
CORBA Objects
in Python

Jason Tackaberry
(tack@linux.com)

April, 2000
Algoma University College

Supervised by George Townsend



Table of Contents

1.  Introduction.................................................................................................................1

1.1.  Trends in Distributed Objects..............................................................................1

1.2.  CORBA Availability in High Level Languages...................................................2

1.3.  Marrying CORBA and Python.............................................................................3

2.  Background.................................................................................................................4

2.1.  CORBA...............................................................................................................4

2.1.1.  Introduction to CORBA...............................................................................4

2.1.2.  About the OMG............................................................................................5

2.1.3.  Architecture Overview.................................................................................5

2.1.4.  The IDL.......................................................................................................8

2.1.5.  The ORB....................................................................................................10

2.1.6.  Interoperability Issues................................................................................12

2.2.  ORBit and the GNOME Project.........................................................................13

2.3.  Python................................................................................................................14

2.3.1.  Executive Summary...................................................................................14

2.3.2.  A Brief Introduction to Python...................................................................15

2.3.3.  Extending Python from C...........................................................................16

2.3.4.  Currently Available ORBs..........................................................................19

3.  Design and Implementation.......................................................................................20

3.1.  Scope.................................................................................................................20

3.2.  Design Overview...............................................................................................21

3.3.  Dynamic IDL.....................................................................................................22

3.3.1.  Benefits......................................................................................................22



3.3.2.  libIDL........................................................................................................24

3.3.3.  IDL Processing Details...............................................................................24

3.4.  Implementation Details......................................................................................27

3.4.1.  Marshalling and Demarshalling..................................................................27

3.4.2.  Type Mappings...........................................................................................28

3.4.3.  Walking Through the Code........................................................................29

4.  Testing and Evaluation..............................................................................................35

4.1.  Peer Review.......................................................................................................35

4.1.1.  Background................................................................................................35

4.1.2.  ORBit−Python Released.............................................................................36

4.2.  Objectives Assessment.......................................................................................36

4.3.  Testing...............................................................................................................37

4.4.  Performance.......................................................................................................37

4.5.  Future Plans.......................................................................................................38

5.  Conclusions...............................................................................................................40

6.  References.................................................................................................................41

A.  Appendix A: ORBit−Python ChangeLog..................................................................42

B.  Appendix B: The Test Suite......................................................................................44

B.1. The Interface Definition.....................................................................................44

B.2. The Server..........................................................................................................45

B.3. The Client..........................................................................................................47

C.  Benchmark Information............................................................................................48



1.  Introduction Page 1 of 48

1.  Introduction

1.1.  Trends in Distributed Objects

Historically, large applications would typically be written as one, monolithic program. In the

80s, a shift in programming practices toward modular design occurred. Using modular

techniques, the application is divided into a series of self−contained modules that are linked

together to form the complete application. This practice was widely regarded as a step

forward in a more sound design and increased maintainability.

Beginning in the early 90s, this approach was extended to what is known as

component−based design. In a component model, a common framework is provided for each

component. This framework defines a standard set of operations used to facilitate

interoperability between components. Once a framework is available, independent software

vendors can design components that are guaranteed to function properly together.

Application design then becomes simply a matter of gluing together components.

Many different component technologies are available today. Perhaps the most

popular implementation of this approach is Microsoft’ s Component Object Model (COM).

COM defines a binary standard for the definition of component interfaces [1], such as what

data types may be passed to and returned from operations. Another emerging component

technology is Sun’s Enterprise Java Beans (EJB). The EJB specification defines a

component model up to the GUI level. A JavaBean, for instance, may be a spreadsheet table

widget. This is in contrast to Microsoft’ s COM, which does not define GUI interfaces, but

rather serves as the foundation to ActiveX, which provides the control embedding

functionality. Because EJB is a Java technology, it skates around issues that COM and other

component technologies must address, such as binary and data−type compatibility [1].



1.1.  Trends in Distributed Objects Page 2 of 48

Arguably the most promising component technology is the Object Management

Group’s (OMG) Common Object Request Broker Architecture, or CORBA. CORBA

specifies a language−neutral and platform−agnostic distributed object architecture. Whereas

COM is more an implementation, CORBA is strictly a specification. OMG does not provide

a CORBA implementation (known as an ORB); it is left up to vendors of CORBA−compliant

ORBs to define their own binary interfaces [1].

CORBA, however, is more akin to COM than to EJB. CORBA does not define a

container framework for components. Instead it provides a specification language that

application vendors use to define their own interfaces to components. Technologies may be

built on CORBA to provide component embedding functionality, such as Apple and IBM’s

OpenDoc [2], KDE’s KOM/OpenParts [3], or GNOME’s Bonobo [4].  

1.2.  CORBA Availability in High Level Languages

As computing power increases, there is less need for programming in low−level languages

(such as assembly or C), which has traditionally been the case for efficiency reasons. Today,

high level languages are quickly gaining popularity because of their high degree of

readability, maintainability, and the trend toward rapid application development (RAD).

While CORBA was once seen as a framework used only by enterprise−level

applications, today there are many robust and open source CORBA ORBs available. These

free implementations have given CORBA a much wider exposure in the open source world.

Today, free desktop environments such as KDE1 and GNOME use CORBA as a foundation

for distributed objects and an embedded component architecture. To ensure rapid growth,

developers of these projects recognize the need to make it possible for applications to be

1 KDE uses both a shared library approach (KParts) as well as a CORBA−based approach (OpenParts).



1.2.  CORBA Availability in High Level Languages Page 3 of 48

developed in high−level languages such as Perl and Python.

Because high−level languages tend to serve as a glue between smaller components,

there is a requirement for a CORBA implementation. Many ORBs exist for languages such

as Perl and Python, including language bindings for ORBs written in other languages

(omniORBpy, for example), or complete ORB implementations in the language (such as

Fnorb).

1.3.  Marrying CORBA and Python

Python, an object−oriented language which spawned in 1990, has caught the eye of many

developers and rivals Perl in popularity. Because Python is an object−oriented, loosely typed

language, it is ideal for seamless CORBA bindings. Python’s dynamic nature also makes it

possible to process interface definitions at run−time, as opposed to the conventional pre−

execution−time.

The Python Language Mapping Specification [5] suggests Python bindings for a

CORBA implementation. These mappings are recommended to ensure a common ground for

all CORBA objects (either server−side or client−side) written in Python.



2.  Background Page 4 of 48

2.  Background

2.1.  CORBA

2.1.1.  Introduction to CORBA

CORBA (the Common Object Request Broker Architecture) was developed by the Object

Management Group (OMG) to distribute applications across client−server networks. It

allows applications to communicate with each other no matter where they are located and

who has designed them. 

The idea behind CORBA is a software intermediary called an Object Request Broker

(ORB) that handles access requests on data sets. The ORB is the middleware that establishes

a client−server relationship between objects. Using an ORB, a client can transparently

invoke a method on a server object which may be located on the same machine or across a

network [6]. The ORB intercepts the call, locates an object capable of implementing the

request, invokes its method with the appropriate parameters, and returns the results to the

caller. The location of the object, the operating system, or its programming language are

completely transparent to the requesting client.

The goal of CORBA is to make modular and distributed programming easier by

making CORBA−based applications highly portable. In designing typical client/server

applications, developers must make decisions about protocol, which depends on the

implementation language, network transport, and a dozen other factors [7]. With an ORB,

however, the protocol is defined through a single, generic definition language called IDL

(Interface Definition Language). In this way, ORBs provide flexibility as they let

programmers choose the most appropriate operating system, execution environment, and

programming language to use for each component in a system.



2.1.1.  Introduction to CORBA Page 5 of 48

2.1.2.  About the OMG

The Object Management Group (OMG) was founded as a consortia in 1989 to promote the

adoption of standards for managing distributed objects. The original members of the OMG

were primarily end−users, although a small number of vendors were members. Their goal

was to "adopt interface and protocol specifications" that allowed inter−operation of

applications created using distributed objects [8].

Today the OMG consists of over 500 members, both vendors (including Sun

Microsystems, Cisco, and even Microsoft) and end−users, and is growing quickly. While the

OMG has a good reputation for the ability to quickly adopt specifications, they are not a

standards organization [8]. Instead, they promote the adoption of standards by vendors in the

industry. Furthermore, the OMG will not adopt any specification which does not exist as an

implementation. Many ideas seem viable in theory, but implementation often exposes

oversights. When a standard is promoted by the OMG, one can be sure that it actually does

work.

2.1.3.  Architecture Overview

The OMG defined a higher level specification called the Object Management Architecture

(OMA) [6], of which the CORBA ORB is just one part.  The OMA is a four−part

architecture consisting of:

� The core component called an Object Request Broker (ORB).

� Additional services used by developers called CORBAServices.

� Common application frameworks called CORBAFacilities.

� Distributed applications themselves.



2.1.3.  Architecture Overview Page 6 of 48

This is depicted in figure 2.1.

CORBA can be considered an object−oriented version of Remote Procedure Calls

(RPC). With RPC, a procedure is first defined, which consists of the name, the arguments

which are passed to it, and the result which it returns. Using these definitions, both the client

and server sides are then developed. For example, NFS is designed by wrapping the file

system API with RPC calls. CORBA extends the concept of RPC by implementing

traditional object−oriented concepts.

