CORBA Objects
In Python

Jason Tackaberry

(tack@linux.com)

April, 2000
Algoma University College
Supervised by George Townsend

Table of Contents

L. INEFOOUCTION. ...ttt e e e b e r e e nnn e e neeenee 1
1.1. Trendsin Distributed ODJECLS.........ccuuuiiiiiieiiiie e 1
1.2. CORBA Availability in High Level Languages...........ooceeeiiiieeeiniieeneiee e 2
1.3. Marrying CORBA and PythON..........cceiiiiiiiiiie e 3

2. BACKGIOUNG......ceeiie et ettt e e s ne e s ne e e e nee e 4
2.0 CORBA ..ot e e e e e e e e e e e e e nr e e e e e anan e e e e anneeeeeannes 4

2.1.1. Introduction t0 CORBAL........ccoii it 4
2.1.2. ADOUL the OMG.......eeeiiieiie et 5
2.1.3. ArChiteCtUre OVEIVIEW.cciuiiiiiiitieeete ettt 5
204, TREIDL ettt ettt e e et e e s be e e e be e e nna e e e nneeeas 8
215, TREORB.... .ttt a e e st e e sre e e e neeeans 10
2.1.6. Interoperability ISSUES..........oeiiiiiieiiiie e 12
2.2. ORBiIt and the GNOME PrOjECL..........cooiiiiiiiieiiiie i 13
2.3 PYHNON....cc e nes 14
2.3. 1. EXECULIVE SUMIMAY......ueiiiiiieeeeiiieeiieeesiiee e st esiee e e e snee e st e e s naeesnnseeeenees 14
2.3.2. A Brief Introduction t0 Python...........coceiiiiiiiieeeee e 15
2.3.3. Extending Python from C.........coouiiiiiiieeee e 16
2.3.4. Currently Avalable ORBS..........cooiiiiiieiciie e 19

3. Design and IMpPIEemMENtatioN............eeeiuiieiiiee e 20
S o0 o TR 20
A B = o W @ = VL= T U 21
3.3, DYNAMIC IDL ...ttt 22

332 TIBIDL .. e 24

3.3.3. IDL Processing Details.........cccuiiiiiiiiiiieeiiie i 24

3.4, Implementation DELailS..........cooiiiiiiiiieie s 27
3.4.1. Marshalling and Demarshalling...........ccceeeiiiriiiiniee e 27
3.4.2. TYPEMAPPINGS.....eeeiuiieeuiieeeiieeeteestee e st e e sreeeste e e s bt e esseeesbeeessaesnneeeaneeeans 28
3.4.3. Walking Through the Code............cccueiiiiiiiiiiie e 29

4, Testing and EVAIUBLION........ccccuuii ettt ees 35
A1, PEEN REVIBW. ...ttt ettt be et e e b s b e nnneennnas 35
4.1.1. BaCKGrOUNG.........eiiiiiiieiiiee ettt et e e e e 35
4.1.2. ORBit=PYthON REIEASE.oveeeeeeeeeeeeeeeseeeeeee e 36

4.2. ODJECHIVES ASSESSIMIENL. ...cieiieiieie et ettee e seee ettt et e st e e ste e e snse e e sse e e snseeesnneeeens 36
G T 1= 11 SRR 37
4.4, PEITOMMNEINCE.coitiiiieiee ettt ettt er e b e e e b e s s e ereeabeesnneennnas 37
4.5, FULUIE PlaNS.......ciiiiiiiee ettt n e 38

5. CONCIUSIONS.....ctiiiiieite ettt etttk b e nb e e e e sn e e be e enn e e nnneenneeenee 40
B. REFEIEINCES.......eeiiieei e 41
A. Appendix A: ORBIit—Python ChangeLog.........ccccueeiiirriiiieiiierie e 42
B. AppendiX B: TRE TES SUITE......ccueiiiiiie e 44
B.1. The Interface DEfiNItiON..........coueiiiiieiiieee e 44
B2, TRE SEIVES ... 45
B.3. TR CHIENT. ... 47

C. BenChmark INFOrMELION.coeeeeeeeeeee et e e e e e e e e e e e e e s 48

1. Introduction Page 1 of 48

1. Introduction

1.1. Trends in Distributed Objects

Historically, large applications would typically be written as one, monolithic program. Inthe
80s, a shift in programming practices toward modular design occurred. Using modular
techniques, the application is divided into a series of self—contained modules that are linked
together to form the complete application. This practice was widely regarded as a step
forward in a more sound design and increased maintainability.

Beginning in the early 90s, this approach was extended to what is known as
component—based design. In a component model, a common framework is provided for each
component. This framework defines a standard set of operations used to facilitate
interoperability between components. Once a framework is available, independent software
vendors can design components that are guaranteed to function properly together.
Application design then becomes ssimply a matter of gluing together components.

Many different component technologies are available today. Perhaps the most
popular implementation of this approach is Microsoft’s Component Object Model (COM).
COM defines a binary standard for the definition of component interfaces [1], such as what
data types may be passed to and returned from operations. Another emerging component
technology is Sun’s Enterprise Java Beans (EJB). The EJB specification defines a
component model up to the GUI level. A JavaBean, for instance, may be a spreadsheet table
widget. Thisisin contrast to Microsoft's COM, which does not define GUI interfaces, but
rather serves as the foundation to ActiveX, which provides the control embedding
functionality. Because EJB is a Java technology, it skates around issues that COM and other

component technologies must address, such as binary and data—type compatibility [1].

1.1. Trendsin Distributed Objects Page 2 of 48

Arguably the most promising component technology is the Object Management
Group’s (OMG) Common Object Request Broker Architecture, or CORBA. CORBA
specifies a language—neutral and platform—agnostic distributed object architecture. Whereas
COM is more an implementation, CORBA is strictly a specification. OMG does not provide
a CORBA implementation (known as an ORB); it isleft up to vendors of CORBA—-compliant
ORBs o define their own binary interfaces [1].

CORBA, however, is more akin to COM than to EJB. CORBA does not define a
container framework for components. Instead it provides a specification language that
application vendors use to define their own interfaces to components. Technologies may be
built on CORBA to provide component embedding functionality, such as Apple and IBM’s

OpenDoc [2], KDE's KOM/OpenParts [3], or GNOME’s Bonobo [4].

1.2. CORBA Availability in High Level Languages
As computing power increases, there is less need for programming in low—level languages
(such as assembly or C), which has traditionally been the case for efficiency reasons. Today,
high level languages are quickly gaining popularity because of their high degree of
readability, maintainability, and the trend toward rapid application development (RAD).
While CORBA was once seen as a framework used only by enterprise-level
applications, today there are many robust and open source CORBA ORBs available. These
free implementations have given CORBA a much wider exposure in the open source world.
Today, free desktop environments such as KDE' and GNOME use CORBA as a foundation
for distributed objects and an embedded component architecture. To ensure rapid growth,

developers of these projects recognize the need to make it possible for applications to be

1 KDE usesboth a shared library approach (KParts) as well asa CORBA—-based approach (OpenParts).

1.2. CORBA Availahility in High Level Languages Page 3 of 48

developed in high—-level languages such as Perl and Python.

Because high—-level languages tend to serve as a glue between smaller components,
there is a requirement for a CORBA implementation. Many ORBs exist for languages such
as Perl and Python, including language bindings for ORBs written in other languages
(omniORBpy, for example), or complete ORB implementations in the language (such as

Fnorb).

1.3. Marrying CORBA and Python
Python, an object—oriented language which spawned in 1990, has caught the eye of many
developers and rivals Perl in popularity. Because Python is an object—oriented, loosely typed
language, it isideal for seamless CORBA bindings. Python's dynamic nature also makes it
possible to process interface definitions at run—time, as opposed to the conventional pre-
execution—time.

The Python Language Mapping Specification [5] suggests Python bindings for a
CORBA implementation. These mappings are recommended to ensure a common ground for

all CORBA abjects (either server—side or client—side) written in Python.

2. Background Page 4 of 48

2. Background

2.1. CORBA

2.1.1. Introduction to CORBA

CORBA (the Common Object Request Broker Architecture) was developed by the Object
Management Group (OMG) to distribute applications across client—server networks. It
allows applications to communicate with each other no matter where they are located and
who has designed them.

