
1

Hack-proofing Oracle1

www.AppSecInc.com

Hack-proofing Oracle Databases

Aaron Newman
anewman@appsecinc.com

Application Security, Inc.
www.appsecinc.com

Download updated version of presentation from
http://www.appsecinc.com/news/briefing.html

Good morning and welcome to this discussion on protecting your databases.

What we are going to do is look at security from a different perspective – to see how
an attacker would approach your database and how you can stop an attacker.
Without understanding the attacker, you likely will not be able to thwart an attack.
That’s why its important to be able to think like the attacker to be able to stop the
attacker.

2

Hack-proofing Oracle2

www.AppSecInc.com

Agenda

• State of Oracle Security
• Listener Vulnerabilities

– Tnscmd demonstration

• Oracle in a Web application
– SQL Injection Demo

• Database Vulnerabilities
• Resources, Conclusion, and Wrap Up

We will be covering various ways databases can be broken into and how to prevent
yourself from being hacked.

Start with an introduction to talk about the state of Oracle security

We will be talking about listener security

Including a demonstration on using an attack tool that can be down loaded from the
internet

We will talk about how a database could be hacked through a web server and how to
prevent this from happening. We will be demonstrating an example SQL Injection
demo.

We will be covering some basic database vulnerability and misconfigurations.

Then we will take some questions.

3

Hack-proofing Oracle3

www.AppSecInc.com

State of Oracle Security

4

Hack-proofing Oracle4

www.AppSecInc.com

In the media

“Look what they've done to my database, Ma”
- By John Leyden, The Register

Posted: 23/01/2002 at 17:40 GMT

• 1 out of 10 corporate databases connected to the
Internet had a breach of security last year.

• Taken from a survey of 750 US database developers
which also reveals growing concern about security
issues.

http://www.theregister.co.uk/content/55/23800.html

5

Hack-proofing Oracle5

www.AppSecInc.com

Underground Hacking World

• Increasing number of presentations on
hacking databases at conferences
– Blackhat, Defcon

• Exploits being written
• Worms found in the wild using databases

– Alpha Voyager
– Spida worm

• Whitepapers on attack Oracle

6

Hack-proofing Oracle6

www.AppSecInc.com

Oracle Website – Alerts Web page

http://otn.oracle.com/deploy/security/index2.h
tm?Info&alerts.htm

• Prior to July 2000
– One vulnerability acknowledged by Oracle

• From July 2000 to August 2002
– 41 vulnerability reports on the Oracle website

• Vulnerabilities reported on
SecurityFocus.com
– About 75 vulnerabilities reported about Oracle

7

Hack-proofing Oracle7

www.AppSecInc.com

Myth – Oracle is secure behind a firewall

• Is your database secure because it’s behind
a firewall?

• NO!!!
• Most security compromises are result of

inside jobs
• Internal threats are the most dangerous
• Non-privileged users in the database

8

Hack-proofing Oracle8

www.AppSecInc.com

What to do about the situation

• The problem exists but it won’t be fixed
tomorrow

• But we must start plugging these holes
• Become aware of the risks and threat
• Find the right solutions

We do need to start taking a proactive approach to securing databases

There is however a growing interest for database among black hats:

-In the past few year, the Black hat/Defcon conferences have had talks on Database
security

-Exploits reported on Security Focus has increased dramatically over the last few
months

Also, we will not be discussing operating system security, although this is a critical
component of database security. You can’t have one without the other.

9

Hack-proofing Oracle9

www.AppSecInc.com

Securing the Listener service

10

Hack-proofing Oracle10

www.AppSecInc.com

Listener Vulnerabilities

• What is the listener?
– Proxy between the client and the database

• Why is it important?
– Separate authentication and auditing
– Runs as a separate process
– Accepts commands and performs tasks outside

the database

• Vulnerabilities in Listener Service

Let’s start by talking about a single component in the Oracle subsystem - the
Listener service.

The listener service is a proxy during the connection process which sets up the
connection between the client and the database. The client directs a connect to the
listener which in turn hands the connection off to the database.

The issue that exists is that the listener has separate authentication and is controlled
and administered outside of the database. The listener runs in a separate process,
and in the past that process was run as setUID. The listener accepts commands and
other tasks besides handing connections to the database.