CORBA is object−oriented by necessity, not by choice. In CORBA, the three basic

features of object−oriented programming are used. First, polymorphism among objects is

allowed. A client may invoke methods of an object even if it knows only about the interface

of its base class. Second, CORBA objects encapsulate data and methods. Each application

knows nothing about the data it accesses; it merely makes a request through the ORB, and the

object retrieves the data for the application. Finally, inheritance is provided. If one

description of an object is designed to interface with an ORB, any object derived from that

parent object will preserve its parent’s interface. However, inheritance is restricted to

interface inheritance only and provides no method overriding. Since the implementation of

Application
Objects

CORBA
Facilities

CORBA
Services

CORBA ORB

Figure 2.1  Object Management A rchitecture



2.1.3.  Architecture Overview Page 7 of 48

an object is intended to be transparent, implementation inheritance is not supported. On the

other hand, nothing in CORBA prevents the developer of a set of service objects from using

implementation inheritance, but this is not supported at the higher level CORBA

specification.

All CORBA objects adhere to a classical object model. The classical model is one

where all methods are contained within a class. This is in contrast to some object models

(such as the generalized object model) where methods are not allocated to classes [9].

In designing CORBA objects, interface (i.e. specification) and implementation are

clearly separated. An object interface specifies that object’s behavior, such as the services it

is willing to provide. This behavior of an object is therefore independent of its

implementation. As long as the object behaves as it is specified by its interface, it is not

necessary to know how it is implemented.  This notion is is fundamental to CORBA.

To accomplish this, the CORBA architecture specifies an Interface Definition

Language (IDL) [8]. IDL consistently describes object interfaces in a common manner.

This way, clients need only to know an object’s interface in order to make requests. Servers

respond to requests made on those interfaces, and the actual detail of implementation is

encapsulated inside the server behind its interface.

One of the goals cited by the OMA is location−transparent access to objects [9]. This

means that a programmer can access an object without being required to know where on a

Operations

Attributes

Interface

Figure 2.2  High level view of the Interface [6]



2.1.3.  Architecture Overview Page 8 of 48

network that object exists. In accessing CORBA objects, the details of the object’s location

are hidden. Every object has an Object Reference (OR) identifier associated with it, which

contains all necessary information to make requests of that object either locally or remotely.

Thus, objects located across a network appear no different to the client than if they were

local.

One side−effect that does make location somewhat apparent, however, is that

asynchronous faults may occur so that the status of a request is unknown [6].  For example, if

an request is made of an object across a network with broken connectivity, a negative

response will never be received. The completion status for requests therefore allows

completed, not completed, and maybe completed. The value of maybe reports the

indeterminacy of success (or failure).

2.1.4.  The IDL

CORBA objects are defined and mapped to a particular language (such as C++) through the

IDL. This definition consists of methods and parameters that compose a complete object

interface. However, the IDL is not another programming language. It is a language for

expressing types, specifically interface types.  It has no flow−control or iteration [9].

The IDL is a separate language within the CORBA specification with the same lexical

rules as C++. New keywords are introduced to handle distributed−computing concepts [7].

Object
Server

Object
Client

ORB ORB

Network

Figure 2.3  CORBA’s location−transparent model



2.1.4.  The IDL Page 9 of 48

The IDL describes the interfaces that client objects use when they want to reference an object

implementation. Each IDL is defined completely for the object. The IDL also provides

information necessary to develop clients that use an object’s interface operations.

It is important to note that IDL is completely language independent. One of

CORBA’s strengths is that objects may be designed in any language or operating system.

IDL specifications are conventionally passed through an IDL translator (typically called a

compiler), which maps the interface to a specific language. IDL has been mapped

successfully to many languages, including C, C++, Smalltalk, Ada95, Java, Perl, and Python.

CORBA IDL supports most data types in C++, as well as a few others (see table 2.1).

IDL C++
boolean

char
octet
enum
short

unsigned
float

double
any

object
string
struct
union
array

sequence

bool
signed char

8 bits
enum
short

unsigned 
float

double
closest to void *
closest to class

class string
struct (like C, rather than C++)

union (discriminated)
[ ]

(parameterized array)

Figure 2.4 shows an example of how the IDL might be used. The base interface

Person defines the attributes and methods that might accompany a Person abstract data type.

The interface Student, which subclasses Person, inherits all the attributes and methods from

its parent, and defines two other attributes for a student number and grade point average.  

Table 2.1  IDL types as compared to C++ [6]



2.1.4.  The IDL Page 10 of 48

i nt er f ace Per son {
   enum Gender Type {  mal e,  f emal e } ;
   r eadonl y at t r i but e Gender Type gender ;
   at t r i but e st r i ng name;
   r eadonl y at t r i but e st r i ng s i n;

   voi d set _gender ( i n Gender Type t ype) ;
   voi d set _si n( i n st r i ng s i n_val ue) ;
} ;

i nt er f ace St udent  :  Per son {
   r eadonl y at t r i but e st r i ng st udent _number ,  gpa;

   voi d set _st udent _number ( i n st r i ng sn_val ue) ;
   voi d set _gpa( i n st r i ng gpa_val ue) ;
} ;

Figure 2.4  Sample IDL interface

The target code produced by the IDL compiler occurs in pairs: client−side and

server−side mapping. The server−side mapping, called a skeleton, needs to be "fleshed out"

with the actual implementation code for each method. The client−side mapping is referred to

as a stub, and may be linked directly into the client application without modification. The

client then calls the methods provided by the stub in order to request a service from the

object.

Notice that each parameter in an operation (such as set _gpa) is prefixed with in.

This specifies that the parameter is passed by value, and will be used by the remote end in

some computation.  Parameters may also be prefixed with inout, which means that the remote

end will use the value and will also return a result through that parameter. Finally, a

parameter may be indicated as out, which is used strictly for returning results.

2.1.5.  The ORB

The ORB is the core of the CORBA architecture and provides a mechanism for transparently

communicating client requests to target object implementations. The ORB simplifies

distributed programming by decoupling the client from the details of the method invocations

[7].  When a client invokes an object’s method, the ORB is responsible for locating the object



2.1.5.  The ORB Page 11 of 48

implementation, transparently activating it (if necessary), delivering the request to the object,

and returning any response to the caller.

The ORB itself is a logical entity, implemented either as a process or a set of libraries.

The CORBA specification defines an abstract interface to the ORB so that clients are

designed independent of the ORB. This means the ORB could be changed with little

modification to the client. 

To assist the ORB with delivering requests to the object, the OMA defines an entity

called the object adapter (OA).  The object adapter associates specific object implementations

with the ORB, and is also responsible for activating the object if necessary to handle a

request.  There are four policies for object activation:

� Per Method Server: a new server for the object is spawned every time an object

method is invoked.  Each method call runs in its own server.

� Shared Server: servers can support multiple instances of the object. A single

server may handle multiple objects simultaneously.

� Unshared Server: servers that support only one active object, but handle multiple

method invocations as long as they are all on the same object.

� Persistent Server: the server is always active and do not require activation by the

OA.  These servers are assumed to be available as long as the system is operating.

Only in the Persistent Server policy is the object’s implementation allowed to be active

continuously. If this is not the case, then a CORBA system exception occurs. If a request is

invoked under any other policy, the OA will explicitly activate the object and pass the

request to it. The OA must have access to information about the object’s location and

operating environment for these other policies. The database containing this information is

known as an Implementation Repository and is a standard component of the CORBA



2.1.5.  The ORB Page 12 of 48

architecture [9]. When the OA needs to spawn an instance of the object server, it retrieves

the location information from the implementation repository and executes it. Other

information may also be included in this database, such as debugging, version, and

administrative information.

2.1.6.  Interoperability Issues

Initial versions of CORBA were criticized for not specifying ORB−interoperability. That is,

it was possible for multiple vendors to develop ORB implementations to specification that

were not compatible with one another. After extensive debate, this problem was finally

resolved in version 2.0 of the CORBA specification (CORBA2).

CORBA2 defines the General Inter−ORB Protocol (GIOP) for a common interface,

which includes specifications for the message type and format [9]. As mentioned in section

2.1.3, each object instance has an associated object reference (OR). However, this object

reference identifier is implementation specific.  The OR is not guaranteed to be compatible 

between ORBs. As part of the GIOP, a standard reference identifier is defined called the

Interoperable Object Reference (IOR).

The GIOP is a generic protocol and must be extended to support a specific network

transport protocol. A semantic layer, the IIOP (Internet Inter−ORB Protocol) is specified to

map the GIOP onto TCP/IP. IIOP support is required by all ORBs for CORBA inter−ORB

compliance.



2.2.  ORBit and the GNOME Project Page 13 of 48

2.2.  ORBit and the GNOME Project

The GNU Networking Object Model Environment (GNOME) is an open source initiative to

provide a complete desktop environment, both from the user’s view, as well as the

developer’s. GNOME aims to be a user−friendly desktop system that enables users to easily

use and configure their computers.

GNOME’s lead developer, Miguel de Icaza, explains that GNOME was inspired by

the component−based design of Microsoft’ s Internet Explorer. From its inception, GNOME

was built around the concept of a component object model. Because GNOME is a free, open

source project built on standards, OMG’s CORBA standard was chosen as the foundation for

GNOME components.