The idea behind CORBA is a software intermediary called an Object Request Broker
(ORB) that handles access requests on data sets. The ORB is the middieware that establishes
a client—server relationship between objects. Using an ORB, a client can transparently
invoke a method on a server object which may be located on the same machine or across a
network [6]. The ORB intercepts the call, locates an object capable of implementing the
request, invokes its method with the appropriate parameters, and returns the results to the
caller. The location of the object, the operating system, or its programming language are
completely transparent to the requesting client.

The goal of CORBA is to make modular and distributed programming easier by
making CORBA-based applications highly portable. In designing typical client/server
applications, developers must make decisons about protocol, which depends on the
implementation language, network transport, and a dozen other factors [7]. With an ORB,
however, the protocol is defined through a single, generic definition language called IDL
(Interface Definition Language). In this way, ORBs provide flexibility as they let
programmers choose the most appropriate operating system, execution environment, and

programming language to use for each component in a system.

2.1.1. Introduction to CORBA Page 5 of 48

2.1.2. About the OMG

The Object Management Group (OMG) was founded as a consortia in 1989 to promote the
adoption of standards for managing distributed objects. The original members of the OMG
were primarily end-users, although a small number of vendors were members. Their goal
was to "adopt interface and protocol specifications' that alowed inter—operation of
applications created using distributed objects [8].

Today the OMG consists of over 500 members, both vendors (including Sun
Microsystems, Cisco, and even Microsoft) and end-users, and is growing quickly. While the
OMG has a good reputation for the ability to quickly adopt specifications, they are not a
standards organization [8]. Instead, they promote the adoption of standards by vendorsin the
industry. Furthermore, the OMG will not adopt any specification which does not exist as an
implementation. Many ideas seem viable in theory, but implementation often exposes
oversights. When a standard is promoted by the OMG, one can be sure that it actually does

work.

2.1.3. Architecture Overview
The OMG defined a higher level specification called the Object Management Architecture
(OMA) [6], of which the CORBA ORB isjust one part. The OMA isafour—part
architecture consisting of:

The core component called an Object Request Broker (ORB).

Additional services used by developers called CORBA Services.

Common application frameworks called CORBAFacilities.

Distributed applications themselves.

2.1.3. Architecture Overview Page 6 of 48

Application CORBA
Objects Facilities

|
CORBA ORB

CORBA
Services

Figure2.1 Object Management Architecture

Thisisdepicted in figure 2.1.

CORBA can be considered an object—oriented verson of Remote Procedure Calls
(RPC). With RPC, a procedure is first defined, which consists of the name, the arguments
which are passed to it, and the result which it returns. Using these definitions, both the client
and server sides are then developed. For example, NFS is designed by wrapping the file
system APl with RPC calls. CORBA extends the concept of RPC by implementing
traditional object—oriented concepts.

CORBA is object—oriented by necessity, not by choice. In CORBA, the three basic
features of object—oriented programming are used. First, polymorphism among objects is
allowed. A client may invoke methods of an object even if it knows only about the interface
of its base class. Second, CORBA objects encapsulate data and methods. Each application
knows nothing about the data it accesses; it merely makes a request through the ORB, and the
object retrieves the data for the application. Finally, inheritance is provided. If one
description of an object is designed to interface with an ORB, any object derived from that
parent object will preserve its parent’s interface. However, inheritance is restricted to

interface inheritance only and provides no method overriding. Since the implementation of

2.1.3. Architecture Overview Page 7 of 48

an object is intended to be transparent, implementation inheritance is not supported. On the
other hand, nothing in CORBA prevents the developer of a set of service objects from using
implementation inheritance, but this is not supported at the higher level CORBA
specification.

All CORBA objects adhere to a classical object model. The classical model is one
where all methods are contained within a class. Thisis in contrast to some object models
(such as the generalized object model) where methods are not alocated to classes[9].

In designing CORBA objects, interface (i.e. specification) and implementation are
clearly separated. An object interface specifies that object’s behavior, such as the services it
is willing to provide. This behavior of an object is therefore independent of its
implementation. As long as the object behaves as it is specified by its interface, it is not
necessary to know how it isimplemented. This notion isisfundamental to CORBA.

To accomplish this, the CORBA architecture specifies an Interface Definition
Language (IDL) [8]. IDL consistently describes object interfaces in a common manner.
This way, clients need only to know an object’s interface in order to make requests. Servers
respond to requests made on those interfaces, and the actual detail of implementation is

encapsulated inside the server behind its interface.

— Interface

Operations

AN

Attributes

Figure2.2 High levd view of thelnterface [6]
One of the goals cited by the OMA is location—transparent access to objects[9]. This

means that a programmer can access an object without being required to know where on a

2.1.3. Architecture Overview Page 8 of 48

Object Object
Server w Client
ORB / \ ORB

Figure2.3 CORBA 'slocaion-transparent modd

network that object exists. In accessng CORBA objects, the details of the object’s location
are hidden. Every object has an Object Reference (OR) identifier associated with it, which
contains all necessary information to make requests of that object either locally or remotely.
Thus, objects located across a network appear no different to the client than if they were
local.

One side—effect that does make location somewhat apparent, however, is that
asynchronous faults may occur so that the status of arequest is unknown [6]. For example, if
an request is made of an object across a network with broken connectivity, a negative
response will never be received. The completion status for requests therefore alows
completed, not completed, and maybe completed. The value of maybe reports the

indeterminacy of success (or failure).

2.1.4. The IDL
CORBA abjects are defined and mapped to a particular language (such as C++) through the
IDL. This definition consists of methods and parameters that compose a complete object
interface. However, the IDL is not another programming language. It is a language for
expressing types, specificaly interface types. It has no flow—control or iteration [9].

The IDL is a separate |language within the CORBA specification with the same lexical

rules as C++. New keywords are introduced to handle distributed—computing concepts [7].

2.1.4. ThelDL Page 9 of 48

The IDL describes the interfaces that client objects use when they want to reference an object
implementation. Each IDL is defined completely for the object. The IDL aso provides
information necessary to develop clients that use an object’ s interface operations.

It is important to note that IDL is completely language independent. One of
CORBA's strengths is that objects may be designed in any language or operating system.
IDL specifications are conventionally passed through an IDL trandator (typicaly called a
compiler), which maps the interface to a specific language. IDL has been mapped
successfully to many languages, including C, C++, Smalltalk, Ada95, Java, Perl, and Python.

CORBA IDL supports most datatypesin C++, aswell asafew others (seetable 2.1).

IDL C++
boolean bool
char signed char
octet 8 hits
enum enum
short short
unsigned unsigned
float float
double double
any closest to void *
object closest to class
string class string
struct gtruct (like C, rather than C++)
union union (discriminated)
array
sequence (parameterized array)

Table2.1 IDL typesascomparedto C++[6]

Figure 2.4 shows an example of how the IDL might be used. The base interface
Person defines the attributes and methods that might accompany a Person abstract data type.
The interface Student, which subclasses Person, inherits al the attributes and methods from

its parent, and defines two other attributes for a student number and grade point average.

2.1.4. ThelDL Page 10 of 48

i nterface Person {
enum Gender Type { nale, female };
readonly attribute Gender Type gender;
attribute string nane;
readonly attribute string sin;

voi d set _gender (in Gender Type type);
void set_sin(in string sin_value);

b

interface Student : Person {
readonly attribute string student_nunber, gpa

voi d set_student _nunber(in string sn_val ue);
void set_gpa(in string gpa_val ue);

Figure2.4 Sample IDL interface

The target code produced by the IDL compiler occurs in pairs. client—-side and
server—side mapping. The server—side mapping, called a skeleton, needs to be "fleshed out"
with the actual implementation code for each method. The client—side mapping isreferred to
as a stub, and may be linked directly into the client application without modification. The
client then calls the methods provided by the stub in order to request a service from the
object.

Notice that each parameter in an operation (such as set _gpa) is prefixed with in.
This specifies that the parameter is passed by value, and will be used by the remote end in
some computation. Parameters may also be prefixed with inout, which means that the remote
end will use the value and will also return a result through that parameter. Findly, a

parameter may be indicated as out, which is used strictly for returning results.

