeyinit(1). With
skeyinit(1), you will first be prompted for your password to the system. This is the same password that you used to log
into the system. Running skeyinit(1) over an insecure channel is completely not recommended, so this should be done
over a secure channel (such as ssh) or the console. Once you have authorized yourself with your system password you
will be asked for yet another password. This password is the secret password , and is NOT your system password.
The secret password is not limited to 8 characters like system passwords, actually it must be at least 10 characters. A
few word phrases are suggested. Here is an example user being added.

oshibana:ericj> skeyinit ericj
[Adding ericj]
Reminder - Only use this method if you are directly connected
 or have an encrypted channel. If you are using telnet
 or rlogin, exit with no password and use skeyinit -s.
Enter secret password:
Again secret password:

ID ericj skey is otp-md5 99 oshi45820
Next login password: HAUL BUS JAKE DING HOT HOG

One line of particular importance in here is ID ericj skey is otp-md5 99 oshi45820 . This gives a lot of information to the
user. Here is a breakdown of the sections and their importance.

otp-md5 - This shows which one-way was used to create your One-Time Password (otp).
99 - This is your sequence number. This is a number from 100 down to 1. Once it reaches one, another secret
password must be created.
oshi45820 - This is your key.

But of more immediate importance is your password. Your password consists of 6 small words, combined together this
is your password, spaces and all.

Actually using S/Key to login.

By now your skey has been initialized, and you have your password. You're ready to login. Here is an example session
using s/key to login.

oshibana:ericj> ftp localhost
Connected to localhost.
220 oshibana.shin.ms FTP server (Version 6.4/OpenBSD) ready.
Name (localhost:ericj): ericj
331 Password [otp-md5 96 oshi45820] for ericj required.
Password:
230- OpenBSD 2.5-current (OSHIBANA) #8: Tue Jun 22 19:20:16 EDT 1999

Saturday, January 19, 2002 8.0 - General Questions Page: 9

http://www.openbsd.org/faq/faq8.html

230-
230- Welcome to OpenBSD: The proactively secure Unix-like operating system.
230-
230- Please use the sendbug(1) utility to report bugs in the system.
230- Before reporting a bug, please try to reproduce it with the latest
230- version of the code. With bug reports, please try to ensure that
230- enough information to reproduce the problem is enclosed, and if a
230- known fix for it exists, include that as well.
230-
230 User ericj logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> quit
221 Goodbye.

Some of you might have noticed that my sequence number has changed. otp-md5 96 oshi45820 . This is because by
now I have used s/key to login several times. But how do you get your password after you've logged in once? Well to
do this, you'll need to know what sequence number you're using and your key. As you're probably thinking, how can
you remember which sequence number you're on? Well this is simple, use skeyinfo(1), and it will tell you what to use.
For example here, I need to generate another password for a login that I might have to make in the future. (remember
I'm doing this from a secure channel).

oshibana:ericj> skeyinfo
95 oshi45820

From this I can create the password for my next login. To do so, I'll use skey(1). I can use exactly that output from
above to create my password.

oshibana:ericj> skey 95 oshi45820
Reminder - Do not use this program while logged in via telnet or rlogin.
Enter secret password:
NOOK CHUB HOYT SAC DOLE FUME

I'm sure many of you won't always have a secure connect to create these passwords, and creating them over an insecure
connection isn't feasible, so how can you create multiple passwords at one time? Well you can supply skey(1) with a
number of how many passwords you want created. This can then be printed out and taken with you wherever you go.

oshibana:ericj> skey -n 5 95 oshi45820
Reminder - Do not use this program while logged in via telnet or rlogin.
Enter secret password:
91: SHIM SET LEST HANS SMUG BOOT
92: SUE ARTY YAW SEED KURD BAND
93: JOEY SOOT PHI KYLE CURT REEK
94: WIRE BOGY MESS JUDE RUNT ADD
95: NOOK CHUB HOYT SAC DOLE FUME

Notice here though, that the bottom password should be the first used, because we are counting down from 100.

Using S/Key with telnet(1), ssh(1), and rlogin(1)

Using S/Key with telnet(1), ssh(1), or rlogin(1) is done in pretty much the same fashion as with ftp, only your first
password must be "s/key". Example:

ericj@oshibana> telnet localhost
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

OpenBSD/i386 (oshibana) (ttyp2)

login: ericj
Password: <------------ "s/key" entered.
otp-md5 98 oshi45821
Response: SCAN OLGA BING PUB REEL COCA
Last login: Thu Oct 7 12:21:48 on ttyp1 from 156.63.248.77
Warning: no Kerberos tickets issued.
OpenBSD 2.5-current (OSHIBANA) #4: Thu Sep 2 23:36:16 EDT 1999

Welcome to OpenBSD: The proactively secure Unix-like operating system.

Please use the sendbug(1) utility to report bugs in the system.
Before reporting a bug, please try to reproduce it with the latest

Saturday, January 19, 2002 8.0 - General Questions Page: 10

http://www.openbsd.org/faq/faq8.html

version of the code. With bug reports, please try to ensure that
enough information to reproduce the problem is enclosed, and if a
known fix for it exists, include that as well.

You have mail.
ericj@oshibana>

8.11 - Why is my Macintosh losing so much time?
This is caused by a hardware bug. OpenBSD uses clock interrupts to keep track of the current time, but these interrupts
have the lowest priority in Apple's architecture. So, under heavy load, (such as disk or network activity) clock interrupts
will be lost and the Unix clock will not advance as it should.

MacOS gets around the time problem by always reading the hardware clock. OpenBSD only reads the hardware clock at
boot time and thereafter ignores it. You may notice that, at shutdown, the kernel is not confident enough to write the
Unix time back into the hardware clock because this time loss problem is well known.

The best solution is to run ntpd (found in the ports collection) and just deal with the occasional lossage. Sometimes the
lossage is so bad that even ntpd is afraid to skip the time. In this case, add the -g option to ntpd in /etc/rc.securelevel to
force tracking.

Another simpler but less precise solution is to run rdate(8) on a regular basis, for example by having a crontab entry for
it, preferably with the -a option so there is no "jump" in time. Another good place to launch rdate(8) is in your
/etc/ppp/ppp.linkup file if you are not permanently connected and are a PPP user.

See also: http://www.macbsd.com/macbsd/macbsd-docs/faq/faq-3.html#ss3.17

8.12 - Will OpenBSD run on multiprocessor machines?
No. OpenBSD/i386 will not make use of multiple processors, but will run using one processor on a multi-processor
system board. OpenBSD/sparc will not run on a multi-processor sparc system at all. No other platforms currently
support multi-processor capabilities.

The reason is quite simple: there are not enough developers who have access to MP machines. If you want to donate MP
hardware, please refer to http://www.openbsd.org/donations.html. Our developers are currently asking for i386, sparc,
hppa, and other multi-processor hardware donations to begin SMP support. A project to bring multi-processor support
to OpenBSD is underway, and progress can be check at http://www.openbsd.org/smp.html.

8.13 - I get Input/output error when trying to use my tty devices
As of OpenBSD 2.6, you need to use /dev/cuaXX for connections initiated from the OpenBSD system, the /dev/ttyXX
devices are intended only for terminal or dial-in usage. While it was possible to use the tty devices in the past, the
OpenBSD kernel is no longer compatible with this usage.

From cua(4):

For hardware terminal ports, dial-out is supported through matching device nodes called calling units. For instance, the
terminal called /dev/tty03 would have a matching calling unit called /dev/cua03. These two devices are normally
differentiated by creating the calling unit device node with a minor number 128 greater than the dial-in device node.
Whereas the dial-in device (the tty) normally requires a hardware signal to indicate to the system that it is active, the
dial-out device (the cua) does not, and hence can communicate unimpeded with a device such as a modem . This means
that a process like getty(8) will wait on a dial-in device until a connection is established. Meanwhile, a dial-out
connection can be established on the dial-out device (for the very same hardware terminal port) without disturbing
anything else on the system. The getty(8) process does not even notice that anything is happening on the terminal port.
If a connecting call comes in after the dial-out connection has finished, the getty(8) process will deal with it properly,
without having noticed the intervening dial-out action.

8.14 - Where can I find a Netscape binary for OpenBSD?
There is no OpenBSD Netscape binary. However since OpenBSD supports binary emulation of many other operating
systems we are able to use other binaries.

For I386 systems, it is best to use the BSDI binary.
For SPARC systems, it is best to use the SUN-OS binary.

Using the Ports System you can install these with no hassle. The Navigator Port and Communicator Ports are located at
/usr/ports/www/netscape once you have the ports tree installed.

Saturday, January 19, 2002 8.0 - General Questions Page: 11

http://www.openbsd.org/faq/faq8.html

8.15 - How do I use the mg editor which is now part of OpenBSD
(post-2.6!!)?
Mg is a micro Emacs-style text editor. Micro means that it's small (Emacs is very large!) For the basics, read the mg(1)
manual page and the tutorial, as included with the source code. For more interesting questions (such as, "I don't have a
Meta key!") check out the Emacs FAQ.

Note that since mg is a small Emacs implementation, which is mostly similar to the text editor features of Emacs 17, it
does not implement many of Emacs' other functionality. (Including mail and news functionality, as well as modes for
Lisp, C++, Lex, Awk, Java, etc...)

8.16 - Ksh does not appear to read my .profile!
There are two possible reasons for this.

.profile is not owned by the user This is easy to fix. For username,

chown username ~username/.profile

You are using ksh from within X Window System

Under xterm, argv[0] for ksh is not prepended with a dash. Prepending - to argv[0] will cause csh and ksh to
know they should interpret their login files. (For csh that's .login, with a separate .cshrc that is always run
when csh starts up. With ksh, this is more noticeable because there is only one startup script, .profile. This file
is ignored unless the shell is a login shell.)

To fix this, create a file in your home directory called .Xdefaults with the phrase XTerm*loginShell: true

$ echo "XTerm*loginShell: true" < ~/.Xdefaults

You may not have had to do this before, because some installations of X Window System come with this
setting as default. OpenBSD has chosen to follow the XFree86 behavior.

8.17 - Why does my /etc/motd file get written over when I modified
it?
The /etc/motd file is edited upon every boot of the system, replacing the first line with the systems kernel version
information. When editing this file, make sure that you start 2 lines from the top, to keep /etc/rc from deleting these
lines when it edits /etc/motd upon boot.

8.18 - Why does www.openbsd.org run on Solaris?
Although none of the developers think it is particularly relevant, this question comes up frequently enough in the mailing
lists that it is answered here. www.openbsd.org and the main OpenBSD ftp site are hosted at a SunSITE at the
University of Alberta, Canada. These sites are hosted on a large Sun system, which has access to lots of storage space
and Internet bandwidth. The presence of the SunSITE gives the OpenBSD group access to this bandwidth. This is why
the main site runs here. Many of the OpenBSD mirror sites run OpenBSD, but since they do not have guaranteed access
to this large amount of bandwidth, the group has chosen to run the main site at the University of Alberta SunSITE.

8.19 - I'm having problems with my PCI devices being detected in
OpenBSD 2.8.
There exists a condition in OpenBSD 2.8 where some machines might not detect some PCI devices properly, or might
freeze while detecting multiple NIC's in one machine. This is the fault of PCIBIOS, and involves a simple workaround
to make work properly. Simply enter the boot time configuration and disable PCIBIOS. An example is below:

Saturday, January 19, 2002 8.0 - General Questions Page: 12

http://www.openbsd.org/faq/faq8.html

boot> boot -c
OpenBSD 2.8 (GENERIC) #377: Tue Oct 24 03:04:08 MDT 2000
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
cpu0: Intel Pentium III (Coppermine) ("GenuineIntel" 686-class) 390 MHz
cpu0: FPU,V86,DE,PSE,TSC,MSR,PAE,MCE,CX8,SYS,MTRR,PGE,MCA,CMOV,PAT,PSE36,MMX,FXS
R,SIMD
real mem = 66629632 (65068K)
avail mem = 56770560 (55440K)
using 838 buffers containing 3432448 bytes (3352K) of memory
UKC> disable pcibios
UKC> quit
[... snip ...]

Once this is done, you can follow the directions in FAQ 5.6 to create a new kernel so that you don't have to worry about
this in the future.

8.20 - Antialiased and TrueType fonts in OpenBSD 2.9/XFree86
See this document.

8.21 - Does OpenBSD support any journaling filesystems ?
No it doesn't. We use a different mechanism to achieve similar results that is called Soft Updates. Please read in FAQ 14
to get more details.

[Back to Main Index] [To Section 7.0 - Keyboard controls] [To Section 9.0 - Tips for linux users]

 www@openbsd.org
$OpenBSD: faq8.html,v 1.78 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 9.0 - Tips for Linux (and other free Unix-like OS) users Page: 1

http://www.openbsd.org/faq/faq9.html

9.0 - Migrating from Linux

Table of Contents

9.1 - Tips for Linux (and other free Unix-like OS) users
9.2 - Dual boot of Linux and OpenBSD
9.3 - Converting your linux (or other System-7 style) password file to BSD-style.
9.4 - Getting OpenBSD and Linux to interact

For more information for Linux users, please refer to http://sites.inka.de/mips/unix/bsdlinux.html.

9.1 - Simple tips for Linux (and other free Unix-like OS) users
There are several differences between OpenBSD and Linux. These differences include but are not limited to, bootup
procedure, network interface usage and disk management. Most differences are well documented, but involve searching
manpages. This document tries to be an index of those differences.

OpenBSD has a ports tree. This is to accommodate the fact that at this point not many applications are native to
the OpenBSD environment. This is both an attempt to get applications to work on OpenBSD for end-users and
to get more applications made with OpenBSD in mind. Eventually this ports tree will be used to make a nice set
of binary packages.
OpenBSD uses CVS for source changes. With Linux, source code is disseminated through separate
distributions. OpenBSD has pioneered anonymous CVS, which allows anyone to extract the full source tree for
any version of OpenBSD (from 2.0 to current, and all revisions of all files in between) at any time! There is also
a very convenient and easy to use web interface to CVS.
OpenBSD periodically releases snapshots for various architectures and makes a stable, official CD release every
6 months.
OpenBSD contains STRONG CRYPTO, which USA based OS's can't contain. (See
http://www.openbsd.org/crypto.html) OpenBSD has also gone through heavy security auditing and many
security features have already been implemented into the source tree. (IPSEC, KERBEROS).
OpenBSD's kernel is /bsd.
The names of hard disks are usually /dev/wd and /dev/sd (ATA/SCSI)
/sbin/ifconfig with no arguments in Linux gives the state of all the interfaces. Under OpenBSD you need the -a
flag.
/sbin/route with no arguments in Linux gives the state of all the active routes. Under OpenBSD you need the
"show " parameter, or do a netstat -r (nice).
OpenBSD does NOT support Journaling Filesystems like ReiserFS, IBMs JFS or SGIs XFS. Instead we use
Soft Updates.
OpenBSD comes with the Packet Filter package, not ipfw, ipchains, netfilter, iptables, or IP Filter. This means
that:

IP-Masquerading is done through pfctl (using -N). (pfctl(8))
ipfwadm is done through pfctl. (pfctl(8), pf(4), pf.conf(5))
You should look at section 6 for detailed configuration assistance and information.

Interface address is stored in /etc/hostname.<interfacename>. It can be a name instead of an IP address.
The machine name is in /etc/myname
The default gateway is in /etc/mygate
The network interface aliases are in /etc/ifaliases . NOTE: This has been phased out after 2.6. Starting in
OpenBSD 2.7, this will be setup in /etc/hostname.if .
OpenBSD's default shell is /bin/sh, which is the Korn shell. Shells such as bash and tcsh can be added as
packages or installed from the ports tree.
Password management changes a lot. The main files are different. (passwd(1), passwd(5))
Devices are named by driver, not by type. So for example, there are no eth* devices. It would be ne0 for an

Saturday, January 19, 2002 9.0 - Tips for Linux (and other free Unix-like OS) users Page: 2

http://www.openbsd.org/faq/faq9.html

ne2000 ethernet card, and xl0 for a 3Com Etherlink XL and Fast Etherlink XL ethernet device, etc.
OpenBSD developers have made serious efforts to keep the manual pages up-to-date and accurate. Use the
man(1) command to find information.

9.2 - Dual booting Linux and OpenBSD
Yes! it is possible!

Read INSTALL.linux

9.3 - Converting your Linux (or other System 7-style) password file
to BSD-style
First, figure out if your Linux password file is shadowed or not. If it is, grab John the Ripper and use the unshadow
utility that comes with it to merge your passwd and shadow files into one System 7-style file.

Using your Linux password file, we'll call it linux_passwd, you need to add in ::0:0 between fields four and seven.
Awk does this for you.

cat linux_passwd | awk -F : '{printf("%s:%s:%s:%s::0:0:%s:%s:%s\n",$1,$2,$3,$4

At this point, you want to edit the new_passwd file and remove the root and other system entries that are already present
in your OpenBSD password file or aren't applicable with OpenBSD (all of them). Also, make sure there are no duplicate
usernames or user IDs between new_passwd and your OpenBSD box's /etc/passwd. The easiest way to do this is to
start with a fresh /etc/passwd.

cat new_passwd >> /etc/master.passwd
pwd_mkdb -p /etc/master.passwd

The last step, pwd_mkdb is necessary to rebuild the /etc/spwd.db and /etc/pwd.db files. It also creates a System 7-style
password file (minus encrypted passwords) at /etc/passwd for programs which use it. OpenBSD uses a stronger
encryption for passwords, blowfish, which is very unlikely to be found on any system which uses full System 7-style
password files. To switch over to this stronger encryption, simply have the users run 'passwd' and change their
password. The new password they enter will be encrypted with your default setting (usually blowfish unless you've
edited /etc/passwd.conf). Or, as root, you can run passwd username .

9.4 - Getting OpenBSD and Linux to interact
If you are migrating from Linux to OpenBSD, note that OpenBSD has COMPAT_LINUX enabled by default in the
GENERIC kernel. To run any Linux binaries that are not statically linked (most of them), you need to follow the
instructions on the compat_linux(8) manual page. A simple way to get most of the useful Linux libraries is to install
linux_lib from your ports collection. To find out more about the Ports collection read FAQ 8.6. If you already have the
ports tree installed use these commands to get linux libraries installed.

cd /usr/ports/emulators/linux_lib
make install

OpenBSD supports the EXT2FS file system. Use disklabel (8) disk (where disk is the device name for your disk.)
to see what OpenBSD thinks your Linux partition is (but don't use disklabel or fdisk to make any changes to it). For
further information on using disklabel read FAQ 14.1.

[Back to Main Index] [To Section 8.0 - General Questions] [To Section 10.0 - System Administration]

 www@openbsd.org
$OpenBSD: faq9.html,v 1.33 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 10.0 - System Management Page: 1

http://www.openbsd.org/faq/faq10.html

10.0 - System Management

Table of Contents

10.1 - When I try to su to root it says that I'm in the wrong group
10.2 - How do I duplicate a filesystem?
10.3 - How do I start daemons with the system? (Overview of rc(8))
10.4 - Why do users get relaying access denied when they are remotely sending mail through my OpenBSD
system?
10.5 - I've set up POP, but I get errors when accessing my mail through POP. What can i do?
10.6 - Setting up a Secure HTTP Server using SSL(8)
10.7 - I made changes to /etc/passwd with vi(1), but the changes didn't seem to take place. Why?
10.8 - How do I add a user? or delete a user?
10.9 - How do I create a ftp-only account?
10.10 - Setting up user disk quotas
10.11 - Setting up Kerberos Client/Server
10.12 - Setting up an Anonymous FTP Server
10.13 - Confining users to their home dir's in ftpd(8).
10.14 - Applying patches in OpenBSD.

10.1 - Why does it say that I'm in the wrong group when I try to su
root?
Existing users must be added to the "wheel" group by hand. This is done for security reasons, and you should be
cautious with whom you give access to. On OpenBSD, users who are in the wheel group are allowed to use the su(1)
userland program to become root. Users who are not in "wheel" cannot use su(1). Here is an example of a /etc/group
entry to place the user ericj into the "wheel" group.

If you are adding a new user with adduser(8), you can put them in the wheel group by answering wheel at Invite
user into other groups: This will add them to /etc/group, which will look something like this:

wheel:*:0:root,ericj

If you are looking for a way to allow users limited access to superuser privileges, without putting them in the "wheel"
group, use sudo(8).

10.2 - How do I duplicate a filesystem?
To duplicate your filesystem use dump(8) and restore(8). For example. To duplicate everything under directory SRC to
directory DST, do a:

cd /SRC; dump 0f - . | (cd /DST; restore -rf -)

dump is designed to give you plenty of backup capabilities, and it may be an overkill if you just want to duplicate a part
of a (or an entire) filesystem. The command tar(1) may be faster for this operation. The format looks very similar:

cd /SRC; tar cf - . | (cd /DST; tar xpf -)

10.3 - How do I start daemons with the system? (Overview of rc(8)

Saturday, January 19, 2002 10.0 - System Management Page: 2

http://www.openbsd.org/faq/faq10.html

)
OpenBSD uses an rc(8) style startup. This uses a few key files for startup.

/etc/rc - Main script. Should not be edited.
/etc/rc.conf - Configuration file used by /etc/rc to know what daemons should start with the system.
/etc/netstart - Script used to initialize the network. Shouldn't be edited.
/etc/rc.local - Script used for local administration. This is where new daemons or host specific information
should be stored.
/etc/rc.securelevel - Script which runs commands that must be run before the security level changes. See init(8)
/etc/rc.shutdown - Script run on shutdown. Put anything you want done before shutdown in this file. See
rc.shutdown(8)

How does rc(8) work?

The main files a system administrator should concentrate on are /etc/rc.conf , /etc/rc.local and /etc/rc.shutdown . To get
a look of how the rc(8) procedure works, here is a the flow:

After the kernel is booted. /etc/rc is started.
Filesystems checked. This will always be bypassed if the file /etc/fastboot exists. This is certainly not a good
idea though.
Configuration Variables are read in from /etc/rc.conf
Filesystems are mounted
Clears out /tmp and preserves any editor files
Configures the network via /etc/netstart

Configures your interfaces up.
Sets your hostname, domainname, etc.

Starts system daemons
Does various checks. (quota's, savecore, etc)
Local daemons are run, ala /etc/rc.local

Starting Daemons and Services that come with OpenBSD

Most daemons and services that come with OpenBSD by default can be started on boot by simply editing the
/etc/rc.conf configuration file. To start out take a look at the default /etc/rc.conf file. You'll see lines similar to this:

ftpd_flags=NO # for non-inetd use: ftpd_flags="-D"

A line like this shows that ftpd is not starting up with the system. (At least not via rc(8), read the Anonymous FTP FAQ
to read more about this.) In any case, each line also has a comment showing you the flags for NORMAL usage of that
daemon or service. This doesn't mean that you must run that daemon or service with those flags. You can always use
man(1) to see how you can have that daemon or service start up in any way you like. For example, Here is the default
line pertaining to httpd(8).

httpd_flags=NO # for normal use: "" (or "-DSSL" after reading ssl(8))

Here you can obviously see that starting up httpd normally no flags are necessary. So a line like: " httpd_flags="""
would be necessary. But to start httpd with ssl enabled. (Refer to the SSL FAQ or ssl(8)) You should start with a line
like: "httpd_flags="-DSSL"".

Starting up local daemons and configuration

For other daemons that you might install with the system via ports or other ways, you will use the /etc/rc.local file. For
example, I've installed a daemon which lies at /usr/local/sbin/daemonx. I want this to start at boot time. I would put an
entry into /etc/rc.local like this:

if [-x /usr/local/sbin/daemonx]; then
 echo -n ' daemonx'; /usr/local/sbin/daemonx
fi

Saturday, January 19, 2002 10.0 - System Management Page: 3

http://www.openbsd.org/faq/faq10.html

From now on, this daemon will be run at boot. You will be able to see any errors on boot, a normal boot with no errors
would show a line like this:

Starting local daemons: daemonx.

rc.shutdown

/etc/rc.shutdown is a script that is run a shutdown. Anything you want done before the system shuts down should be
added to this file. If you have apm, you can also set "powerdown=YES". Which will give you the equivalent of
"shutdown -p".