Initially GNOME used a free CORBA implementation called MICO [10]. MICO had

several drawbacks for use with GNOME, notably that it was written in C++ (GNOME is

written strictly in C) and that its performance did not meet GNOME’s requirements. In

response, a lightweight ORB dubbed ORBit was developed in C specifically for the GNOME

project.

While ORBit is currently only a partial implementation of the CORBA 2.2

specification, it is functional enough to be used extensively throughout GNOME. ORBit’s

most notable characteristic is that it is fast. In fact, ORBit obliterates all other ORB

implementations in benchmarks. Because it fast and lightweight, it is an ideal solution for

Stubs / Skeleton

GIOP

IIOP ?

TCP IPX

Figure 2.5  GIOP/IIOP layers

? denotes non−existant (yet)



2.2.  ORBit and the GNOME Project Page 14 of 48

the foundation of a component model (Bonobo, in particular).

However, because ORBit is written in C, its API is cumbersome. Designing CORBA

objects using ORBit’s C API takes a significant amount of code, even compared to C++

ORBs. To rectify this, many projects have begun to bind the ORBit API to higher level

languages, such as C++, Perl, Eiffel, and Python. This way, the developer reaps the benefits

of the higher−level language as well as the superb speed of ORBit.

2.3.  Python

2.3.1.  Executive Summary

Python is an interpreted, object−oriented, high−level programming language with dynamic

semantics. Its high−level built in data structures, combined with dynamic typing and

dynamic binding, make it very attractive for Rapid Application Development, as well as for

use as a scripting or glue language to connect existing components together. Python’s

simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program

maintenance. Python supports modules and packages, which encourages program modularity

and code reuse. The Python interpreter and the extensive standard library are available in

source or binary form without charge for all major platforms, and can be freely distributed.

Often, programmers fall in love with Python because of the increased productivity it

provides. Since there is no compilation step, the edit−test−debug cycle is incredibly fast.

Debugging Python programs is easy: a bug or bad input will never cause a segmentation

fault. Instead, when the interpreter discovers an error, it raises an exception. When the

program doesn’ t catch the exception, the interpreter prints a stack trace. A source level

debugger allows inspection of local and global variables, evaluation of arbitrary expressions,

setting breakpoints, stepping through the code a line at a time, and so on. The debugger is



2.3.1.  Executive Summary Page 15 of 48

written in Python itself, testifying to Python’s introspective power. On the other hand, often

the quickest way to debug a program is to add a few print statements to the source: the fast

edit−test−debug cycle makes this simple approach very effective.2

2.3.2.  A Brief Introduction to Python

Unlike languages such as Perl, Python has very little syntactic sugar. Also, instead of using

braces or begin/end keywords to indicate grouping of statements, Python uses indentation.

This has been perhaps one of its more controversial features, and while it does take some

getting used to, it does seem to make the language much less intimidating to beginners and

improves its readability.  For example:

col or s = ( ’ yel l ow’ ,  ’ gr een’ ,  ’ bl ue’ ,  ’ r ed’ ,  ’ br own’ ,  ’ bl ack’ )
f or  i  i n col or s:
   pr i nt  i

Python’s greatest feature may be its easy−to−learn syntax, but it is by no means a toy

language. There are classes for almost any system−level task one can imagine (including

sockets, threads, pipes, and signals), as well as a myriad of high−level classes to regular

expressions (both Perl and Emacs), many Internet protocols, XML, HTML, and multimedia.

In its core, Python supports most common data types such as integers, floats, and

strings. In addition, there are tuples (like lists in Perl, only immutable), lists (like arrays in

Perl), and dictionaries (hash tables). An example using these data structures:

# st uf f  i s a di ct i onar y
st uf f  = { }
# St or e a t upl e of  col or s i nt o t he st uf f  di ct i onar y
st uf f [ " col or s" ]  = ( ’ r ed’ ,  ’ gr een’ ,  ’ bl ue’ )
# St or e a di ct i onar y of  peopl e and t hei r  ages i nt o t he
# st uf f  di ct i onar y
st uf f [ " ages" ]  = {  ’ Anne’ :  37,  ’ John’ :  25,  ’ Pet er ’ :  28,  ’ Sar a’ :  20 }
   
# Cr eat e a l i st  of  peopl e under  30
peopl e = [ ]
f or  per son i n st uf f [ " ages" ] . keys( ) :

2 The executive summary was written by Python lead developer Guido Van Rossum, available at
http://www.python.org/doc/essays/blurb.html



2.3.2.  A Brief Introduction to Python Page 16 of 48

   i f  st uf f [ " ages" ] [ per son]  < 30:
      peopl e. append( per son)

Python is an excellent language for developing GUI−based programs for Linux.

There are Python modules for both GNOME (PyGtk) and KDE (PyKDE). PyGtk supports

both a direct mapping to gtk+ (the toolkit used by GNOME) called gtkmodule, as well as an

object oriented wrapper around gtkmodule. Anaconda, the installation tool used in RedHat

Linux 6.1, is written mostly in Python using PyGtk.

Python has many similarities to Perl, but just enough differences to make it confusing

at times for Perl programmers to learn Python. For instance, tuples, which resemble lists in

Perl, are immutable.  This means that the following is illegal in Python:

t upl e = ( 1,  7,  3,  4)
t upl e[ 2]  = 2  # i l l egal !

Also, Python makes extensive use of exceptions, in some cases that may not make

sense to the Perl programmer (such as accessing an unknown element of a dictionary or

opening a file that doesn’ t exist). Using and handling exceptions properly in Python takes

some getting used to, and may be the cause of some frustration to people who are not

familiar with them.

In Python, the definition of an object differs somewhat from that of C++. Almost

everything is an object in Python (represented internally as an instance of a PyObject type),

even a class. What C++ calls objects, Python calls instances. (While in C++ instances and

objects are synonymous, this is not the case with Python.) Exceptions can be almost any

Python object, although they are commonly string objects or class objects. When a class

object is used to raise an exception, the data passed for that exception is typically an instance

of that class.



2.3.3.  Extending Python from C Page 17 of 48

2.3.3.  Extending Python from C

Like Perl, Python is extensible and embeddable. This means it is possible to create

Python modules in C, usually for performance reasons, or to wrap an existing C library. The

Python/C API is much more readable than perlguts/XS (Perl’ s C API for creating

extensions), however. After a few revelations on how the API works, coding an extension

module in Python is a delight. This is in contrast to Perl XS which leaves much to be desired

in the readability department. However, what XS lacks for in simplicity it makes up for in

documentation. Many areas of the Python/C API are not documented, which makes diving

into the Python source a necessity.  (Although this may not be such a bad thing.)

Although written in C, the Python/C API takes an object−based approach. All

exported functions take the form PyObject_Method, where Object is any Python object

(Object, String, Class, or Instance, for example), and Method is a particular operation to be

performed on the object. The first parameter is generally a pointer to a PyObject data type.

PyObject is the base "class" (the actual implementation is a structure, however because of the

object−oriented approach it can be considered a class) from which all other Python objects

are derived.  

There are many methods associated with the PyObject type, and may be applied to

any object derived from PyObject. For example, the following snippet creates an integer

object, represents that object as a string object, converts the string object, and then prints that

string object to stdout:

PyObj ect  * t he_answer  = PyI nt _Fr omLong( 42) ;
PyObj ect  * st r i ng = PyObj ect _Repr ( t he_answer ) ;
pr i nt f ( " %s\ n" ,  PySt r i ng_AsSt r i ng( st r i ng) ;

Note that because the Repr function is a method of PyObject, any Python object may be

passed to it. In constrast, PyString_AsString expects a string object; passing anything else to



2.3.3.  Extending Python from C Page 18 of 48

it will cause an internal exception to be raised.

To create a module that can be imported from a Python program, one simply creates a

shared library called foomodule and a void function initfoo() that calls Py_InitModule(),

where foo is the name of the module.  

It is often useful for a module to return a new data type to Python space. To

accomplish this, one instantiates PyTypeObject and fills in the necessary attributes, such as

the name of the type, and pointers to the get/set attribute functions. To return an object of

this type to Python space, one calls PyObject_NEW passing the instance of the new type as a

parameter and returns the new object. A simplified example of the above description might

be:

st r uct  PyTypeObj ect  MyObj ect Type = {
   PyObj ect _HEAD_I NI T( NULL)
   " MyObj ect " ,
   ( get at t r f unc) MyObj ect _get at t r ,
   ( set at t r f unc) MyObj ect _set at t r  
} ;

st uct  MyObj ect  {
   PyObj ect  * di ct ;  / /  at t r i but e di ct i onar y
} ;

PyObj ect  * MyObj ect _get at t r ( MyObj ect  * sel f ,  char  * name)
{
   i f  ( ! st r cmp( name,  " answer " ) )
      r et ur n PyI nt _Fr omLong( 42) ;
   r et ur n PyObj ect _Get At t r St r i ng( sel f −>di ct ,  name) ;
}

i nt  MyObj ect _set at t r ( MyObj ect  * sel f ,  char  * name,  PyObj ect  * val ue)
{
   i f  ( ! st r cmp( name,  " answer " ) )  {
      PyEr r _Fr omSt r i ng( PyExc_TypeEr r or ,  " Ther e’ s onl y 1 answer ! " ) ;
      r et ur n −1;
   }
   r et ur n PyObj ect _Set At t r St r ( sel f −>di ct ,  name,  val ue) ;
}

PyObj ect  * MakeNewMyObj ect ( PyObj ect  * modul e,  PyObj ect  * ar gs)
{
   r et ur n PyObj ect _NEW( MyObj ect ,  &MyObj ect Type) ;
}
      

From Python, we might do:



2.3.3.  Extending Python from C Page 19 of 48

i mpor t  mymodul e

myobj  = mymodul e. MakeNewMyObj ect ( )
pr i nt  myobj . answer
myobj . f oo = 13
pr i nt  myobj . f oo
myobj . answer  = 99

The above snippet will display 42, 13, and then will raise a TypeError exception claiming

"There’s only 1 answer!"