2.1.5. The ORB

The ORB isthe core of the CORBA architecture and provides a mechanism for transparently
communicating client requests to target object implementations. The ORB simplifies
distributed programming by decoupling the client from the details of the method invocations

[7]. When aclient invokes an object’s method, the ORB is responsible for locating the object

2.1.5. The ORB Page 11 of 48

implementation, transparently activating it (if necessary), delivering the request to the object,
and returning any response to the caller.

The ORB itself isalogical entity, implemented either as a process or a set of libraries.
The CORBA gpecification defines an abstract interface to the ORB so that clients are
designed independent of the ORB. This means the ORB could be changed with little
modification to the client.

To assist the ORB with delivering requests to the object, the OMA defines an entity
called the object adapter (OA). The object adapter associates specific object implementations
with the ORB, and is aso responsible for activating the object if necessary to handle a
request. There are four policiesfor object activation:

Per Method Server: a new server for the object is spawned every time an object

method isinvoked. Each method call runsin its own server.

Shared Server: servers can support multiple instances of the object. A single

server may handle multiple objects ssmultaneoudly.

Unshared Server: servers that support only one active object, but handle multiple

method invocations as long as they are all on the same object.

Persistent Server: the server is always active and do not require activation by the

OA. These servers are assumed to be available as long as the system is operating.
Only in the Persistent Server policy is the object’s implementation allowed to be active
continuoudy. If thisis not the case, then a CORBA system exception occurs. If arequest is
invoked under any other policy, the OA will explicitly activate the object and pass the
request to it. The OA must have access to information about the object’s location and
operating environment for these other policies. The database containing this information is

known as an Implementation Repository and is a standard component of the CORBA

2.1.5. The ORB Page 12 of 48

architecture [9]. When the OA needs to spawn an instance of the object server, it retrieves
the location information from the implementation repository and executes it. Other
information may also be included in this database, such as debugging, version, and

administrative information.

2.1.6. Interoperability Issues

Initial versions of CORBA were criticized for not specifying ORB—interoperability. That is,
it was possible for multiple vendors to develop ORB implementations to specification that
were not compatible with one another. After extensive debate, this problem was finally
resolved in version 2.0 of the CORBA specification (CORBA?2).

CORBAZ2 defines the General Inter—ORB Protocol (GIOP) for a common interface,
which includes specifications for the message type and format [9]. As mentioned in section
2.1.3, each object instance has an associated object reference (OR). However, this object
reference identifier isimplementation specific. The OR is not guaranteed to be compatible
between ORBs. As part of the GIOP, a standard reference identifier is defined called the
Interoperable Object Reference (I0R).

The GIOP is a generic protocol and must be extended to support a specific network
transport protocol. A semantic layer, the I1OP (Internet Inter— ORB Protocol) is specified to
map the GIOP onto TCP/IP. 110P support is required by all ORBs for CORBA inter—ORB

compliance.

2.2. ORBiIt and the GNOME Project Page 13 of 48

Stubs / Skeleton

GIOP

I1OP ? ? denotes non—-exigtant (yet)

TCP IPX
Figure2.5 GIOP/IIOP layers

2.2. ORBIt and the GNOME Project

The GNU Networking Object Model Environment (GNOME) is an open source initiative to
provide a complete desktop environment, both from the user's view, as well as the
developer’'s. GNOME aims to be a user—friendly desktop system that enables users to easily
use and configure their computers.

GNOME's lead developer, Miguel de Icaza, explains that GNOME was inspired by
the component—based design of Microsoft’s Internet Explorer. From its inception, GNOME
was built around the concept of a component object model. Because GNOME is afree, open
source project built on standards, OMG’s CORBA standard was chosen as the foundation for
GNOME components.

Initially GNOME used a free CORBA implementation called MICO [10]. MICO had
several drawbacks for use with GNOME, notably that it was written in C++ (GNOME is
written strictly in C) and that its performance did not meet GNOME's requirements. In
response, alightweight ORB dubbed ORBIt was developed in C specificaly for the GNOME
project.

While ORBiIt is currently only a partial implementation of the CORBA 2.2
specification, it is functional enough to be used extensively throughout GNOME. ORBiIt's
most notable characteristic is that it is fast. In fact, ORBIt obliterates al other ORB

implementations in benchmarks. Because it fast and lightweight, it is an ideal solution for

2.2. ORBiIt and the GNOME Project Page 14 of 48

the foundation of a component model (Bonobo, in particular).

However, because ORBIt iswritten in C, its API is cumbersome. Designing CORBA
objects using ORBIt's C APl takes a significant amount of code, even compared to C++
ORBs. To rectify this, many projects have begun to bind the ORBIit API to higher level
languages, such as C++, Perl, Eiffel, and Python. This way, the developer reaps the benefits

of the higher—level language as well as the superb speed of ORBiIt.

2.3. Python
2.3.1. Executive Summary
Python is an interpreted, object—oriented, high—level programming language with dynamic
semantics. Its high—-level built in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Application Development, as well as for
use as a scripting or glue language to connect existing components together. Python's
simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program
maintenance. Python supports modules and packages, which encourages program modularity
and code reuse. The Python interpreter and the extensive standard library are available in
source or binary form without charge for all major platforms, and can be freely distributed.
Often, programmers fall in love with Python because of the increased productivity it
provides. Since there is no compilation step, the edit—test—debug cycle is incredibly fast.
Debugging Python programs is easy: a bug or bad input will never cause a segmentation
fault. Instead, when the interpreter discovers an error, it raises an exception. When the
program doesn’'t catch the exception, the interpreter prints a stack trace. A source level
debugger allows inspection of local and global variables, evaluation of arbitrary expressions,

setting breakpoints, stepping through the code a line at a time, and so on. The debugger is

2.3.1. Executive Summary Page 15 of 48

written in Python itself, testifying to Python’s introspective power. On the other hand, often
the quickest way to debug a program is to add a few print statements to the source: the fast

edit—test—debug cycle makes this simple approach very effective.?

2.3.2. A Brief Introduction to Python

Unlike languages such as Perl, Python has very little syntactic sugar. Also, instead of using
braces or begin/end keywords to indicate grouping of statements, Python uses indentation.
This has been perhaps one of its more controversial features, and while it does take some
getting used to, it does seem to make the language much less intimidating to beginners and

improves its readability. For example:

col ors
for i

_ ’%/ellow, "green’, 'blue’', 'red, 'brown', ’black’)
i olo
prin

= (
n colors:
to
Python’ s greatest feature may be its easy—to—learn syntax, but it is by no means a toy
language. There are classes for amost any system—level task one can imagine (including
sockets, threads, pipes, and signals), as well as a myriad of high—level classes to regular
expressions (both Perl and Emacs), many Internet protocols, XML, HTML, and multimedia.
In its core, Python supports most common data types such as integers, floats, and

strings. In addition, there are tuples (like lists in Perl, only immutable), lists (like arrays in

Perl), and dictionaries (hash tables). An example using these data structures:

stuff is a dictionary

stuff = {}

Store a tuple of colors into the stuff dictionary

stuff["colors"] = ('red’, '"green’, 'blue’)

Store a dictionary of people and their ages into the

stuff dictionary

stuff["ages"] = { "Anne': 37, 'John’: 25, 'Peter’: 28, 'Sara : 20 }

Create a list of people under 30
people = []
for person in stuff["ages"].keys():

2 The executive summary was written by Python lead developer Guido Van Rossum, available at
http://www.python.org/doc/essays/blurb.html

2.3.2. A Brief Introduction to Python Page 16 of 48

if stuff["ages"][person] < 30:
peopl e. append(per son)

Python is an excellent language for developing GUI-based programs for Linux.
There are Python modules for both GNOME (PyGtk) and KDE (PyKDE). PyGtk supports
both a direct mapping to gtk+ (the toolkit used by GNOME) called gtkmodule, as well as an
object oriented wrapper around gtkmodule. Anaconda, the installation tool used in RedHat
Linux 6.1, iswritten mostly in Python using PyGtk.

Python has many similarities to Perl, but just enough differences to make it confusing
at times for Perl programmers to learn Python. For instance, tuples, which resemble listsin

Perl, are immutable. This meansthat the following isillega in Python:

tuple = (1, 7, 3, 4)
tuple[2] =2 # illegal

Also, Python makes extensive use of exceptions, in some cases that may not make
sense to the Perl programmer (such as accessing an unknown element of a dictionary or
opening a file that doesn’'t exist). Using and handling exceptions properly in Python takes
some getting used to, and may be the cause of some frustration to people who are not
familiar with them.