10.4 - Why do users get relaying access denied when they are
remotely sending mail through my OpenBSD system?
Try this:

cat /etc/mail/sendmail.cf | grep relay-domains

The output may look something like this:

FR-o /etc/mail/relay-domains

If this file doesn't exist, create it. You will need to enter the hosts who are sending mail remotely with the following
syntax:

.domain.com #Allow relaying for/to any host in domain.com
sub.domain.com #Allow relaying for/to sub.domain.com and any host in that domain
10.2 #Allow relaying from all hosts in the IP net 10.2.*.*

Don't forget send a 'HangUP' signal to sendmail, (a signal which causes most daemons to re-read their configuration
file):

kill -HUP `head -1 /var/run/sendmail.pid`

Further Reading

http://www.sendmail.org/~ca/email/relayingdenied.html
http://www.sendmail.org/tips/relaying.html
http://www.sendmail.org/antispam.html

10.5 - I've set up POP, but users have trouble accessing mail
through POP. What can I do?
Most issues dealing with POP are problems with temporary files and lock files. If your pop server sends an error
message such as:

-ERR Couldn't open temporary file, do you own it?

Try setting up your permissions as such:

permission in /var
drwxrwxr-x 2 bin mail 512 May 26 20:08 mail

permissions in /var/mail
-rw------- 1 username username 0 May 26 20:08 username

Another thing to check is that the user actually owns their own /var/mail file. Of course this should be the case (as in,
/var/mail/joe should be owned by joe) but if it isn't set correctly it could be the problem!

Saturday, January 19, 2002 10.0 - System Management Page: 4

http://www.openbsd.org/faq/faq10.html

Of course, making /var/mail writable by group mail opens up some vague and obscure security problems. It is likely that
you will never have problems with it. But it could (especially if you are a high profile site, ISP,...)! Try running
cucipop or another POP daemon from the OpenBSD ports collection. Or, you could just have the wrong options selected
for your pop daemon (like dot locking). Or, you may just need to change the directory that it locks in (although then the
locking would only be valuable for the POP daemon.)

PS: Notice, OpenBSD does not have a group name of "mail". You need to create this in your /etc/group file. An entry
like:

mail:*:6:

would be sufficient.

10.6 - Setting up a Secure HTTP server with SSL(8)
Starting with OpenBSD 2.8, OpenBSD ships with an SSL-ready httpd and RSA libraries. However, if you are using
OpenBSD 2.6 or 2.7 you must use provided SSL packages to use SSL. For more information, man 8 ssl.

For use with httpd(8), you must first have a certificate created. This will be kept in /etc/ssl/private/ . The steps shown
here are taken in part from the ssl(8) man page. Refer to it for further information. This FAQ entry only outlines how to
create an RSA certificate for web servers, not a DSA server certificate. To find out how to do so, please refer to the
ssl(8) man page.

To start off, you need to create your server key and certificate. To use the RSA features, you must have upgraded your
libssl. Now you can create your key. Using OpenSSL:

openssl genrsa -out /etc/ssl/private/server.key 1024

Or, if you wish the key to be encrypted with a passphrase that you will have to type in when starting servers

openssl genrsa -des3 -out /etc/ssl/private/server.key 1024

The next step is to generate a Certificate Signing Request which is used to get a Certifying Authority (CA) to sign your
certificate. To do this use the command:

openssl req -new -key /etc/ssl/private/server.key -out /etc/ssl/private/server.c

This server.csr file can then be given to Certifying Authority who will sign the key. One such CA is Thawte
Certification which you can reach at http://www.thawte.com/. Thawte can currently sign RSA keys for you. A
procedure is being worked out to allow for DSA keys.

If you cannot afford this, or just want to sign the certificate yourself, you can use the following.

openssl x509 -req -days 365 -in /etc/ssl/private/server.csr \
 -signkey /etc/ssl/private/server.key -out /etc/ssl/server.crt

With /etc/ssl/server.crt and /etc/ssl/private/server.key in place, you should be able to start httpd(8) with the -DSSL
flag, enabling https transactions with your machine on port 443.

10.7 - I edited /etc/passwd, but the changes didn't seem to take
place. Why?
If you edit /etc/passwd, your changes will be lost. OpenBSD generates /etc/passwd dynamically with pwd_mkdb(8).
The main password file in OpenBSD is /etc/master.passwd. According to pwd_mkdb(8),

FILES
 /etc/master.passwd current password file
 /etc/passwd a Version 7 format password file
 /etc/pwd.db insecure password database file
 /etc/pwd.db.tmp temporary file

Saturday, January 19, 2002 10.0 - System Management Page: 5

http://www.openbsd.org/faq/faq10.html

 /etc/spwd.db secure password database file
 /etc/spwd.db.tmp temporary file

In a traditional Unix password file, such as /etc/passwd, everything including the user's encrypted password is available
to anyone on the system (and is a prime target for programs such as Crack.) 4.4BSD introduces the master.passwd file,
which has an extended format (with additional options beyond what was provided by /etc/passwd) and is only readable
by root. For faster access to data, the library calls which access this data normally read /etc/pwd.db and /etc/spwd.db.

OpenBSD does come with a tool with which you should edit your password file. It is called vipw(8). Vipw will use vi
(or your favourite editor defined per $EDITOR) to edit /etc/master.passwd. After you are done editing, it will re-create
/etc/passwd, /etc/pwd.db, and /etc/spwd.db as per your changes. Vipw also takes care of locking these files, so that if
anyone else attempts to change them at the same time, they will be denied access.

10.8 - What is the best way to add and delete users?
For OpenBSD 2.6 users, the adduser(8) command is available for adding users. In OpenBSD 2.7, the user(8) command
was added to deal with adding and removing both users and groups.

adduser(8)
user(8)

The best way to add a user in OpenBSD is to use the adduser(8) script. You can configure this to work however you
like by editing /etc/adduser.conf. You can add users by hand via vipw(8), but this is the recommended way to add
users. adduser(8) allows for consistency checks on /etc/passwd, /etc/group, and shell databases. It will create the
entries and $HOME directories for you. It can even send a message to the user welcoming them. This can be changed to
meet your needs. For further instructions on adding users read the adduser_proc(8) man page. Here is an example user,
testuser being added to a system. His/Her $HOME directory will be placed in /home/testuser , and given the group
guest, and the shell /bin/ksh .

adduser
Use option ``-silent'' if you don't want to see all warnings and questions.

Reading /etc/shells
Check /etc/master.passwd
Check /etc/group

Ok, let's go.
Don't worry about mistakes. I will give you the chance later to correct any input.
Enter username [a-z0-9_]: testuser
Enter full name []: Test FAQ User
Enter shell csh ksh nologin sh [ksh]: ksh
Uid [1002]: <Enter>
Login group testuser [testuser]: guest
Login group is ``guest''. Invite testuser into other groups: guest no
[no]: no
Enter password []:
Enter password again []:

Name: testuser
Password: ****
Fullname: Test FAQ User
Uid: 1002
Gid: 31 (guest)
Groups: guest
HOME: /home/testuser
Shell: /bin/ksh
OK? (y/n) [y]: y
Added user ``testuser''
Copy files from /usr/share/skel to /home/testuser
Add another user? (y/n) [y]: n
Goodbye!

To delete users you should use the rmuser(8) utility. This will remove all existence of a user. It will remove any

Saturday, January 19, 2002 10.0 - System Management Page: 6

http://www.openbsd.org/faq/faq10.html

crontab(1) entries, their $HOME dir (if it is owned by the user), and their mail. Of course it will also remove their
/etc/passwd and /etc/group entries. Next is an example of removing the user that was added above. Notice you are
prompted for the name, and whether or not to remove the users home directory.

rmuser
Enter login name for user to remove: testuser
Matching password entry:

testuser:$2a$07$ZWnBOsbqMJ.ducQBfsTKUe3PL97Ve1AHWJ0A4uLamniLNXLeYrEie:1002:31::0:0:Test FAQ

Is this the entry you wish to remove? y
Remove user's home directory (/home/testuser)? y
Updating password file, updating databases, done.
Updating group file: done.
Removing user's home directory (/home/testuser): done.

10.8.2 - Adding users via user(8)

Starting in the 2.7 release of OpenBSD, many commands were added for dealing with users and groups. These tools are
less interactive than the adduser(8) command, which helps facilitate using these in a script.

A list of the added commands are:
group(8)
groupadd(8)
groupdel(8)
groupinfo(8)
groupmod(8)
user(8)
useradd(8)
userdel(8)
userinfo(8)
usermod(8)

10.8.2.1 - Actually adding users

Being that user(8) is not interactive, the easiest way to add users efficiently is to use the adduser(8) command. The
actual command /usr/sbin/user is just a frontend to the rest of the /usr/sbin/user* commands. Therefore, the following
commands can be added by using user add or useradd, its your choice as to what you want, and doesn't change the
use of the commands at all.

In this example, we are adding the same user with the same specifications as the user that was added above. useradd(8)
is much easier to use if you know the default setting before adding a user. These settings are located in
/etc/usermgmt.conf and can be viewed by doing so:

$ user add -D
group users
base_dir /home
skel_dir /etc/skel
shell /bin/csh
inactive 0
expire Null (unset)
range 1000..60000

The above settings are what will be set unless you specify different with command line options. For example, in our
case, we want the user to go to the group guest, not users. One more little hurdle with adding users, is that passwords
must be specified on the commandline. This is, the encrypted passwords, so you must first use the encrypt(1) utility to
create the password. For example: OpenBSD's passwords by default use the Blowfish algorithm for 6 rounds. Here is
an example line to create an encrypted password to specify to useradd(8).

$ encrypt -p -b 6
Enter string:
$2a$06$YOdOZM3.4m6MObBXjeZtBOWArqC2.uRJZXUkOghbieIvSWXVJRzlq

Saturday, January 19, 2002 10.0 - System Management Page: 7

http://www.openbsd.org/faq/faq10.html

Now that we have our encrypted password, we are ready to add the user.

user add -p '$2a$06$YOdOZM3.4m6MObBXjeZtBOWArqC2.uRJZXUkOghbieIvSWXVJRzlq' -u
-s /bin/ksh -c "Test FAQ User" -m -g guest testuser

Note: Make sure to use '' around the password string, not "" as the shell will interpret these before sending it to
user(8). In addition to that, make sure you specify the -m option if you want the user's home directory created and the
files from /etc/skel copied over.

To see that the user was created correctly, we can use many different utilities. Below are a few commands you can use
to quickly check that everything was created correctly.

$ ls -la /home
total 14
drwxr-xr-x 5 root wheel 512 May 12 14:29 .
drwxr-xr-x 15 root wheel 512 Apr 25 20:52 ..
drwxr-xr-x 24 ericj wheel 2560 May 12 13:38 ericj
drwxr-xr-x 2 testuser guest 512 May 12 14:28 testuser
$ id testuser
uid=1002(testuser) gid=31(guest) groups=31(guest)
$ finger testuser
Login: testuser Name: Test FAQ User
Directory: /home/testuser Shell: /bin/ksh
Last login Sat Apr 22 16:05 (EDT) on ttyC2
No Mail.
No Plan.

In addition to these commands, user(8) provides its own utility to show user characteristics, called userinfo(8).

$ userinfo testuser
login testuser
passwd *
uid 1002
groups guest
change Wed Dec 31 19:00:00 1969
class
gecos Test FAQ User
dir /home/testuser
shell /bin/ksh
expire Wed Dec 31 19:00:00 1969

10.8.2.2 - Removing users

To remove users with the user(8) hierarchy of commands, you will use userdel(8). This is a very simple, yet usable
command. To remove the user created in the last example, simply:

userdel -r testuser

Notice the -r option, which must be specified if you want the users home directory to be deleted as well. Alternatively,
you can specify -p and not -r and this will lock the user's account, but not remove any information.

10.9 - How do I create an ftp-only account (not anonymous FTP!)?
There are a few ways to do this, but a very common way to do such is to add /usr/bin/false into /etc/shells. Then
when you create the user set his shell to /usr/bin/false, they will not be able log in interactively, but will be able to use ftp
capabilities. adduser(8) will give them a home dir by default of /home/<user> . If this is what you desire it doesn't need
to be changed, however you can set this to whatever directory you wish. You can force this user to only be able to see
files in their home directory by adding their username to /etc/ftpchroot . Using the -A option to ftpd(8), you can allow
only ftpchroot logins!

10.10 - Setting up Quotas

Saturday, January 19, 2002 10.0 - System Management Page: 8

http://www.openbsd.org/faq/faq10.html

Quotas are used to limit users space that they have available to them on your drives. It can be very helpful in situations
where you have limited resources. Quotas can be set in two different ways.

User Quotas
Group Quotas

The first step to setting up quotas is to make sure that option QUOTA is in your Kernel Configuration. This option is in
the GENERIC kernel. After this you need to mark in /etc/fstab the filesystems which will have quotas enabled. The
keywords userquota and groupquota should be used to mark each fs that you will be using quotas on. By default the
files quota.user and quota.group will be created at the root of that filesystem to hold the quota information. This
default can be overwritten by doing, userquota=/var/quotas/quota.user. Or whatever file you want to use for holding
quota information. Here is an example /etc/fstab that has one filesystem with userquotas enabled.

/dev/wd0a / ffs rw,userquota=/var/quotas/quota.user 1 1

Now it's time to set the user's quotas. To do so you use the utility edquota(8). A simple use is just edquota <user>.
edquota(8) will use vi(1) to edit the quotas unless the environmental variable EDITOR is set to a different editor. For
example:

edquota ericj

This will give you output similar to this:

Quotas for user ericj:
/: blocks in use: 62, limits (soft = 0, hard = 0)
 inodes in use: 25, limits (soft = 0, hard = 0)

To add limits, edit it to give results like this:

Quotas for user ericj:
/: blocks in use: 62, limits (soft = 1000, hard = 1050)
 inodes in use: 25, limits (soft = 0, hard = 0)

In this the softlimit is set to 1000 blocks and the hardlimit is set to 1050 blocks. A softlimit is a limit where the user is
just warned when they cross it and have until their grace period is up to get their disk usage below their limit. Grace
periods can be set by using the -t option on edquota(8). After the grace period is over the softlimit is handled as a
hardlimit. This usually results in an allocation failure.

Now that the quotas are set, you need to turn the quotas on. To do this use quotaon(8). For example:

quotaon -a

This will go through /etc/fstab to turn on the filesystems with quota options. Now that quotas are up and running, you
can view them by the quota(1). Using a command of quota <user> will give that users information. When called with
no arguments the quota command will give your quota statistics. For example:

quota ericj

Will result in output similar to this:

Disk quotas for user ericj (uid 1001):
 Filesystem blocks quota limit grace files quota limit grace
 / 62 1000 1050 27 0 0

By default quotas set in /etc/fstab will be started on boot. To turn them off use

quotaoff -a

10.11 - How to Setup Kerberos Clients and Servers under OpenBSD
As a user/administrator of OpenBSD systems, you are fortunate that KerberosIV is an pre-installed component of the

Saturday, January 19, 2002 10.0 - System Management Page: 9

http://www.openbsd.org/faq/faq10.html

default system. Here is a guide to setting up both the Kerberos realm server, as well as a client.

An *EXTREMELY* important point to remember is that Kerberos clients and servers must have their system clocks
synchronized. If there is more than a 5 minute time skew, you will receive weird errors that do not immediately reveal
themselves to be caused by time skew, such as:

kinit: Can't send request (send_to_kdc)

Another more accurate error is:

kauth: Time is out of bounds (krb_rd_req)

An easy way to synchronize system clocks is with ntpd, available in the ports tree at /usr/ports/net/ntp/.

This FAQ entry assumes you have prior knowledge of the Kerberos concepts. For a great, easy to understand,
reference, see:

The FreeBSD handbook
Use the command info kth-krb
Designing an Authentication System: a Dialogue in Four Scenes
Papers and Documentation Describing KerberosIV

Or the book

Network Security Private Communication in a Public World [Kaufman, Perlman, Speciner, 1995]

How to setup the Kerberos IV REALM and SERVER

We will be setting up the CIARASYSTEMS.COM realm, with avalanche.ciarasystems.com as the main server.

To start off, we will need to edit our configuration files. These files are located at /etc/kerberosIV/. The two files we
are concerned about are krb.realms and krb.conf . Let's start off with krb.conf .

[root@avalanche kerberosIV] cat krb.conf
CIARASYSTEMS.COM
CIARASYSTEMS.COM avalanche.ciarasystems.com admin server

As you can see, this tells kerberos that the domain is CIARASYSTEMS.COM (or logical realm) and that within that
domain, avalanche is the administration server. Next we will look at krb.realms . For more information on this refer to
krb.conf.

[root@avalanche kerberosIV] cat krb.realms
avalanche.ciarasystems.com CIARASYSTEMS.COM
.ciarasystems.com CIARASYSTEMS.COM

krb.realms provides a translation from a hostname to the Kerberos realm name for the services provided by that host.
Each line of the translation file is in one of the following forms (domain_name should be of the form .XXX.YYY). So
in this example, avalanche is the hostname of a computer on the CIARASYSTEMS.COM realm. And .ciarasystems.com
is the domain name on the realm CIARASYSTEMS.COM. Again, for further information read the krb.realms. man
page.

Next we will run kdb_init(8) to create the initial Kerberos database.

[root@avalanche kerberosIV] kdb_init
Realm name [default NO.DEFAULT.REALM]: CIARASYSTEMS.COM
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.

Enter Kerberos master password: not shown
Verifying password -
Enter Kerberos master password:

Saturday, January 19, 2002 10.0 - System Management Page: 10

http://www.openbsd.org/faq/faq10.html

Next we need to use kstash(8) which is used to save the Kerberos key distribution center (KDC) database master key in
the master key cache file.

[root@avalanche kerberosIV] kstash
Enter Kerberos master password:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Wrote master key to /etc/kerberosIV/master_key

This saves the encrypted master password in /etc/kerberosIV/master_key.

Next, we need two principals to be added to the database for each system that will be secured with Kerberos.
Their names are kpasswd and rcmd . These two principals are made for each system, with the instance being
the name of the individual system. These daemons, kpasswd and rcmd allow other systems to change
Kerberospasswords and run commands like rcp, rlogin and rsh .

kdb_edit
Opening database...

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!

Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: passwd
Instance: avalanche

<Not found>, Create [y] ? y

Principal: passwd, Instance: avalanche, kdc_key_ver: 1
New Password: <----- Use 'RANDOM' as password
Verifying password -
New Password:

Random password [y] ? y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31] ? 2001-12-31
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.

Principal name: rcmd
Instance: avalanche

<Not found>, Create [y] ? y
Principal: rcmd, Instance: avalanche, kdc_key_ver: 1
New Password: <----- Use 'RANDOM' as password
Verifying password -
New Password:

Random password [y] ? y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31] ? 2001-12-31
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.

Saturday, January 19, 2002 10.0 - System Management Page: 11

http://www.openbsd.org/faq/faq10.html

Principal name: <----- Hit <ENTER> to end

A srvtab file is the service key file. These must be extracted from the Kerberos key distribution center database in order
for services to authenticate using Kerberos. For each hostname specified on the command line, ext_srvtab(8) creates the
service key file hostname-new-srvtab, containing all the entries in the database with an instance field of hostname.

[root@avalanche kerberosIV] ext_srvtab avalanche

Enter Kerberos master password:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Generating 'avalanche-new-srvtab'....

[root@avalanche kerberosIV] mv avalanche-new-srvtab srvtab
[root@avalanche kerberosIV] chmod 600 srvtab

Now we can add users to our database.

[root@avalanche kerberosIV] kdb_edit
Opening database...

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: jeremie
Instance:

<Not found>, Create [y] ? y

Principal: jeremie, Instance: , kdc_key_ver: 1
New Password: <---- enter a secure password here
Verifying password

New Password: <---- re-enter the password here
Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [2000-01-01] ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: <---- null entry here will cause an exit
 or you can add more entries.

So now all the Kerberos particulars are setup. All that is left is to enable boot-time loading of the Kerberos server and to
enable Kerberized-daemons.

In /etc/rc.conf, set:

kerberos_server=YES

In /etc/inetd.conf, uncomment:

telnet stream tcp nowait root /usr/libexec/telnetd telnetd -k
klogin stream tcp nowait root /usr/libexec/rlogind rlogind -k
kshell stream tcp nowait root /usr/libexec/rshd rshd -k
kauth stream tcp nowait root /usr/libexec/kauthd kauthd

Saturday, January 19, 2002 10.0 - System Management Page: 12

http://www.openbsd.org/faq/faq10.html

Then, either reboot, or:

[root@avalanche /] kill -HUP `cat /var/run/inetd.pid`
[root@avalanche /] /usr/libexec/kerberos >> /var/log/kerberos.log &
[root@avalanche /] /usr/libexec/kadmind -n >> /var/log/kadmind.log &

Note: this is a rather simple server setup. Usually, redundant servers are setup (as slave servers) so that if one server
goes down, all the services that depend on Kerberos don't go down. We can also add 'su' privileges to a specific
principal, see the FreeBSD Handbook.

How to kerberize your client workstation

We will be setting the workstation named gatekeeper to be in the CIARASYSTEMS.COM realm, with
avalanche.ciarasystems.com as the main server.

To start off, we need to setup our krb.conf and krb.realms like the above machine. This is so gatekeeper will know
what server is the KDC and what domain it is on. Again here are the file contents.

[root@gatekeeper kerberosIV] cat krb.conf
CIARASYSTEMS.COM
CIARASYSTEMS.COM avalanche.ciarasystems.com admin server

[root@gatekeeper kerberosIV] cat krb.realms
avalanche.ciarasystems.com CIARASYSTEMS.COM
.ciarasystems.com CIARASYSTEMS.COM

Now that is set up, we need to initialize kerberos. To obtain a ticket you use kinit(1).

xyz:jeremie% kinit
The OpenBSD Project (gatekeeper)
Kerberos Initialization
Kerberos name: jeremie
Password:

Now we have identified we can list our tickets with klist(1).

xyz:jeremie$ klist
Ticket file: /tmp/tkt1000
Principal: jeremie@CIARASYSTEMS.COM

 Issued Expires Principal
Jun 28 01:03:25 Jun 28 11:03:25 krbtgt.CIARASYSTEMS.COM@CIARASYSTEMS.COM

Looks like we are set now. All that's left to do is test it. Here we will test it with rlogin(1) and telnet(1).

xyz:jeremie% telnet avalanche
Trying 192.168.0.38...
Connected to avalanche.
Escape character is '^]'.
[Trying mutual KERBEROS4 ...]
[Kerberos V4 accepts you]
[Kerberos V4 challenge successful]
Last login: Sun Jun 27 22:52:25 on ttyp1 from gatekeeper
Warning: no Kerberos tickets issued.
OpenBSD 2.5 (AVALANCHE) #5: Tue Apr 6 01:18:16 EDT 1999

and

xyz:jeremie% rlogin avalanche
Last login: Sun Jun 27 22:53:39 on ttyp1 from gatekeeper
Warning: no Kerberos tickets issued.
OpenBSD 2.5 (AVALANCHE) #5: Tue Apr 6 01:18:16 EDT 1999

We can tell that it is indeed using Kerberos to authenticate the rlogin session. To get rid of any tickets issued, you would

Saturday, January 19, 2002 10.0 - System Management Page: 13

http://www.openbsd.org/faq/faq10.html

use kdestroy(1). For example:

xyz:jeremie% kdestroy
Tickets destroyed.
xyz:jeremie% rlogin avalanche
krcmd: No ticket file (tf_util)
rlogin: warning, using standard rlogin: can't provide Kerberos auth data.
avalanche: Connection refused

Do not worry about 'Warning: no Kerberos tickets issued.' This is because we're only doing kerberos authentication,
not ticket passing. If you want ticket passing, use OpenSSH which has support. Stock KerberosIV doesn't have
support for tgt passing, either - only the AFS kaserver's implementation of krb4, since the regular KerberosIV kdc
checks client IP address listed in the ticket.