2.3.4.  Currently Available ORBs

Not including ORBit−Python (the name of the software designed as part of this project),

there are only two currently available ORBs for Python that provide a useful feature set. The

first is omniORBpy, a set of Python bindings for the C++ ORB omniORB, and Fnorb, a

complete Python implementation (with a few modules written in C for performance).

While Fnorb is a commercial product and costs money, omniORB is not only freely

available, but Open Source (licensed under the GNU General Public License).



3.  Design and Implementation Page 20 of 48

3.  Design and Implementation

3.1.  Scope

The final goal of the project (called ORBit−Python) is to provide a complete wrapping of

ORBit’s API that is accessible from Python and a mechanism to process IDL files. The

conventional approach to IDL processing is to use a compiler that generates stub and skeleton

files that are included with the client and server respectively. However, because Python is a

dynamic language, it is possible to process interfaces at run−time. This approach, while

more complicated to implement than an IDL compiler, realizes many benefits over pre−

execution compiling, including less coding overhead and the ability to discover new,

arbitrary interfaces dynamically.

The scope of the project scales nicely. Implementation is divided into several stages,

which are explained in later sections:

1. Create a framework for the CORBA module

2. Create a Python Object for the ORB

3. Create a Python wrapper object for a generic CORBA object

4. Create a Python Object for the POA

5. Implement the IDL processor

6. Implement marshalling/demarshalling

7. Implement client and server stubs

8. Flesh out ORB and POA objects

A minimal implementation would complete stages 1 through 4. During the

implementation of the project, scope was continually reassessed against time constraints.

Stages 5 through 7, while currently accounting for most of the project’s code, were



3.1.  Scope Page 21 of 48

considered optional.  In the absence of available time, ORBit’s native IDL compiler would be

used and Python objects would be manually wrapped around the resulting stubs and

skeletons. While not a preferred implementation, this would serve to demonstrate a proof of

concept.

Stages 5 and 6 are also quite scalable. IDL type codes (see section 2.1.4) would be

implemented incrementally from the simple, atomic types (char, boolean, short, long, etc.), to

the more complicated types (struct, union, object reference, exception, etc.). The less used,

exotic types (fixed and long double) were placed at the bottom of the priority list.

Once a fairly complete set of type codes have been implemented (that is, all type

codes except the fixed and long double), the ORB and POA wrappers were to be fleshed out,

completing the remainder of the functionality provided by ORBit’s API. This is the current

stage of the project.

3.2.  Design Overview

Initially, C++ was chosen as the implementation language. During the design, however, very

few C++ features were exploited. Due to requests from the development community, and to

increase ORBit−Python’s portability, the project was ported to C late in its development. An

unanticipated 5−10% performance increase was also realized.

The current design consists of several modules (that is, logical modules, not Python

modules), depicted in figure 3.1. Several terms are introduced in these brief descriptions that

will be explained in the sections following:

� CORBA module: the entry point from Python space. This implements a thin

wrapper function to load and process an IDL function (the actual processing code

is in the IDL processing module), to initialize the ORB, as well as other CORBA



3.2.  Design Overview Page 22 of 48

functionality such as CORBA::Any or CORBA::TypeCode

� CORBA ORB: implements the Python object representing the CORBA ORB.

Currently only a subset of the ORB’s functions are implemented, including IOR to

Object translation, and executing the main ORB loop (for the server side).

� CORBA Object: the Python Object representing any CORBA Object. New types

for each CORBA object are generated at run−time, but this module implements

generic functions for all CORBA object instances.

� IDL processor: responsible for reading and parsing IDL files and dynamically

constructing the necessary Python objects.

� POA: implements the core functionality of the Portable Object Adapter, required

to create object servers.

� CORBA Servant: a generic servant object

� Marshaller/Demarshaller: handles all marshalling and demarshalling of objects

between Python space and the ORB.

CORBA 
module

ORB

IDL
Processor

POADemarshaller

Marshaller

CORBA Object

CORBA Servant

Figure 3.1  Architecture Overview



3.3.  Dynamic IDL Page 23 of 48

3.3.  Dynamic IDL

3.3.1.  Benefits

Traditionally, interface descriptions written in IDL are parsed by an IDL compiler that

generates stubs and skeletons to be used in the clients and servers. For statically typed

languages such as C, this is a necessity. However, loosely typed languages such as Perl or

Python don’ t have to play by these rules. Because objects (and in the Python sense, a class is

an object) can be created during execution, it becomes possible to discover CORBA

interfaces dynamically.

This provides several benefits. First, the excess baggage of the IDL compiler−

generated stubs and skeletons is done away with. Also, should the description of an interface

change, recompiling and relinking is no longer required. Another advantage of dynamic

interface discovery is that interfaces unknown at execution−time can be processed. Because

of Python’s introspective capabilities, it then becomes possible to invoke methods of some

arbitrary CORBA object at run−time. This method is not particularly expensive compared to

IDL compiling, either. The processing happens only once, and once the necessary Python

objects are created and accessible from Python space, there is no extra overhead incurred.

The only reason one might prefer to use the compiler is because currently the IDL

file must be distributed with the client and server. (It’ s not clear why one might not want to

do this; perhaps security through obscurity is desired.) However, this issue is easily rectified

by having the interface description embedded in the Python source and parsing it internally,

rather than reading the description data from a file. (While trivial, this remains to be

implemented; no one has requested this feature.)

Currently, the dynamic interface discovery approach is fairly unique. The only other

project to implement this method is ORBit’s Perl bindings (CORBA::ORBit) written by



3.3.1.  Benefits Page 24 of 48

Owen Taylor [12].

3.3.2.  libIDL

In order to load and parse IDL files, ORBit−Python relies on a library that is part of ORBit

called libIDL. libIDL creates parse trees of the IDL file, and provides preprocessing

functionality as well displaying detailed error and warning messages. While libIDL parses

and tokenizes IDL files, because it is intended to be generic and reusable it does not process

them further.

Processing the generated parse tree with libIDL is fairly simple. Once the IDL is

parsed with I DL_par se_f i l ename, the root node of the parse tree is returned. One then

calls I DL_t r ee_wal k , passing it two callback functions: one to be called when a new node

in the tree is entered (t r ee_pr e_f unc ), and one that is called when that node is exited

(t r ee_post _f unc ).

The t r ee_pr e_f unc function examines the type of node and takes the appropriate

action. For instance, if the node is an interface, it will create the necessary internal data

structures for the new interface. If the node is an attribute declaration, it will store the

attribute’s metadata (such as its name and type) in the attribute list associated with its

interface. The t r ee_post _f unc function constructs the Python object for the interface

once it is finished processing all operations, attributes, and exceptions associated with that

interface.

3.3.3.  IDL Processing Details

All IDL types require an object representation accessible from Python. IDL modules and

interfaces are represented as Python instances, while structures, unions, and exceptions are



3.3.3.  IDL Processing Details Page 25 of 48

represented as classes. Top−level modules or interfaces are inserted in the top−level

(__main__) Python namespace.3  For example, consider the following IDL:

modul e Bank {
   st r uct  Tr ansact i on {
      st r i ng dat e;
      shor t  code;
   } ;
   i nt er f ace Account  {
      except i on Over dr awn {
         doubl e amount ;
      } ;
      at t r i but e st r i ng i d;
      r eadonl y at t r i but e doubl e bal ance;

      voi d wi t hdr aw( i n Tr ansact i on t ,  i n doubl e amount )
                    r ai ses ( Over dr awn) ;
    } ;
} ;

Figure 3.2 depicts the object hierarchy accessible from Python for this interface

description. Each box represents an individual Python object, with its type noted in

parentheses. Note that Bank and Account are instances and not classes. This means that they

cannot be instantiated from Python. In fact, instantiating them is not necessary; the proper

way to obtain an instance of a CORBA object is through an object factory or the Portable

Object Adapter.  Both these methods are described in detail later.

Also note that attributes and operations are not in the object hierarchy. The objects

shown in this hierarchy are not CORBA objects. Rather, they are interfaces to construct the

necessary parameters for the operations of CORBA objects. Consider the withdraw

operation of the Account interface. The client needs some way to construct the Transaction

structure for the first parameter of the withdraw operation.  For example:

t  = Bank. Tr ansact i on( dat a = " 03/ 23/ 2000" ,  code = 1)

The object t is a class instance with the two attributes, data and code, defined. Assuming we

have a CORBA object o that is of type Bank::Account, we can then do:

o. wi t hdr aw( t ,  42. 50)

3 This is considered a design flaw; IDL objects should be inserted into the Python namespace from which
the IDL file was loaded.  This issue remains to be resolved.