In Python, the definition of an object differs somewhat from that of C++. Almost
everything is an object in Python (represented internally as an instance of a PyObject type),
even aclass. What C++ calls objects, Python calls instances. (While in C++ instances and
objects are synonymous, this is not the case with Python.) Exceptions can be almost any
Python object, although they are commonly string objects or class objects. When a class
object is used to raise an exception, the data passed for that exception is typically an instance

of that class.

2.3.3. Extending Python from C Page 17 of 48

2.3.3. Extending Python from C

Like Perl, Python is extensible and embeddable. This means it is possible to create
Python modules in C, usually for performance reasons, or to wrap an existing C library. The
Python/C APl is much more readable than perlgutsXS (Perl’s C APl for creating
extensions), however. After a few revelations on how the APl works, coding an extension
module in Python isadelight. Thisisin contrast to Perl XS which leaves much to be desired
in the readability department. However, what XS lacks for in simplicity it makes up for in
documentation. Many areas of the Python/C API are not documented, which makes diving
into the Python source a necessity. (Although this may not be such a bad thing.)

Although written in C, the Python/C APl takes an object—based approach. All
exported functions take the form PyObject Method, where Object is any Python object
(Object, String, Class, or Instance, for example), and Method is a particular operation to be
performed on the object. The first parameter is generally a pointer to a PyObject data type.
PyObject isthe base "class' (the actual implementation is a structure, however because of the
object—oriented approach it can be considered a class) from which all other Python objects
are derived.

There are many methods associated with the PyObject type, and may be applied to
any object derived from PyObject. For example, the following snippet creates an integer
object, represents that object as a string object, converts the string object, and then prints that

string object to stdouit:

PyQhj ect *the_answer = Pylnt_Fromiong(42);
PyQbj ect *string = PyQoject Repr(the_answer);
printf("%\n", PyString_AsString(string);

Note that because the Repr function is a method of PyObject, any Python object may be

passed to it. In constrast, PyString_AsString expects a string object; passing anything else to

2.3.3. Extending Python from C Page 18 of 48

it will cause an internal exception to be raised.

To create amodule that can be imported from a Python program, one ssimply creates a
shared library called foomodule and a void function initfoo() that calls Py_InitModule(),
where foo is the name of the module.

It is often useful for a module to return a new data type to Python space. To
accomplish this, one instantiates PyTypeObject and fills in the necessary attributes, such as
the name of the type, and pointers to the get/set attribute functions. To return an object of
this type to Python space, one calls PyObject NEW passing the instance of the new type asa
parameter and returns the new object. A simplified example of the above description might

be:

struct PyTypeCbj ect MyQbj ect Type = {
Pybj ect HEAD | NI T(NULL)
n WG)J ECt n ,
(getattrfunc) MyQbj ect _getattr,
(setattrfunc) MyQbj ect _setattr

stuct MyQbject {
} PyQbj ect *dict; // attribute dictionary
I{:’yG)j ect *MyQbj ect _getattr(M/Object *self, char *nane)
if (!strcnp(nanme, "answer"))
return Pyl nt_FronlLong(42);)
return PyCbject _Get AttrString(sel f->dict, nane);
int MyQbject_setattr(M/Object *self, char *nanme, PyCbject *val ue)
if (!'strcnp(nanme, "answer")) {
PyErr_Fronttring(PyExc_TypeError, "There's only 1 answer!");
return -1;

}
return PyCbject Set AttrStr(sel f->dict, nane, value);

Py(Qbj ect *MakeNewMyhj ect (Py(Obj ect *nodul e, PyCbj ect *args)
return PyCbj ect NEW MyQbj ect, &WQbj ect Type);

From Python, we might do:

2.3.3. Extending Python from C Page 19 of 48

i mport nynodul e

nmy obj
print
My obj
print
nyobj

= mymodul e. MakeNewy Qoj ect ()
myobj . answer

.foo = 13

myobj . f oo

.answer = 99

The above snippet will display 42, 13, and then will raise a TypeError exception claiming

"There’ sonly 1 answer!"

2.3.4. Currently Available ORBs

Not including ORBIit—Python (the name of the software designed as part of this project),

there are only two currently available ORBs for Python that provide a useful feature set. The

first is omniORBpy, a set of Python bindings for the C++ ORB omniORB, and Fnorb, a

complete Python implementation (with afew modules written in C for performance).

While Fnorb is a commercia product and costs money, omniORB is not only freely

available, but Open Source (licensed under the GNU General Public License).

3. Design and Implementation Page 20 of 48

3. Design and Implementation

3.1. Scope
The final goa of the project (called ORBIt—Python) is to provide a complete wrapping of
ORBIt's API that is accessible from Python and a mechanism to process IDL files. The
conventional approach to IDL processing isto use a compiler that generates stub and skeleton
files that are included with the client and server respectively. However, because Python is a
dynamic language, it is possible to process interfaces at run—time. This approach, while
more complicated to implement than an IDL compiler, realizes many benefits over pre-
execution compiling, including less coding overhead and the ability to discover new,
arbitrary interfaces dynamically.

The scope of the project scales nicely. Implementation is divided into severa stages,
which are explained in later sections:

1. Create aframework for the CORBA module

2. Create a Python Object for the ORB

3. Create a Python wrapper object for a generic CORBA object

4. Create a Python Object for the POA

5. Implement the IDL processor

6. Implement marshalling/demarshalling

7. Implement client and server stubs

8. Flesh out ORB and POA objects

A minimal implementation would complete stages 1 through 4. During the
implementation of the project, scope was continually reassessed against time constraints.

Stages 5 through 7, while currently accounting for most of the project's code, were

3.1. Scope Page 21 of 48

considered optional. In the absence of available time, ORBIt's native IDL compiler would be
used and Python objects would be manualy wrapped around the resulting stubs and
skeletons. While not a preferred implementation, this would serve to demonstrate a proof of
concept.

Stages 5 and 6 are also quite scalable. IDL type codes (see section 2.1.4) would be
implemented incrementally from the smple, atomic types (char, boolean, short, long, €tc.), to
the more complicated types (struct, union, object reference, exception, etc.). The less used,
exotic types (fixed and long double) were placed at the bottom of the priority list.

Once a fairly complete set of type codes have been implemented (that is, al type
codes except the fixed and long double), the ORB and POA wrappers were to be fleshed out,
completing the remainder of the functionality provided by ORBIt's API. This isthe current

stage of the project.

3.2. Design Overview

Initially, C++ was chosen as the implementation language. During the design, however, very
few C++ features were exploited. Due to requests from the development community, and to
increase ORBIt—Python’s portability, the project was ported to C latein its development. An
unanticipated 5-10% performance increase was also realized.

The current design consists of several modules (that is, logica modules, not Python
modules), depicted in figure 3.1. Several terms are introduced in these brief descriptions that
will be explained in the sections following:

CORBA module: the entry point from Python space. This implements a thin
wrapper function to load and process an IDL function (the actual processing code

isin the IDL processing module), to initialize the ORB, as well as other CORBA

3.2. Design Overview Page 22 of 48

CORBA Object ORB
— CORBA
Marshaller |
Demarshaller POA IDL
Proocessor
CORBA Servant

Figure3.1 Architecture Overview
functionality such as CORBA::Any or CORBA::TypeCode
CORBA ORB: implements the Python object representing the CORBA ORB.
Currently only a subset of the ORB’ s functions are implemented, including IOR to
Object trand ation, and executing the main ORB loop (for the server side).
CORBA Object: the Python Object representing any CORBA Object. New types
for each CORBA object are generated at run—time, but this module implements
generic functions for all CORBA object instances.
IDL processor: responsible for reading and parsing IDL files and dynamically
constructing the necessary Python objects.
POA: implements the core functionality of the Portable Object Adapter, required
to create object servers.
CORBA Servant: a generic servant object
Marshaller/Demarshaller: handles all marshalling and demarshalling of objects

between Python space and the ORB.