10.12 - Setting up Anonymous FTP Services.
Anonymous FTP allows users without accounts to access files on your computer via the File Transfer Protocol. This
will give an overview of setting up the anonymous FTP server, and its logging, etc.

Adding the FTP account

To start off, you need to have an account on your system of "ftp". This account shouldn't have a usable password. Here
we will set the login directory to /home/ftp, but you can put it wherever you want. When using anonymous ftp, the ftp
daemon will chroot itself to the home directory of the 'ftp' user. To read up more on that, read the ftp(8) and chroot(2)
man pages. Here is an example of adding the ftp user. I will do this using adduser(8). We also need to add
/usr/bin/false to our /etc/shells , this is the "shell" that we will be giving to the ftp user. This won't allow them to login,
even though we will give them an empty password. To do this you can simply echo /usr/bin/false >> /etc/shells . Also if
you wish for that shell to show up during the adduser questions, you need to modify /etc/adduser.conf .

oshibana# adduser
Use option ``-silent'' if you don't want see all warnings & questions.

Reading /etc/shells
Check /etc/master.passwd
Check /etc/group

Ok, let's go.
Don't worry about mistakes. I will give you the chance later to correct any input.
Enter username [a-z0-9_]: ftp
Enter full name []: anonymous ftp
Enter shell csh false ksh nologin sh tcsh zsh [sh]: false
Uid [1002]:
Login group ftp [ftp]:
Login group is ``ftp''. Invite ftp into other groups: guest no
[no]: no
Enter password []:
Use an empty password? (y/n) [y]: y

Name: ftp
Password: ****
Fullname: anonymous ftp
Uid: 1002
Gid: 1002 (ftp)
Groups: ftp
HOME: /home/ftp
Shell: /usr/bin/false
OK? (y/n) [y]: y
Added user ``ftp''
Copy files from /usr/share/skel to /home/ftp
Add another user? (y/n) [y]: n
Goodbye!

Directory Setup

Saturday, January 19, 2002 10.0 - System Management Page: 14

http://www.openbsd.org/faq/faq10.html

Along with the user, this created the directory /home/ftp . This is what we want, but there are some changes that we will
have to make to get it ready for anonymous ftp. Again these changes are explained in the ftp(8) man page.

You do not need to make a /home/ftp/usr or /home/ftp/bin directory.
/home/ftp - This is the main directory. It should be owned by root and have permissions of 555.
/home/ftp/etc - This is entirely optional and not recommended, as it only serves to give out information on users
which exist on your box. If you want your anonymous ftp directory to appear to have real users attached to
your files, you should copy /etc/pwd.db and /etc/group to this directory. This directory should be mode 511,
and the two files should be mode 444. These are used to give owner names as opposed to numbers. There are
no passwords stored in pwd.db, they are all in spwd.db, so don't copy that over.
/home/ftp/pub - This is a standard directory to place files in which you wish to share. This directory should
also be mode 555.

Note that all these directories should be owned by ''root''. Here is a listing of what the directories should look like after
their creation.

oshibana# pwd
/home
oshibana# ls -laR ftp
total 5
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 .
drwxr-xr-x 7 root wheel 512 Jul 6 10:58 ..
dr-x--x--x 2 root ftp 512 Jul 6 11:34 etc
dr-xr-xr-x 2 root ftp 512 Jul 6 11:33 pub

ftp/etc:
total 43
dr-x--x--x 2 root ftp 512 Jul 6 11:34 .
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 ..
-r--r--r-- 1 root ftp 316 Jul 6 11:34 group
-r--r--r-- 1 root ftp 40960 Jul 6 11:34 pwd.db

ftp/pub:
total 2
dr-xr-xr-x 2 root ftp 512 Jul 6 11:33 .
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 ..

Starting up the server and logging

With ftpd you can choose to either run it from inetd or the rc scripts can kick it off. These examples will show our
daemon being started from inetd.conf. First we must become familiar with some of the options to ftpd. The default line
from /etc/inetd.conf is:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -U

Here ftpd is invoked with -US . This will log anonymous connections to /var/log/ftpd and concurrent sessions to
/var/run/utmp . That will allow for these sessions to be seen via who(1). For some, you might want to run only an
anonymous server, and disallow ftp for users. To do so you should invoke ftpd with the -A option. Here is a line that
starts ftpd up for anonymous connections only. It also uses -ll which logs each connection to syslog, along with the
get, retrieve, etc, ftp commands.

ftp stream tcp nowait root /usr/libexec/tcpd ftpd -l

Note - For people using HIGH traffic ftp servers, you might want to not invoke ftpd from inetd.conf. The best option is
to comment the ftpd line from inetd.conf and start ftpd from rc.conf along with the -D option. This will start ftpd as a
daemon, and has much less overhead as starting it from inetd. Here is an example line to start it from rc.conf.

ftpd_flags="-DllUSA" # for non-inetd use: ftpd_flags="-D"

This of course only works if you have ftpd taken out of /etc/inetd.conf .

Saturday, January 19, 2002 10.0 - System Management Page: 15

http://www.openbsd.org/faq/faq10.html

Other relevant files

/etc/ftpwelcome - This holds the Welcome message for people once they have connected to your ftp server.
/etc/motd - This holds the message for people once they have successfully logged into your ftp server.
.message - This file can be placed in any directory. It will be shown once a user enters that directory.

10.13 - Confining users to their home dir's in ftpd(8).
OpenBSD's ftpd(8) is setup by default to be able to handle this very easily. This is accomplished via the file
/etc/ftpchroot. Since users cannot always be trusted, it might be necessary to restrain them to their home directories.
This behavior is NOT on by default. Here is an example of what the default behavior is like.

$ ftp localhost
Connected to localhost.
220 oshibana FTP server (Version 6.4/OpenBSD) ready.
Name (localhost:ericj): ericj
331 Password required for ericj.
Password: *********
230- OpenBSD 2.6 (GENERIC) #690: Fri Oct 29 16:32:17 MDT 1999
230-
230- Welcome to OpenBSD: The proactively secure Unix-like operating system.
230-
230- Please use the sendbug(1) utility to report bugs in the system.
230- Before reporting a bug, please try to reproduce it with the latest
230- version of the code. With bug reports, please try to ensure that
230- enough information to reproduce the problem is enclosed, and if a
230- known fix for it exists, include that as well.
230-
230 User ericj logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /
250 CWD command successful.
ftp> ls
227 Entering Passive Mode (127,0,0,1,60,7)
150 Opening ASCII mode data connection for 'file list'.
altroot
bin
dev
etc
home
mnt
root
sbin
stand
tmp
usr
var
bsd
sys
boot
226 Transfer complete.
ftp> quit
221 Goodbye.

As you can see here, access is granted to the whole server. In a perfect world this is ok, where all users can be trusted,
but this isn't so. To limit a user, simply add their name to the file /etc/ftpchroot. Here is an example showing user
"ericj" being restricted.

$ cat /etc/ftpchroot
$OpenBSD: faq10.html,v 1.61 2002/01/13 00:00:32 ericj Exp $
#
list of users (one per line) given ftp access to a chrooted area.
read by ftpd(8).

Saturday, January 19, 2002 10.0 - System Management Page: 16

http://www.openbsd.org/faq/faq10.html

ericj

This is enough to keep the user "ericj" from escaping from his own directory. As you can see in the next example. The /
directory has suddenly changed to his home dir!

$ ftp localhost
Connected to localhost.
220 oshibana FTP server (Version 6.4/OpenBSD) ready.
Name (localhost:ericj): ericj
331 Password required for ericj.
Password: *********
230 User ericj logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /
250 CWD command successful.
ftp> ls
227 Entering Passive Mode (127,0,0,1,92,171)
150 Opening ASCII mode data connection for 'file list'.
.login
.mailrc
.profile
.rhosts
.ssh
.cshrc
work
mail
src
226 Transfer complete.
ftp> quit
221 Goodbye.

10.14 - Applying patches in OpenBSD
The OpenBSD source tree is constantly changing and improving, along with this fixes to common problems are often
made and patches released to the public. These patches appear on the errata web page located at
http://www.openbsd.org/errata.html, and are separated into categories. These categories correspond to patches that
should be applied to different architectures or architecture independent patches.

Note, however, that patches aren't made for new additions to OpenBSD, and are only done for important reliability fixes
or security problems that should be addressed right away, although the choice to do so is, as always, up to the
administrator.

For the examples I will be patching talkd(8) with a security fix from the patch obtained from errata.html.

How are these patches different from what I would find in the CVS tree?

All patches posted at http://www.openbsd.org/errata.html are patches directly against the latest release's source tree.
Patches against the latest CVS tree might also include other changes that wouldn't be wanted on a release system.

Getting your system ready to be patched.

Patches for the OpenBSD Operating System are distributed as diffs, which are text files that hold differences to the
original source code. They are NOT distributed in binary form. This means that to patch your system you must have the
source code from the RELEASE version of OpenBSD readily available. This does not mean that you must have ALL
source code to the OpenBSD operating system to patch your system, but must have all code for the program which you
are patching. For instance, if you are patching the kernel you must have all source for the kernel on hand.

cvs(1) is a very handy tool that can be used to grab only the source that you need via any of the anonymous cvs servers
located around the world. You can get a listing of these servers at http://www.openbsd.org/anoncvs.html.

To retrieve the current release's source code using cvs(1), you would use the following line:

Saturday, January 19, 2002 10.0 - System Management Page: 17

http://www.openbsd.org/faq/faq10.html

$ cvs -danoncvs@anoncvs5.usa.openbsd.org:/cvs co -rOPENBSD_3_0_BASE src/libexec/t
cvs server: Updating src/libexec/talkd
U src/libexec/talkd/announce.c
U src/libexec/talkd/talkd.c
U src/libexec/talkd/talkd.h

To find the CVS path to the code that you need, you can find this in the patch on the Index: line. In this case, the CVS
path was src/libexec/talkd/ . Always check out the revision of OPENBSD_version_number_BASE. Without "_BASE"
you will be checking out the stable branch, which might contain other changes that will interfere. If you are already
tracking the patch branch, the patches should already be in that source, however you should always check and make
sure. You can always look at http://www.openbsd.org/plus.html to see which patches have been applied to the patch
branch. If the patches haven't been applied yet, you will need to grab the latest release source using the commands
above.

Also, for those users that bought official OpenBSD CDs, you can get the source code directly off of the CD. Refer to the
CD insert on how to extract the source from the CD. In which case you won't need to obtain the source via anoncvs.

Apply by doing:
 cd /usr/src
 patch -p0 < 026_talkd.patch
 cd libexec/talkd
 make obj && make depend && make && make install

Index: libexec/talkd/announce.c <------ Path to sources
===
RCS file: /cvs/src/libexec/talkd/announce.c,v
retrieving revision 1.8
retrieving revision 1.9
diff -u -r1.8 -r1.9
--- libexec/talkd/announce.c 1998/08/18 03:42:10 1.8
+++ libexec/talkd/announce.c 2000/07/06 00:01:45 1.9
@@ -160,6 +160,6 @@
 *(bptr++) = '\n';
 }
 *bptr = '\0';
- fprintf(tf, big_buf);
+ fprintf(tf, "%s", big_buf);
 fflush(tf);
 }

Once you've obtained the proper sources, you can obtain the patch and place it in src/

Applying Patches

$ cd /usr/src
$ patch -p0</path/to/026_talkd.patch
Hmm... Looks like a unified diff to me...
The text leading up to this was:

|Apply by doing:
| cd /usr/src
| patch -p0 < 026_talkd.patch
| cd libexec/talkd
| make obj && make depend && make && make install
|
|Index: libexec/talkd/announce.c
|===
|RCS file: /cvs/src/libexec/talkd/announce.c,v
|retrieving revision 1.8
|retrieving revision 1.9
|diff -u -r1.8 -r1.9
|--- libexec/talkd/announce.c 1998/08/18 03:42:10 1.8
|+++ libexec/talkd/announce.c 2000/07/06 00:01:45 1.9

Saturday, January 19, 2002 10.0 - System Management Page: 18

http://www.openbsd.org/faq/faq10.html

Patching file libexec/talkd/announce.c using Plan A...
Hunk #1 succeeded at 160. <------------ Patch Succeeded
done
$ cd /usr/src/libexec/talkd/
$ ls
CVS announce.c print.c table.c talkd.c
Makefile announce.c.orig process.c talkd.8 talkd.h
$ make obj && make depend && make
making /home/ericj/lsrc/src/libexec/talkd/obj
mkdep -a /home/ericj/lsrc/src/libexec/talkd/talkd.c /home/ericj/lsrc/src/libexec/talkd/announce
cc -O2 -c /home/ericj/lsrc/src/libexec/talkd/talkd.c
cc -O2 -c /home/ericj/lsrc/src/libexec/talkd/announce.c
cc -O2 -c /home/ericj/lsrc/src/libexec/talkd/process.c
cc -O2 -c /home/ericj/lsrc/src/libexec/talkd/table.c
cc -O2 -c /home/ericj/lsrc/src/libexec/talkd/print.c
cc -o ntalkd talkd.o announce.o process.o table.o print.o
nroff -Tascii -mandoc /home/ericj/lsrc/src/libexec/talkd/talkd.8 > talkd.cat8
$ sudo make install
install -c -s -o root -g bin -m 555 ntalkd /usr/libexec
install -c -o root -g bin -m 444 talkd.cat8 /usr/share/man/cat8/talkd.0
/usr/share/man/cat8/ntalkd.0 -> /usr/share/man/cat8/talkd.0

Once you have done that, you should restart that service.

[Back to Main Index] [To Section 9.0 - Migrating from Linux] [To Section 11.0 - Performance Tuning]

 www@openbsd.org
$OpenBSD: faq10.html,v 1.61 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 1

http://www.openbsd.org/faq/faq11.html

11.0 - Performance Tuning

Table of Contents

11.1 - Networking
11.2 - Disk I/O
11.3 - Tuning kmem
11.4 - Hardware Choices
11.5 - Why aren't we using async mounts?
11.6 - Tuning your monitor resolution under XFree86

11.1 - Networking
If you run a busy server, gateway or firewall, you should make sure to prevent memory starvation to various parts of
the kernel described below.

The options(4) man page talks about the options presented.

An option you may need to change for a busy server, gateway or firewall is NMBCLUSTERS. This controls the size of
the kernel mbuf cluster map. On your computer, if you get messages like "mb_map full", you need to increase this
value. If traffic on a networking interface stops for no apparent reason, this may also be a sign that you need to increase
this value. A reasonable value on the i386 port with most 100Mbps ethernet interfaces (no matter how many the machine
has) is 8192.

option NMBCLUSTERS=8192

11.2 - Disk I/O
Disk I/O speed is a significant factor in the overall speed of your computer. It becomes increasingly important when
your computer is hosting a multi-user environment (users of all kinds, from those who log-in interactively to those who
see you as a file-server or a web-server.) Data storage constantly needs attention, especially when your partitions run out
of space and when your disks fail. OpenBSD has several options to increase the speed of your disk operations and
provide fault tolerance.

Table Of Contents
CCD - Concatenated Disk Driver.
RAID
Filesystem Buffer
Soft Updates
Size of the namei() cache

11.2.1 - CCD

The first option is the use of ccd(4), the Concatenated Disk Driver. This allows you to join several partitions
into one virtual disk (and thus, you can make several disks look like one disk). This concept is similar to that of
LVM (logical volume management), which is found in many commercial Unix flavors.

If you are running GENERIC, ccd is already enabled. If not, you may need to add it to your kernel
configuration. To start the setup of ccd, you need to add support for it in your kernel. A line such as:

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 2

http://www.openbsd.org/faq/faq11.html

pseudo-device ccd 4 # concatenated disk devices

The above example gives you up to 4 ccd devices (virtual disks). Now you need to figure out what partitions on
your real disks that you want to dedicate to ccd. Use disklabel to mark these partitions as type 'ccd'. On some
architectures, disklabel may not allow you to do this. In this case, mark them as 'ffs'.

If you are using ccd to gain performance by striping, note that you will not get optimum performance unless
you use the same model of disks with the same disklabel settings.

Edit /etc/ccd.conf to look something like this: (for more information on configuring ccd, look at ccdconfig(8))

Configuration file for concatenated disk devices
#
ccd ileave flags component devices
ccd0 16 none /dev/sd2e /dev/sd3e

To make your changes take effect, run

ccdconfig -C

As long as /etc/ccd.conf exists, ccd will automatically configure itself upon boot. Now, you have a new disk,
ccd0, a combination of /dev/sd2e and /dev/sd3e. Just use disklabel on it like you normally would to make the
partition or partitions you want to use. Again, don't use the 'c' partition as an actual partition that you put stuff
on. Make sure your usable partitions are at least one cylinder off from the beginning of the disk.

11.2.2 - RAID

Another solution is raid(4) which will have you use raidctl(8) to control your raid devices. OpenBSD's RAID is
based upon Greg Oster's NetBSD port of the CMU RAIDframe software. OpenBSD has support for RAID
levels of 0, 1, 4, and 5.

With raid, as with ccd, support must be in the KERNEL. Unlike ccd, support for RAID is not found in
GENERIC, it must be compiled into your kernel (RAID support adds some 500K to the size of an i386 kernel!)

pseudo-device raid 4 # RAIDframe disk device

Setting up RAID on some operating systems is confusing and painful to say the least. Not so with RAIDframe.
Read the raid(4) and raidctl(8) man pages to get full details. There are many options and possible
configurations, a detailed explanation is beyond the scope of this document.

11.2.3 - Filesystem Buffer

For fileservers with memory to spare, you can increase BUFCACHEPERCENT. That is, what percentage of
your RAM should you use as a file system buffer. This option may change when the Unified Buffer Cache is
completed and is part of OpenBSD. In the mean time, to increase BUFCACHEPERCENT, you should add a
line to your kernel configuration like this:

option BUFCACHEPERCENT=30

Of course you can make it as low as 5 percent (the default) or as high as 50 percent (or more.)

11.2.4 - Soft updates

Another tool that can be used to speed up your system is softupdates. One of the slowest operations in the
traditional BSD file system is updating metainfo (which happens, among other times, when you create or delete
files and directories.) Softupdates attempts to update metainfo in RAM instead of writing to the hard disk each
and every single metainfo update. Another effect of this is that the metainfo on disk should always be complete,
although not always up to date. So, a system crash should not require fsck upon boot up, but simply a

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 3

http://www.openbsd.org/faq/faq11.html

background version of fsck that makes changes to the metainfo in RAM (a la softupdates). This means
rebooting a server is much faster, because you don't have to wait for fsck! (OpenBSD does not have this feature
yet.) You can read more about softupdates in the softupdates FAQ entry.

11.2.5 - Size of the namei cache

Note: previously, the options(4) manual page recommended to set the NVNODE=integer kernel option. This is
no longer recommended; you should now use the sysctl(8) command instead.

The name-to-inode translation (a.ka., namei()) cache controls the speed of pathname to inode(5) translation. By
default, this cache has NPROC * (80 + NPROC / 8) entries. NPROC is set to 20 + 16 * MAXUSERS; see the
config(8) manual page for explanation on the maxusers kernel configuration value. A reasonable way to derive
a value for the cache, should a large number of namei cache misses be noticed with a tool such as systat(1), is to
examine the system's current computed value with sysctl(8), (which calls this parameter "kern.maxvnodes")
and to increase this value until either the namei cache hit rate improves or it is determined that the system does
not benefit substantially from an increase in the size of the namei cache. After the value has been determined,
you can determine it to be set at system startup time with sysctl.conf(5).

11.3 - Tuning kmem
This was moved to the OpenBSD 2.5 information section.

11.4 - Hardware choices
(Note- this section is heavily centered around the i386, or PC, architecture. That is to say... other architectures don't
give you quite as many choices!)

The performance of your applications depends heavily on your OS and the facilities it provides. This may be part of the
reason that you are using OpenBSD. The performance of your applications also depends heavily on your hardware. For
many folks, the Price/Performance ratio of a brand new PC with a Intel Pentium III or AMD Athlon processor is much
better than the Price/Performance ratio of a Sun UltraSparc 60! Of course, the price of OpenBSD can't be beat.

If you are shopping for a new PC, whether you are buying it piece by piece or completely pre-built, you want to make
sure first that you are buying reliable parts. In the PC world, this is not easy. Bad or otherwise unreliable or
mismatched parts can make OpenBSD run poorly and crash often. The best advice we can give is to be
careful, buy brands and parts that have been reviewed by an authority you trust. Sometimes, when you skimp on the
price of a PC, you lose in quality!

There are certain things that will help bring out the maximum performance of your hardware:

Use multiple disks.

Instead of buying one 20GB disk, buy multiple 9GB disks. While this may cost more, distributing the load
over multiple spindles will decrease the amount of time necessary to access data on the disks. And, with more
spindles, you will get more reliability and faster data access with RAID.

Use SCSI if you need very high disk IO speeds.

IDE disks normally run at 5400 RPM, with new disks emerging from manufacturers that run at 7200 RPM.
Using high end IDE disks, it may be unreasonable to expect more then 15 to 20 megabytes per second of
throughput from a single disk. Using high end SCSI disks (higher cost 10000 RPM disks), you can achieve
performance higher then this. Conversely, if you are using medium or low end SCSI disks, this is a waste of
money, and IDE will serve you just as well, if not better.

If you are building a server, and you need more then 20GB of disk space, you may want to consider SCSI. IDE
limits you to two disks per controller. Concurrent access to these two disks may have a negative impact on the
I/O performance of these disks. Wide SCSI limits you to 15 per controller! While SCSI costs more, the

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 4

http://www.openbsd.org/faq/faq11.html

flexibility and performance can justify these costs in some environments.

Use SDRAM instead of DRAM.

This option applies mainly to PCs. Most other architectures don't give you a choice of what kind of RAM you
can use. Several PCs still do. You will get better performance with SDRAM versus DRAM (SIMMs). If your
system supports RDRAM or some other new type of RAM, then you are already one step ahead...

Use ECC or parity RAM.

Parity adds some functionality to see if the data in RAM has been corrupted. ECC extends this functionality and
attempts to correct some bit corruption errors on the fly. This option applies mainly to PCs. Most other
architectures simply require parity or ECC capable RAM. Several non-PC computers won't even boot with
non-parity RAM. If you aren't using ECC/parity RAM, you may get data corruption and other abnormalities.
Several manufacturers of "cheap PC RAM" don't even make an ECC variety! This will help you avoid them!
PC manufacturers often sell several product lines, divided around "servers" and "workstations." The servers
will incorporate ECC RAM into their architecture. Unix workstation manufacturers have been using parity (and
now ECC) for several years in all of their product lines.

Avoid ISA devices.

While most folks avoid ISA devices, because they are generally hard to configure and out of date, there are still
plenty in existence. If you are using the ISA bus for your disk or network controllers, (or even worse, for both)
remember that the ISA bus itself can be a performance bottleneck. If you need speed, look to PCI. Of course,
there are still several ISA bus cards that work just fine. Unfortunately, most of these are sound cards and serial
port cards.

Avoid cheap PCI network adapters.

OpenBSD supports a plethora of cheap PCI network adapters. These adapters work great in home systems, and
also low or moderate throughput business and research environments. But, if you need high throughput and
low impact on your server, you are better off buying a quality PCI network adapter. Unfortunately, some
expensive brand adapters (such as the 3com XL series) are not much better than the cheap adapters. One
favourite 10/100Mbps adapter is the Intel EtherExpress PRO/100.

11.5 - Why aren't we using async mounts?
Question: "I simply do "mount -u -o async /" which makes one package I use (which insists on touching a few hundred
things from time to time) usable. Why is async mounting frowned upon and not on by default (as it is in some other
unixen) ? Surely it is much simpler and therefore a safer way of improving performance in some applications ?"

Answer: "Async mounts is indeed faster then sync mounts, but they are also less safe. What happens in case of a power
failure? Or a hardware problem? The quest for speed should not sacrifice the reliability and the stability of the system.
Check the manpage for mount(8)."

 async All I/O to the file system should be done asynchronously.
 This is a dangerous flag to set since it does not guaran-
 tee to keep a consistent file system structure on the
 disk. You should not use this flag unless you are pre-
 pared to recreate the file system should your system
 crash. The most common use of this flag is to speed up
 restore(8) where it can give a factor of two speed in-
 crease.