3.3.3.  IDL Processing Details Page 26 of 48

The notation Bank::Account indicates that this object is a CORBA object of that type (in fact,

the CORBA type code for this object is IDL:Bank/Account:1.0; this notation is discussed

later). This type, however, is not related to the object hierarchy described above. Again, the

object hierarchy is strictly a means to construct structures, unions, and exceptions required

for interface operations, as well as accessibility to constant definitions and enumeration

types.

Internally, these objects are stored in a hash table by their type codes. A CORBA

type code is a notation that defines a specific data type, whether it is a built−in, atomic type

(such as a boolean), or a complex data type defined by an external interface (such as the

Bank::Transaction structure). Below is an incomplete table comparing some CORBA types

with their type codes:

__main__
(dict)

Transaction
(class)

Account
(instance)

Overdrawn
(exception)

Bank
(instance)

Figure 3.2  Example Python object hierarchy



3.3.3.  IDL Processing Details Page 27 of 48

Type Type Code
boolean

char
any

Bank::Account
Bank::Transaction

IDL:CORBA/Boolean:1.0
IDL:CORBA/Char:1.0
IDL:CORBA/Any:1.0
IDL:Bank/Account:1.0

IDL:Bank/Transaction:1.0

An internal hash table called object_glue is created upon initialization. Each entry in

the hash table maps a CORBA object to a Python object representing it, and is hashed on the

type code string. For example, a lookup of IDL:Bank/Transaction:1.0 will return the Python

class object representing the structure. Looking up IDL:Bank/Account/Overdrawn:1.0 will

return the Python exception object mapped to the CORBA exception Bank::Account::

Overdrawn. Interfaces are a special exception: a lookup of IDL:/Bank/Account:1.0 returns a

structure containing a description of the interface (its operations, attributes, exceptions, and a

list of parent interfaces), as well as a Python type object for the interface. This type is used

with PyObj ect _NEW (see section 2.3.3) to create a new Python object of that type.

3.4.  Implementation Details

3.4.1.  Marshalling and Demarshalling

Marshalling is the process in which the parameters passed to a CORBA operation are

converted from the native language type (in this case, Python objects) to the CORBA type

and placed in the local ORB’s transmission buffer to be sent to the remote ORB. Once the

remote ORB receives the data on the wire, it demarshals the parameters by converting the

CORBA type.  This process is depicted in figure 3.3.

The process shown in figure 3.3 applies only to operations that do not return any

results back to the caller. For example, consider the following IDL specification for an

Table 3.1  An incomplete list of IDL types and their
type codes



3.4.1.  Marshalling and Demarshalling Page 28 of 48

operation:

shor t  f oo( i n s t r i ng a,  i n f l oat  b) ;

Suppose the client invoked this operation from Python as:

r esul t  = obj ect . f oo( " hel l o wor l d! " ,  12. 34)

First, the client sets up a communication buffer with the local ORB for this operation. Then

it marshals the two parameters, a and b, and transmits the buffer to the remote ORB. The

remote ORB demarshals the parameters and invokes the server implementation of this

operation. Since this operation returns a value, the server end marshals the return results and

transmits the data back to the client side. The client finally demarshals the return value and

the operation is completed.

For operations that return multiple results (that is, through out or inout parameters), a

tuple is returned to the Python caller containing the results ordered in which they appeared in

the operation description.  So, given the IDL

shor t  f oo( i n s t r i ng a,  i nout  shor t  b,  out  s t r i ng c) ;

Calling this operation from Python will return a tuple (<short>, <short>, <string>).

3.4.2.  Type Mappings

Table 3.2 shows the mappings ORBit−Python uses between CORBA types and

Python types. This table mostly follows the Python Language Mapping Specification [5]:

Python
(client)

Python
(server)

Marshal
Parameters

Demarshal
Parameters

Local
ORB

Remote
ORB

Figure 3.3  The marshalling and demarshalling process

Network
connection

Operation
call

Invoke servant 
function



3.4.2.  Type Mappings Page 29 of 48

CORBA Type Python Type
octet
short
long

unsigned short
unsigned long

long long
unsigned long long

float
double

long double
boolean

char
string

wide char/string
fixed

sequence
enum

PyInt
PyInt

PyLong
PyInt

PyLong
PyLong
PyLong
PyFloat

PyDouble
Not yet implemented

PyInt
PyString (length 1)

PyString
Not yet implemented
Not yet implemented

PyList or PyTuple
PyInt

When marshalling sequences or lists, either lists or tuples are accepted.  However, one

should not assume that the values of sequence or arrays types are mutable [5]. For this

reason, demarshalling either of these types returns a tuple.

For efficiency reasons, sequences and arrays of characters and octets are mapped to

the string type.  This functionality has not yet been implemented.

3.4.3.  Walking Through the Code

Perhaps the clearest way to describe the implementation is by stepping through a short

example.  Consider the IDL from section 3.3.3, called Bank.idl:

modul e Bank {
   st r uct  Tr ansact i on {

Table 3.2  Python mappings for CORBA types



3.4.3.  Walking Through the Code Page 30 of 48

      st r i ng dat e;
      shor t  code;
   } ;
   i nt er f ace Account  {
      except i on Over dr awn {
         doubl e amount ;
      } ;
      at t r i but e st r i ng i d;
      r eadonl y at t r i but e doubl e bal ance;

      voi d wi t hdr aw( i n Tr ansact i on t ,  i n doubl e amount )
                    r ai ses ( Over dr awn) ;
   } ;

Now let’s examine a possible implementation of the server object for the above IDL, written

using ORBit−Python. This is a complete listing of the code, not just a code fragment. Each

line is prefixed with a line number as it will be referred to later:

01:   i mpor t  CORBA
02:   i mpor t  sys
03:   
04:   c l ass Account :
05:      def  __i ni t __( sel f ) :
06:         sel f . i d = " 12345"  # set  a def aul t  i d f or  t hi s account
07:         sel f . bal ance = 500. 0 # account  opened wi t h $500 bal ance
08:
09:      def  wi t hdr aw( sel f ,  t ,  v) :
10:         i f  sel f . bal ance − v < 0:
11:            exc = Bank. Account . Over dr awn( amount  = v − sel f . bal ance)
12:            r ai se Bank. Account . Over dr awn,  exc
13:         el se:
14:            sel f . bal ance = sel f . bal ance − v
15:            pr i nt  " Tr ansact i on dat e: " ,  t . dat e,  " code: " ,  t . code
16:            pr i nt  " New bal ance: " ,  sel f . bal ance
17:       
18:   CORBA. l oad_i dl ( " Bank. i dl " )
19:   or b = CORBA. ORB_i ni t ( sys. ar gv,  CORBA. ORB_I D)
20:   poa = or b. r esol ve_i ni t i al _r ef er ences( " Root POA" )
21:   
22:   ser vant  = POA. Bank. Account ( Account ( ) )
23:   poa. act i vat e_obj ect ( ser vant )
24:   r ef  = poa. ser vant _t o_r ef er ence( ser vant )
25:   pr i nt  or b. obj ect _t o_st r i ng( r ef )
26:   
27:   poa. t he_POAManager . act i vat e( )
28:   or b. r un( )

Lines 01−02 import the CORBA and system modules. The CORBA module is the only

Python module generated by ORBit−Python.  All other modules are not related.  Lines 04−16

constitute the actual implementation of the Account interface. The name of this class is

arbitrary, but for readability and clarity, the convention is to use InterfaceName or

InterfaceName_Impl. Lines 05−07 implement the constructor for this class, and simply



3.4.3.  Walking Through the Code Page 31 of 48

initialize the attributes that will be glued to the interface. (Note that this class is not at this

point glued to a CORBA object.) Lines 09−16 represent the implementation of the withdraw

operation. First the balance is checked and it is verified that the account has enough money

for the withdrawal. If not, Bank::Account::Overdrawn exception is raised. On line 11, the

exception data is constructed.  

Observe how the exception is created, as described in section 3.3.3. Internally,

Python represents exceptions created by PyEr r _NewExcept i on as classes. Line 11 then

creates an instance of this class. Then, in line 12, the exception is raised, with the data (the

instance of the exception) passed. When control is returned to ORBit−Python, it will check

for this exception and pass it to remote ORB. Lines 13 through 16 are executed during a

successful transaction. The transaction details are displayed, and the account balance is

updated.  Line 16 concludes the implementation of the Account interface.

Lines 18−26 perform the setup and initialization of the ORB; any CORBA server will

follow the same pattern of code. On line 18, the Bank.idl file is read and CORBA types are

glued to their Python objects as described in section 3.3.3. Line 19 initializes the ORB and

returns an CORBA.ORB instance.  Then, line 20 fetches the Portable Object Adapter.

The Portable Object Adapter, or POA, is the primary means of making

implementation objects (such as an instance of Account) available to the ORB for servicing

requests. The POA supersedes the Basic Object Adapter (BOA) from early CORBA

versions. The BOA was under−specified and required vendors to implement their own,

proprietary solutions to make the BOA useful. The POA was introduced to solve the

shortcomings of the BOA, and includes functionality for large−scale systems, as well as

location transparency.

Line 22 creates the servant for the Account object. A CORBA servant is



3.4.3.  Walking Through the Code Page 32 of 48

programming language interface representing the CORBA server. While an instance of the

Account class has no binding to any CORBA object (it is by itself merely a Python instance

object), the servant represents the glue between the Python instance object and the CORBA

server. Then, in line 23, we register the servant with the POA and activate the object so it

can begin servicing requests.