3.3. Dynamic IDL Page 23 of 48

3.3. Dynamic IDL

3.3.1. Benefits

Traditionally, interface descriptions written in IDL are parsed by an IDL compiler that
generates stubs and skeletons to be used in the clients and servers. For satically typed
languages such as C, thisis a necessity. However, loosely typed languages such as Perl or
Python don’t have to play by these rules. Because objects (and in the Python sense, aclassis
an object) can be created during execution, it becomes possible to discover CORBA
interfaces dynamically.

This provides several benefits. First, the excess baggage of the IDL compiler—
generated stubs and skeletons is done away with. Also, should the description of an interface
change, recompiling and relinking is no longer required. Another advantage of dynamic
interface discovery is that interfaces unknown at execution—time can be processed. Because
of Python’s introspective capabilities, it then becomes possible to invoke methods of some
arbitrary CORBA object at run—time. This method is not particularly expensive compared to
IDL compiling, either. The processing happens only once, and once the necessary Python
objects are created and accessible from Python space, there is no extra overhead incurred.

The only reason one might prefer to use the compiler is because currently the IDL
file must be distributed with the client and server. (It’s not clear why one might not want to
do this; perhaps security through obscurity is desired.) However, thisissueis easly rectified
by having the interface description embedded in the Python source and parsing it internaly,
rather than reading the description data from a file. (While trivial, this remains to be
implemented; no one has requested this feature.)

Currently, the dynamic interface discovery approach is fairly unique. The only other

project to implement this method is ORBIt's Perl bindings (CORBA::ORBit) written by

3.3.1. Benefits Page 24 of 48

Owen Taylor [12].

3.3.2. libIDL

In order to load and parse IDL files, ORBit—Python relies on a library that is part of ORBIt
caled libIDL. [ibIDL creates parse trees of the IDL file, and provides preprocessing
functionality as well displaying detailed error and warning messages. While libIDL parses
and tokenizes IDL files, because it is intended to be generic and reusable it does not process
them further.

Processing the generated parse tree with libIDL is fairly smple. Once the IDL is
parsed with | DL_par se_fi | enane, the root node of the parse tree is returned. One then
cals1 DL_tree_wal k, passing it two callback functions: one to be called when a new node
in the tree is entered (t ree_pre_f unc), and one that is called when that node is exited
(tree_post _func).

Thetree_pre_func function examines the type of node and takes the appropriate
action. For instance, if the node is an interface, it will create the necessary internal data
structures for the new interface. If the node is an attribute declaration, it will store the
attribute’s metadata (such as its name and type) in the attribute list associated with its
interface. The tree_post _f unc function constructs the Python object for the interface
once it is finished processing all operations, attributes, and exceptions associated with that

interface.

3.3.3. IDL Processing Details
All IDL types require an object representation accessible from Python. DL modules and

interfaces are represented as Python instances, while structures, unions, and exceptions are

3.3.3. IDL Processing Details Page 25 of 48

represented as classes. Top-level modules or interfaces are inserted in the top-level

(__main__) Python namespace.> For example, consider the following IDL:

nodul e Bank {
struct Transaction {
string date;
short code;

i nt erface Account {
exception Overdrawn {
doubl e anmount ;

attribute string id;
readonly attribute doubl e bal ance;

void withdraw(in Transaction t, in double anmount)
rai ses (Overdrawn);

i

Figure 3.2 depicts the object hierarchy accessible from Python for this interface
description. Each box represents an individual Python object, with its type noted in
parentheses. Note that Bank and Account are instances and not classes. This means that they
cannot be instantiated from Python. In fact, instantiating them is not necessary; the proper
way to obtain an instance of a CORBA object is through an object factory or the Portable
Object Adapter. Both these methods are described in detail later.

Also note that attributes and operations are not in the object hierarchy. The objects
shown in this hierarchy are not CORBA objects. Rather, they are interfaces to construct the
necessary parameters for the operations of CORBA objects. Consider the withdraw
operation of the Account interface. The client needs some way to construct the Transaction
structure for the first parameter of the withdraw operation. For example:

t = Bank. Transaction(data = "03/23/2000", code = 1)

The object t is a class instance with the two attributes, data and code, defined. Assuming we

have a CORBA object o that is of type Bank::Account, we can then do:

o.wi thdraw(t, 42.50)

3 Thisisconsidered adesign flaw; IDL objects should be inserted into the Python namespace from which
the IDL file wasloaded. Thisissue remainsto be resolved.

3.3.3. IDL Processing Details

__main__
(dict)

Bank
(instance)

o

Transaction
(dass)

Account
(instance)

h J

Overdrawn

(exception)

Figure 3.2 Example Python object hierarchy

Page 26 of 48

The notation Bank::Account indicates that this object isa CORBA object of that type (in fact,

the CORBA type code for this object is IDL:Bank/Account:1.0; this notation is discussed

later). Thistype, however, is not related to the object hierarchy described above. Again, the

object hierarchy is strictly a means to construct structures, unions, and exceptions required

for interface operations, as well as accessbility to constant definitions and enumeration

types.

Internally, these objects are stored in a hash table by their type codes. A CORBA

type code is a notation that defines a specific data type, whether it is a built—in, atomic type

(such as a boolean), or a complex data type defined by an externa interface (such as the

Bank::Transaction structure). Below is an incomplete table comparing some CORBA types

with their type codes:

3.3.3. IDL Processing Details Page 27 of 48

Type Type Code
boolean IDL:CORBA/Boolean:1.0
char IDL:CORBA/Char:1.0
any IDL:CORBA/AnNy:1.0
Bank::Account IDL :Bank/Account:1.0
Bank::Transaction| |DL:Bank/Transaction:;1.0

Table3.1 Anincompletelist of IDL typesand their
type codes

An internal hash table called object_glue is created upon initialization. Each entry in
the hash table maps a CORBA object to a Python object representing it, and is hashed on the
type code string. For example, alookup of IDL:Bank/Transaction: 1.0 will return the Python
class object representing the structure. Looking up 1DL:Bank/Account/Overdrawn: 1.0 will
return the Python exception object mapped to the CORBA exception Bank::Account::
Overdrawn. Interfaces are a special exception: alookup of IDL:/Bank/Account: 1.0 returns a
structure containing a description of the interface (its operations, attributes, exceptions, and a
list of parent interfaces), as well as a Python type object for the interface. This type is used

with Py Obj ect _ NEW(see section 2.3.3) to create a new Python object of that type.

3.4. Implementation Details
3.4.1. Marshalling and Demarshalling
Marshalling is the process in which the parameters passed to a CORBA operation are
converted from the native language type (in this case, Python objects) to the CORBA type
and placed in the local ORB’s transmission buffer to be sent to the remote ORB. Once the
remote ORB receives the data on the wire, it demarshals the parameters by converting the
CORBA type. Thisprocessisdepicted in figure 3.3.

The process shown in figure 3.3 applies only to operations that do not return any

results back to the caller. For example, consider the following IDL specification for an

3.4.1. Marshalling and Demarshalling Page 28 of 48

Python Python
(dient) (server)
Operation Invoke servant |

\ call function

Marshal L ocal ~ Network Remote Demarsha
Parameters ORB connection ORB Parameters

Figure3.3 Themarshalingand demarshalling process

operation:

short foo(in string a, in float b);
Suppose the client invoked this operation from Python as:

result = object.foo("hello world!", 12.34)
First, the client sets up a communication buffer with the local ORB for this operation. Then
it marshals the two parameters, a and b, and transmits the buffer to the remote ORB. The
remote ORB demarshals the parameters and invokes the server implementation of this
operation. Since this operation returns a value, the server end marshals the return results and
transmits the data back to the client side. The client finally demarshals the return value and
the operation is completed.

For operations that return multiple results (that is, through out or inout parameters), a
tuple isreturned to the Python caller containing the results ordered in which they appeared in

the operation description. So, given the IDL
short foo(in string a, inout short b, out string c);

Calling this operation from Python will return atuple (<short>, <short>, <string>).

3.4.2. Type Mappings
Table 3.2 shows the mappings ORBit—Python uses between CORBA types and

Python types. This table mostly follows the Python Language Mapping Specification [5]:

3.4.2. Type Mappings

CORBA Type Python Type
octet PylInt
short Pylnt
long PyLong
unsigned short PyInt
unsigned long PyLong
long long PyLong
unsigned long long PyLong
float PyFloat
double PyDouble
long double Not yet implemented
boolean PyInt
char PyString (length 1)
string PyString
wide char/string Not yet implemented
fixed Not yet implemented
seguence PyList or PyTuple
enum Pylnt

Page 29 of 48

Table 3.2 Python mappingsfor CORBA types

When marshalling sequences or lists, either lists or tuples are accepted. However, one
should not assume that the values of sequence or arrays types are mutable [5]. For this
reason, demarshalling either of these types returns atuple.