On the other hand, when you are dealing with temp data that you can recreate from scratch after a crash, you could gain
speed by using a separate partition, used for that data only, mounted async. If you don't mind risking the loss of all the
data in the partition when something goes wrong...

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 5

http://www.openbsd.org/faq/faq11.html

11.6 - Tuning your monitor resolution under XFree86
Getting an X server working at an acceptable resolution with many multi-sync monitors is possible. If anyone has tried
to do this with the standard xf86config or XF86Setup utilties, they probably didn't get the best possible results. One of
the more painful aspects is simply getting your monitor running with your preferred resolution, and then getting the
vertical scan rate set to at least 72-75 Hz, a rate where the screen flicker is much less visible to humans. Conversely,
what if you are trying to set the vertical scan rate so it is very low? You can set it at 50 Hz so that it can be captured on to
video without flicker, but the methods to do this are non-obvious with the standard XFree86 tools and documentation.

Finally, at the resolutions many people normally use with inexpensive VGA monitors (800x600, 1024x768, 1152x900,
1280x1024), it is possible (at least on newer monitors) to use vertical scan rates of 85MHz and above, to achieve an
extremely clean, palatable picture. The XFree86 X server has a mechanism which allows you to describe in detail the
video mode you want to use, this is the ModeLine. A ModeLine has four sections, a single number for the pixel clock,
four numbers for horizontal timings, four numbers for vertical timings, and an optional section with a list of flags
specifying other characteristics of the mode (such as Interlace, DoubleScan, and more...See the XF86Config(5) manual
page for more ModeLine details.)

Generating a ModeLine is a black art... Luckily, there is a script which can do this for you. It is the Colas XFree86
ModeLine Generator. Before you can use the Colas generator, you need to figure out the vertical and horizontal sync
limits for your monitor. This is often documented in the manual, or on the manufacturer's web site. If you can't find
either of those, simply search the web for the monitor make and model, several people have been kind enough to
compile lists with this information.

For example, say you have a Dell D1226H monitor. You searched in agony at Dell's web site to find that it has a 30-95
kHz horizontal scan range, and a 50-160 Hz vertical scan range. Visit the ModeLine generator page, enter this
information. Next, you need to enter the minimum vertical scan rate you want. Any rate at or above 72 Hz should
generally have low visible flicker. As you go higher, the clearer and crisper your screen image becomes.

With all of these bits of information, the script will generate a ModeLine for every possible 4x3 resolution which your
monitor can support, above the minimum vertical scan rate which you enter. If someone enters the Dell specs above and
a 75 Hz vertical scan minimum, the script gives out something like the following:

ModeLine "320x240" 20.07 320 336 416 448 240 242 254 280 #160Hz
ModeLine "328x246" 20.86 328 344 424 456 246 248 260 286 #160Hz
...
ModeLine "816x612" 107.39 816 856 1056 1136 612 614 626 652 #145Hz
ModeLine "824x618" 108.39 824 864 1064 1144 618 620 632 658 #144Hz
ModeLine "832x624" 109.38 832 872 1072 1152 624 626 638 664 #143Hz
...
ModeLine "840x630" 109.58 840 880 1080 1160 630 632 644 670 #141Hz
ModeLine "848x636" 110.54 848 888 1088 1168 636 638 650 676 #140Hz
...
ModeLine "1048x786" 136.02 1048 1096 1336 1432 786 788 800 826 #115Hz
ModeLine "1056x792" 136.58 1056 1104 1344 1440 792 794 806 832 #114Hz
ModeLine "1064x798" 137.11 1064 1112 1352 1448 798 800 812 838 #113Hz
...
ModeLine "1432x1074" 184.07 1432 1496 1816 1944 1074 1076 1088 1114 #85Hz
ModeLine "1576x1182" 199.86 1576 1648 2008 2152 1182 1184 1196 1222 #76Hz
ModeLine "1584x1188" 198.93 1584 1656 2016 2160 1188 1190 1202 1228 #75Hz

Now, this monitor claims to do 1600x1200 @ 75 Hz, but the script does not say this is within 75 Hz. So, if you really
want exactly 1600x1200, go down a notch with your minimum vertical rate... (Here, we go down to 70 Hz)

ModeLine "1592x1194" 197.97 1592 1664 2024 2168 1194 1196 1208 1234 #74Hz
ModeLine "1600x1200" 199.67 1600 1672 2032 2176 1200 1202 1214 1240 #74Hz
ModeLine "1608x1206" 198.65 1608 1680 2040 2184 1206 1208 1220 1246 #73Hz
ModeLine "1616x1212" 197.59 1616 1688 2048 2192 1212 1214 1226 1252 #72Hz
ModeLine "1624x1218" 199.26 1624 1696 2056 2200 1218 1220 1232 1258 #72Hz
ModeLine "1632x1224" 198.15 1632 1704 2064 2208 1224 1226 1238 1264 #71Hz
ModeLine "1640x1230" 199.81 1640 1712 2072 2216 1230 1232 1244 1270 #71Hz
ModeLine "1648x1236" 198.64 1648 1720 2080 2224 1236 1238 1250 1276 #70Hz

Saturday, January 19, 2002 11.0 - Performance Tuning Page: 6

http://www.openbsd.org/faq/faq11.html

Here, we see the monitor really does 1600x1200 @ 74 Hz when the dot clock (bandwidth) is limited to 200MHz. Set
the bandwidth according to the limits defined by the monitor.

Once you have your ModeLines, put them into your /etc/XF86Config file. Comment out the old ModeLines, so that you
can use them again if the new ones don't work. Next, choose what resolution you actually want to run at. First, figure
out if X is running in accelerated mode (which it does with most video cards), so you know which "Screen" section of
the XF86Config to modify. Or, just modify all of the Screen sections.

Section "Screen"
 Driver "Accel"
 Device "Primary Card"
 Monitor "Primary Monitor"
 DefaultColorDepth 32
 SubSection "Display"
 Depth 32
 Modes "1280x1024" "1024x768"
 EndSubSection

The first frequency you see after the "Modes" line is the frequency that X is going to start in. By pressing
CTRL-ALT-KEYPAD MINUS, or CTRL-ALT-KEYPAD PLUS, you can switch between any frequencies that you list
here. According to the section above, X will try to start in 32-bit color mode (via the DefaultColorDepth directive,
without it X will start in 8-bit color mode.) The first resolution it will try to use is 1280x1024 (it follows the order of the
Modes line.) Note that "1280x1024" is just a label for the values in the ModeLine.

Note that the ModeLine generator script has options to relax its' timings for older or smaller monitors, and also has the
ability to provide ModeLines for specific resolutions. Depending on the type of hardware you have, it may not be very
easy to use with the default options. If the picture is too tall, too wide, or too small, or is shifted horizontally or
vertically, and the controls of the monitor aren't enough to correct its appearance, once can use xvidtune(1) to adjust the
ModeLine to better fit with the monitor's timings.

On most modern monitors, there is no fixed limit on the bandwidth, thus they are often not listed anymore in the specs.
What happens is that the more you go up in BW, the fuzzier the screen image becomes. So you may want to put in the
bandwith of your card (also named "dotclock") to test (you cannot damage your monitor this way), and go progressively
down in BW down to have a nice crisp image.

If this seems needlessly complex, that's because it is. XFree86 4.0 addresses this, and makes this process much easier
since it has several builtin modes and is capable of reading back capabilities from "plug and play" monitors through
DDC and DDC2. Unfortunately, it is not quite ready for prime time because it does not support many video cards which
are supported in XFree86 3.3.

You can download the Colas XFree86 ModeLine Generator script at: ftp://koala.inria.fr/pub/Klone/. You need to grab
the Klone interpreter, and compile it. It is in the ports as lang/klone. The scripts exist under the scripts directory in the
Klone distribution. (The port installs them to /usr/local/lib/klone/scripts.)

There are two versions of the script included, the first is a CGI version identical to the web page above. The second is a
non-CGI version which will take your complete XF86Config file, decode the monitor specs that you entered into
xf86config/XF86Setup (Now, think, did you actually enter the specs for your monitor or just choose generic ones?),
and fix the existing ModeLines accordingly.

[Back to Main Index] [To Section 10.0 - System Administration] [To Section 12.0 - For Advanced Users]

 www@openbsd.org
$OpenBSD: faq11.html,v 1.20 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 12.0 - For Advanced Users Page: 1

http://www.openbsd.org/faq/faq12.html

12.0 - For Advanced Users

Table of Contents

12.1 - Forcing DMA access for IDE disks
12.2 - Upgrading from various versions of OpenBSD via CVS.

By advanced users , we mean to imply people who have a working knowledge of how to use and administrate a
Unix-like operating system. If you follow instructions in this section without understanding what you are doing, you
may cause problems in the operation of your system.

12.1 - Forcing DMA access for IDE disks
With the PCI IDE code, your chipset may not be known. If so, you will get a message like:

pciide0: DMA, (unused)

If you get this message, you can try and force DMA mode by using 'flags 0x0001' on your pciide entry in your kernel
config file. That would look something like this:

pciide* at pci ? dev ? function ? flags 0x0001

After doing this, the pciide code will try to use DMA mode regardless of whether or not it actually knows how to do so
with your chipset. If this works, and your system makes it through fsck and startup, it is likely that this will work for
good. If this does not work, and the system hangs or panics after booting, then you can't use DMA mode (yet, until
support is added for your chipset). Note that if you find the documentation for your PCI-IDE controller's chipset, this is
a good start to fully supporting your chipset within the PCI-IDE code. You can look on the manufacturer's website or
call them. If your PCI-IDE controller is part of your motherboard, figure out who manufactures the chipset and pursue
their resources!

Note that you will know that DMA support has been enabled if you see this message:

cd0(pciide0:1:0): using PIO mode 3, DMA mode 1 (using DMA data transfers)

This means that pciide0, channel 1, drive 0 (which appears to be an ATAPI CD-ROM) is using DMA data transfers.

Some notes:

DMA is not supported on wdc* unless a DMA channel (drq) is specified. I'm not sure what the "standard" drqs are for
hard disk controllers. To enable

wdc0 at isa? port 0x1f0 irq 14 flags 0x00

Non-ultra DMA does not necessarily lead to higher bandwidth vs PIO. However, it decreases the CPU load
significantly.

[Back to Main Index] [To Section 11.0 - Performance Tuning] [To Section 13.0 - IPsec]

 www@openbsd.org
$OpenBSD: faq12.html,v 1.28 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 12.0 - For Advanced Users Page: 2

http://www.openbsd.org/faq/faq12.html

Saturday, January 19, 2002 13.0 - Using IPsec Page: 1

http://www.openbsd.org/faq/faq13.html

13.0 - Using IPsec (IP Security Protocol)

Table of Contents

13.1 - What is IPsec?
13.2 - That's nice, but why do I want to use IPsec?
13.3 - What are the protocols behind IPsec?
13.4 - On the wire format
13.5 - Configuring IPsec
13.6 - How do I setup IPsec with manual keying?
13.7 - How do I setup photurisd?
13.8 - How do I setup isakmpd?
13.9 - How do I use isakmpd with X.509 certificates?
13.10 - What IKE clients are compatible with isakmpd?
13.11 - Troubleshooting IPsec/VPN
13.12 - Related Documentation

Portions of this document were taken from:

ipsec(4)
vpn(8)
IPsec for Dummies by Julian Elischer
ISAKMP Howto by Patrick Ethier
X.509v3 certificates with isakmpd by Jörgen Granstam

13.1 - What is IPsec?
IPsec is a set of extensions to the IP protocol family. It provides cryptographic security services. These services allow
for authentication, integrity, access control, and confidentiality. IPsec provides similar services as SSL, but at the
network layer, in a way that is completely transparent to your applications, and much more powerful. We say this
because your applications do not have to have any knowledge of IPsec to be able to use it. You can use any IP protocol
over IPsec. You can create encrypted tunnels (VPNs), or just do encryption between computers. Since you have so
many options, IPsec is rather complex (much more so then SSL!)

Before you start using IPsec, we strongly recommend that you check out the "recommended reading" of part 6 of the
FAQ. In particular, if you don't already understand it, the Understanding IP Addressing document is highly
recommended.

In a logical sense, IPsec works in any of these three ways:

Host-to-Host
Host-to-Network
Network-to-Network

In every scenario that involves a network, we mean to imply router. As in, Host-to-Router (and this router controls and
encrypts traffic for a particular Network .)

As you can see, IPsec can be used to tunnel traffic for VPN connections. However, its utility reaches beyond VPNs.
With a central Internet Key Exchange registry, every machine on the internet could talk to another one and employ
powerful encryption and authentication!

Saturday, January 19, 2002 13.0 - Using IPsec Page: 2

http://www.openbsd.org/faq/faq13.html

13.2 - That's nice, but why do I want to use
IPsec?
The internet protocol, IP, aka IPv4, does not inherently provide any protection to your transferred data. It does not even
guarantee that the sender is who he says he is. IPsec tries to remedy this. These services are considered distinct, but the
IPsec supports them in a uniform manner.

Confidentiality

Make sure it is hard for anyone but the receiver to understand what data has been communicated. You do not want
anyone to see your passwords when logging into a remote machine over the Internet.

Integrity

Guarantee that the data does not get changed on the way. If you are on a line carrying invoicing data you probably want
to know that the amounts and account numbers are correct and not altered while in-transit.

Authenticity

Sign your data so that others can see that it is really you that sent it. It is clearly nice to know that documents are not
forged.

Replay protection

We need ways to ensure a transaction can only be carried out once unless we are authorized to repeat it. I.e. it should not
be possible for someone to record a transaction, and then replaying it verbatim, in order to get an effect of multiple
transactions being received by the peer. Consider the attacker has got to know what the traffic is all about by other
means than cracking the encryption, and that the traffic causes events favourable for him, like depositing money into his
account. We need to make sure he cannot just replay that traffic later. WARNING: as per the standards specification,
replay protection is not performed when using manual-keyed IPsec (e.g., when using ipsecadm(8)) .

13.3 - What are the protocols behind IPsec?
IPsec provides confidentiality, integrity, authenticity, and replay protection through two new protocols. These protocols
are called AH, Authentication header, and ESP, Encapsulated security payload.

AH provides authentication, integrity, and replay protection (but not confidentiality). Its main difference with ESP is that
AH also secures parts of the IP header of the packet (like the source/destination addresses).

ESP can provide authentication, integrity, replay protection, and confidentiality of the data (it secures everything in the
packet that follows the header). Replay protection requires authentication and integrity (these two go always together).
Confidentiality (encryption) can be used with or without authentication/integrity. Similarly, one could use
authentication/integrity with or without confidentiality.

13.4 - On the wire format
The Authentication Header (AH) comes after the basic IP header and contains cryptographic hashes of the data and
identification information. The hashes can also cover the invariant parts of the IP header itself. There are several
different RFCs giving a choice of actual algorithms to use in the AH, however they all must follow the guidelines
specified in RFC2402.

The Encapsulating Security Payload (ESP) header, allows for rewriting of the payload in encrypted form. The
ESP header does not consider the fields of the IP header before it and therefore makes no guarantees about anything
except the payload. The various types of ESP applicable must follow RFC2406. An ESP header can also provide
authentication for the payload, (but not the outer header).

Saturday, January 19, 2002 13.0 - Using IPsec Page: 3

http://www.openbsd.org/faq/faq13.html

An orthogonal (mostly) division of IPsec functionality is applied depending on whether the endpoint doing the IPsec
encapsulation is the original source of the data or a gateway:

Transport mode is used by a host that is generating the packets. In transport mode, the security headers are
added before the transport layer (e.g . TCP, UDP) headers, before the IP header is prepended to the packet. In
other words an AH added to the packet will cover the hashing of the TCP header and some fields of the
end-to-end IP header, and an ESP header will cover the encryption of the TCP header and the data, but not the
end-to-end IP header.
Tunnel mode is used when the end-to-end IP header is already attached to the packet, and one of the ends of
the secure connection is only a gateway. In this mode, the AH and ESP headers are used to cover the entire
packet including the end-to-end header, and a new IP header is prepended to the packet that covers just the hop
to the other end of the secure connection (though that may of course be several IP hops away).

IPsec secured links are defined in terms of Security Associations (SAs). Each SA is defined for a single
unidirectional flow of data, and usually (ignoring multicast) from one single point to another, covering traffic
distinguishable by some unique selector. All traffic flowing over a single SA is treated the same. Some traffic may be
subject to several SAs, each of which applies some transform. Groups of SAs are called an SA Bundle. Incoming
packets can be assigned to a particular SA by the three defining fields, (Destination IP address, Security
Parameter Index, security protocol). SPI can be considered a cookie that is handed out by the receiver of the SA
when the parameters of the connection are negotiated. The security protocol must be either AH or ESP. Since the IP
address of the receiver is part of the triple, this is a guaranteed unique value. They can be found from the outer IP header
and the first security header (which contains the SPI and the security protocol).

An example of a tunnel mode AH packet is:

IPhdr AH IPhdr2 TCPhdr data

An example of a transport mode AH packet is:

IPhdr AH TCPhdr data

Because an ESP header cannot authenticate the outer IP header, it is useful to combine an AH and an ESP header to get
the following:

IPhdr AH ESP TCPhdr data

This is called Transport Adjacency. The tunneling version would look like:

IPhdr AH ESP IPhdr2 TCPhdr data

However it is not specifically mentioned in the RFC. As with Transport adjacency, this would authenticate the entire
packet except a few headers in the IP header and also encrypt the payload (seen in italics). When an AH and an ESP
header are directly applied together like this, the order of the headers should be as shown. It is possible in tunnel mode,
to do arbitrary recursive encapsulation so that order is not specified.

13.5 - Configuring IPsec
How the IPsec systems and gateways are configured is to some extent left to the designer, however the RFC has some
strong recommendations as to how this should be implemented, so as to minimize confusion.

There are two administrative entities that control what happens to a packet. One is the Security Association
Database (SAD, referred to as TDB or TDB table throughout OpenBSD's IPsec source code) and the other is the
Security Policy Database (SPD).

They are similar in that given a number of selectors that describe some traffic, they will deliver an entry that describes

Saturday, January 19, 2002 13.0 - Using IPsec Page: 4

http://www.openbsd.org/faq/faq13.html

the processing needed. However, the SPD is two steps removed from the actual processing: the SPD is used for
outgoing packets, to decide what SAD entries should be used, and the SAD entries in turn describe the actual process
and the parameters for it. The SPD entries specify the existing SAD entries to use (if it's a bundle there can be more than
1), but if there is not already a suitable one, it is used to create new ones. The fields of the SA being created can be taken
either from the SPD entry or from the packet that initiated the creation.

Outgoing packets go from the SPD entry to the specific SA, to get encoding parameters. Incoming packets get to the
correct SA directly using the SPI/DestIP/Proto triple, and from there get to the SPD entry.

The SPD can also specify what traffic should bypass IPsec and what should be dropped, so it must also be consulted for
incoming non-IPsec traffic. SPD entries must be explicitly ordered as several might match a particular packet, and the
processing must be reproducible.

The SPD can be thought of as similar to a packet filter where the actions decided upon are the activation of SA
processes. Selectors can include src and dest address, port numbers if relevant, application and user IDs if available
(only on host based transport SAs), hostnames, security sensitivity levels, protocols, etc.

A SAD entry would include:

Dest IP address
IPsec proto (AH or ESP)
SPI (cookie)
Sequence counter
Seq O/F flag
Anti-replay window info
AH type and info
ESP type and info
Lifetime info
Tunnel/transport mode flags
Path MTU info

A SPD entry would contain:

Pointer to active SAs
Selector fields

Each SA can define one ESP header and one AH header. An IPsec session must have one or the other or both, but
cannot be defined with neither - otherwise there would be no headers to specify the SPI to look up the SA. The RFC
doesn't say what would happen if the AH and ESP headers disagree about the SPI value. One would presume this
would imply multiple SAs in a bundle.

The SPD in OpenBSD is managed through the ipsecadm flow command. (You would only make changes to it if you
were using manual keying.) SAD entries can be set manually with ipsecadm(8), however the IETF has also defined
automatic mechanisms for initialization of sessions and such things as key exchange. OpenBSD implements both
Photuris (RFC2522, and RFC2523) and ISAKMP automatic key exchange (RFC2407, RFC2408, and RFC2409) in
the photurisd(8) and isakmpd(8) daemons.

13.6 - How do I setup IPsec with manual
keying?
Manual keying is the easiest way to get started with IPsec. You can setup encryption between networks, to create VPNs
using this method. After you have read this section, you may want to investigate using /usr/share/ipsec/rc.vpn to set this
up for you automatically.

First, you need to turn on IP AH and IP ESP options in the OpenBSD kernel (if you are only using ESP, such as with
the rc.vpn script, or as with the example below, then you do not need to enable AH . In fact, there may even be security
concerns related to enabling AH if you are not using it).

Saturday, January 19, 2002 13.0 - Using IPsec Page: 5

http://www.openbsd.org/faq/faq13.html

There is a nice sysctl to enable these protocols.

sysctl -w net.inet.esp.enable=1
net.inet.esp.enable: 0 -> 1
sysctl -w net.inet.ah.enable=1
net.inet.ah.enable: 0 -> 1

You can edit /etc/sysctl.conf to turn these on at boot time. You need to remove the # mark from in front of
net.inet.esp.enable and/or net.inet.ah.enable (depending on which you plan to use) and make sure they are set to 1.

You also need to generate your manual keys. Since the security of the VPN is based on these keys being unguessable, it
is very important that the keys be chosen using a strong random source. One practical method of generating them is by
using the random(4) device. To produce 160 bits of randomness, for example, do:

dd if=/dev/urandom bs=1024 count=1 | sha1

The number of bits produced is important. Different cipher types may require different sized keys.

Cipher Key Length
DES 56 bits
3DES 168 bits
BLF Variable (40-160, 160 bits recommended)
CAST Variable (40-128, 128 bits recommended)
SKIPJACK 80 bits

Now, you need to setup SAs, or Security Associations. A Security Association is a combination of your IP addresses,
an SPI, and your security protocol (AH and/or ESP). The IP addresses are both your own and that of your destination.
The SPI, or Security Parameter Index, is a number that OpenBSD uses to classify different SAs.

These examples only use ESP to encrypt your traffic. ESP includes authentication of the contained encrypted data, but
does not authenticate the surrounding IP header, as AH would. This "limited authentication" is nevertheless quite
sufficient in most cases, especially for ESP in a tunnel environment.

ipsecadm new esp -spi SPI_OUT -src MY_EXTERNAL_IP -dst PEER_EXTERNAL_IP
-forcetunnel -enc blf -auth sha1 -key ENC_KEY -authkey AUTH_KEY

Let's put this into practice with two routers, 192.168.5.1 and 192.168.25.9.

On Host 192.168.5.1:

ipsecadm new esp -spi 1000 -src 192.168.5.1 -dst 192.168.25.9
-forcetunnel -enc blf -auth sha1 -key
7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
6a20367e21c66e5a40739db293cf2ef2a4e6659f
ipsecadm new esp -spi 1001 -dst 192.168.5.1 -src 192.168.25.9
-forcetunnel -enc blf -auth sha1 -key
7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
6a20367e21c66e5a40739db293cf2ef2a4e6659f

On Host 192.168.25.9:

ipsecadm new esp -spi 1001 -src 192.168.25.9 -dst 192.168.5.1
-forcetunnel -enc blf -auth sha1 -key
7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
6a20367e21c66e5a40739db293cf2ef2a4e6659f
ipsecadm new esp -spi 1000 -dst 192.168.25.9 -src 192.168.5.1
-forcetunnel -enc blf -auth sha1 -key
7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
6a20367e21c66e5a40739db293cf2ef2a4e6659f

Notice that the SPIs are different. See On the wire format for a complete description of what the SPI is and where it is
used.

Saturday, January 19, 2002 13.0 - Using IPsec Page: 6

http://www.openbsd.org/faq/faq13.html

Now that you have your Security Associations in place, set up your flows.