The next two lines, 24−25, merely print the IOR to stdout, so that we can manually

pass it to the server. Obviously for complete applications this is not acceptable. For these

situations, one can register the IOR with the CORBA NamingService. The NamingService is

a CORBAService that maps names (type codes, usually) to the instance’s IOR.

Finally, in lines 27−28, we activate the POA manager and enter ORBit’s main loop.

The CORBA server is now ready to receive requests.

The code below shows how the client side might be implemented:

01:   i mpor t  CORBA
02:   i mpor t  sys
03:   
04:   CORBA. l oad_i dl ( " Bank. i dl " )
05:   or b = CORBA. ORB_i ni t ( sys. ar gv,  CORBA. ORB_I D)
06:   i or  = sys. st di n. r eadl i ne( ) [ : −1]
07:   acct  = or b. st r i ng_t o_obj ect ( i or )
08:   
09:   acct . i d = " 00112233"
10:   t  = Bank. Tr ansact i on( dat a = " 03/ 23/ 2000" ,  code = 1)
12:   
13:   t r y:
14:      acct . wi t hdr aw( t ,  12. 34)
15:   except  Bank. Account . Over dr awn,  exc:
16:      pr i nt  " Fai l ed,  woul d over dr aw by" ,  exc. amount
17:  
18:   pr i nt  " Cur r ent  bal ance: " ,  acct . bal ance

Lines 01−05 load the IDL and initialize the ORB in the same manner as the server code

above. In line 06, the IOR is read from stdin. (The [:−1] trims the trailing newline from the

resulting string.) We assume the user will paste the IOR output from the server into the

client. Again, the preferred method is to use the NamingServer, but for the purposes of an

example this will suffice. The real magic happens in line 07: the stringified IOR is passed to



3.4.3.  Walking Through the Code Page 33 of 48

CORBA::ORB::string_to_object, and Bank.Account Python object is returned. This object

represents the servant object on the server side. The interaction with the servant through the

client object is completely transparent; with only lines 09−18 to inspect, there is no way to

tell that the acct object is actually a CORBA object that resides in a different process, on a

different system, or is possibly written in a different programming language. This is the

beauty of CORBA.

Line 9 sets the id attribute of the Account object. Keep in mind that the location of

this attribute is on the server side. In fact, the value is not stored on the client side at any

point. Also note that there is no explicit code in the server to handle the assignment of this

attribute.  This is handled transparently by ORBit−Python.

The method in which the attributes are stored and retrieved in ORBit−Python goes

against the guidelines set in the Python Language Mapping Specification [5]. The mapping

specification recommends that accessor pairs be implemented, one for setting and one for

retrieving the value of the attribute.  So, while in ORBit−Python one does:

acct . i d = " 00112233"
pr i nt  acct . i d

The specification suggests:

acct . _set _i d( " 00112233" )
pr i nt  acct . _get _i d( )

There are several reasons why ORBit−Python goes against the specification on this issue.

Firstly, the accessor pair method was recommended for efficiency reasons. However,

efficiency is only an issue in this case when the ORB implementation uses a conventional

IDL compiler approach. With an IDL compiler, Python code would be generated for the

stubs and skeletons. In order to implement equivalent functionality to ORBit−Python, the

Python code for the stub and skeleton would have to implement the Python methods

__setattr__ and __getattr__.



3.4.3.  Walking Through the Code Page 34 of 48

The __setattr__ and __getattr__ methods are private methods of a class and are

invoked when an attribute (attributes in Python consist of both methods and data) is

referenced.  For instance:

cl ass f oo:
   def  __get at t r __( sel f ,  name) :
      i f  name == " f oo" :
         r et ur n sel f . bar

   def  __set at t r __( sel f ,  name,  val ue) :
      i f  name == " f oo" :
         sel f . bar  = val ue

f  = f oo( )
f . f oo = 4
pr i nt  f . f oo

So while the attribute foo is set by the caller, the actual attribute set internally in the instance

is bar. Overriding the default setattr/getattr pairs of a class incurs additional overhead,

however. Thus, a stub or skeleton that implements this method will also suffer from this

overhead.

ORBit−Python processes IDL files dynamically, however, and all CORBA objects are

separate Python types. A Python type has associated with it C functions for setting and

retrieving attributes. Therefore, the logic that would normally be implemented in the Python

__setattr__ method is handled in the C function. Ultimately, ORBit−Python gains this

functionality for free because of its inherent design.

Nevertheless, in order to comply with the standards and to remain portable with

Python bindings for other ORBs, eventually the _set_attr/_get_attr accessor pair will be

implemented in addition to the current technique. This modification is trivial but has a low

priority as it has not been requested.



4.  Testing and Evaluation Page 35 of 48

4.  Testing and Evaluation

4.1.  Peer Review

4.1.1.  Background

In the late 1990s, Eric S. Raymond coined the term Open Source. For software to comply

with the OSI (Open Source Initiative) guidelines, it must meet the following requirements

[13]:

� source code freely available

� free to distribute

� free to modify and redistribute

The Linux operating system has been built under this model and it is widely regarded as the

most stable and bug−free platform because of its development model. In particular, it

follows Linus’  Law:

"Given enough eyeballs, all bugs are shallow."

This introduces the notion of peer review. With peer review, other developers with

varying skill levels and backgrounds can examine the code, submit modifications, make

suggestions, and report bugs. With a model in which the source code is unavailable, bug

reports tend to be vague and difficult to track.

Eric Raymond also explains plausible promise [14]. For Open Source software

(OSS) to be successful, it needn’ t be particularly good, stable, or well−documented. The

only true requirement for a successful OSS project is that it must convince other developers

that it has the potential to evolve into a useful and appealing product.

GNOME, the free desktop environment for which ORBit was designed, is also an

Open Source project. As with Linux, GNOME’s development follows a bazaar model.



4.1.1.  Background Page 36 of 48

With the bazaar model, developers from all across the globe contribute to the project in any

way possible, from core development to bug reporting. While Open Source software need

not follow a bazaar model or vice versa, it typically does.

4.1.2.  ORBit−Python Released

On March 10, 2000, ORBit−Python was released to the open source development

community. Notices were placed on several development−related web sites, and a site for

the project was created (http://projects.sault.org/orbit−python). A to−do list was packaged

with the project that identified areas that required improvements or implementation.

By the next day, I had received several emails praising ORBit−Python. One

developer even volunteered to complete one of the items on the to−do list. Since then, I have

received several bug reports, feature requests, patch submissions, and encouraging feedback.

Due to the nature of the bug reports, the first version of ORBit−Python (0.1.0)

seemed to be reasonably stable. The current version as of this writing (0.1.3) has fixed

several bugs, implemented many requested features, and is much more stable and portable

than the initial version. (See the ChangeLog in Appendix A for details.) These

improvements would never have been possible without peer review.

4.2.  Objectives Assessment

The goals set during the study phase of the project were fairly ambitious. The vision of the

project was the completion of useful Python bindings for ORBit (that is, handle all

commonly used type codes) using dynamic IDL.

In the initial stages of the project, it was not known if time would permit to complete

the dynamic IDL processing functionality. A contingency plan was devised in this event.



4.2.  Objectives Assessment Page 37 of 48

After some revelations on CORBA internals and a great deal of help from the development

community, significant progress was made in completing these goals.

The end result exceeded the initial vision by a long shot. The project is currently

being used by several developers in the GNOME community, and it has a clear path for

evolution.

4.3.  Testing

In order to test each feature of ORBit−Python, a test suite was developed (listed in appendix

B). The test suite unveiled several subtle bugs that were fixed before the initial release.

Fortunately, testing did not uncover any serious design flaws.

The goal of the test suite was to verify that each of the supported type codes were

being handled properly and that the API worked as expected. And because there is currently

no developer documentation, the test suite also served as a brief tutorial on how to use

ORBit−Python.

4.4.  Performance

Initial benchmarks4 that measured ORBit−Python’s raw performance were quite promising.

Table 4.1 compares the performance of ORBit−Python with native ORBit, omniORB [11],

Fnorb (an complete Python implementation) [15], and Java IDL. The following IDL was

used for the benchmark:

modul e Count er  {

   i nt er f ace Count  {
      at t r i but e l ong sum;

4 Benchmarks submitted by Jon Kåre Hellan; system configuration and version details listed in Appendix C.



4.4.  Performance Page 38 of 48

      l ong i ncr ement ( ) ;
   } ;
} ;

Client Server Local calls/s Remote calls/s

ORBit−C ORBit−C 4150 730

ORBit−C

ORBit−Python

ORBit−Python

ORBit−Python

ORBit−C

ORBit−Python

2360

2630

1960

670

555

515

ORBit−C

omniORBpy

omniORBpy

omniORBpy

ORBit−C

omniORBpy

480

1450

450

375

515

315

ORBit−C

Fnorb

Fnorb

Fnorb

ORBit−C

Fnorb

78

55

38

77

18

20

ORBit−C

Java IDL

Java IDL

Java IDL

ORBit−C

Java IDL

450

810

320

380

500

230

The conclusions are fairly encouraging. For local calls, ORBit−Python is over 50 times

faster than Fnorb, 6 times faster than Java IDL, and 4 times faster than omniORB’s Python

bindings. For remote calls, ORBit−Python leads again, being 25 times faster than Fnorb, 2

times faster than Java IDL, and 1.6 times faster than omniORBpy.