11

Hack-proofing Oracle11

www.AppSecInc.com

Security Issues with the Listener Service

• The listener must be secured with password
– Default configuration is no password
– lsnrctl set password

• Must set a strong password
– Not vulnerable to brute-forcing

• Must protect the listener.ora file
– Password stored in this file

• Do not remotely manage listener
– Password is not encrypted over network

How do we start securing the listener controlled.

First we must set a password on the listener service. Many DBAs don't even realize
that a password must be set on the listener service. The listener accepts remote
commands which means that if you do not set a password, any user on the
network can send commands.

You can set the listener password one of two ways:

1) Using the listener controller utility – lsnrctl.

2) Setting the password in the listener.ora file.

You must choose a strong password because the listener controller is vulnerable to
be brute-forced. A strong password is one which is not found in a dictionary,
contains a combination of numbers letters and special characters, and is at least
8 characters long. If you do not set a strong password, a program can be written
which attempts to connect to the listener using every possible combination of
passwords. There is no password lockout feature of the listener.

The password itself is stored in the listener.ora file. If a user can read this file, they
can use the password to log in remotely to the listener.

It is also recommended that you do not manage the listener remotely. The reason
being is that the password is sent across the network in clear-text (or as a
replayable hash). Anyone sniffing the network can discover the password if you
are remotely managing the listener. Instead it is recommended that you connect

12

Hack-proofing Oracle12

www.AppSecInc.com

Listener commands

• What are the commands?
– LSNRCTL> help

The following operations are available

start stop status
quit exit set*
show*

password rawmode displaymode
trc_file trc_directory trc_level
log_file log_directory log_status
current_listener connect_timeout startup_waittime
use_plugandplay save_config_on_stop

So what are the know problems with the listener services. To investigate this
problems, we can pull up the listener controller and run the help command. This
gives us a list of the commands we have at our access.

I know this is probably not readable for the audience. Take a look at the print-outs
or the CDROM to look at the possible commands.

There is a command called set password - this is used to log us onto a listener. There
is a couple of problems with this password - there's no lockout feature for this
password, the auditing of these commands are separate from the standard oracle
audit data, password does not expire - basically there is no password management
features. This means writing a simple script to brute force this password, even if it is
set strongly, is not very difficult.

13

Hack-proofing Oracle13

www.AppSecInc.com

Listener packet

• Below is an example of a command:

What happens when a command is entered into the listener controller?

A command is sent to the listener. If the listener is remote, the command is sent
over the network. Here is an example of a packet. At the top of the packet we see a
lot of strange characters – these represent fields and headers that form the structure
of the packet.

At the bottom on the packet is a connection string. Within this connection string is
the command that the remote listener will execute. In this example we see:

COMMAND=status

14

Hack-proofing Oracle14

www.AppSecInc.com

Listener attack demo

http://www.jammed.com/~jwa/hacks/
security/tnscmd/

15

Hack-proofing Oracle15

www.AppSecInc.com

What is a buffer overflow

• When a program attempts to write more
data into buffer than buffer can hold

• Starts overwriting area of stack memory
– Can be used maliciously to cause a program to

execute code of attackers choose
– Overwrites stack point

Before we start looking at buffer overflows in Oracle, we need to understand what a
buffer overflow is.

Programs set up areas of memory to read and write data to and from. These pieces
of memory are contiguous. When a program sets up 1000 bytes and then tries to
write 1001 bytes into it, it runs over and writes the memory that is allocated for
other data. By finding a place in which the program can be caused to overwrite
memory, malicious things can be done.

Overwriting the stack pointer is a particularly dangerous area to overwrite because it
allows an attacker to redirect the execution of the program. It is very common for a
buffer overflow in stack memory to allow the attacker to overwrite the stack pointer
and write operation codes to memory. Then when the current function is ended,
execution returns to the opcode sent by the attacker.

This is extremely dangerous when the data that is being written is from the network.

16

Hack-proofing Oracle16

www.AppSecInc.com

Buffer overflows in the listener service

• Example of a connection string
– (DESCRIPTION=(CONNECT_DATA=(CID=(PROGRAM=)(HO

ST=)(USER=))(COMMAND=status) (SERVICE=LIST80)
(VERSION=135294976)))

• Finding buffer overflows:
– Try changing this values to see what happens
– Try USER= with 4,000 Xs after it
– Try SERVICE= with 4000 Xs after it
– Etc…

How does a hacker find buffer overflows?

To demonstrate how this is typically done, we look at a common command sent to
the listener service. The connection string above is an example.