On 192.168.5.1:

So, right here, two flows will be created, one the local source address, which covers all packets originating from the
local host to the destination, as well as a flow from the destination back to the local host.

ipsecadm flow -proto esp -dst 192.168.25.9 -spi 1000 -addr 192.168.5.1
255.255.255.255 192.168.25.9 255.255.255.255

On 192.168.25.9:

ipsecadm flow -proto esp -dst 192.168.5.1 -spi 1001 -addr 192.168.25.9
255.255.255.255 192.168.5.1 255.255.255.255

If you want less overhead on your Host-to-Host VPNs, creating the SPI without -forcetunnel will let you use
transport mode (whereas, -forcetunnel makes sure all of the IP packet, including the IP header, are encapsulated by
SPI). If either the source or destination is a network, you will have to use tunnel mode. Creating an SA to and/or from a
network will automatically ensure tunnel mode SPIs are being created.

This is a simple way to start using IPsec.

You can use IPsec to tunnel private IP address spaces over the Internet. Here is a good example... We want to tunnel
192.168.99.0/24, which is behind 208.1.1.1, to 208.1.2.0/24 and 208.1.5.0/24 which are behind 208.2.2.2. These
examples were generated using the rc.vpn script.

As you can see, when you are using manual keying with IPsec, you have to specify exactly what you want done. It
won't guess for you. Look at these examples...

On 208.1.1.1:
First, set up the security associations (SAs):
(This sets up the SPIs, encryption methods, and keys.)

ipsecadm new esp -src 208.1.1.1 -dst 208.2.2.2 -forcetunnel -spi 1001
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
67e21c66e5a40739db293cf2ef2a4e6659f
ipsecadm new esp -src 208.2.2.2 -dst 208.1.1.1 -forcetunnel -spi 1000
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
67e21c66e5a40739db293cf2ef2a4e6659f

Next, setup a flow from 208.1.1.1 to 208.2.2.2

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 208.1.1.1
255.255.255.255 208.2.2.2 255.255.255.255

Next, setup a flow from 208.1.2.0/24, which is behind 208.2.2.2, to 192.168.99.0/24

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 192.168.99.0
255.255.255.0 208.1.2.0 255.255.255.0

Next, setup a flow from 208.1.5.0/24, which is behind 208.2.2.2, to 192.168.99.0/24

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 192.168.99.0
255.255.255.0 208.1.5.0 255.255.255.0

Now, setup a flow from 208.1.2.0/24, which is behind 208.2.2.2 to the router 208.1.1.1.

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 208.1.1.1
255.255.255.255 208.1.2.0 255.255.255.0

OK, setup a flow from 208.1.5.0/24, which is behind 208.2.2.2, to the router 208.1.1.1

Saturday, January 19, 2002 13.0 - Using IPsec Page: 7

http://www.openbsd.org/faq/faq13.html

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 208.1.1.1
255.255.255.255 208.1.5.0 255.255.255.0

Finally, setup a flow from the router 208.2.2.2 to 192.168.99.0/24

ipsecadm flow -proto esp -dst 208.2.2.2 -spi 1001 -addr 192.168.99.0
255.255.255.0 208.2.2.2 255.255.255.255

On 208.2.2.2:
Same as before, we setup the SAs...

ipsecadm new esp -src 208.2.2.2 -dst 208.1.1.1 -forcetunnel -spi 1000
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
67e21c66e5a40739db293cf2ef2a4e6659f
ipsecadm new esp -src 208.1.1.1 -dst 208.2.2.2 -forcetunnel -spi 1001
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364 -authkey
67e21c66e5a40739db293cf2ef2a4e6659f

Now, this is the reverse side... Setup a flow from the router 208.2.2.2 to 208.1.1.1

ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.2.2.2
255.255.255.255 208.1.1.1 255.255.255.255

Setup a flow from the network 192.168.99.0/24, which is behind 208.1.1.1, to 208.1.2.0/24

ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.1.2.0
255.255.255.0 192.168.99.0 255.255.255.0

Setup a flow from the network 192.168.99.0/24, which is behind 208.1.1.1, to 208.1.5.0/24

ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.1.5.0
255.255.255.0 192.168.99.0 255.255.255.0

Now, setup a flow from 192.169.99.0/24, which is behind 208.1.1.1, to the router 208.2.2.2

ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.2.2.2
255.255.255.255 192.168.99.0 255.255.255.0

We're almost done... Two flows left to get 208.1.2.0/24 and 208.1.5.0/24 from the router 208.2.2.2 to the router
208.1.1.1.

ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.1.2.0
255.255.255.0 208.2.2.2 255.255.255.255 -ingress
ipsecadm flow -proto esp -dst 208.1.1.1 -spi 1000 -addr 208.1.5.0
255.255.255.0 208.2.2.2 255.255.255.255 -ingress

If you have been using ipsecadm, and you want to get rid of any work that you've done, and start from scratch, do

ipsecadm flush

This will flush all IPsec info (SPIs, flows, routing entries) from your system.

13.7 - How do I setup photurisd?
Photuris is not widely used and is still considered experimental as far as the RFC status is concerned. However, many
people have used it with OpenBSD.

To setup your photurisd, first edit /etc/photuris/secrets.conf on each host with photurisd.

Saturday, January 19, 2002 13.0 - Using IPsec Page: 8

http://www.openbsd.org/faq/faq13.html

bsd# cat /etc/photuris/secrets.conf
Accepted keywords are:
identity local "id" "secret"
identity pair local "receivedid" "myid" "secret"
identity remote "id" "secret"
identity lookup "tag" username
Simple
identity local "Default" "This should be changed."
identity remote "Default" "This should be changed."

Change "This should be changed." to a key of your choice on the local config, and another key of your choice on the
remote config. (Use the same config on your remote box but swap "local" and "remote" so that it sees itself as the local
key.) Note that these keys will be replaced in a future version of photurisd that will carry out its initial key exchange
with public keys.

Make sure net.inet.ah.enable is set to 1.

bsd# sysctl -w net.inet.ah.enable=1
net.inet.ah.enable: 0 -> 1

And run startkey.

bsd# startkey dst=remote.host

Now, run tcpdump to verify that your packets are being encrypted with AH. (Run a ping in another window or session
to generate traffic.)

bsd# tcpdump proto ah

You can also try using tcpdump by the host address if you aren't getting anything.

bsd# tcpdump host remote.host

You can make photurisd automatically set the source and destination host or networks in /etc/photuris/photuris.startup

13.8 - How do I setup isakmpd?
If you are thinking about VPNs or other traditional applications of IPsec, you probably are going to use ISAKMP.
Some commercial implementations of IPsec do not provide any manual keying ability, instead they require you to use
some form of ISAKMP.

13.8.1 - What is isakmpd?

ISAKMP (sometimes referred to as IKE, or Internet Key Exchange) is the key exchange mechanism for the VPN. It
meets security concerns using the methods mentioned in RFC 2407, RFC 2408 and RFC 2409. ISAKMP manages the
exchange of cryptographic keys that you would normally have to manage with ipsecadm(8). It employs a two-phase
process for establishing the IPsec parameters between two IPsec nodes.

Phase 1 - The two ISAKMP peers establish a secure, authenticated channel upon which to communicate between two
daemons. This establishes a Security Association (SA) between both hosts. Main Mode and Aggressive Mode are
the methods used to establish this channel. Main Mode sends the various authentication information in a certain
sequence, providing identity protection. Aggressive Mode does not provide identity protection because all of the
authentication information is sent at the same time. Aggressive mode should only be used in such cases where network
bandwidth is of concern.

Phase 2 - Security Associations are negotiated on behalf of IPsec. Phase 2 is establishes tunnels or endpoint SAs
between IPsec hosts. Quick Mode is used in Phase 2 because there is not need to repeat a full authentication because
Phase 1 has already established the SAs.

In brief, Phase 1 is used to get a secure channel in which to do the (quicker) phase 2 setups. There can be multiple phase
2 setups within the same phase 1 channel. Phase 2 is used to setup the actual tunnels. In Phase 1, your IPsec nodes

Saturday, January 19, 2002 13.0 - Using IPsec Page: 9

http://www.openbsd.org/faq/faq13.html

establish a connection where they exchange authentication (Either a X509 certificate or a pre-shared secret). This allows
each end to make sure the other end is authenticated. Phase 2 is an exchange of keys to determine how the data between
the two will be encrypted.

13.8.2 - How do I get started with isakmpd?

By default, OpenBSD comes with the proper binaries for ISAKMP and the IPsec stack. Unfortunately, the same cannot
be said for the sample files. To retrieve them, you need to grab: /usr/src/sbin/isakmpd/samples/VPN-east.conf and
/usr/src/sbin/isakmpd/samples/policy from the source tree. You can either use your CD (if you have one), cvsweb, or
the command line CVS client. (Cvsweb has VPN-east.conf and policy readily available). For the purposes of this
example, copy policy to /etc/isakmpd/isakmpd.policy. Copy VPN-east.conf to /etc/isakmpd/isakmpd.conf. Here we
attempt to show you how to setup a VPN (tunnel). If you want to use isakmpd between single hosts, there are other
configuration files in the samples directory. The manual pages have detailed information.. Don't forget isakmpd.conf(5)
and isakmpd.policy(5).

Your first step is to turn on esp. The top of section 13.6 tells you how to do this both for run-time and boot. Next, you
need to edit /etc/isakmpd.policy. This file tells ISAKMP who can access IPsec. In this scenario, the policy file states that
anybody who sends data using Encapsulate Security Payload(ESP), and has authenticated with the passphrase
mekmitasdigoat (or whatever passphrase you determine), is allowed to communicate with isakmpd. You can modify this
file to let ISAKMP know that we only want to allow data signed with certain digital certificates or using a certain
encryption transform. You could also allow anybody to access IPsec. This is only recommended for testing. To do this,
edit your policy file to contain only the following lines:

KeyNote-Version: 2
Authorizer: "POLICY"

The same policy file contains two lines that start with the $ character. You need to remove these lines before using it,
they are only for cvs.

A more useful policy file for this example looks like this:

KeyNote-Version: 2
Comment: This policy accepts ESP SAs from a remote that uses the right password
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" -> "true";

Implementing this will give you a basic VPN (tunnel) using ESP only. On host A, edit /etc/isakmpd/isakmpd.conf. The
249.2.2.2 sample IP address should be replaced with the external IP address of host A.

[General]
Retransmits= 5
Exchange-max-time= 120
Listen-on= 249.2.2.2

Do similar for isakmpd.conf on host B. 249.3.3.3 represents the external IP address for host B.

[General]
Retransmits= 5
Exchange-max-time= 120
Listen-on= 249.3.3.3

This is where you can setup the variables that will affect the main behavior of isakmpd. It is okay to use the defaults
here. The Listen-on= value specifies the IP that isakmpd should listen on. Only the Internet IP of your gateway is
necessary. If you have multiple external interfaces on your gateway, you could list which interfaces you want to
listening on by entering them using a comma separated list.

Next, on host A, edit isakmpd.conf again.

[Phase 1]
249.3.3.3= HostB

Saturday, January 19, 2002 13.0 - Using IPsec Page: 10

http://www.openbsd.org/faq/faq13.html

On host B:

[Phase 1]
249.2.2.2= HostA

This section describes the IP addresses to accept in order to negotiate the phase 1 connection. Its value points to the
section below (Remember that phase 1 simply authenticates the remote peer to make sure they are who they say they
are). You can list multiple peers with additional lines in the format of IP_Address= <PEER-NAME>.

Next, on host A:

[Phase 2]
Connections= HostA-HostB

On host B:

[Phase 2]
Connections= HostB-HostA

This describes Phase 2 of the connection. This is the phase that determines what protocols the two peers will use to
communicate.

The Connections= tag refers to the section below. It initiates the requirements or the accepted methods to set up Phase
2. This also tells ISAKMPD which connections to initiate once started. Note that you can have multiple sections as
illustrated below if you are to connect with multiple peer hosts.

If you do not have the IP address of the remote host, you can specify a Default= that points to a section describing a
generic entry that will be referenced by any incoming IP that is not listed in the Connections= tag.

On host A:

[HostB]
Phase= 1
Transport= udp
Local-address= 249.2.2.2
Address= 249.3.3.3
Configuration= Default-main-mode
Authentication= mekmitasdigoat
#Flags=

On host B:

[HostA]
Phase= 1
Transport= udp
Local-address= 249.3.3.3
Address= 249.2.2.2
Configuration= Default-main-mode
Authentication= mekmitasdigoat
#Flags=

These represent the sections referred to by the Phase 1 section above. They each describe the requirements that the peer
gateway must fulfill in order to proceed to Phase 2. There are many other options here but the ones mentioned above are
the minimum requirements.

Phase=1 is required because the ISAKMPD code uses the same procedures to process Phase 1 and Phase 2. It
must be 1 or nothing will work.
Transport= gives you different possibilities for different peers. It's suggested that udp be used here so we'll
leave it at that. Please note that some peers may be behind a firewall that doesn't let UDP traffic through.
Obviously, this needs to be determined before setup.
Local-address is the destination address that the incoming packets point to. In some cases, you can be
listening on different Interfaces for Phase 1 connections. In this example, there is only 1 interface listening,

Saturday, January 19, 2002 13.0 - Using IPsec Page: 11

http://www.openbsd.org/faq/faq13.html

therefore this is the IP of the listening interface on this peer.
Address= is the address that points to the source IP of the incoming packets. This usually points to the peer
gateway. This needs further explanation, because the source IP address of the peer may be unknown!
Configuration= points to the section below. You can specify multiple sections like this. We use the default
one specified by the sample file.
Authentication= is the pre-shared secret to be used for this particular peer. It is more or less a passphrase that
each peer uses. This passphrase gets passed to policy to verify whether this peer is allowed to use IPSEC with
this host. If you change this phrase, you must also change it in the policy file because the sample file provides
for this passphrase. If you decided to go with a minimum policy file then you can specify whatever you want
here.
Flags= is not currently being used. The RFCs leave room for extra options to be specified for phase 1.

There are other tags here that will allow for other options to be set. Refer to isakmpd.conf(5) for descriptions.

On Host A:

[HostA-HostB]
Phase= 2
ISAKMP-peer= HostB
Configuration= Default-quick-mode
Local-ID= Net-A
Remote-ID= Net-B

On Host B:

[HostB-HostA]
Phase= 2
ISAKMP-peer= HostA
Configuration= Default-quick-mode
Local-ID= Net-B
Remote-ID= Net-A

These represent the sections referred to by the Phase 2 section above. They are the individual settings that ISAKMPD
must use to talk between the two gateways for the particular connection.

Phase=2 is required because ISAKMPD code uses the same functions to authenticate Phase 1 and Phase 2.
This is required for the VPN to work.
ISAKMPD-Peer= is the name of Host section above. This means that we are talking to that particular peer to
establish a Phase 2 connection. This is provided because you can have multiple sections to describe isakmp
peers and connections.
Configuration= refers to the section below that describes the standards by which this host and the particular
peer for this connection must abide.
Local-ID= refers to an IPsec-ID section below that describes our Private Network to the peer gateway. This is
the portion that is passed so that the other gateway can set up the proper routing table that will transfer data over
the VPN to our network.
Remote-ID= refers to an IPsec-ID section below that describes what is supposed to be the remote Private
Network to our host. This portion is interpreted to set up the proper routing tables that will transfer data from
our Private Network over the VPN to the remote Private Network.

There is another tag that is supported here called Flags=. If you require this tag, read isakmpd.conf(5).

This is the IPsec-ID section. These entries need to exist in the isakmpd.conf files for both Host A and Host B. This
example will setup 192.168.1.0/255.255.255.0 for Host A (which was connected to Net-A above) and
192.168.20.0/255.255.255.0 for Host B (Net-B above).

[Net-A]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.1.0
Netmask= 255.255.255.0

[Net-B]
ID-type= IPV4_ADDR_SUBNET

Saturday, January 19, 2002 13.0 - Using IPsec Page: 12

http://www.openbsd.org/faq/faq13.html

Network= 192.168.20.0
Netmask= 255.255.255.0

These two sections are in the conf file of each host. They are the sections referenced by the Local-ID and Remote-ID
identifiers. They describe the routes that should be set up to allow traffic from one private network to another.
ID-type= can be IPV4_ADDR_SUBNET or IPV4_ADDR (RFC2708 mentions more possible values. Currently
only IPv4 is supported in the OpenBSD implementation. IPv6 may be supported in OpenBSD-current.)

Now, on both hosts, the sample file should read:

[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

This section describes the requirements for the encryption methods of Phase 1 connections. The name reflects the value
of Configuration= variable. As we can see here, we are stating our Domain of Interest which is IPSEC. The
EXCHANGE_TYPE variable is set to ID_PROT for Phase 1, which identifies the protocols to be covered by this
Authentication. Transforms= is the transform required (or assigned) for this exchange. In this case, this points to the
section below in the configuration file that says we are receiving a packet encrypted with 3DES and a checksum
verifiable with SHA. There are a bunch of different transforms defined inside the sample VPN-east.conf. These are
provided because 3DES and SHA are not always supported across different platforms. For OpenBSD there should be
no reason to change this for a basic setup. Feel free to create multiples of this section and change the transform. The
only requirement is that you change the Configuration= variable.

[Default-quick-mode]
DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-3DES-SHA-PFS-SUITE,QM-ESP-DES-MD5-PFS-SUITE

This section describes the requirements for the encryption of the data to be sent through the VPN and is referred to by
Configuration above. Note the difference between this section and the Phase 1 equivalent just above is that the
EXCHANGE_TYPE is QUICK_MODE. This is always the case for Phase 2. Suites= points to a IPsec Suite
section describing the different encryption schemes available between the two hosts. There is much more to be said
about ISAKMP and IPsec. By using the above basic descriptions you should be able to create a simple but solid VPN
that cares and feeds itself. This is the bare minimum isakmpd.conf for both hosts here.

13.8.3 - Starting isakmpd

You may wish to use

isakmpd -d -DA=99

the first time you decide to run this daemon. The daemon will not be running in daemon mode but as a regular process.
It will log everything to your terminal. To stop isakmpd and flush the routes, you need to kill the isakmpd process on
each node, and run ipsecadm flush.

13.9 - How do I use isakmpd with X.509
certificates?
Setting up isakmpd to use certificates instead of pre-shared keys is not really that much harder in a big network with
many untrusted peers than it would be with a small network. It may actually simplify configuration, and more
importantly, key management.

Generating certificates.
There is a good description of how to generate keys and certificates in the README.PKI file in the isakmpd source
directory. You need to have a CA key, a corresponding CA X.509 certificate, one private key for each computer on the
network that will use isakmpd and one X.509 certificate for each such key.

Saturday, January 19, 2002 13.0 - Using IPsec Page: 13

http://www.openbsd.org/faq/faq13.html

The X.509 certificates need to have a Subject Alternative Name (SubjectAltName) extension describing the certificate
holder. How to set a SubjectAltName extension using certpatch for a certificate is also described in README.PKI for
the case of setting an IP address as the SubjectAltName. Using an IP address here is also the default behaviour for
isakmpd.

Certpatch also support using either a FQDN (Fully Qualified Domain Name) or a UFQDN (User FQDN). An example
of an FQDN might be www.openbsd.org, an example of an UFQDN would be an email address. Something like
Jorgen.Granstam@abc.se for example.

In this howto document I am going to use FQDNs as SubjectAltNames. Using IP addresses would be a bit easier since
that is the default behaviour of isakmpd but it is not much of a difference as we soon will see.

To insert an FQDN SubjectAltName into a certificate one would do something like this:

$ /usr/sbin/certpatch -t fqdn -i home.mysite.se -k ca.key originalcert.crt
newcert.crt

Here the ca.key is the private key of the CA, thus this can only be done by whoever has access to the CA private key.
The (fictional) home.mysite.se is the FQDN to be inserted into the certificate. The originalcert.crt and newcert.crt
filenames may be the same name in which case the original file will be overwritten by the new modified certificate.

Put the keys and certificates in the directories as described at the end of README.PKI. The CA key (ca.key) should be
kept in some safe place if the keys are really to be seriously used.

Configuration of isakmpd
Lets now look at the /etc/isakmpd/isakmpd.conf configuration file. It was originally taken from the example file in
isakmpd.conf(5) but have been heavily modified. I will also use a much shorter file here than the example file in the
man-page, I have removed from that file most parts that are not needed in this setup. In part to simplify the
understanding of this setup. I have also added some commenting (some comments are left as in the isakmpd.conf(5))
and changed some names. None of the domain names used here exists as far as I know.

Actually since everyone who reads this already have a working configuration for the preshared keys case (see previous
section) there won't be many surprises in this file. I won't explain this in every detail, check isakmpd.conf(5) for
descriptions of the parts I don't comment on.

Let's assume our setup looks something like this

one.mysite.se one.worksite.se
 192.168.1.2--+ 10.0.0.1====/======10.0.0.2 +--192.168.2.2

 | gw.mysite.se gw.worksite.se |
 +--192.168.1.1 192.168.2.1---+

two.mysite.se | | two.worksite.se
 192.168.1.3--+ +--192.168.2.3

That is, two networks that should be connected using an IPsec tunnel over an otherwise insecure network. Ignore the
fact that I am using IP addresses reserved for private Internets here (RFC1918), I have to use something. I won't
explain how to use isakmpd in combination with NAT or similar (because I haven't tried that myself).

Now, let's look at the configuration file. This is the file for the security gateway gw.mysite.se:

************* Start of the gw.mysite.se isakmpd.conf ************

A configuration sample for the isakmpd ISAKMP/Oakley (aka IKE) daemon.
[General]
Policy-File= /etc/isakmpd/policy
Retransmits= 5
Exchange-max-time= 120

Saturday, January 19, 2002 13.0 - Using IPsec Page: 14

http://www.openbsd.org/faq/faq13.html

Listen-on= 10.0.0.1

The name work-gw here is used just as a section name and a tag for
use in this configuration file below and need not actually be the
real hostname or domain name of the peer (but it could be). The IP
address however needs to be correct. Phase 1, as you might already
know, is to negotiate an ISAKMP security association (SA). There
should of course be one IP and name for each peer we want to
communicate with.
[Phase 1]
10.0.0.2= work-gw

Now phase 2 is negotiating IPsec SAs. As in phase 1, the name here
is a section name to be used later. Actually, it can be a comma
separated list of section names here. Thus if traffic from many
networks (or individual hosts) should be forwarded through this
tunnel, more section names would be added (and of course corresponding
new sections further down).
[Phase 2]
Connections= work-gw-my-gw

Now, here are some parameters for the ISAKMP SA negotiations. Almost
self documenting. The section name is from [Phase 1] above. The most
interesting tag might be the ID tag. The ID tag is set to the name
of the section where the identity information about this host that
will be presented to connecting peers, can be found. If the ID tag
is not available, isakmpd will assume that it will identify itself
using the IP address. You might also notice that there is no longer
any authentication tag here in this configuration. The authentication
data is currently used only in the preshared key case.
[work-gw]
Phase= 1
Transport= udp
Local-address= 10.0.0.1 # Local address
Address= 10.0.0.2 # Peer address
ID= my-ID
Configuration= Default-main-mode

This is the identity data. ID-type may also be IPV4_ADDR (the
default), IPV4_ADDR_SUBNET or UFQDN. The Name tag is used for
FQDN and UFQDN, for IPV4_ADDR an Address tag would be used instead.
For IPV4_ADDR_SUBNET a Network and a Netmask tag would be used.
[my-ID]
ID-type= FQDN
Name= gw.mysite.se

This is the section for the IPsec connection. The section name is
from the list in the [Phase 2] section above. The ISAKMP-peer is,
of course, the tag of our peer from section [Phase 1] above. The
Local-ID and Remote-ID tags should be section names describing which
packages should be forwarded over the IPsec tunnel to the remote
network.
[work-gw-my-gw]
Phase= 2
ISAKMP-peer= work-gw
Configuration= Default-quick-mode
Local-ID= Net-west
Remote-ID= Net-east

Any packet originating from a computer on the network described
here...