Also, these benchmarks were performed on ORBit−Python 0.1.0. Since then, thanks

to the port to C and some minor performance tweaks, the current version is approximately 5−

10% faster.

4.5.  Future Plans

There are several items on the to−do list that have yet to be completed:

� Go through the TODOs and FIXMEs in the source

Table 4.1  Benchmarks comparing various ORBs



4.5.  Future Plans Page 39 of 48

� Fixed type

� Long Double type

� Wide types (char and string)

� Handle internal errors more gracefully (raise appropriate exceptions)

� Better TypeCode support

� Interface Repository support

� Add classes/objects to import caller’s namespace instead of __main__

� Fix structs and exceptions so that they don’ t require keywords

� More thorough testing

� Documentation

These items will be completed in the order in which they are requested by the development

community, otherwise in the order in which they are listed. (Some parallelism can be

applied.) 

Another fairly important step is to audit the current code for memory leaks and

performance issues. While ORBit−Python is currently only 50% slower than ORBit−C

(which is still quite fast, given that Python is an interpreted language), profiling and

optimization should raise ORBit−Python’s performance by another 20−30%.



5.  Conclusions Page 40 of 48

5.  Conclusions

The current state of the ORBit−Python has exceeded the goals set during the initial phases of

the project. The software is already quite useful for most projects in its current state. It has

also been received extremely well by the development community. Given the potential uses

of ORBit−Python and its direction, it is possible that it may be packaged with the GNOME

project and released with many Linux distributions.

During the project’s development, several important observations were noted. First,

the importance of a comprehensive test suite is not to be underestimated. The test suite for

ORBit−Python (see Appendix B) revealed a number of small bugs in the implementation,

which, in the end, were show−stoppers. Because of the inherent complex web of

interconnections in software, it is easy for modifications or additions in one part of the code

to affect other areas in unanticipated ways.  A well−written test suite will ensure that all areas

of the software work properly.

Interacting with the development community, receiving and responding to bug

reports, suggestions, criticisms, and other feedback was also an interesting learning

experience. Developers were using ORBit−Python in ways that were not anticipated, and so

bugs were uncovered that even a well−written test suite could not have discovered. Also, the

opportunity to discuss issues with other extremely knowledgeable people involved with

CORBA and Python was very useful, and at times perhaps even a bit intimidating.

Python’s design and clean syntax pairs nicely with CORBA. Because of the rising

popularity in both Python and CORBA, and because of the unprecedented speed offered by

ORBit−Python, I expect the software to be useful to many developers.



6.  References Page 41 of 48

6.  References

[1] ADT Magazine, January 2000. Component Strategies and Architectures;
http://www.adtmag.com/pub/jan2000/com_strat.htm

[2] Apple Computers, Inc. OpenDoc; http://opendoc.apple.com

[3] The K Desktop Environment (KDE). KOM/OpenParts; http://www.kde.org

[4] GNU Network Object Model Environment (GNOME). Bonobo; http://developer.gnome.org/arch/component/

[5] Martin Von Loewis. The Python Language Mapping Specification; 
http://www.omg.org/cgi−bin/doc?ptc/00−11−12

[6] A. Pope, 1998. The CORBA Reference Guide; http://www.qds.com/people/apope/Corba/

[7] Z. Yang, 1997. CORBA: A Platform for Distributed Computing;
http://www.infosys.tuwien.ac.at/Research/Corba/archive/intro/OSR.ps.gz

[8] The Object Management Group; http://www.omg.org

[9] K. Keahey, 1995.  A Brief Tutorial on CORBA; http://www.cs.indiana.edu/hyplan/kksiazek/tuto.html

[10] MICO Development Group. MICO;  http://www.mico.org

[11] AT&T Laboratories Cabridge. OmniORB;  http://www.uk.research.att.com/omniORB/

[12] Owen Taylor, 2000.  CORBA::ORBit; http://people.redhat.com/otaylor/corba/orbit.html

[13] The Open Source Initiative.  The Open Source Definition; http://www.opensource.org/osd.html

[14] Eric S. Raymond.  The Cathedral and The Bazaar; http://www.tuxedo.org/~esr/writings/cathedral−bazaar/

[15] Fnorb Development Group; Fnorb.  http://www.fnorb.org



A.  Appendix A: ORBit−Python ChangeLog Page 42 of 48

A.  Appendix A: ORBit−Python ChangeLog

2000−03−19  Jason Tackaber r y <t ack@l i nux. com>

   *  Fi xed a bug t hat  f udged uni on di scr i mi nat or s.

2000−03−18  Jason Tackaber r y <t ack@l i nux. com>

   *  Por t ed t he whol e mess t o C.   Asi de f r om compi l i ng 20% f ast er ,  i t  shoul d

     hopef ul l y  bui l d pr oper l y  on mor e pl at f or ms.   I ’ ve al so ( t hr ough some 

     cr ude measur ement s)  not i ced a 5−10% speed i ncr ease.

   *  i dl . c ,  except . c ,  t ypes. c:  f i xed uni ons,  s t r uct s,  and except i ons so t hat

     at t r i but es set  on const r uct i on ar e set  f or  t he i nst ance obj ect ,  not  f or

     t he c l ass obj ect .  

   *  Rel eased 0. 1. 3

2000−03−16  Jon Kår e Hel l an <hel l an@acm. or g>

   *  i dl . cc:  pass I DL_par se_f i l ename I DLF_CODEFRAGS whi ch i s  r equi r ed f or

     Gnumer i c. i dl

2000−03−16  Jason Tackaber r y <t ack@l i nux. com>

   *  CORBA_ORB. cc:  CORBA_ORB_PyObj ect __new pr oper l y  accept s ei t her  l i s t s  or

     t upl es f or  par amet er  1.

   *  CORBA_ORB. cc:  r esol ve_i ni t i al _r ef er ences handl es Root POA pr oper l y  now

   *  CORBA_ORB. cc,  CORBAmodul e. cc:  made ORB_i ni t  mor e conf or mant

   *  except i ons r ai sed by check_cor ba_ex( )  now wor k pr oper l y

2000−03−15  Jason Tackaber r y <t ack@l i nux. com>

   *  CORBA_ORB. cc:  i mpl ement ed CORBA: : ORB: : r esol ve_i ni t i al _r ef er ences

     ( s t i l l  need t o handl e Root POA and POACur r ent )

   *  i dl . cc,  CORBAmodul e. cc:  l oad_i dl ( )  now t akes opt i onal  pr epr ocessor

     par amet er s t o pass t o I DL_par se_f i l ename

   *  demar shal . cc:  can demar shal  gener i c  Obj ect s now.

   *  i dl . cc,  CORBAmodul e. cc:  now handl es l i bI DL er r or s ( such as mi ss i ng f i l e)  

     gr acef ul l y  by r ai s i ng an except i on.

2000−03−14  Jason Tackaber r y <t ack@l i nux. com>

   *  CORBAmodul e. h,  i dl . cc,  mar shal . cc,  demar shal . cc:  s t ar t ed addi ng debuggi ng

     out put .   Set  __DEBUG_LEVEL__ i n CORBAmodul e. h t o enabl e ( a 0 t o 9 val ue) .

   *  CORBAmodul e. cc:  CORBA_Obj ect _t o_PyObj ect  r et ur ns Py_None i f  t he passed

     obj ect  i s  NULL r at her  t han bai l i ng out  wi t h an er r or .

2000−03−14  Jason Tackaber r y <t ack@l i nux. com>

   *  CORBA_ORB. cc:  f i xed a st upi d bug t hat  caused a segf aul t  wi t h CVS ORBi t ,  



A.  Appendix A: ORBit−Python ChangeLog Page 43 of 48

     and as a r esul t  cr eat ed one mor e FI XME i t em.  : )

   *  Rel eased 0. 1. 2

2000−03−13  Jason Tackaber r y <t ack@l i nux. com>

   *  conf i gur e. i n:  f or ced pr ecedence t o g++ unt i l  I  can f i x  t he code t o

     compi l e pr oper l y  wi t h Sun’ s Wor kshop.   ( Okay,  i t  s t i l l  doesn’ t  wor k

     pr oper l y .   I ’ m wor k i ng on t hat .   Hack t he Makef i l e t o l i nk i n l i bgcc

     i n t he meant i me. )

2000−03−13  Phi l  Dawes <phi l i pd@user s. sour cef or ge. net >

   *  i dl . cc:  f i xed a bugl et  t hat  s t ops i t  f r om compi l i ng wi t h gcc−2. 95

   *  Added aut omake/ aut oconf  suppor t

   *  Added a ’ make check’  t est  t ar get  t o t he sr c di r ect or y

   *  Added an aut ogen. sh t o gener at e t he conf i gur e scr i pt  and r un i t

2000−03−12  Jason Tackaber r y <t ack@l i nux. com>

   *  Por t abl eSer ver modul e. [ cc, h] :  r enamed t o Por t abl eSer ver . [ cc, h]  and t he

     modul e i s  i ni t i al i zed f r om CORBAmodul e. cc.   Thi s wi l l  el i mi nat e t he

     shar ed l i br ar y dependency pr obl em bet ween t he t wo modul es.