For efficiency reasons, sequences and arrays of characters and octets are mapped to

the string type. This functionality has not yet been implemented.

3.4.3. Walking Through the Code
Perhaps the clearest way to describe the implementation is by stepping through a short

example. Consider the IDL from section 3.3.3, called Bank.idl:

nodul e Bank { _
struct Transaction {

3.4.3. Waking Through the Code Page 30 of 48

string date;
short code;

i nterface Account {

exception Overdrawn {
doubl e amount ;

attribute string id,
readonly attribute doubl e bal ance;

void withdraw(in Transaction t, in double anmount)
rai ses (Overdrawn)

Now let’s examine a possible implementation of the server object for the above IDL, written

using ORBIt—Python. Thisisa complete listing of the code, not just a code fragment. Each

lineis prefixed with aline number asit will be referred to later:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

i mport CORBA
i mport sys

cl ass Account:
def __init_ (self):
self.id = "12345" # set a default id for this account
sel f. bal ance = 500.0 # account opened wi th $500 bal ance

def withdraw(self, t, v):
if self.balance - v < O:
exc = Bank. Account. Overdrawn(anount = v - sel f. bal ance)
| rai se Bank. Account. Overdrawn, exc
el se:

sel f. bal ance = self.balance - v
print "Transaction date:", t.date, "code:", t.code
print "New bal ance:", self.bal ance

CORBA. | oad_i dl ("Bank.idl")
orb = CORBA. ORB_init(sys.argv, CORBA. ORB_|D)
poa orb.resolve_ initial_references("Root POA")

servant = PQA. Bank. Account (Account ())
poa. acti vat e_obj ect (servant)

ref = poa.servant _to_reference(servant)
print orb.object to string(ref)

poa.t he PQAManager. acti vat e()
orb. run()

Lines 01-02 import the CORBA and system modules. The CORBA module is the only

Python module generated by ORBIt—Python. All other modules are not related. Lines 04-16

constitute the actual implementation of the Account interface. The name of this class is

arbitrary, but for readability and clarity, the convention is to use InterfaceName or

InterfaceName_Impl. Lines 05-07 implement the constructor for this class, and simply

3.4.3. Walking Through the Code Page 31 of 48

initialize the attributes that will be glued to the interface. (Note that this classis not at this
point glued to a CORBA object.) Lines 09-16 represent the implementation of the withdraw
operation. First the balance is checked and it is verified that the account has enough money
for the withdrawal. If not, Bank::Account::Overdrawn exception is raised. On line 11, the
exception data is constructed.

Observe how the exception is created, as described in section 3.3.3. Interndly,
Python represents exceptions created by PyErr _NewExcepti on as classes. Line 11 then
creates an instance of this class. Then, in line 12, the exception is raised, with the data (the
instance of the exception) passed. When control is returned to ORBIit—Python, it will check
for this exception and pass it to remote ORB. Lines 13 through 16 are executed during a
successful transaction. The transaction details are displayed, and the account balance is
updated. Line 16 concludes the implementation of the Account interface.

Lines 18-26 perform the setup and initiaization of the ORB; any CORBA server will
follow the same pattern of code. On line 18, the Bank.idl file is read and CORBA types are
glued to their Python objects as described in section 3.3.3. Line 19 initializes the ORB and
returns an CORBA.ORB instance. Then, line 20 fetches the Portable Object Adapter.

The Portable Object Adapter, or POA, is the primary means of making
implementation objects (such as an instance of Account) available to the ORB for servicing
requests. The POA supersedes the Basic Object Adapter (BOA) from early CORBA
versons. The BOA was under—specified and required vendors to implement their own,
proprietary solutions to make the BOA useful. The POA was introduced to solve the
shortcomings of the BOA, and includes functionality for large-scale systems, as well as
location transparency.

Line 22 creates the servant for the Account object. A CORBA servant is

3.4.3. Walking Through the Code Page 32 of 48

programming language interface representing the CORBA server. While an instance of the
Account class has no binding to any CORBA object (it is by itself merely a Python instance
object), the servant represents the glue between the Python instance object and the CORBA
server. Then, in line 23, we register the servant with the POA and activate the object so it
can begin servicing requests.

The next two lines, 24-25, merely print the IOR to stdout, so that we can manually
pass it to the server. Obvioudly for complete applications this is not acceptable. For these
situations, one can register the IOR with the CORBA NamingService. The NamingServiceis
a CORBA Service that maps names (type codes, usualy) to the instance’ s IOR.

Finaly, in lines 27-28, we activate the POA manager and enter ORBIt’s main loop.
The CORBA server is now ready to receive requests.

The code below shows how the client side might be implemented:

01: inport CORBA

02: inport sys

03:

04: CORBA.|oad_idl ("Bank.idl")

05: orb = CORBA. CRB_init(sys.argv, CORBA ORB_ID)
06: ior = sys.stdin.readline()[:-1]

07: acct = orb.string_to_object(ior)

08:

09: acct.id = "00112233"

10: t = Bank. Transaction(data = "03/23/2000", code = 1)
12:

13: try:)

14. acct.withdraw(t, 12.34)

15: except Bank. Account. Overdrawn, exc:

16: print "Failed, would overdraw by", exc.anount
17:

18: print "Current balance:", acct. bal ance

Lines 01-05 load the IDL and initialize the ORB in the same manner as the server code
above. In line 06, the IOR isread from stdin. (The [:—1] trims the trailing newline from the
resulting string.) We assume the user will paste the IOR output from the server into the
client. Again, the preferred method is to use the NamingServer, but for the purposes of an

example thiswill suffice. The real magic happensin line 07: the stringified IOR is passed to

3.4.3. Waking Through the Code Page 33 of 48

CORBA::ORB::string_to_object, and Bank.Account Python object is returned. This object
represents the servant object on the server side. The interaction with the servant through the
client object is completely transparent; with only lines 09-18 to inspect, there is no way to
tell that the acct object is actually a CORBA object that resides in a different process, on a
different system, or is possibly written in a different programming language. This is the
beauty of CORBA.

Line 9 sets the id attribute of the Account object. Keep in mind that the location of
this attribute is on the server side. In fact, the value is not stored on the client side at any
point. Also note that there is no explicit code in the server to handle the assignment of this
attribute. Thisis handled transparently by ORBit—Python.

The method in which the attributes are stored and retrieved in ORBIit—Python goes
against the guidelines set in the Python Language Mapping Specification [5]. The mapping
specification recommends that accessor pairs be implemented, one for setting and one for

retrieving the value of the attribute. So, while in ORBIit—Python one does:

acct.id = "00112233"
print acct.id

The specification suggests:

acct. set _id("00112233")
print acct. _get id()

There are several reasons why ORBIt—Python goes against the specification on this issue.
Firstly, the accessor pair method was recommended for efficiency reasons. However,
efficiency is only an issue in this case when the ORB implementation uses a conventional
IDL compiler approach. With an IDL compiler, Python code would be generated for the
stubs and skeletons. In order to implement equivalent functionality to ORBit—Python, the
Python code for the stub and skeleton would have to implement the Python methods

__setattr_and __ getattr__.

3.4.3. Walking Through the Code Page 34 of 48

The _setattr and _ getattr methods are private methods of a class and are
invoked when an attribute (attributes in Python consist of both methods and data) is

referenced. For instance;

cl ass foo:
def getattr_ (self, nane):
if name == "foo":
return self. bar

def setattr_ (self, nanme, value):
if nane == "foo":
sel f.bar = val ue

So while the attribute foo is set by the caller, the actual attribute set internally in the instance
is bar. Overriding the default setattr/getattr pairs of a class incurs additional overhead,
however. Thus, a stub or skeleton that implements this method will aso suffer from this
overhead.

ORBIt-Python processes IDL files dynamically, however, and al CORBA objects are
separate Python types. A Python type has associated with it C functions for setting and
retrieving attributes. Therefore, the logic that would normally be implemented in the Python
__setattr_ method is handled in the C function. Ultimately, ORBit—Python gains this
functionality for free because of itsinherent design.