A hacker would start by trying to send a long string as part of the connection string.
For instance, try sending USER= with a large amount of garbage data. If the
developer of the listener declared a 1024 bytes buffer on the stack that would
receive the username, that buffer will end up overwritten. Programs need to be
intelligent enough to see that it only has 1024 bytes allocated and not try to copy
more than that.

17

Hack-proofing Oracle17

www.AppSecInc.com

Buffer overflows in the listener

• Oracle 8.1.7
– Sending 1 kilobyte of data for COMMAND=

caused crash
– Sending more than 4 kilobytes in the

COMMAND= caused core dump
• Problem in structured-exception handler allows

hacker to execute code

• Oracle 9.0.1
– Sending 1 kilobyte of data for SERVICE=

There have been a number of vulnerabilities found in the listener that are caused by
exactly what we just described.

In Oracle 8.1.7, several problems where found with sending large chunks of data for
COMMAND=

In Oracle 9 release 1, several problems were found sending SERVICE=

18

Hack-proofing Oracle18

www.AppSecInc.com

Manipulating header field values

• Typical command
– .T.......6.,...............:................4.............(CONNECT_DATA=.)

• Garbage characters represent header
information
– Offset to data
– Size of connection string
– Size of packet
– Type of packet

There have also been vulnerabilities found based on manipulating the header fields
of the packets sent to Oracle.

A typical command sent to the listener has several dozen bytes of information about
the packet. Included in these fields are data such as:

Offset to the connection string

Size of connection string

Size of packet

Type of packet

By manipulating these values, Oracle does weird things. Oracle does not expect
these values to be maliciously changed, which makes it vulnerable.

19

Hack-proofing Oracle19

www.AppSecInc.com

Stealing Listener Commands

• The following command is sent:
– .T.......6.,...............:................4.............(CONNECT_DATA=.)

• Change header to say 40 bytes
–"...(DESCRIPTION=(ERR=1153)(VSNNUM=135290880)(ERROR_

STACK=(ERROR=(CODE=1153)(EMFI=4)(ARGS='(CONNECT_DAT
A=.)ervices))CONNECT'))(ERROR=(CODE=3 03)(EMFI=1))))

• Change header to say 200 bytes
–"..>.H.......@(DESCRIPTION=(ERR=1153)(VSNNUM=135290880)

(ERROR_STACK=(ERROR=(CODE=1153)(EMFI=4)(ARGS='(CONNE
CT_DATA=.)ervices))CONNECT_DATA=(SID=orcl)(global_dbname=te
st.com)(CID=(PROGRAM=C:\Oracle\bin\sqlplus.exe)(HOST=anewman)
(USER=aaron))')) (ERROR=(CODE=303)(EMFI=1))))

If you fake the size of the data packet you send, the listener will return to you any
data in its command buffer up to the size of the buffer you sent. In other words, if
the previous command submitted by another user was 100 characters long, and the
return value for you command was 10 characters long, the first 10 character will be
copied over by the listener, it will not correctly null terminate the return value, and
apparently does some kind of string copy, returning to you your 10 character and the
last 90 characters of the previous command.

This is useful to an attacker in several ways - it can be used to look for database
usernames. If someone else logged into the server using the password, you will be
able to retrieve this value from the buffer - of course, that is not easy to do since
most people should not be running commands against the listener all that often - but
the risk still exists.

20

Hack-proofing Oracle20

www.AppSecInc.com

External Procedures

• Functions in DLL and shared libraries
• Can be called from PL/SQL
• Setup by creating libraries and packages:

– CREATE LIBRARY test AS ‘msvcrt,dll’;
CREATE PACKAGE test_function IS PROCEDURE
exec(command IN CHAR);
CREATE PACKAGE BODY test_function IS
PROCEDURE exec(command IN CHAR)
IS EXTERNAL NAME “system”
LIBRARY test;

There are also security concerns with external procedure servers. Xprocs allow
functions to be created in Oracle that reference DLL or shared libraries on the
operating system. This is a powerful feature that make the database able to do
anything the OS can do. Of course with great power comes great responsibility.

An Xproc can be created to point to any DLL on the system. This can be used to
point to operating system DLLs that allow you to execute operating system
commands as if at an operating system prompt. This allows the database to access
any resource on the operating system that the database server has access to.

The first concern you should have is that the privilege CREATE LIBRARY and
CREATE PROCEDURE gives a user the ability to gain full control of the database
and likely the operating system. However this is not the biggest concern.