Saturday, January 19, 2002 13.0 - Using IPsec Page: 15

http://www.openbsd.org/faq/faq13.html

[Net-west]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.1.0
Netmask= 255.255.255.0

... and with a destination matching the network described here,
will be encrypted and forwarded over the IPsec tunnel to the remote
system.
[Net-east]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.2.0
Netmask= 255.255.255.0

Main mode descriptions

Here are the data for main mode. Using DES here for real purposes
is not very smart since DES is no longer considered a secure
encryption algorithm. 3DES is generally considered to have much better
security since it has enough bits in the key to be considered secure.
Transforms is a list of tags describing main mode transforms. In
this example we have only one.
[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-MD5

Certificates stored in PEM format
This is important when using certificates. The CA certificates should
be in the CA-directory (but not the CA private key of course).
The Cert-directory should have at least the certificate for the
local host but other certificates are also allowed. The private key
should be the private key of the local host.
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/local.key

Main mode transforms
######################

Here is our main mode transform. The important thing here is to use
RSA_SIG as authentication method when using certificates. It is the
only method supported when using certificates so far. Commercial
entities in the US will thus have to wait until September 2000 to
use this due to the RSA patent. Luckily, I am not living in the US.
Also important is the GROUP_DESCRIPTION tag. It must match the
GROUP_DESCRIPTION tag in the Quick mode transforms further down.
The Life tag here could possibly be modified. The LIFE_60_SECS might
be shorter than necessary for normal use.

[3DES-MD5]
ENCRYPTION_ALGORITHM= 3DES_CBC
HASH_ALGORITHM= MD5
AUTHENTICATION_METHOD= RSA_SIG
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_60_SECS,LIFE_1000_KB

Quick mode description
########################

[Default-quick-mode]
DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-3DES-MD5-PFS-SUITE

Saturday, January 19, 2002 13.0 - Using IPsec Page: 16

http://www.openbsd.org/faq/faq13.html

Quick mode protection suites
##############################
3DES

[QM-ESP-3DES-MD5-PFS-SUITE]
Protocols= QM-ESP-3DES-MD5-PFS

3DES

[QM-ESP-3DES-MD5-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-MD5-PFS-XF

Quick mode transforms

Don't forget. The GROUP_DESCRIPTION must match the GROUP_DESCRIPTION
in main mode above. For forwarding packets between two networks (or
from a host to a network) we use TUNNEL mode. Between two hosts we
may also use TRANSPORT mode instead.
[QM-ESP-3DES-MD5-PFS-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_60_SECS

As we know from the isakmpd.config manpage the LIFE_DURATION here is
an offer value (60), a minimum acceptable value (45) and a maximum
acceptable value. The isakmpd.conf example has this set to
600,450/720 instead. That might be a better value for normal use.
[LIFE_60_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 60,45:72

[LIFE_1000_KB]
LIFE_TYPE= KILOBYTES
LIFE_DURATION= 1000,768:1536

************* End of the gw.mysite.se isakmpd.conf **************

So far the configuration for the local system. The remote system is configured just the same way only opposite. Thus
only the first part of the isakmpd.conf file differs. Let's just look at that first part of the isakmpd.conf file for the
security gateway gw.worksite.se:

************* Start of the gw.worksite.se isakmpd.conf **********

[General]
Policy-File= /etc/isakmpd/policy
Retransmits= 5
Exchange-max-time= 120
Listen-on= 10.0.0.2

[Phase 1]
10.0.0.1= my-gw

[Phase 2]
Connections= work-gw-my-gw

[my-gw]
Phase= 1

Saturday, January 19, 2002 13.0 - Using IPsec Page: 17

http://www.openbsd.org/faq/faq13.html

Transport= udp
Local-address= 10.0.0.2 # Local address
Address= 10.0.0.1 # Peer address
ID= work-ID
Configuration= Default-main-mode

[work-ID]
ID-type= FQDN
Name= gw.worksite.se

[work-gw-my-gw]
Phase= 2
ISAKMP-peer= my-gw
Configuration= Default-quick-mode
Local-ID= Net-east
Remote-ID= Net-west

********************** ... to be continued **********************

Now that wasn't so hard, just a bit boring to read perhaps. A slightly more interesting part next.

The policy file.
Actually, the policy file might be slightly confusing for anyone who has not used it before, especially if things doesn't
work as expected. The man-page isakmpd.policy(5) is not really that bad. It might perhaps be a little bit unclear in some
parts but generally it's good.

The simplest possible working policy file would contain just a single line:

authorizer: "POLICY"

This basically means that that there is no policy limitations on who would be allowed to connect. Thus not a very secure
setup. The authorizer tag here means the one who has the authorization to decide the policy. The special authorizer
"POLICY" has the ultimate and unlimited authority on policy. Any other authorizer must first be authorized by
"POLICY" to have any authority here.

There can also be a set of conditions for what is allowed. The following policy thus would mean that only someone
using the ESP protocol with some real encryption would be authorized (oh well, someone using DES would also be
authorized here although DES could almost be considered snakeoil today, it is left as an exercise for the reader to change
this policy into not allowing DES either). Note that anyone who does encrypts with ESP would still be allowed.

authorizer: "POLICY"
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

It is also possible to "sublicense" authority to someone else (might be one or more entities). The simple case would be
the preshared key case. In that case, anyone who knows the preshared passphrase is authorized. Thus:

authorizer: "POLICY"
licensees: "passphrase:something really secret"
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

This would authorize anyone who knows this passphrase to connect and comply with the conditions (but remember that
the passphrase must also be set in the Authentication tag in isakmpd.conf).

Nothing difficult so far. Now to the interesting stuff. First there can be many licensees, although all must be authorized
by "POLICY". Further, authorized licensees can sublicense to other licensees. A licensee can be just a string in case it is

Saturday, January 19, 2002 13.0 - Using IPsec Page: 18

http://www.openbsd.org/faq/faq13.html

further described in the policy file:

authorizer: "POLICY"
licensees: "subpolicyAH" || "subpolicyESP"
conditions: app_domain == "IPsec policy" -> "true";

authorizer: "subpolicyESP"
licensees: "passphrase:something more secret"
conditions: esp_present == "yes" -> "true";

authorizer: "subpolicyAH"
licensees: "passphrase:something really secret"
conditions: ah_present == "yes" -> "true";

And now to what everyone has been waiting for. Policy can also be sublicensed or delegated to a key. In this case it is
usually a X.509 certificate. The simple use of certificates would be to use them like the passphrases. Just insert
individual users certificates in the policy file:

keynote-version: 2
comment: This is an example of a policy delegating to a key.
authorizer: "POLICY"
licensees: "x509-base64:\
 MIIBsTCCARoCAQAwDQYJKoZIhvcNAQEEBQAwITELMAkGA1UEBhMCc2UxEjAQBgNV\
 BAMTCUlLRUxBQiBDQTAeFw0wMDAxMjgxNzQyMTZaFw0wMTAxMjcxNzQyMTZaMCEx\
 CzA This is would be a user certificate AQEB\
 BQA IUuz\
 eOW8P5UGJUH2JVkiA2CTDryFf0CHYwd2P003dtVYw5RvET7XLMpRZiCcWtBdxneW\
 ct+016zUBP/cQMMl+KownxAUq9ezA8GvTyUWC97SOMOgoVj/QR3FHmEjpUi3AgMB\
 AAEwDQYJKoZIhvcNAQEEBQADgYEALGShaAxHvGncev0iFnKrJI4x5T4vlaMP1ad+\
 iWLV5q9H3wickVGN0NPerq0YLwx/VA9WaecYN8V+ALtNKYPuDiT11zwvE8GQeaai\
 NuzgmQ9hh3GifEgN9VEiC3j4kTytonKr0Q+vTLM7xYzheOxvrtUErRwZ9Xs1KzHe\
 yiXHSU8="
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

Now, this is obviously a stupid idea if there are a lot of users. The certificates that isakmpd reads from the CA- and
Certificate directories, and the certificates received from the peer is converted into pseudo credentials. Such certificates
converted into pseudo credentials essentially would look something like:

authorizer: "x509-base64:\
 MIIBsTCCARoCAQAwDQYJKoZIhvcNAQEEBQAwITELMAkGA1UEBhMCc2UxEjAQBgI2\
 CzA This is would be the public key/certificate of the AQEB\
 BQA signer of the user certificate (i.e. the CA certificate)IUuz\
 eOW8P5UGJUH2JVkiA2CTDryFf0CHYwd2P003dtVYw5RvET7XLMpRZiCcWtBdxneW\
 ct+016zUBP/cQMMl+KownxAUq9ezA8GvTyUWC97SOMOgoVj/QR3FHmEjpUi3AgMB\
 AAEwDQYJKoZIhvcNAQEEBQADgYEALGShaAxHvGncev0iFnKrJI4x5T4vlaMP1ad+\
 iWLV5q9H3wickVGN0NPerq0YLwx/VA9WaecYN8V+ALtNKYPuDiT11zwvE8GQeaai\
 NuzgmQ9hh3GifEgN9VEiC3j4kTytonKr0Q+vTLM7xYzheOxvrtUErRwZ9Xs1KzHe\
 yiXHSU8="
licensees: "x509-base64:\
 MIIBsTCCARoCAQAwDQYJKoZIhvcNAQEEBQAwITELMAkGA1UEBhMCc2UxEjAQBgNV\
 BAMTCUlLRUxBQiBDQTAeFw0wMDAxMjgxNzQyMTZaFw0wMTAxMjcxNzQyMTZaMCEx\
 CzA This is would be the key of the subject of the AQEB\
 BQA certificate IUuz\
 eOW8P5UGJUH2JVkiA2CTDryFf0CHYwd2P003dtVYw5RvET7XLMpRZiCcWtBdxneW\
 ct+016zUBP/cQMMl+KownxAUq9ezA8GvTyUWC97SOMOgoVj/QR3FHmEjpUi3AgMB\
 AAEwDQYJKoZIhvcNAQEEBQADgYEALGShaAxHvGncev0iFnKrJI4x5T4vlaMP1ad+\
 iWLV5q9H3wickVGN0NPerq0YLwx/VA9WaecYN8V+ALtNKYPuDiT11zwvE8GQeaai\
 NuzgmQ9hh3GifEgN9VEiC3j4kTytonKr0Q+vTLM7xYzheOxvrtUErRwZ9Xs1KzHe\
 yiXHSU8="
conditions: app_domain == "IPsec policy" -> "true";

Now note that these are not authorized by "POLICY" and thus won't have any effect without a policy authorizing them

Saturday, January 19, 2002 13.0 - Using IPsec Page: 19

http://www.openbsd.org/faq/faq13.html

somehow. Further, this showed what happens to certificates internally. The above credential is thus not seen in the
policy file. However, it is possible to sublicense to such credentials. Remember sublicensing above. It is thus possible
to license all certificates that are signed by a certain CA by putting the CA certificate as a licensee to "POLICY":

keynote-version: 2
comment: This is an example of a policy delegating to a key.
authorizer: "POLICY"
licensees: "x509-base64:\
 MIIBsTCCARoCAQAwDQYJKoZIhvcNAQEEBQAwITELMAkGA1UEBhMCc2UxEjAQBgNV\
 BAMTCUlLRUxBQiBDQTAeFw0wMDAxMjgxNzQyMTZaFw0wMTAxMjcxNzQyMTZaMCEx\
 CzA This would be the CA certificate AQEB\
 BQA IUuz\
 eOW8P5UGJUH2JVkiA2CTDryFf0CHYwd2P003dtVYw5RvET7XLMpRZiCcWtBdxneW\
 ct+016zUBP/cQMMl+KownxAUq9ezA8GvTyUWC97SOMOgoVj/QR3FHmEjpUi3AgMB\
 AAEwDQYJKoZIhvcNAQEEBQADgYEALGShaAxHvGncev0iFnKrJI4x5T4vlaMP1ad+\
 iWLV5q9H3wickVGN0NPerq0YLwx/VA9WaecYN8V+ALtNKYPuDiT11zwvE8GQeaai\
 NuzgmQ9hh3GifEgN9VEiC3j4kTytonKr0Q+vTLM7xYzheOxvrtUErRwZ9Xs1KzHe\
 yiXHSU8="
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

Thus the above policy is a simple example of a policy that delegates to a CA. Thus any user that has a certificate that is
signed by the CA that has this certificate and otherwise comply to other conditions set by the policy and the
configuration file would be authorized.

Almost secure...is not secure!
Now, to be really safe, this is not enough unfortunately. There are ways to attack a security gateway that is configured
in this way. If you really don't want the details, skip a to the next section now. To everyone else, let's try to understand
why this is not secure. It's not hard.

Consider what information one of the isakmpds has access to at this stage. From the configuration file, isakmpd knows
which IP-address its peer will send from (in the [Phase 1] section). From the information it gets at the phase 1
negotiation it knows the ID that the peer presents itself with and the certificate it gets from the peer proves that the peer
really have this ID. Looks fine so far?

Well, if the ID information was the IP (the default situation if we do not provide a phase 1 ID section) everything would
be fine. The CA would have tied the IP to the cert and the IP in the configuration would be all information we need. It
would be possible for an imposter to use the same IP from another computer in some cases (e.g. if both computers were
on the same local network and the computer that usually have this IP is down for some reason). It should however not
be possible for an imposter to be able to have a certificate and a corresponding private key that (falsely) proves that this
IP belongs to the imposter.

If that ever happened, the imposter would have managed to either steal the private key from the real owner of the IP, or
the imposter would have managed to fool the CA into issuing a certificate containing false information somehow. If any
of these things happened, then either the private key had not been protected well enough, the CA had failed to check the
identity of the imposter well enough (or the ID info for the cert) or the CA private key had not been well enough
protected. Since all these are prerequisites for security to work at all, none of these situations can be allowed to ever
occur.

Now, in our example the situation is different. Here we actually have an FQDN in the certificate instead of an IP
address. Since we still have an IP address in the [Phase 1] section this will result in a possible security problem. What
now would happen during an ISAKMP phase 1 negotiation would be that we could check that the peer was sending
from the expected IP (but as explained earlier that could possibly be forged in some situations). We could check that the
ID our peer presents actually belongs to our peer. But what we can not check now is if that ID really is the ID we expect
our peer to have, because isakmpd have never been told what ID that should be.

Someone now might say that the DNS system ties the IP to the FQDN for the host. That is true, however today's DNS
system is not secure and can, under some circumstances, be fooled to give out false information (or, it could be subject
to a denial of service (DoS) attack by an attacker, and the attacker's computer might be able to fake the DNS server's

Saturday, January 19, 2002 13.0 - Using IPsec Page: 20

http://www.openbsd.org/faq/faq13.html

answer). Secure DNS will come in the future, but it is not here yet (at least most DNS servers are not secure yet), thus
today, using DNS to check if the FQDN in the cert corresponds to the expected IP is no guarantee. In fact isakmpd does
not check this with DNS. Even if DNS was secure, checking this would not help in the case of using an UFQDN.

Thus in the case of having an FQDN as ID, it could be possible for an attacker to get an own private key and having this
key signed by the same CA that we use (but with the attacker's own FQDN, of course). Then launch a DoS attack on
our peer so that it goes down (in fact, there are some flaws in the ISAKMP protocol itself that possibly could be used to
launch a remote DoS against the peer an make it go down, although I don't know how sensitive isakmpd is to those
attacks). Then the attacker could configure its own computer in the same way as our peer, connect it to our peers
network and try to connect using its own ID, private key and certificate.

Since our own isakmpd has not been informed about what ID to our peer (and it is because the attacker is identically
configured as our peer besides the certificate, ID and private key). Further our isakmpd can check that the certificate was
signed by the same CA (but most CAs sign lots of certs, a cert might not be hard to get), and that the presented ID is the
same as the ID in the cert. However it would not, with the configuration presented so far, check that this ID is the
expected ID. Thus the attacker would be allowed to connect.

Preventing the attack.

The question now thus is, how can we inform isakmpd about what ID to expect? This is fortunately easy, and
documented in the isakmpd.policy(5). We must do the check in the policy. Like this:

keynote-version: 2
comment: This is an example of a policy delegating to a key.
authorizer: "POLICY"
licensees: "x509-base64:\
 MIIBsTCCARoCAQAwDQYJKoZIhvcNAQEEBQAwITELMAkGA1UEBhMCc2UxEjAQBgNV\
 BAMTCUlLRUxBQiBDQTAeFw0wMDAxMjgxNzQyMTZaFw0wMTAxMjcxNzQyMTZaMCEx\
 CzA This would be the CA certificate AQEB\
 BQA IUuz\
 eOW8P5UGJUH2JVkiA2CTDryFf0CHYwd2P003dtVYw5RvET7XLMpRZiCcWtBdxneW\
 ct+016zUBP/cQMMl+KownxAUq9ezA8GvTyUWC97SOMOgoVj/QR3FHmEjpUi3AgMB\
 AAEwDQYJKoZIhvcNAQEEBQADgYEALGShaAxHvGncev0iFnKrJI4x5T4vlaMP1ad+\
 iWLV5q9H3wickVGN0NPerq0YLwx/VA9WaecYN8V+ALtNKYPuDiT11zwvE8GQeaai\
 NuzgmQ9hh3GifEgN9VEiC3j4kTytonKr0Q+vTLM7xYzheOxvrtUErRwZ9Xs1KzHe\
 yiXHSU8="
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" &&
 remote_id == "gw.worksite.se" -> "true";

Now only gw.worksite.se should be able to get an IPsec connection. More allowed IDs could easily be added by adding
more alternative remote_id checks, e.g. by having conditions like these in the policy:

conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" &&
 (remote_id == "gw.worksite.se" ||
 remote_id == "gw.whatsite.se") -> "true";

With this policy either of gw.worksite.se, gw.somesite.se or gw.whatsite.se could connect.

Some might say that is unfortunate that there has to be entire certificates inserted in the policy. It requires some work to
reformat the certificates into the format in the policy and it makes the policy rather unreadable. If someone by mistake
replaced a user certificate with the corresponding CA certificate somewhere in a complex policy it might cause
unauthorized users to be allowed to connect in some cases and worse, it would not be easily detectable by reading
through the policy file (since X.509 certificates are not in a human readable format).

Now, for the really bleeding edge people out there a solution to this problem is available. It is now possible to use the
certificate Distinguished Name (DN) instead of a certificate in the policy (the corresponding certificate must of course be
available from the certs or ca directories on disk so that isakmpd can find it). With this format the policy above might
look like something like this instead:

Saturday, January 19, 2002 13.0 - Using IPsec Page: 21

http://www.openbsd.org/faq/faq13.html

keynote-version: 2
comment: This is an example of a policy delegating to a key.
authorizer: "POLICY"
licensees: "DN:\C=se\CN=IKELAB CA"
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" &&
 (remote_id == "gw.worksite.se" ||
 remote_id == "gw.somesite.se" ||
 remote_id == "gw.whatsite.se") -> "true";

Much more readable, isn't it? The information about what the exact DN for a certificate is can be found by looking at the
certificate using the openssl utility. Something like:

$ openssl x509 -text < ca.crt

More complicated policy configurations are of course possible but this is a start anyway, and there are another example
in the next section.

This should provide the necessary information about the certificate in ca.crt. Now this is good as long as we have a
small or at least reasonably small policy. It is however still not too great if we have a gigantic site with lots of users that
should be allowed to connect.

Multiuser configurations and/or centrally managed authorization.
Now, lets look at some really cool features of isakmpd. Previously we assumed that the expected peer was well known
and had a static IP address. This is not always the case. Lots of people use dynamically assigned IPs or use many
different computers. In other cases (like for a server) we might not know for sure who wants to connect.

Therefor one very nice feature of isakmpd is the ability to use a default tag instead of an IP in the [Phase 1] section, thus
allowing isakmpd negotiations from any IP. This might thus look something like this:

[phase 1]
Default= work-gw

First, it should be said that this configuration might not be secure from DoS attacks. As said before, there are some
flaws in the ISAKMP/IKE protocols. Anyway, using a default [phase 1] section also enable us to use a kind of
"authorization certificates" instead.

Consider the case where we have a lot of authorized users but when we would not accept just any user. Like at a
company. We would like company employees to be allowed to connect but nobody else. Now, imagine a big company
where there might be thousands of employees. We might like them to all be able to connect from any computer (not only
from within the company network) but everyone should not be allowed to do anything. It should now be possible to
write a policy like this:

keynote-version: 2
authorizer: "POLICY"
licensees: "telnet@work" || "telnet@lab" || "pop3@work"
conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" &&
 remote_id_type == "UFQDN" &&
 (remote_id == "telnet@worksite.se" ||
 remote_id == "pop3@worksite.se" ||
 remote_id == "telnet@lab.worksite.se") -> "true";

authorizer: "telnet@work"
licensees: "DN:\C=se\CN=IKELAB CA"
conditions: remote_id == "telnet@worksite.se" &&
 local_filter_type == "IPv4 address" &&
 local_filter_port == "23" &&

Saturday, January 19, 2002 13.0 - Using IPsec Page: 22

http://www.openbsd.org/faq/faq13.html

 local_filter == "192.168.002.003"

authorizer: "telnet@lab"
licensees: "DN:\C=se\CN=IKELAB CA"
conditions: remote_id == "telnet@lab.worksite.se" &&
 local_filter_type == "IPv4 address" &&
 local_filter_port == "23" &&
 local_filter == "192.168.002.002" -> "true";

authorizer: "pop3@work"
licensees: "DN:\C=se\CN=IKELAB CA"
conditions: local_filter_type == "IPv4 address" &&
 local_filter_port == "110" &&
 local_filter == "192.168.002.003" &&
 remote_id == "telnet@worksite.se" -> "true";

This might not be exactly how it should be. This is as far as I know completely untested (in fact, these filter conditions
might not work at all as I expect). Also, a policy such as this one (in fact any with default as peer IP), would require
rewrites of the isakmpd.conf file too. This would have some security implications too. Further, for this kind of
connections where anyone should be allowed to connect, it would probably be desirable to log the DN of anyone who
connected. Isakmpd does not yet support that to my knowledge. Also this probably could have other security
implications. You are on your own, you have been warned. The basic idea should be clear anyway.

Just in case someone missed the really interesting possibilities this would have. If all computers using ISAKMP/IKE
this way had a standard set of conditions for all services the users might like to use from remote, the CA could actually
authorize users by just putting the right SubjectAltName extensions in their certificates. Further, the expiration time for
such certificates could be set to expire relatively often although the users would be able to download new reissued
certificates when their current certificate is getting old. If the users misuse their authorizations, just stop reissuing the
certificates and they won't get in more after it has expired. No need to change policy files on all computers just because
an employee e.g. quits their job. The same scheme should work for other purposes than ISAKMP/IPsec too (including
authorization for off-line systems!) although that would require special software. In any case, any organization doing
this would probably want to be their own CA.

Multiuser configurations (mobile users) like these are possible with pre-shared keys too, but then it is required that
AGGRESSIVE mode is used instead of ID_PROT mode since we then must be able to choose the right password
phrase based on ID since we do not know that from what the IP is in this case (in AGGRESSIVE mode the ID is sent
over at an earlier stage of the negotiation, but it is sent unencrypted, thus AGGRESSIVE mode is faster because it needs
fewer message exchanges, but it also is a bit less secure since the ID is sent in clear).

13.10 - What IKE clients are compatible with
isakmpd?
isakmpd is the ISAKMP/Oakley key management daemon that comes with OpenBSD. We suspect that it interoperates,
at least partially, with most ISAKMP implementations, but the following have actually been tested. Note that some
isakmp software out there are actually based on the OpenBSD isakmp daemon.

The following MS-Windows clients have been reported to be compatible:

TimeStep PERMIT/Client
Ashley Laurent VPCom VPN software
PGP VPN software
Radguard cIPro client
Cisco IRE client
Microsoft Windows 2000 (Transport mode only)

The following gateways/routers have been reported to be compatible:

Cisco IOS
Cisco PIX

Saturday, January 19, 2002 13.0 - Using IPsec Page: 23

http://www.openbsd.org/faq/faq13.html

Intel LanRover
TimeStep PERMIT/Gate
Cendio Fuego
KAME for FreeBSD
FreeS/WAN for Linux
Axent Raptor
Ericsson eBox
Radguard cIPro-VPN
F-Secure VPN+
Teamware TWISS
3com Pathbuilder
Nortel Contivity
CheckPoint FW-1

13.11 - Troubleshooting IPsec/VPN
Your first tool for troubleshooting IPsec is tcpdump(8). Use tcpdump to look for several things.