Nevertheless, in order to comply with the standards and to remain portable with
Python bindings for other ORBs, eventually the _set attr/ get attr accessor pair will be
implemented in addition to the current technique. This modification is trivial but has a low

priority asit has not been requested.

4. Testing and Evaluation Page 35 of 48

4. Testing and Evaluation

4.1. Peer Review
4.1.1. Background
In the late 1990s, Eric S. Raymond coined the term Open Source. For software to comply
with the OSI (Open Source Initiative) guidelines, it must meet the following requirements
[13]:

source code freely available

freeto distribute

free to modify and redistribute
The Linux operating system has been built under this model and it is widely regarded as the
most stable and bug-free platform because of its development model. In particular, it
followsLinus Law:

"Given enough eyeballs, all bugs are shallow."

This introduces the notion of peer review. With peer review, other developers with
varying sKill levels and backgrounds can examine the code, submit modifications, make
suggestions, and report bugs. With a model in which the source code is unavailable, bug
reports tend to be vague and difficult to track.

Eric Raymond also explains plausible promise [14]. For Open Source software
(OSS) to be successful, it needn’t be particularly good, stable, or well-documented. The
only true requirement for a successful OSS project is that it must convince other developers
that it has the potential to evolve into a useful and appealing product.

GNOME, the free desktop environment for which ORBIt was designed, is also an

Open Source project. As with Linux, GNOME's development follows a bazaar model.

4.1.1. Background Page 36 of 48

With the bazaar model, developers from all across the globe contribute to the project in any
way possible, from core development to bug reporting. While Open Source software need

not follow a bazaar model or vice versa, it typically does.

4.1.2. ORBit-Python Released
On March 10, 2000, ORBit-Python was released to the open source development
community. Notices were placed on several development-related web sites, and a site for

the project was created (http://projects.sault.org/orbit—python). A to—do list was packaged

with the project that identified areas that required improvements or implementation.

By the next day, | had recelved severa emails praisng ORBit—Python. One
developer even volunteered to complete one of the items on the to—do list. Since then, | have
received several bug reports, feature requests, patch submissions, and encouraging feedback.

Due to the nature of the bug reports, the first verson of ORBit—Python (0.1.0)
seemed to be reasonably stable. The current version as of this writing (0.1.3) has fixed
several bugs, implemented many requested features, and is much more stable and portable
than the initial verson. (See the ChangeLog in Appendix A for details) These

improvements would never have been possible without peer review.

4.2. Objectives Assessment

The goals set during the study phase of the project were fairly ambitious. The vision of the
project was the completion of useful Python bindings for ORBIt (that is, handle all
commonly used type codes) using dynamic IDL.

In the initial stages of the project, it was not known if time would permit to complete

the dynamic IDL processing functionality. A contingency plan was devised in this event.

4.2. Objectives Assessment Page 37 of 48

After some revelations on CORBA internals and a great deal of help from the development
community, significant progress was made in completing these goals.

The end result exceeded the initial vision by a long shot. The project is currently
being used by several developers in the GNOME community, and it has a clear path for

evolution.

4.3. Testing

In order to test each feature of ORBIt—Python, a test suite was developed (listed in appendix
B). The test suite unveiled several subtle bugs that were fixed before the initial release.
Fortunately, testing did not uncover any serious design flaws.

The goal of the test suite was to verify that each of the supported type codes were
being handled properly and that the API worked as expected. And because there is currently
no developer documentation, the test suite also served as a brief tutorial on how to use

ORBIt—Python.

4.4. Performance

Initial benchmarks* that measured ORBIt—Python’s raw performance were quite promising.
Table 4.1 compares the performance of ORBIit—Python with native ORBit, omniORB [11],
Fnorb (an complete Python implementation) [15], and Java IDL. The following IDL was

used for the benchmark:

nodul e Counter {

interface Count {
attribute | ong sum

4 Benchmarks submitted by Jon Kére Hellan; system configuration and version details listed in Appendix C.

4.4. Performance

[ong increment();

Client Server Local calls/s Remote calls/s
ORBit-C ORBiIt-C 4150 730
ORBit-C ORBit—Python 2360 670

ORBiIt-Python ORBiIt-C 2630 555
ORBit-Python | ORBIt-Python 1960 515
ORBiIt-C omniORBpy 480 375
omniORBpy ORBiIt-C 1450 515
omniORBpy omniORBpy 450 315
ORBiIt-C Fnorb 78 7

Fnorb ORBiIt-C 55 18

Fnorb Fnorb 38 20
ORBit-C Java IDL 450 380
Java IDL ORBiIt-C 810 500
Java IDL Java IDL 320 230

Page 38 of 48

Table4.1 Benchmarks comparing various ORBs

The conclusions are fairly encouraging. For local calls, ORBit—Python is over 50 times
faster than Fnorb, 6 times faster than Java IDL, and 4 times faster than omniORB’s Python
bindings. For remote calls, ORBit—Python leads again, being 25 times faster than Fnorb, 2
times faster than Java IDL, and 1.6 times faster than omniORBpy.

Also, these benchmarks were performed on ORBIt—Python 0.1.0. Since then, thanks
to the port to C and some minor performance tweaks, the current version is approximately 5-

10% faster.

4.5. Future Plans

There are several items on the to—do list that have yet to be completed:

Go through the TODOs and FIXMEs in the source

4.5. Future Plans Page 39 of 48

Fixed type

Long Double type

Wide types (char and string)

Handle internal errors more gracefully (raise appropriate exceptions)

Better TypeCode support

Interface Repository support

Add classes/objects to import caller’ s namespace instead of __main__

Fix structs and exceptions so that they don’t require keywords

More thorough testing

Documentation
These items will be completed in the order in which they are requested by the development
community, otherwise in the order in which they are listed. (Some paralelism can be
applied.)

Another fairly important step is to audit the current code for memory leaks and

performance issues. While ORBit—Python is currently only 50% dlower than ORBIit—-C
(which is dill quite fast, given that Python is an interpreted language), profiling and

optimization should raise ORBit—Python’ s performance by another 20—30%.

5. Conclusions Page 40 of 48

5. Conclusions

The current state of the ORBit—Python has exceeded the goals set during the initial phases of
the project. The software is already quite useful for most projectsin its current state. It has
also been received extremely well by the development community. Given the potential uses
of ORBIt—Python and its direction, it is possible that it may be packaged with the GNOME
project and released with many Linux distributions.

During the project’s development, severa important observations were noted. First,
the importance of a comprehensive test suite is not to be underestimated. The test suite for
ORBIt—Python (see Appendix B) revealed a number of small bugs in the implementation,
which, in the end, were show-stoppers. Because of the inherent complex web of
interconnections in software, it is easy for modifications or additions in one part of the code
to affect other areasin unanticipated ways. A well-written test suite will ensure that all areas
of the software work properly.

Interacting with the development community, receiving and responding to bug
reports, suggestions, criticisms, and other feedback was also an interesting learning
experience. Developers were using ORBIit—Python in ways that were not anticipated, and so
bugs were uncovered that even a well—written test suite could not have discovered. Also, the
opportunity to discuss issues with other extremely knowledgeable people involved with
CORBA and Python was very useful, and at times perhaps even a bit intimidating.

Python’s design and clean syntax pairs nicely with CORBA. Because of the rising
popularity in both Python and CORBA, and because of the unprecedented speed offered by

ORBIt—Python, | expect the software to be useful to many developers.