21

Hack-proofing Oracle21

www.AppSecInc.com

Remotely calling External Procedures

• Not “officially” support
– But it works

• ExtProcs are another connection point for listener
– SID_LIST_LISTENER =
– (SID_LIST =
– (SID_DESC =
– (SID_NAME = PLSExtProc)
– (ORACLE_HOME = E:\oracle\ora81)
– (PROGRAM = extproc)

• How does ExtProc authenticate the user
– IT DOESN’T!!!!!!!!!

22

Hack-proofing Oracle22

www.AppSecInc.com

Default setup - External Procedures

• Automatically configured?
– Oracle 8i – YES
– Oracle 9i - NO

• How do we fix this?
• Callout listener

– Do not create ExtProc as another listener endpoint
– Create its own entry in the listener.ora file

• Can only be called local then

23

Hack-proofing Oracle23

www.AppSecInc.com

Oracle in a Web application

24

Hack-proofing Oracle24

www.AppSecInc.com

Can attacks go through a firewall?

• YES!!!
• Firewall configuration

– Block access through port 1521
– Only allow traffic to port 80
– Block UDP as well as TCP

• SQL Injection
– Not specific to Oracle
– a web programming problem

Most database administrators believe that there database is safe if it is behind a
firewall

Even if your firewall is properly configured, attacks can be made through web
applications. These attacks are not vendor problems, they are problems caused by
bad programming practices on behalf of Application developers.

We’ve discovered that more sites than not are vulnerable to this problem in one way
or another. How this attacks works varies slightly from database to database, but the
fundamental problem is the same for all databases.

The simplest way to verify whether you are vulnerable or not is to embed a single
quote into each field on each form and verify the results. Some sites will return the
error results claiming a syntax error. Some sites will catch the error and not report
anything. Of course, these sites are still vulnerable, but they is much harder to
exploit if you do not get the feedback from the error messages.

25

Hack-proofing Oracle25

www.AppSecInc.com

How does it work?

• Modify the query
• Change:

– Select * from my_table where column_x = ‘1’

• To:
– Select * from my_table where column_x = ‘1’

UNION select password from DBA_USERS
where ‘q’=‘q’

So how does the exploit work? What the exploit does is changes a SQL Statement to
another SQL statement. In this example we see a single query being converted into
2 queries. There are also ways to modify the where criteria to update or delete rows
not meant to be updated or deleted.

With other databases you can embed a second command into the query. Oracle does
not allow you to do this. Instead an attacker would need to figure out how to
supplement the end of the query.

Note the ‘q’ = ‘q’ at the end. This is used because we must handle the second single
quote that the ASP page is adding onto the end of the page. This clause simply
evaluates to TRUE.

26

Hack-proofing Oracle26

www.AppSecInc.com

Example JSP page

Package myseverlets;
<….>
String sql = new String(“SELECT * FROM
WebUsers WHERE Username=’” +
request.getParameter(“username”) + “’
AND Password=’” +
request.getParameter(“password”) + “’”
stmt = Conn.prepareStatement(sql)

Rs = stmt.executeQuery()

Exploiting the problem is much simpler if you can access the source of the web
page. You should not be able to see this data, however there are many bugs that
allow you to view the source, and I’m sure there are still lots that have not yet been
discovered.

The problem with our ASP code is that we are concatenating our SQL statement
together without parsing out any single quotes. Parsing out single quotes is a good
first step, but its recommended that you actually use parameterized SQL statements
instead.

27

Hack-proofing Oracle27

www.AppSecInc.com

Valid Input

• If I set the username and password to:
– Username: Bob
– Password: Hardtoguesspassword

• The sql statement is:
– SELECT * FROM WebUsers WHERE

Username=’Bob’ AND
Password=’Hardtoguess’

Here we have the case of a typical authentication mechanism used to login to a web
site. You must enter your password and your username. Using these two fields we
get a SQL statement that selects from the tables where the username and password
match the input. If a match is found, the user is authenticated. If the recordset in our
code is empty, then an invalid username or password must have been provided and
the login is denied.

28

Hack-proofing Oracle28

www.AppSecInc.com

Hacker Input

• Instead enter the password:
– Aa’ OR ‘A’=‘A

• The sql statement now becomes:
– SELECT * FROM WebUsers WHERE

Username=’Bob’ AND Password=’Aa’ OR
‘A’=‘A’

• The attacker is now in the database!