First, if you are using tcpdump from OpenBSD, you have an enhanced version of tcpdump which can show some
information about ESP and AH packets. If you are using tcpdump from OpenBSD 2.5 or on another operating system,
chances are you have an older version that will simply show the protocol number for AH or ESP. (ESP is IP protocol
50, AH is 51)

With tcpdump, look and see if traffic is using AH/ESP or cleartext. If your traffic is in cleartext, then your
flows are setup incorrectly or your isakmp is not negotiating properly. Use ping(8) to generate simple traffic.

For instance, I have two hosts, 208.1.1.1 and 208.2.2.2. Logged in to 208.2.2.2, I am doing this:

vpn# ping -c 3 208.1.1.1
PING esp.mil (208.1.1.1): 56 data bytes
64 bytes from 208.1.1.1: icmp_seq=0 ttl=255 time=190.155 ms
64 bytes from 208.1.1.1: icmp_seq=1 ttl=255 time=201.040 ms
64 bytes from 208.1.1.1: icmp_seq=2 ttl=255 time=165.481 ms
--- esp.mil ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 165.481/185.558/201.040 ms

And in another session, I can see my encapsulated pings:

vpn# tcpdump -ni fxp7 host 208.1.1.1
tcpdump: listening on fxp7
14:12:19.630274 esp 208.2.2.2 > 208.1.1.1 spi 0x00001000 seq 4535 len 116
14:12:19.813519 esp 208.1.1.1 > 208.2.2.2 spi 0x00001001 seq 49313 len 116
14:12:20.630277 esp 208.2.2.2 > 208.1.1.1 spi 0x00001000 seq 4536 len 116
14:12:20.832458 esp 208.1.1.1 > 208.2.2.2 spi 0x00001001 seq 49314 len 116
14:12:21.630273 esp 208.2.2.2 > 208.1.1.1 spi 0x00001000 seq 4537 len 116
^ C
1831 packets received by filter
0 packets dropped by kernel

ISAKMP runs on UDP port 500. If this is locked out through a firewall or packet filter, then you need to
change it!

Passing in ISAKMP traffic from the security gateways
pass in on ne0 proto udp from gatewB/32 port = 500 to gatewA/32 port = 500
pass out on ne0 proto udp from gatewA/32 port = 500 to gatewB/32 port = 500

Passing in encrypted traffic from security gateways
pass in proto esp from gatewB/32 to gatewA/32
pass out proto esp from gatewA/32 to gatewB/32

Photuris runs on UDP port 468. Same considerations, but the protocol is ah.

Saturday, January 19, 2002 13.0 - Using IPsec Page: 24

http://www.openbsd.org/faq/faq13.html

Passing in Photuris traffic from the security gateways
pass in on ne0 proto udp from gatewB/32 port = 468 to gatewA/32 port = 468
pass out on ne0 proto udp from gatewA/32 port = 468 to gatewB/32 port = 468

Passing in encrypted traffic from security gateways
pass in proto ah from gatewB/32 to gatewA/32
pass out proto ah from gatewA/32 to gatewB/32

To turn on all debugging in isakmpd, start it as

/sbin/isakmpd -d -DA=99

or (to skip the most detailed timer debug info)

/sbin/isakmpd -d -DA=99 -D1=70

You need to allow traffic which has been processed by IPsec from netB into your local firewalled netA.

Passing in traffic from the designated subnets.
pass in on enc0 from netB/netBmask to netA/netAmask

With tcpdump on OpenBSD, you can decode most cleartext parts of Internet Key Exchange sessions. Tcpdump
will also show AH payload data.

Mount a /kern filesystem (if you don't use one by default already.)

mkdir /kern; mount -t kernfs /kern /kern

In /kern, there is a table of current SA/SPIs, including which have flows (outgoing SAs) or not (incoming
SAs). There are also traffic counters which you can use to see what traffic is going where.

Finally, you can use netstat(1) to see your SAs.

vpn% netstat -rn -f encap
Routing tables

Encap:
Source Port Destination Port Proto SA(Address/SPI/Proto)
0.0.0.0/32 0 192.168.99/24 0 0 208.1.1.1/00001000/50
0.0.0.0/32 0 208.1.1.1/32 0 0 208.1.1.1/00001000/50
208.1.2.0/24 0 192.168.99/24 0 0 208.1.1.1/00001000/50
208.1.2.0/24 0 208.1.1.1/32 0 0 208.1.1.1/00001000/50
208.1.5.0/24 0 192.168.99/24 0 0 208.1.1.1/00001000/50
208.1.5.0/24 0 208.1.1.1/32 0 0 208.1.1.1/00001000/50
208.2.2.2/32 0 192.168.99/24 0 0 208.1.1.1/00001000/50
208.2.2.2/32 0 208.1.1.1/32 0 0 208.1.1.1/00001000/50

If all else fails, recompile your kernel with option ENCDEBUG. Then, set the sysctl net.inet.ip.encdebug to
1. Look in your dmesg for warnings or errors, and report them using sendbug(1) to the OpenBSD developers.
Alternately, if you are not sure you have actually run into a bug, you may want to send a message to one of the
mailing lists.

13.12 - Related Documentation
IPsec is partially documented in the vpn(8) man page. There are various configuration templates in /usr/share/ipsec/
directory which can also assist you. The manual pages for enc(4), ipsec(4), ipsecadm(8), photurisd(8), startkey(1),
isakmpd(8), isakmpd.conf(5) and isakmpd.policy(5) are detailed and can assist in setup and operation of IPsec.

Other links...

IETF IPsec Working Group

Saturday, January 19, 2002 13.0 - Using IPsec Page: 25

http://www.openbsd.org/faq/faq13.html

SSH IPsec interoperability Test Node
NIST IPsec Web Based Interoperability Tester
A port of OpenBSD's IPsec to FreeBSD
FreeS/WAN - IPsec for Linux
OpenBSD 2.4 VPN Configuration Mini-FAQ

And on to the RFCs...

RFC 1320 - The MD4 Message-Digest Algorithm
RFC 1321 - The MD5 Message-Digest Algorithm
RFC 1828 - IP Authentication using Keyed MD5
RFC 1829 - The ESP DES-CBC Transform
RFC 2040 - The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms
RFC 2085 - HMAC-MD5 IP Authentication with Replay Prevention
RFC 2104 - HMAC: Keyed-Hashing for Message Authentication
RFC 2144 - The CAST-128 Encryption Algorithm
RFC 2202 - Test Cases for HMAC-MD5 and HMAC-SHA-1
RFC 2207 - RSVP Extensions for IPsec Data Flows
RFC 2268 - A Description of the RC2 Encryption Algorithm
RFC 2367 - PF_KEY Key Management API, Version 2
RFC 2401 - Security Architecture for the Internet Protocol (IPsec)
RFC 2402 - IP Authentication Header (AH)
RFC 2403 - The Use of HMAC-MD5-96 within ESP and AH
RFC 2404 - The Use of HMAC-SHA-1-96 within ESP and AH
RFC 2405 - The ESP DES-CBC Cipher Algorithm With Explicit IV
RFC 2406 - IP Encapsulating Security Payload (ESP)
RFC 2407 - The Internet IP Security Domain of Interpretation for ISAKMP
RFC 2408 - Internet Security Association and Key Management Protocol (ISAKMP)
RFC 2409 - The Internet Key Exchange (IKE)
RFC 2410 - The NULL Encryption Algorithm and Its Use With IPsec (ha ha...)
RFC 2411 - IP Security Document Roadmap
RFC 2412 - The OAKLEY Key Determination Protocol
RFC 2451 - The ESP CBC-Mode Cipher Algorithms
RFC 2522 - Photuris: Session-Key Management Protocol
RFC 2523 - Photuris: Extended Schemes and Attributes
RFC 2631 - Diffie-Hellman Key Agreement Method
RFC 2709 - Security Model with Tunnel-mode IPsec for NAT Domains

[Back to Main Index] [To Section 12.0 - For Advanced Users] [To Section 14.0 - Using disks in OpenBSD]

 www@openbsd.org
$OpenBSD: faq13.html,v 1.48 2002/01/13 00:00:32 ericj Exp $

Saturday, January 19, 2002 14.0 - Disk setup Page: 1

http://www.openbsd.org/faq/faq14.html

14.0 - Disk setup

Table of Contents

14.1 - Using OpenBSD's disklabel
14.2 - Using OpenBSD's fdisk
14.3 - Adding extra disks in OpenBSD
14.4 - How to swap to a file
14.5 - Soft Updates
14.6 - When I boot after installation of OpenBSD/i386, it stops at "Using Drive: 0 Partition 3".
14.7 - What are the issues regarding large drives with OpenBSD? -i386 specific
14.8 - Installing Bootblocks - i386 specific
14.9 - Preparing for disaster: Backing up and Restoring from tape.
14.10 - Mounting disk images in OpenBSD
14.11 - Help! I'm getting errors with PCIIDE!

Using OpenBSD's disklabel

Table of Contents

What is disklabel?
disklabel during the OpenBSD install
Common disklabel uses.

What is disklabel?

First be sure to read the disklabel(8) man page.

Disklabels are created to allow an efficient interface between your disk and the disk drivers contained within the kernel.
Labels hold certain information about your disk, like your drive geometry and information about your filesystems. This
is then used by the bootstrap program to load the drive and to know where filesystems are contained on the drive. Labels
are also used in conjunction with the filesystems to create a more efficient environment. You can read more in-depth
information about disklabel by reading the disklabel(5) man page.

As an additional gain, using disklabel helps overcome architecture limitations on disk partitioning. For example, on
i386, you can only have 4 primary partitions. (Partitions that other operating systems, such as Windows NT or DOS can
see.) With disklabel(8), you use one of these 'primary' partitions to store *all* of your OpenBSD partitions (eg. 'swap',
'/', '/usr' and '/var'). And you still have 3 more partitions available for other OSs!

disklabel during OpenBSD's install

One of the major parts of OpenBSD's install is your initial creation of labels. This comes (for i386 users) directly after
using fdisk(1). During the install you use disklabel to create your separate labels which will contain your separate
mountpoints. During the install, you can set your mountpoints from within disklabel(8), but this isn't completely
necessary considering you will be prompted later to confirm you choices. But it does make your install go just a little
smoother.

Since this is during the install you won't have any existing labels, and they will need to be created. The first label you
will create is the label 'a'. This label SHOULD be your where / will be mounted. You can see recommended partitions
that should be created and their sizes by reading faq4.3. For servers it is recommended that you create at least these
label's separately. For desktop users creating one mountpoint at / will probably suffice. When initially creating your root

Saturday, January 19, 2002 14.0 - Disk setup Page: 2

http://www.openbsd.org/faq/faq14.html

partition ('a' label), keep in mind that you will need SOME space left for your swap label. Now that the basics have
been explained, here is an example of using disklabel during an install. In this first example it is assumed that OpenBSD
will be the only operating system on this computer, and that a full install will be done.

If this disk is shared with other operating systems, those operating systems
should have a BIOS partition entry that spans the space they occupy completely.
For safety, also make sure all OpenBSD file systems are within the offset and
size specified in the 'A6' BIOS partition table. (By default, the disklabel
editor will try to enforce this). If you are unsure of how to use multiple
partitions properly (ie. separating /, /usr, /tmp, /var, /usr/local, and other
things) just split the space into a root and swap partition for now.

using MBR partition 3: type A6 off 63 (0x3f) size 4991553 (0x4c2a41)

Treating sectors 63-16386300 as the OpenBSD portion of the disk.
You can use the 'b' command to change this.

Initial label editor (enter '?' for help at any prompt)
> d a
> a a
offset: [63] <Enter>
size: [16386237] 64M
Rounding to nearest cylinder: 131040
FS type: [4.2BSD] <Enter>
mount point: [none] /
fragment size: [1024] <Enter>
block size: [8192] <Enter>
cpg: [16] <Enter>
> a b
offset: [131103] <Enter>
size: [16255197] 64M
Rounding to nearest cylinder: 131040
FS type: [swap] <Enter>

At this point we have created a 64M root partition mounted at /, and a 64Meg swap partition. Notice that the offset starts
at sector 63. This is what you want. When it comes to the size, disklabel will show your size in sectors, however, you
don't need to enter sizes in the same format. Like the example above you can enter sizes in the manner of 64 Megabytes
= 64M and 2 Gigabytes = 2G . Disklabel will then round to the nearest cylinder. In the example above you will also
notice that disklabel assumes that label 'b' will be a swap. This is a correct assumption as the GENERIC kernel is set to
look for swap on label 'b', and you should just follow this guideline and use 'b' as your swap area.

The next example will take you through the creation of two more labels. This means that it's not a complete install, as
the size of these won't be enough to install OpenBSD to its fullest. Showing the creation of all the partitions would just
be repetitive.

> a d
offset: [262143] <Enter>
size: [16124157] 64M
Rounding to nearest cylinder: 131040
FS type: [4.2BSD] <Enter>
mount point: [none] /tmp
fragment size: [1024] <Enter>
block size: [8192] <Enter>
cpg: [16] <Enter>
> a e
offset: [393183] <Enter>
size: [15993117] 64M
Rounding to nearest cylinder: 131040
FS type: [4.2BSD] <Enter>
mount point: [none] /var
fragment size: [1024] <Enter>
block size: [8192] <Enter>
cpg: [16] <Enter>

Saturday, January 19, 2002 14.0 - Disk setup Page: 3

http://www.openbsd.org/faq/faq14.html

In the above example, there are two things you might notice. One being that the offset is automatically figured out for
you to be the next in order. When doing an install of this sort, you won't need to mess with changing the offsets at all.
Another difference you might notice will be that label 'c' has been skipped. This is done for a reason, which is that label
'c' is a label that represents the whole disk. For this reason you shouldn't deal with label 'c' in any way.

Once all your labels have been created all that's left to do is write the labels to disk, and move on in the installation
process. To write everything and quit disklabel (and continue with the install) do:

> w
> q

NOTE - For users with large drives. If your bios isn't able to support a drive of that size OpenBSD cannot support it
either. Otherwise OpenBSD should be able to handle your drive just fine. If you are in a situation where your bios
doesn't support your drive, you can try Maxtor EZ-Drive or other similar overlay product.

Common uses for disklabel(8)

Once your system is installed, you shouldn't need to use disklabel too often. But some times you will need to use
disklabel when adding, removing or restructuring your disks. One of the first things you will need to do is view your
current disklabel. To do this, simply type:

disklabel wd0 >----- Or whatever disk device you'd like to view

using MBR partition 3: type A6 off 64 (0x40) size 16777152 (0xffffc0)
/dev/rwd0c:
type: ESDI
disk:
label: TOSHIBA MK2720FC
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 2633
total sectors: 2654064
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # milliseconds
track-to-track seek: 0 # milliseconds
drivedata: 0

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 2071440 65583 4.2BSD 1024 8192 16 # (Cyl. 65*- 2120)
 b: 65520 63 swap # (Cyl. 0*- 65)
 c: 2654064 0 unused 0 0 # (Cyl. 0 - 2632)
 j: 512001 2137023 4.2BSD 1024 8192 16 # (Cyl. 2120*- 2627*)

The above command simply allows you to view the existing disklabel, and assuring that you dont mess anything up. (
Which we all need sometimes.) But to be able to make changes you must use the -E option with disklabel like so:

disklabel -E wd0

This will bring you to a prompt, the same as the one that you used during the OpenBSD install. Probably the single most
important command at this prompt is '?'. This will give you a list of possible options pertaining to disklabel. You can
even view the entire disklabel(8) man page with the 'M' command. From this prompt, you will do all of your adding,
deleting and changing of partitions. For additional information read the disklabel(8) man page.

14.2 - Using fdisk

Saturday, January 19, 2002 14.0 - Disk setup Page: 4

http://www.openbsd.org/faq/faq14.html

First be sure to check the fdisk man page. fdisk(8)

Fdisk is a program to help with the maintenance of your partitions. This program is used at install time to set up your
OpenBSD partition (this partition can contain several labels, each with filesystems/swap/etc.). It can divide space on
your drives and set one active. This program will usually be used in Single User Mode (boot -s). Fdisk also sets the
MBR on your various hard disks.

For installation purposes, most times you'll only need ONE OpenBSD partition, and then using disklabel to put a swap
and a filesystem on it.

To just view your partition table using fdisk, use:

fdisk fd0

Which will give an output similar to this:

 Disk: fd0 geometry: 80/2/18 [2880 sectors]
 Offset: 0 Signatures: 0xAA55,0x0
 Starting Ending
 #: id cyl hd sec - cyl hd sec [start - size]
--
 *0: A6 0 0 1 - 79 1 18 [0 - 2880] OpenBSD
 1: 00 0 0 0 - 0 0 0 [0 - 0] unused
 2: A7 0 0 2 - 79 1 18 [1 - 2879] NEXTSTEP
 3: 00 0 0 0 - 0 0 0 [0 - 0] unused

In this example we are viewing the fdisk output of floppy drive. We can see the OpenBSD partition (A6) and its size.
The * tells us that the OpenBSD partition is a bootable partition.

In the previous example we just viewed our information. What if we want to edit our partition table? Well, to do so we
must use the -e flag. This will bring up a command line prompt to interact with fdisk.

fdisk -e wd0
Enter 'help' for information
fdisk: 1> help
 help Command help list
 manual Show entire OpenBSD man page for fdisk
 reinit Re-initialize loaded MBR (to defaults)
 disk Edit current drive stats
 edit Edit given table entry
 flag Flag given table entry as bootable
 update Update machine code in loaded MBR
 select Select extended partition table entry MBR
 print Print loaded MBR partition table
 write Write loaded MBR to disk
 exit Exit edit of current MBR, without saving changes
 quit Quit edit of current MBR, saving current changes
 abort Abort program without saving current changes
fdisk: 1>

It is perfectly safe in fdisk to go in and explore, just make sure to answer N to saving the changes and *DON'T* use the
write command.

Here is an overview of the commands you can use when you choose the -e flag.

help Display a list of commands that fdisk understands in the interactive edit mode.
reinit Initialize the currently selected, in-memory copy of the boot block.
disk Display the current drive geometry that fdisk has probed. You are given a chance to edit it if you wish.
edit Edit a given table entry in the memory copy of the current boot block. You may edit either in BIOS
geometry mode, or in sector offsets and sizes.
flag Make the given partition table entry bootable. Only one entry can be marked bootable. If you wish to boot
from an extended partition, you will need to mark the partition table entry for the extended partition as bootable.

Saturday, January 19, 2002 14.0 - Disk setup Page: 5

http://www.openbsd.org/faq/faq14.html

update Update the machine code in the memory copy of the currently selected boot block.
select Select and load into memory the boot block pointed to by the extended partition table entry in the current
boot block.
print Print the currently selected in-memory copy of the boot block and its MBR table to the terminal.
write Write the in-memory copy of the boot block to disk. You will be asked to confirm this operation.
exit Exit the current level of fdisk, either returning to the previously selected in-memory copy of a boot block,
or exiting the program if there is none.
quit Exit the current level of fdisk, either returning to the previously selected in-memory copy of a boot block,
or exiting the program if there is none. Unlike exit it does write the modified block out.
abort Quit program without saving current changes.

14.3 - Adding extra disks in OpenBSD
Well once you get your disk installed PROPERLY you need to use fdisk(8) (i386 only) and disklabel(8) to set up
your disk in OpenBSD.

For i386 folks, start with fdisk. Other architectures can ignore this.

fdisk -i sd2

This will initialize the disk's "real" partition table for exclusive use by OpenBSD. Next you need to create a disklabel for
it. This will seem confusing.

disklabel -e sd2

(screen goes blank, your $EDITOR comes up)
type: SCSI
...bla...
sectors/track: 63
total sectors: 6185088
...bla...
16 partitions:
size offset fstype [fsize bsize cpg]
 c: 6185088 0 unused 0 0 # (Cyl. 0 - 6135)
 d: 1405080 63 4.2BSD 1024 8192 16 # (Cyl. 0*- 1393*)
 e: 4779945 1405143 4.2BSD 1024 8192 16 # (Cyl. 1393*- 6135)

First, ignore the 'c' partition, it's always there and is for programs like disklabel to function! For normal operations,
fsize should always be 1024, bsize should always be 8192, and cpg should always be 16. Fstype is 4.2BSD. Total
sectors is the total size of the disk. Say this is a 3 gigabyte disk. Three gigabytes in disk manufacturer terms is 3000
megabytes. So divide 6185088/3000 (use bc(1)). You get 2061. So, to make up partition sizes for a, d, e, f, g, ... just
multiply X*2061 to get X megabytes of space on that partition. The offset for your first new partition should be the
same as the "sectors/track" reported earlier in disklabel's output. For us it is 63. The offset for each partition afterwards
should be a combination of the size of each partition and the offset of each partition (Except the 'c' partition, since it has
no play into this equation.)

Or, if you just want one partition on the disk, say you will use the whole thing for web storage or a home directory or
something, just take the total size of the disk and subtract the sectors per track from it. 6185088-63 = 6185025. Your
partition is

 d: 6185025 63 4.2BSD 1024 8192 16

If all this seems needlessly complex, you can just use disklabel -E to get the same partitioning
mode that you got on your install disk! There, you can just use "96M" to specify "96 megabytes". (Or, if you
have a disk big enough, 96G for 96 gigs!) Unfortunately, the -E mode uses the BIOS disk geometry, not the real disk
geometry, and often times the two are not the same. To get around this limitation, type 'g d' for 'geometry disk'. (Other
options are 'g b' for 'geometry bios' and 'g u' for geometry user, or simply, what the label said before disklabel made
any changes.)

That was a lot. But you are not finished. Finally, you need to create the filesystem on that disk using newfs(8).

Saturday, January 19, 2002 14.0 - Disk setup Page: 6

http://www.openbsd.org/faq/faq14.html

bsd# newfs wd1a

Or whatever your disk was named as per OpenBSD's disk numbering scheme. (Look at the output from dmesg(8) to see
what your disk was named by OpenBSD.)

Now figure out where you are going to mount this new partition you just created. Say you want to put it on /u. First,
make the directory /u. Then, mount it.

mount /dev/wd1a /u

Finally, add it to /etc/fstab(5)

/dev/wd1a /u ffs rw 1 1

What if you need to migrate an existing directory like /usr/local? You should mount the new drive in /mnt and use cpio
-pdum to copy /usr/local to the /mnt directory. Edit the /etc/fstab(5) file to show that the /usr/local partition is now
/dev/wd1a (your freshly formatted partition.) Example:

/dev/wd1a /usr/local ffs rw 1 1

Reboot into single user mode..boot -s Move the existing /usr/local to /usr/local-backup (or delete it if you feel lucky)
and create an empty directory /usr/local. Then reboot the system, and viola, the files are there!

14.4 - How to swap to a file
(Note: if you are looking to swap to a file because you are getting "virtual memory exhausted" errors, you should try
raising the per-process limits first with csh's unlimit(1), or sh's ulimit(1).)

After the release of OpenBSD 2.5 came swapctl(8), which made dealing with swap devices much easier. If you are on
an OpenBSD 2.5 system, exchange swapctl with swapon, and use pstat -s to list swap devices. Swapping to a file
doesn't require a custom built kernel, although that can still be done, this faq will show you how to add swap space both
ways.

Swapping to a file.

Swapping to a file is easiest and quickest way to get extra swap area's setup. This is not for users who are currently
using Soft Updates. (Which isn't enabled by default). To start out, you can see how much swap you currently have and
how much you are using with the swapctl(8) utility. You can do this by using the command:

ericj@oshibana> swapctl -l
Device 512-blocks Used Avail Capacity Priority
swap_device 65520 8 65512 0% 0

This shows the devices currently being used for swapping and their current statistics. In the above example there is only
one device named "swap_device". This is the predefined area on disk that is used for swapping. (Shows up as partition
b when viewing disklabels) As you can also see in the above example, that device isn't getting much use at the moment.
But for the purposes of this document, we will act as if an extra 32M is needed.