   *  Fi xed a cosmet i c  bug i n t est −cl i ent

   *  Packaged t hi s  as ver s i on 0. 1. 1

   

2000−03−11  Jason Tackaber r y <t ack@l i nux. com>

   *  i ni t i al  ver s i on ( 0. 1. 0)  r el eased



B.  Appendix B: The Test Suite Page 44 of 48

B.  Appendix B: The Test Suite

B.1. The Interface Definition

/ /  Yes,  t hi s i s an absur d and st upi d exampl e.   I  t r i ed.  : )

modul e Fr ui t  {
   enum Col or  {  or ange,  r ed,  yel l ow,  gr een } ;

   st r uct  Pr oper t i es {
      st r i ng name;
      Col or  col or ;
   } ;

   i nt er f ace I nst ance {
      r eadonl y at t r i but e Pr oper t i es f r ui t ;
      r eadonl y at t r i but e shor t  l ef t ;

      except i on Al l Eat en { } ;
      except i on Bi gBi t e {  shor t  t oo_much_by;  } ;
      voi d bi t e( i n shor t  s i ze)  r ai ses ( Bi gBi t e,  Al l Eat en) ;
      
      oneway voi d t hr ow_out ( ) ;
   } ;

   t ypedef  sequence<Pr oper t i es> f r ui t s;

   i nt er f ace Fact or y {
      at t r i but e f r ui t s f r ui t _l i st ;

      except i on Al r eadyExi st s { } ;
      voi d add_f r ui t ( i n Pr oper t i es f )  r ai ses ( Al r eadyExi st s) ;
      I nst ance get _i nst ance( i n Pr oper t i es f r ui t ) ;

      shor t  get _r andom_f r ui t ( out  Pr oper t i es f r ui t ) ;

      / /  Okay,  I  r an out  of  f r ui t  i deas f or  t hi s st uf f .  : )
      const  doubl e pi  = 3. 141592653;
      uni on Test Uni on swi t ch ( Col or )  {
         case or ange:  st r i ng a;
         case r ed:  shor t  b;
         case yel l ow:  f l oat  c;
         case gr een:  bool ean d;
      } ;

      Test Uni on t est _uni on( i n Col or  col or ) ;
      any t est _any( ) ;
   } ;
} ;



B.2. The Server Page 45 of 48

B.2. The Server
i mpor t  CORBA

cl ass I nst ance:
   def  __i ni t __( sel f ,  f r ui t ) :
      sel f . f r ui t  = f r ui t
      sel f . l ef t  = 100

   def  bi t e( sel f ,  s i ze) :
      i f  sel f . l ef t  − si ze < 0:
         exdat a = Fr ui t . I nst ance. Bi gBi t e( t oo_much_by = si ze − sel f . l ef t )
         r ai se Fr ui t . I nst ance. Bi gBi t e,  exdat a
         r et ur n

      sel f . l ef t  = sel f . l ef t  − si ze
      pr i nt  " Eat i ng %d%%,  %d%% l ef t "  % ( si ze,  sel f . l ef t )
      i f  sel f . l ef t  == 0:
         r ai se Fr ui t . I nst ance. Al l Eat en

   def  t hr ow_out ( sel f ) :
      pr i nt  " Cl i ent  t hr ew me ( %s)  i n gar bage! "  % sel f . f r ui t . name
      poa. deact i vat e_obj ect ( sel f . _ser vant )

cl ass Fact or y:
   def  __i ni t __( sel f ) :
      sel f . f r ui t _l i st  = [ ]

   def  add_f r ui t ( sel f ,  f ) :
      f or  f r ui t  i n sel f . f r ui t _l i st :
         i f  f r ui t . name == f . name:
            r ai se Fr ui t . Fact or y. Al r eadyExi st s
            r et ur n
      sel f . f r ui t _l i st . append( f )

   def  get _i nst ance( sel f ,  f r ui t ) :
      new_i nst ance = POA. Fr ui t . I nst ance( I nst ance( f r ui t ) )
      poa. act i vat e_obj ect ( new_i nst ance)
      r et ur n poa. ser vant _t o_r ef er ence( new_i nst ance)

   def  get _r andom_f r ui t ( sel f ) :
      i mpor t  r andom
      i ndex = r andom. r andi nt ( 0,  l en( sel f . f r ui t _l i st )  − 1)
      r et ur n i ndex,  sel f . f r ui t _l i st [ i ndex]

   def  t est _uni on( sel f ,  col or ) :
      i f  col or  == Fr ui t . or ange:
         r et ur n Fr ui t . Fact or y. Test Uni on( col or ,  " f oobar " )
      el i f  col or  == Fr ui t . r ed:
         r et ur n Fr ui t . Fact or y. Test Uni on( col or ,  42)
      el i f  col or  == Fr ui t . yel l ow:
         r et ur n Fr ui t . Fact or y. Test Uni on( col or ,  2. 71828)
      el i f  col or  == Fr ui t . gr een:
         r et ur n Fr ui t . Fact or y. Test Uni on( col or ,  CORBA. TRUE)

   def  t est _any( sel f ) :
      i mpor t  r andom
      pi ck = r andom. r andi nt ( 0,  2)
      i f  pi ck == 0:
         r et ur n CORBA. Any( CORBA. TypeCode( " I DL: CORBA/ St r i ng: 1. 0" ) ,  " abc123" )
      el i f  pi ck == 1:
         r et ur n CORBA. Any( CORBA. TypeCode( " I DL: CORBA/ Shor t : 1. 0" ) ,  42)
      el i f  pi ck == 2:
         p = Fr ui t . Pr oper t i es( name = " pi neappl e" ,  col or  = Fr ui t . yel l ow)
         r et ur n CORBA. Any( CORBA. TypeCode( p) ,  p)



B.2. The Server Page 46 of 48

      

CORBA. l oad_i dl ( " t est −sui t e. i dl " )
CORBA. l oad_i dl ( " / usr / shar e/ i dl / name−ser vi ce. i dl " )
or b = CORBA. ORB_i ni t ( ( ) ,  CORBA. ORB_I D)
poa = or b. r esol ve_i ni t i al _r ef er ences( " Root POA" )

ser vant  = POA. Fr ui t . Fact or y( Fact or y( ) )
poa. act i vat e_obj ect ( ser vant )
r ef  = poa. ser vant _t o_r ef er ence( ser vant )
open( " . / t est −ser ver . i or " ,  " w" ) . wr i t e( or b. obj ect _t o_st r i ng( r ef ) )

poa. t he_POAManager . act i vat e( )
or b. r un( )



B.3. The Client Page 47 of 48

B.3. The Client
i mpor t  CORBA
i mpor t  sys

CORBA. l oad_i dl ( " t est −sui t e. i dl " )
or b = CORBA. ORB_i ni t ( ( ) ,  CORBA. ORB_I D)
i or  = open( " . / t est −ser ver . i or " ) . r eadl i ne( )
o = or b. st r i ng_t o_obj ect ( i or )
pr i nt  o. __r epo_i d
t r y:
   o. add_f r ui t ( Fr ui t . Pr oper t i es( name = " or ange" ,  col or  = Fr ui t . or ange) )
   o. add_f r ui t ( Fr ui t . Pr oper t i es( name = " banana" ,  col or  = Fr ui t . yel l ow) )
   o. add_f r ui t ( Fr ui t . Pr oper t i es( name = " appl e" ,  col or  = Fr ui t . r ed) )
   o. add_f r ui t ( Fr ui t . Pr oper t i es( name = " l i me" ,  col or  = Fr ui t . gr een) )
except :  pass

f or  f r ui t  i n o. f r ui t _l i st :
   pr i nt  " %s i s %s"  % ( f r ui t . name,  Fr ui t . Col or [ f r ui t . col or ] )

i  = o. get _i nst ance( o. f r ui t _l i st [ 0] )
pr i nt  " I ’ ve an i nst ance of  an" ,  i . f r ui t . name
i . bi t e( 50)
t r y:  i . bi t e( 60)
except  Fr ui t . I nst ance. Bi gBi t e,  exd:
   t r y:  i . bi t e( 60 − exd. t oo_much_by)
   except  Fr ui t . I nst ance. Al l Eat en:
      pr i nt  " I ’ m done eat i ng my %s;  t hr owi ng i t  out "  % i . f r ui t . name
      i . t hr ow_out ( )

pr i nt  " Pi  i s" ,  Fr ui t . Fact or y. pi
r  = o. get _r andom_f r ui t ( )
pr i nt  " Random f r ui t  of  t he day:  %s ( at  i ndex %d) "  % ( r [ 1] . name,  r [ 0] )

uni on = o. t est _uni on( Fr ui t . or ange)
pr i nt  " Test i ng uni on:  di scr i mi nat e: " ,  uni on. d,  " −− val ue: " ,  uni on. v
pr i nt  " Test i ng any: " ,  o. t est _any( )



C.  Benchmark Information Page 48 of 48

C.  Benchmark Information

System Configuration Client Server

Local test AMD K6/233 64MB, Linux
2.2.14, glibc 2.1.3

AMD K6/233 64MB, Linux
2.2.14, glibc 2.1.3

Remote test P5/133, 45MB, Linux 2.2.14,
glibc 2.1.3

AMD K6/233 64MB, Linux
2.2.14, glibc 2.1.3

Product Version
OmniORBpy 2.8.0

ORBit 0.5.1

Fnorb 1.0.1

ORBit−Python 0.1.0

Java IDL
Blackdown Pre−release
2.0 with JIT and native

threads