An attacker instead of using a regular password, enters some letter, uses a single
quote to end the string literal, then inserts another boolean expression in the where
clause. Obviously this boolean expression is TRUE which returns all the rows in the
table.

The kicker is that when the recordset contains the entire set of users, the first one
will typically be the Administrator of the system, so there is a good chance you will
have full access to the application.

29

Hack-proofing Oracle29

www.AppSecInc.com

Selecting from other Tables

• To select data other than the rows from the
table being selected from.

• UNION the SQL Statement with the
DBA_USERS view.

Here’s another example of how to pull data back from other tables that are not
directly involved in the current query. The best method is to find a screen that
contains a dynamic list of items. If the SQL only looks at a single value, then the
attacker won’t be able to get back all the data requested.

The trick here is to make your single query into 2 queries and union them. This is
somewhat difficult because you must match up the number of columns and column
types. However, if the server provides you the error messages, the task is very
doable. Error will be something like:

Number of columns does not match

Or

2nd column in UNION statement does not match the type of the first statement.

30

Hack-proofing Oracle30

www.AppSecInc.com

Sample ASP Page

Dim sql
Sql = “SELECT * FROM PRODUCT WHERE
ProductName=’” & product_name & “’”

Set rs = Conn.OpenRecordset(sql)
‘ return the rows to the browser

Once again we have the ASP page. An attacker does not really need this, but it does
make our lives easier for demonstration purposes. Once again we are not using
parameterized queries, but instead are concatenating a string to build our SQL
statement.

31

Hack-proofing Oracle31

www.AppSecInc.com

Valid Input

• Set the product_name to :
– DVD Player

• The SQL Statement is now:
– SELECT * FROM PRODUCT WHERE

ProductName=’DVD Player’

In a typical request we would use the valid name of a product to search for.

The SQL Statement would select from the PRODUCTS table.

32

Hack-proofing Oracle32

www.AppSecInc.com

Hacker Input

• Set the product_name to :
– test’ UNION select username, password from

dba_users where ‘a’ = ‘a

• The SQL Statement is now:
– SELECT * FROM PRODUCT WHERE

ProductName=’test’ UNION select username,
password from dba_users where ‘a’=‘a’

An attacker would instead want to get a copy of the password hashes from your
databases. Once he has these hashes, he can start brute-forcing them.

Instead of entering a single word, the attacker uses a single quote to end the string
literal, the adds a UNION command and a second statement. Notice at the end that
he must still handle the fact that the code will place another single quote at the end,
so we end our second SQL query with ‘a’=‘a. This last clause evaluates to TRUE
causing all rows to be returned from the dba_users table.

33

Hack-proofing Oracle33

www.AppSecInc.com

Preventing SQL Injection

• Validate user input
– Parse field to escape single quotes to double

quotes

• Use the object parameters to set parameters
– Bind variables

How do you prevent this.

You are going to need to review and update all you CGI scripts, ASP pages, etc…

Suggest that you setup a programming guideline for web programmers that includes
emphasis on using parameterized queries and not concatenating strings for SQL.

Also you can escape single quotes into 2 single quotes although this method is
riskier since it is much easier to miss parsing input somewhere.

34

Hack-proofing Oracle34

www.AppSecInc.com

SQL Injection demo

ASP page, IIS web server
Oracle database

35

Hack-proofing Oracle35

www.AppSecInc.com

Database Vulnerabilities

36

Hack-proofing Oracle36

www.AppSecInc.com

Database Security Issues

• sqlnet.log
• Popular Oracle Security Issues
• PL/SQL Vulnerabilities

– Examples

• Host Operating System
– Known Issues Installing Oracle
– Lockdown Protection Procedures

37

Hack-proofing Oracle37

www.AppSecInc.com

Sqlnet.log

• File is created in a directory when a
connection attempt fails from a machine

• Gives too much information – username, IP
address, date, etc…

• Have seen many times on public web sites

There is a file that is created when a connection to a database is made. This file is
created on the client and records information about failed connections. If you have
an Oracle client on your workstation, go search for sqlnet.log.

This file contains the connection string, including username, host connecting to,
host connecting from, when the attempt was made, etc… This can be very, very bad.
Has anyone every typed there password in the user name field or in the server field.
This information ends up recorded in the file.