The first step to setting up a file as a swap device is to create the file. It's best to do this with the dd(1) utility. Here is an
example of creating the file /var/swap that is 32M large.

ericj@oshibana> sudo dd if=/dev/zero of=/var/swap bs=1k count=32768
32768+0 records in
32768+0 records out
33554432 bytes transferred in 20 secs (1677721 bytes/sec)

Once this has been done, we can turn on swapping to that device. Use the following command to turn on swapping to
this device

Saturday, January 19, 2002 14.0 - Disk setup Page: 7

http://www.openbsd.org/faq/faq14.html

ericj@oshibana> sudo chmod 600 /var/swap
ericj@oshibana> sudo swapctl -a /var/swap

Now we need to check to see if it has been correctly added to the list of our swap devices.

ericj@oshibana> swapctl -l
Device 512-blocks Used Avail Capacity Priority
swap_device 65520 8 65512 0% 0
/var/swap 65536 0 65536 0% 0
Total 131056 8 131048 0%

Now that the file is setup and swapping is being done, you need to add a line to your /etc/fstab file so that this file is
configured on the next boot time also. If this line is not added, your won't have this swap device configured.

ericj@oshibana> cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/var/swap /var/swap swap sw 0 0

Swapping via a vnode device

This is a more permanent solution to adding more swap space. To swap to a file permanently, first make a kernel with
vnd0c as swap. If you have wd0a as root filesystem, wd0b is the previous swap, use this line in the kernel
configuration file (refer to compiling a new kernel if in doubt):

config bsd root on wd0a swap on wd0b and vnd0c dumps on wd0b

After this is done, the file which will be used for swapping needs to be created. You should do this by using the same
command as in the above examples.

ericj@oshibana> sudo dd if=/dev/zero of=/var/swap bs=1k count=32768
32768+0 records in
32768+0 records out
33554432 bytes transferred in 20 secs (1677721 bytes/sec)

Now your file is in place, you need to add the file to you /etc/fstab . Here is a sample line to boot with this device as
swap on boot.

ericj@oshibana> cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/dev/vnd0c none swap sw 0 0

At this point your computer needs to be rebooted so that the kernel changes can take place. Once this has been done it's
time to configure the device as swap. To do this you will use vnconfig(8).

ericj@oshibana> sudo vnconfig -c -v vnd0 /var/swap
vnd0: 33554432 bytes on /var/swap

Now for the last step, turning on swapping to that device. We will do this just like in the above examples, using
swapctl(8). Then we will check to see if it was correctly added to our list of swap devices.

ericj@oshibana> sudo swapctl -a /dev/vnd0c
ericj@oshibana> swapctl -l
Device 512-blocks Used Avail Capacity Priority
swap_device 65520 8 65512 0% 0
/dev/vnd0c 65536 0 65536 0% 0
Total 131056 8 131048 0%

14.5 - Soft Updates
Over the last few years Kirk McKusick has been working on something called "Soft Updates". This is based on an idea
proposed by Greg Ganger and Yale Patt that imposing a partial ordering on the buffer cache operations would permit the
requirement for synchronous writing of directory entries to be removed from the FFS code. Thus, a large performance

Saturday, January 19, 2002 14.0 - Disk setup Page: 8

http://www.openbsd.org/faq/faq14.html

increase of disk writing performance.
As Soft Updates are still in development as a whole, an fsck(8) is still needed after the computer is abruptly turned off
without a clean shutdown sequence, but this will be remedied in future versions.

More internals and details about Soft Updates can be found in the papers of Ganger and Patt and from McKusick.

To enable Softupdates your kernel must have

option FFS_SOFTUPDATES

compiled in.

This option is included in GENERIC kernels starting with OpenBSD 2.9. However, you still must enable it on a per
mount point basis.

Starting with 2.9, enabling soft updates must be done with a mount time option, instead of using tunefs(8). Now, when
mounting a partition with the mount(8) utility, you can specify that you wish to have soft updates enabled on that
partition. Below is a sample /etc/fstab(5) entry that has one partition sd0a that we wish to have mounted with soft
updates.

/dev/sd0a / ffs rw,softdep 1 1

If you are using an OpenBSD release earlier than 2.9 you need to boot into single-user mode:

 boot> boot -s
 [snip]
 bsd# tunefs -s enable <raw device>
 bsd# reboot -n

Note to sparc users: Do not enable soft updates on sun4 or sun4c machines. These architectures support only a very
limited amount of kernel memory and cannot use this feature. However, sun4m machines are fine.

14.6 - When I boot after installation of OpenBSD/i386, it stops at
"Using Drive: 0 Partition: 3" - i386 specific.
This isn't actually an error message by itself, it is the boot loader in the MBR telling you which drive and partition it is
about to boot from. The problem is, the boot process stopped here.

There are two common reasons why this may happen: an incompatibility between the BIOS and the OpenBSD MBR, or
a drive geometry problem. An example of a drive geometry problem would be if you were to move a drive from one
computer to another, update a BIOS or change a BIOS setting on a computer, though it is also reported that it can
happen for unknown reasons during install.

To fix the BIOS compatibility issue, you must replace the boot loader with one that is compatible with your system.
Fortunately, boot loaders are easy to come by.

Installing the BootEasy boot loader:

This requires booting your system. As you can't boot off the hard disk directly, we have to use a boot floppy or
CD-ROM to start the boot process. When the system gets to the 'boot>' prompt, redirect it to boot from the hard disk:

reading boot.......
probing pc0 com0 com1 pci mem [639k 79m a20=on]
disk hd0 fd0
>> OpenBSD BOOT 1.28
boot> boot hd0a:/bsd

This command redirects the boot process to the file /bsd on the 'a' partition of the first hard drive, allowing your system
to boot.

Saturday, January 19, 2002 14.0 - Disk setup Page: 9

http://www.openbsd.org/faq/faq14.html

Once the system is booted, you need to install the BootEasy boot loader. The file itself can be found on both the
CD-ROM and the FTP sites, in the directory 3.0/tools/booteasy/Boot.bin, and can be installed using the following
fdisk(8) command:

fdisk -i -f /mnt/3.0/tools/booteasy/Boot.bin wd0

This assumes you have a the 3.0 CD mounted on /mnt and that you are using an IDE drive. You may need to change this
depending upon where Boot.bin is and what kind of hard disk you have (a SCSI drive would typically be 'sd0'). Note:
do NOT do this if your OpenBSD partition is not the entire disk! Initializing the MBR this way creates one
OpenBSD partition spanning the entire disk and deletes all other partitions, which is rarely good.

BootEasy has another feature that might interest you even if you have no problem with the default loader: It is capable of
selecting a boot partition at startup -- it will prompt you for which partition to boot from, and will boot the active
partition if no other choice is made. This might be very useful should you have multiple OS's on one disk. Installing
BootEasy this way is done from MS-DOS with the BOOTINST.EXE program found in the BootEasy directory on the
CD-ROM and FTP servers.

Installing the MS-DOS boot loader:

Boot from a Windows 9x or DOS v6 boot disk with FDISK.EXE on it. Once the system is booted to an MS-DOS
prompt, enter the following:

A:\>fdisk /mbr

You should see a brief disk access, and then a command prompt should return, with NO message of any kind. "Bad
command or file name" means the disk you used did not have FDISK.EXE on it. If you do this properly, the "Using
..." message will be removed, as it replaces the very code that produces that message. If you had a BIOS compatibility
issue, it will now be gone, reboot, your OpenBSD install should come right up.

It has been reported that this also works with FreeDOS.

The OS-BS Boot Loader:

Another boot loader, OS-BS, is included with the OpenBSD CD-ROMs and available on the FTP sites in
2.9/tools/osbs135.exe. The OS-BS web page is at http://www.prz.tu-berlin.de/~wolf/os-bs.html

LILO:

The Linux LILO program can also be used. For details, see INSTALL.linux

Avoiding the problem:

Relatively few machines have the BIOS compatibility problem, but if you are setting up a machine which you know has
this problem, it is fairly easy to avoid it. The only time the OpenBSD loader is installed on your system during a normal
install is when you say 'Y' to the 'Use entire disk for OpenBSD' question. If you answer 'N' and manually create the
OpenBSD disk partition, it will not replace the boot loader unless you use the 'reinit' or 'update' commands of fdisk.
This, of course, assumes that your drive STARTED with some kind of boot loader -- if it doesn't (new, blank drive,
drive pulled from another platform), you will have to install one before the system will boot.

Fixing a drive geometry problem:

Ideally, you would want to avoid this problem by maintaining the same drive geometry, not by fixing it, however
sometimes you can't avoid it. An example would be moving a large drive from an old computer which didn't support
LBA geometry to a new machine which insists upon using LBA.

Start your machine using a boot disk or CD-ROM, as indicated above. Log in as root, and execute the following
commands:

cp /usr/mdec/boot /boot
/usr/mdec/installboot -v /boot /usr/mdec/biosboot wd0

Saturday, January 19, 2002 14.0 - Disk setup Page: 10

http://www.openbsd.org/faq/faq14.html

Reboot, your system should come right up.

installboot(8) installs and configures the the partition boot loader, biosboot(8), which loads boot(8). boot(8) is the
module which loads the kernel into RAM. biosboot(8) has a table within it that points to the physical location (according
to the system's BIOS) of boot(8). If you do anything which changes the BIOS's perception of the location of boot(8),
you must re-run installboot(8) as above to reinitialize the table pointing to boot(8).

See section 14.8 for more info.

14.7 - What are the issues regarding large drives with OpenBSD? -
i386 specific
OpenBSD has support for file systems of sizes much larger than any currently or soon to be available hard disks,
however there are limitations on some interfaces which are smaller than the theoretical maximum of OpenBSD. In the
case of IDE drives, the limit is 128GB, the limit of the currently popular ATA interface. Note the next generation of
ATA drives, those with capacities greater than 128G (1G=2^30 here, not 1,000,000,000, so drive manufacturers will
often call this 137G), will not be supported until new interface standard(s) are implemented in OpenBSD. (Donations of
hardware for development purposes welcome.)

Unfortunately, the full ability of the OS isn't available until AFTER the OS has been loaded into memory, and the
booting process introduces limits of its own. The boot process has to utilize (and is thus limited by) the system's BIOS.
The OpenBSD boot loaders (biosboot(8) and boot(8)) also have their own internal 8G limitation, from an older BIOS
limit.

For this reason, the entire /bsd file (the kernel) must be located on the disk within the BIOS addressable area, or within
the first 8G of the disk, whichever is smaller. This means that on some older computers, the root partition must be
completely within the first 504M, but for most newer computers, the root partition may be anywhere within the first 8G.

Note that it is possible to install a 40G drive on an old 486 and load OpenBSD on it as one huge partition, and think you
have successfully violated the above rule. However, it might come back to haunt you in a most unpleasant way:

You install on the 40G / partition. It works, because the base OS and all its files (including /bsd) are within the
first 504M.
You use the system, and end up with more than 504M of files on it.
You upgrade, build your own kernel, whatever, and copy your new /bsd over the old one.
You reboot.
You get a message such as "bad magic"

Why? Because when you copied "over" the new /bsd file, it didn't overwrite the old one, it got relocated to a new
location on the disk, probably outside the 504M range the BIOS supported. The BIOS-based boot loader was unable to
fetch the file /bsd, and the system hung.

To get OpenBSD to boot, /bsd must be within the BIOS's supported range. To play it safe, the rule is simple:

The entire root partition must be within the computer's BIOS addressable space or within the first
8G, whichever is smaller.

OpenBSD is capable of accessing entire IDE drives (up to 128G), not just the space recognized by the system BIOS, but
root had best be within the BIOS's range.

14.8 - Installing Bootblocks - i386 specific
Older versions of MS-DOS can only deal with disk geometries of 1024 cylinders or less. Since virtually all modern
disks have more than 1024 cylinders, most SCSI BIOS chips (which come on the SCSI controller card) and IDE BIOS
(which is part of the rest of the PC BIOS) have an option (sometimes the default) to "translate" the real disk geometry
into something that fits within MS-DOS' ability. However, not all BIOS chips "translate" the geometry in the same way.
If you change your BIOS (either with a new motherboard or a new SCSI controller), and the new one uses a different
"translated" geometry, you will be unable to load the second stage boot loader (and thus unable to load the kernel). (This

Saturday, January 19, 2002 14.0 - Disk setup Page: 11

http://www.openbsd.org/faq/faq14.html

is because the first stage boot loader contains a list of the blocks that comprise /boot in terms of the original "translated"
geometry.) If you are using IDE disks, and you make changes to your BIOS settings, you can (unknowingly) change its
translation also (most IDE BIOS offer 3 different translations.) To fix your boot block so that you can boot normally,
just put a boot floppy in your hard drive, and at the boot prompt, type "b hd0a:/bsd" to force it to boot from the first
hard disk (and not the floppy). Your machine should come up normally. You now need to update the first stage boot
loader to see the new geometry (and re-write the boot block accordingly).
Our example will assume your boot disk is sd0 (but for IDE it would be wd0, etc..):

cd /usr/mdec; ./installboot /boot biosboot sd0

If installboot complains that it is unable to read the BIOS geometry, at the boot> prompt you may issue the "machine
diskinfo" (or "ma di" for short) command to print the information you need. Feed the "heads" and "secs" values to
installboot's -h and -s flags, respectively, so that the modified installboot command is the following:

cd /usr/mdec; ./installboot -h <heads> -s <secs> /boot biosboot sd0

If a newer version of bootblocks are required, you will need to compile these yourself. To do so simply:

cd /sys/arch/i386/stand/
make && make install
cd /usr/mdec; cp ./boot /boot
./installboot /boot biosboot sd0 (or whatever device your hard disk is)

14.9 - Preparing for disaster: Backing up and Restoring from tape

Introduction:

If you plan on running what might be called a production server, it is advisable to have some form of backup in the
event one of your fixed disk drives fails.

This information will assist you in using the standard dump(8)/restore(8) utilities provided with OpenBSD. A more
advanced backup utility called "Amanda" is also available for backing up multiple servers to one tape drive. In most
environments dump(8)/restore(8) is enough. However, if you have a need to backup multiple machines to one tape,
Amanda might be worth investigating in the future.

The device examples in this document are for a configuration that uses both SCSI disks and tape. In a production
environment, SCSI disks are recommended over IDE due to the way in which they handle bad blocks. That is not to say
this information is useless if you are using an IDE disk or other type of tape drive, your device names will simply differ
slightly. For example sd0a would be wd0a in an IDE based system.

Backing up to tape:

Backing up to tape requires knowledge of where your file systems are mounted. You can determine how your
filesystems are mounted using the mount(8) command at your shell prompt. You should get output similar to this:

shell# mount
/dev/sd0a on / type ffs (local)
/dev/sd0h on /usr type ffs (local)

In this example, the root (/) filesystem resides physically on sd0a which indicates SCSI fixed disk 0, partition a. The
/usr filesystem resides on sd0h, which indicates SCSI fixed disk 0, partition h.

Another example of a more advanced mount table might be:

shell# mount
/dev/sd0a on / type ffs (local)
/dev/sd0d on /var type ffs (local)
/dev/sd0e on /home type ffs (local)
/dev/sd0h on /usr type ffs (local)

In this more advanced example, the root (/) filesystem resides physically on sd0a. The /var filesystem resides on sd0d,

Saturday, January 19, 2002 14.0 - Disk setup Page: 12

http://www.openbsd.org/faq/faq14.html

the /home filesystem on sd0e and finally /usr on sd0h.

To backup your machine you will need to feed dump the name of each fixed disk partition. Here is an example of the
commands needed to backup the simpler mount table listed above:

/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
mt -f /dev/rst0 rewind

For the more advanced mount table example, you would use something similar to:

/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0d
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0e
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
mt -f /dev/rst0 rewind

You can review the dump(8) man page to learn exactly what each command line switch does. Here is a brief description
of the parameters used above:

0 - Perform a level 0 dump, get everything
a - Attempt to automatically determine tape media length
u - Update the file /etc/dumpdates to indicate when backup was last performed
f - Which tape device to use (/dev/nrst0 in this case)

Finally which partition to backup (/dev/rsd0a, etc)

The mt(1) command is used at the end to rewind the drive. Review the mt man page for more options (such as eject).

If you are unsure of your tape device name, use dmesg to locate it. An example tape drive entry in dmesg might appear
similar to:

st0 at scsibus0 targ 5 lun 0: <ARCHIVE, Python 28388-XXX, 5.28>

You may have noticed that when backing up, the tape drive is accessed as device name "nrst0" instead of the "st0" name
that is seen in dmesg. When you access st0 as nrst0 you are accessing the same physical tape drive but telling the drive
to not rewind at the end of the job and access the device in raw mode. To back up multiple file systems to a single tape,
be sure you use the non-rewind device, if you use a rewind device (rst0) to back up multiple file systems, you'll end up
overwriting the prior filesystem with the next one dump tries to write to tape. You can find a more elaborate description
of various tape drive devices in the dump man page.

If you wanted to write a small script called "backup", it might look something like this:

echo " Starting Full Backup..."
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0d
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0e
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
echo
echo -n " Rewinding Drive, Please wait..."
mt -f /dev/rst0 rewind
echo "Done."
echo

If scheduled nightly backups are desired, cron(8) could be used to launch your backup script automatically.

It will also be helpful to document (on a scrap of paper) how large each file system needs to be. You can use df -h to
determine how much space each partition is currently using. This will be handy when the drive fails and you need to
recreate your partition table on the new drive.

Restoring your data will also help reduce fragmentation. To ensure you get all files, the best way of backing up is
rebooting your system in single user mode. File systems do not need to be mounted to be backed up. Don't forget to

Saturday, January 19, 2002 14.0 - Disk setup Page: 13

http://www.openbsd.org/faq/faq14.html

mount root (/) r/w after rebooting in single user mode or your dump will fail when trying to write out dumpdates. Enter
bsd -s at the boot> prompt for single user mode.

Viewing the contents of a dump tape:

After you've backed up your file systems for the first time, it would be a good idea to briefly test your tape and be sure
the data on it is as you expect it should be.

You can use the following example to review a catalog of files on a dump tape:

/sbin/restore -tvs 1 -f /dev/rst0

This will cause a list of files that exist on the 1st partition of the dump tape to be listed. Following along from the above
examples, 1 would be your root (/) file system.

To see what resides on the 2nd tape partition and send the output to a file, you would use a command similar to:

/sbin/restore -tvs 2 -f /dev/rst0 > /home/me/list.txt

If you have a mount table like the simple one, 2 would be /usr, if yours is a more advanced mount table 2 might be /var
or another fs. The sequence number matches the order in which the file systems are written to tape.

Restoring from tape:

The example scenario listed below would be useful if your fixed drive has failed completely. In the event you want to
restore a single file from tape, review the restore man page and pay attention to the interactive mode instructions.

If you have prepared properly, replacing a disk and restoring your data from tape can be a very quick process. The
standard OpenBSD install/boot floppy already contains the required restore utility as well as the binaries required to
partition and make your new drive bootable. In most cases, this floppy and your most recent dump tape is all you'll need
to get back up and running.

After physically replacing the failed disk drive, the basic steps to restore your data are as follows:

Boot from the OpenBSD install/boot floppy. At the menu selection, choose Shell. Write protect and insert your
most recent back up tape into the drive.

Using the fdisk(8) command, create a primary OpenBSD partition on this newly installed drive. Example:

shell# fdisk -e sd0

See fdisk FAQ for more info.

Using the disklabel command, recreate your OpenBSD partition table inside that primary OpenBSD partition
you just created with fdisk. Example:

shell# disklabel -E sd0

(Don't forget swap, see disklabel FAQ for more info)

Use the newfs command to build a clean file system on each partition you created in the above step. Example:

shell# newfs /dev/rsd0a
shell# newfs /dev/rsd0h

Mount your newly prepared root (/) file system on /mnt. Example:

shell# mount /dev/sd0a /mnt

Change into that mounted root file system and start the restore process. Example:

Saturday, January 19, 2002 14.0 - Disk setup Page: 14

http://www.openbsd.org/faq/faq14.html

shell# cd /mnt
shell# restore -rs 1 -f /dev/rst0

You'll want this new disk to be bootable, use the following to write a new MBR to your drive. Example:

shell# fdisk -i sd0

In addition to writing a new MBR to the drive, you will need to install boot blocks to boot from it. The
following is a brief example:

shell# cp /usr/mdec/boot /mnt/boot
shell# /usr/mdec/installboot -v /mnt/boot /usr/mdec/biosboot sd0

Your new root file system on the fixed disk should be ready enough so you can boot it and continue restoring
the rest of your file systems. Since your operating system is not complete yet, be sure you boot back up with
single user mode. At the shell prompt, issue the following commands to unmount and halt the system:

shell# umount /mnt
shell# halt

Remove the install/boot floppy from the drive and reboot your system. At the OpenBSD boot> prompt, issue
the following command:

boot> bsd -s

The bsd -s will cause the kernel to be started in single user mode which will only require a root (/) file system.

Assuming you performed the above steps correctly and nothing has gone wrong you should end up at a prompt
asking you for a shell path or press return. Press return to use sh. Next, you'll want to remount root in r/w
mode as opposed to read only. Issue the following command:

shell# mount -u -w /

Once you have remounted in r/w mode you can continue restoring your other file systems. Example:

(simple mount table)
shell# mount /dev/sd0h /usr; cd /usr; restore -rs 2 -f /dev/rst0

(more advanced mount table)
shell# mount /dev/sd0d /var; cd /var; restore -rs 2 -f /dev/rst0
shell# mount /dev/sd0e /home; cd /home; restore -rs 3 -f /dev/rst0
shell# mount /dev/sd0h /usr; cd /usr; restore -rs 4 -f /dev/rst0

You could use "restore rvsf" instead of just rsf to view names of objects as they are extracted from the dump
set.

Finally after you finish restoring all your other file systems to disk, reboot into multiuser mode. If everything
went as planned your system will be back to the state it was in as of your most recent back up tape and ready to
use again.

14.10 - Mounting disk images in OpenBSD
To mount a disk image (ISO images, Disk images created with dd, etc) in OpenBSD you must configure a vnd(4)
device. For example, If you have an ISO image located at /tmp/ISO.image , you would take the following steps to
mount the image.

vnconfig svnd0 /tmp/ISO.image
mount -t cd9660 /dev/svnd0c /mnt

Notice that, since this image is a CD image you must specify type of cd9660 when mounting it. This is true, no matter
what type, e.g. you must use type ffs when mounting disk images.

Saturday, January 19, 2002 14.0 - Disk setup Page: 15

http://www.openbsd.org/faq/faq14.html

To unmount the image use the following commands.

umount /mnt
vnconfig -u svnd0

For more information, refer to the vnconfig(8) man page.

14.11 - Help! I'm getting errors with PCIIDE!
PCI IDE DMA is unreliable. This is why Microsoft disables it by default on the operating systems it ships.

OpenBSD is aggressive and attempts to use the highest DMA Mode it can configure. This will cause corruption of data
transfers in some configurations because of buggy motherboard chipsets, buggy drives, and/or noise on the cables.
Luckily, Ultra-DMA modes protect data transfers with a CRC to detect corruption. When the Ultra-DMA CRC fails,
OpenBSD will print an error message and try the operation again.

wd2a: aborted command, interface CRC error reading fsbn 64 of 64-79 (wd2 bn 127; cn 0 tn 2

After failing a couple times, OpenBSD will downgrade to a slower (hopefully more reliable) Ultra-DMA mode. If
Ultra-DMA mode 0 is hit, then the drive downgrades to PIO mode.

If OpenBSD does not successfully downgrade, or the process causes your machine to lock hard, please send in a bug
report.

[Back to Main Index] [To Section 13.0 - IPsec]

 www@openbsd.org
$OpenBSD: faq14.html,v 1.54 2002/01/13 00:00:32 ericj Exp $