Make sure you have not accidentally created this file on your web server. Search for
this file and delete it. Don’t make connections from the web server. I have seen this
file on client’s web sites.

38

Hack-proofing Oracle38

www.AppSecInc.com

Popular Oracle Security Issues

• Default passwords!
– SYS, SYSTEM, DBSNMP, OUTLN,MDSYS,

SCOTT

• Password management features not enabled
– No password lockout by default
– No password expiration by default

• Public permissions on ALL_USERS view

Oracle has a variety of default passwords – number is in the dozens. Which ones
exist depend on which options you’ve installed, which version of the database you
install, etc… It’s very easy to accidentally leave one on. Some are very difficult to
change and features will break if changed improperly.

Password management features, such as password lockout, expiration, reuse
parameters are implemented through profiles. By default profiles are turned off.

There are several sensitive views that give you lots of information that people don’t
need to see. The ALL_USERS view is a list of usernames in the database. Gives a
non-privileged account a large set of targets to attack.

39

Hack-proofing Oracle39

www.AppSecInc.com

PL/SQL Vulnerabilities

• Problem with dynamic SQL
– EXECUTE IMMEDIATE
– DBMS_SQL

• Danger allowing the user to pass parameters
that are used in the parsed SQL statement

This issue is almost identical to the SQL Injection problem. You can insert
additional statements into the SQL to manipulate or show records you shouldn’t be
accessing. This is really only an issue when a function runs using OWNER
RIGHTS, not when a procedure is executed using INVOKER RIGHTS.

There are two ways to create SQL Statements on the fly in PL/SQL code – Execute
immediate and through the package DBMS_SQL. Why would you need to do this –
if you did not know the name of the table or columns at compile time or if you
wanted to execute DDL or DCL code in a procedure.

Several of the package shipped with Oracle use these statements.

40

Hack-proofing Oracle40

www.AppSecInc.com

Dynamic SQL Example
CREATE PROCEDURE BAD_CODING_EXAMPLE (NEW_PASSWORD

VARCHAR2) AS
TEST VARCHAR2;
BEGIN
-- DO SOME WORK HERE

EXECUTE IMMEDIATE 'UPDATE ' || TABLE_NAME || ' SET ' ||
COLUMN_NAME || ' = ''' || NEW_PASSWORD || '''‘ WHERE USERNAME=
= ''' || CURRENT_USER_NAME || ''';

END BAD_CODING_EXAMPLE;

Here is an example of a procedure that allows you to update your username. You
wouldn’t want to write your procedures like this.

Just like SQL Injection code, we are concatenating the strings together to create a
SQL statement.

41

Hack-proofing Oracle41

www.AppSecInc.com

• Input
– EXEC BAD_CODING_EXAMPLE(‘testabc’);

• SQL Created
– UPDATE APPLICATION_USERS SET PASSWORD = ‘testabc’

WHERE USERNAME = ‘aaron’

Valid input

Here we have an example of what valid input should look like. Here you are
updating your password to testabc. This creates a SQL statement that updates the
APPLICATION_USERS table for the user aaron.

The input is run from any OCI connection, ODBC connection, SQL*Plus, etc…

Note this does require having a valid account in the database and having execute
permissions on the procedure.

42

Hack-proofing Oracle42

www.AppSecInc.com

• Input
– EXEC BAD_CODING_EXAMPLE(‘testabc’’, ADMIN=1,

FULL_NAME=‘’TEST’);

• SQL Created
– UPDATE APPLICATION_USERS SET PASSWORD = ‘testabc‘,

ADMIN=1, FULL_NAME=‘TEST’ WHERE USERNAME =
‘aaron’

Hacker input

Here we see that an additional clause was added to the input. First the attacker ends
the string literal by using 2 single quotes, which PL/SQL translates to a single quote.
Then the attacker inserts a comma and a second column to update. Updating the
ADMIN column makes this user an administrator for the application.

Notice that we need to tack another column on at the end to get handle the final
single quote.

43

Hack-proofing Oracle43

www.AppSecInc.com

Getting to the operating system

• Oracle on NT typically runs as LocalSystem
– Act as part of the OS privilege

• Oracle on Unix runs as the oracle user
– Privilege to all oracle files

• Procedures such as:
– UTL_FILE, UTL_HTTP

• System privileges such as Create Library

Once an attacker has gained access to the database, they can also get access to the
operating system. Not really anyway to prevent them. There are several procedures
that can be used – UTL_FILE is the most lethal. Gives you full access to the file
I/O.

There are limitations to this feature. UTL_FILE_DIR parameter can be set to limit
the directories you can write to. The administrator can of course modify this
parameter.

Oracle also allows you to load libraries into a separate process space using the
EXTPROC executable file. Can load pretty much any shared library or DLL the
oracle user has access to.

44

Hack-proofing Oracle44

www.AppSecInc.com

On the operating system

• Oracle has many setUID files
• Oratclsh was setUID root

– TCL debugger
– Allowed you to run a script as root
– Change setuid immediately, even if you are not

using

We all know there are problems with files that are Setuid. In the past oracle shipped
with 15 files setuid.

The biggest problem was the TCL debugger, designed to test applications before
they were used in the DBSNMP engine. This debugger is setuid and is owned by
root. Was very easy to exploit this to get full root access. There is a patch, but I’m
sure there are other problems with the file that could be exploited. This is a problem
even if the dbsnmp agent is not being used.

45

Hack-proofing Oracle45

www.AppSecInc.com

Other SetUID files

• Were many until Oracle8i release 2
– Cmctl, tnslsnr, etc…

• Very important one – oracle
– Main database engine

• Relies on ORACLE_HOME directory
– To load the pwdSID.ora file
– Allows you to load a rogue database

In release 2 of Oracle 8i (version 8.1.6) most of the SetUID bits have been disabled.

Two remain – on dbsnmp and oracle files. Both of these require the SetUID to work
properly. Instead we recommend using different strategies. Remove the execute
privilege on both these files from everybody except the owner. Use the owner
account to startup the database.

There are other strategies to start the database using groups and SetGUID, but they
are fairly complex.

Oracle is the main executable program. If you leave execute permissions on this file,
anybody with an account on the server can startup a rogue instance and use the
UTL_FILE package to write files. This can occur because Oracle relies on the
ORACLE_HOME environment variable.

Dbsnmp is setuid and owned by root. Don’t trust it.

46

Hack-proofing Oracle46

www.AppSecInc.com

Installing Oracle

• Oracle trusts the /tmp directory
• If a file is created before the Oracle file is

written, it is overwritten but retains the
permissions

• Allows backdoors to be injected into
installation

Oracle creates files in the /tmp directory during installation. Although the umask is
022, if someone before hand creates the directories and files that oracle creates
during the installation, the old files permissions are retained allowing the attacker to
inject code into the installation.

There are many scripts in this installation that makes it much easy to inject code, so
an attacker would not have to be sophisticated enough to create a root tool kit.

47

Hack-proofing Oracle47

www.AppSecInc.com

Lockdown the operating system

• Lock all users out of the OS during
installation

• Set the TMP_DIR directory to a secured
directory

• Lockdown ORACLE_HOME permissions
• Remove setUID from all files
• Rename the UNIX oracle account

To prevent this injection during an installation, we recommend you take several
steps:

-don’t allow other accounts to be logged in while the installation is going on (this
isn’t 100% effective since the attacker can plant something to wait for an
installation to start that attacks during the install).

-Better strategy is to set the environment variable TMP_DIR, sometime TEMP_DIR
on older versions of Oracle. This causes the temporary files to be written
somewhere else. The secure secure this directory before starting the installation.

Rename the unix acccount that owns oracle. It is always oracle, and makes is a
target.

48

Hack-proofing Oracle48

www.AppSecInc.com

Resources, Conclusion, and Wrap Up

49

Hack-proofing Oracle49

www.AppSecInc.com

How to Combat Hackers

• Stay patched –
– http://metalink.oracle.com

• Security alerts:
– www.oraclesecurity.net/resources/mailinglist.html

• Security Discussion Board
– www.oraclesecurity.net/cgi-bin/ubb/ultimatebb.cgi

• Check out security solutions at:
– www.appsecinc.com

50

Hack-proofing Oracle50

www.AppSecInc.com

How to Combat Hackers

• Defense in depth
• Multiple levels of security

– Perform audits and pen tests on your database
on a regular basis

– Encryption of data-in-motion
– Encryption of data-at-rest
– Monitor your log files
– Implement intrusion detection

51

Hack-proofing Oracle51

www.AppSecInc.com

Questions?

• About
– Oracle security features
– Vulnerabilities
– Protecting your database

• Email me at:

anewman@appsecinc.com
www.appsecinc.com