6. References Page 41 of 48

6. References

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ADT Magazine, January 2000. Component Strategies and Ar chitectures;
http://www.adtmag.com/pub/jan2000/com_strat.htm

Apple Computers, Inc. OpenDoc; http://opendoc.apple.com

The K Desktop Environment (KDE). KOM/OpenParts; htip://iwww.kde.org

GNU Network Object Model Environment (GNOME). Bonobo; http://devel oper.gnome.org/arch/component/

Martin Von Loewis. The Python L anguage M apping Specification;
http://www.omg.org/cgi—bin/doc?ptc/00-11-12

A. Pope, 1998. The CORBA Refer ence Guide; hitp://www.qds.com/people/apope/Corbal

Z. Yang, 1997. CORBA: A Platform for Distributed Computing;
http://www.infosys.tuwien.ac.at/Research/Corba/archive/intro/OSR.ps.gz

The Object Management Group; http://www.omg.org

K. Keahey, 1995. A Brief Tutorial on CORBA; http://www.cs.indiana.edu/hyplan/kksiazek/tuto.html

MICO Development Group. MICO; hitp:/mww.mico.org

AT& T Laboratories Cabridge. OmniORB; http://www.uk research.at.com/omniORB/

Owen Taylor, 2000. CORBA::ORBiIt; http:/people.redhat.com/otaylor/corba/orbit.html

The Open Source Initiative. The Open Sour ce Definition; http:/www.opensource.org/osd.html

Eric S Raymond. The Cathedral and The Bazaar; http://www.tuxedo.org/~esr/writings/cathedral —bazaar/

Fnorb Development Group; Fnorb. http://www fnorb.org

A. Appendix A: ORBit—Python Changel. og Page 42 of 48

A. Appendix A: ORBIt-Python ChangelLog

2000-

*

2000-

*

*

*

2000-

*

2000-

*

*

*

*

2000-

*

*

*

*

2000-

*

*

2000-

*

03-19 Jason Tackaberry <tack@ i nux. conp
Fi xed a bug that fudged union discrininators.
03-18 Jason Tackaberry <tack@ i nux. conp

Ported the whole mess to C. Aside fromconpiling 20% faster, it should
hopefully build properly on nore platforns. |’'ve also (through sone
crude neasurenents) noticed a 5-10% speed i ncrease.

idl.c, except.c, types.c: fixed unions, structs, and exceptions so that
attributes set on construction are set for the instance object, not for
the cl ass object.

Rel eased 0.1.3

03-16 Jon Kare Hellan <hel |l an@cm org>

idl.cc: pass IDL_parse_filename | DLF_CODEFRAGS which is required for
Ghurreric.idl

03-16 Jason Tackaberry <tack@ i nux. conp

CORBA _ORB. cc: CORBA ORB Pynhject__new properly accepts either lists or
tuples for paraneter 1.

CORBA_ORB. cc: resolve_initial _references handl es Root POA properly now
CORBA_ORB. cc, CORBAnpdul e.cc: nmade ORB_init nore conformant

exceptions rai sed by check_corba_ex() now work properly

03-15 Jason Tackaberry <tack@ i nux. conp

CORBA_ORB. cc: inplenmented CORBA: : ORB: :resol ve_initial _references

(still need to handl e Root POA and POACurrent)

idl.cc, CORBAnmodul e.cc: load_idl() now takes optional preprocessor
paraneters to pass to |IDL_parse_fil enanme

demar shal . cc: can demarshal generic Objects now.

idl.cc, CORBAnpdul e.cc: now handles liblDL errors (such as nmissing file)
gracefully by raising an exception.

03-14 Jason Tackaberry <tack@ i nux. conp

CORBAnmodul e. h, idl.cc, marshal.cc, demarshal.cc: started addi ng debuggi ng
output. Set _ DEBUG LEVEL _ in CORBAnpdule.h to enable (a 0 to 9 val ue).
CORBAnpdul e. cc: CORBA _(bject _to_PyCbject returns Py_None if the passed
object is NULL rather than bailing out with an error.

03-14 Jason Tackaberry <tack@ i nux. conp

CORBA ORB.cc: fixed a stupid bug that caused a segfault with CVS ORBit,

A. Appendix A: ORBit—Python Changel. og Page 43 of 48

*

and as a result created one nore FIXME item :)
Rel eased 0.1.2

2000-03-13 Jason Tackaberry <tack@i nux. conp

*

configure.in: forced precedence to g++ until | can fix the code to
conpile properly with Sun’s Wirkshop. (Okay, it still doesn’t work
properly. |'mworking on that. Hack the Makefile to link in Iibgcc

in the nmeantine.)

2000-03-13 Phil Dawes <philipd@sers. sourceforge. net>

*

*

*

*

idl.cc: fixed a buglet that stops it fromconpiling with gcc-2.95
Added aut omake/ aut oconf support

Added a 'make check’ test target to the src directory

Added an autogen.sh to generate the configure script and run it

2000-03-12 Jason Tackaberry <tack@i nux. conp

*

*

*

Por t abl eServernodul e. [cc, h]: renaned to Portabl eServer.[cc,h] and the
nmodul e is initialized from CORBAnmodul e.cc. This will elininate the
shared library dependency probl em between the two nodul es.

Fi xed a cosnetic bug in test-client

Packaged this as version 0.1.1

2000-03-11 Jason Tackaberry <tack@i nux. conp

*

initial version (0.1.0) rel eased

B. Appendix B: The Test Suite

B. Appendix B: The Test Suite

B.1. The Interface Definition

/1 Yes, this is an absurd and stupid exanple. | tried.

nmodul e Fruit ({
enum Col or { orange, red, yellow, green };

struct Properties {
string nane;
Col or col or;

s

interface Instance {))
readonly attribute Properties fruit;
readonly attribute short left;

exception All Eaten {},
exception BigBite { short t oo_much_by;

1
void bite(in short size) raises (BigBite, AllEaten);

oneway void throw out();

1
t ypedef sequence<Properties> fruits;

interface Factory {))
attribute fruits fruit_list;

exception Al readyExists {};

void add fruit(in Properties f) raises (Al readyExists);

I nstance get _instance(in Properties fruit);

short get random fruit(out Properties fruit);

/1l Ckay, | ran out of fruit ideas for this stuff.

const double pi = 3.141592653;
uni on Test Union switch (Color) {
case orange: string a;
case red: short b;
case yellow float c;
case green: bool ean d;

}s

Test Uni on test_union(in Color color);
any test_any();

2)

2)

Page 44 of 48

B.2. The Server Page 45 of 48

B.2. The Server

i mport CORBA
cl ass | nstance:
def __init__(self, frU|t)
self.frui t = fru
self.left 100

def bite(self, size):
if self.left - size < O:
exdata = Fruit.Instance.BigBite(too_much_by = size — self.left)
raise Fruit.Instance.BigBite, exdata
return

self.left = self.left - size
print "Eating @@9@@ %%hb | eft” % (size, self.left)
If self.left ==

rai se FrU|t.Instance.AllEaten

def throw out(self): _ _
print "Cient threw nme (%) in garbage!" %self.fruit.nanme
poa. deactivate_object(self. _servant)

cl ass Factory:
def __|n|t__(self):
elf.fruit_list =[]

def add fruit(self, f):
for fruit in self.fruit l|ist:

if fruit.name == f.nane:
raise Fruit. Factory. Al readyExi sts
return

self.fruit_list.append(f)

def get _instance(self, fruit):
new i nstance = PQOA Fruit.Instance(lnstance(fruit))
poa. acti vat e_obj ect (new_i nst ance)
return poa.servant _to_reference(new_ instance)

def get _random fruit(self):
i mport random
index = randomrandint(0, len(self.fruit_list) — 1)
return index, self.fruit_list[index]

def test _union(self, color):

if color == Fruit.orange:

return Fruit.Factory. TestUni on(col or, "foobar")
elif color == Fruit.red:

return Fruit.FactorY Test Uni on(col or, 42)
elif color == Fruit.ye

return Fruit. Factory. TestUnion(coIor, 2.71828)
elif color == Fruit.green

return Fruit. Factory. Test Uni on(col or, CORBA. TRUE)

def test_any(self):
i mport random
pi ck = random randi nt (0, 2)

i f pick ==
I_;eturE CfRBA Any(CORBA. TypeCode("I DL: CORBA/ String: 1.0"), "abcl123")
elif pick ==
I_;eturE CfRBA Any(CORBA. TypeCode(" | DL: CORBA/ Short:1.0"), 42)
elif pick ==
p = Fruit. Propertles(nane = "pineapple", color = Fruit.yellow)

return CORBA. Any(CORBA. TypeCode(p),

B.2. The Server Page 46 of 48

CORBA. load_idl ("test-suite.idl")

CORBA. | oad_i dl ("/usr/share/idl/name-service.idl")
orb = CORBA.ORB_init((), CORBA. ORB_ID)

poa = orb.resolve_initial_references("Root POA")

servant = POA Fruit. Factory(Factory())

poa. acti vat e_obj ect (servant)

ref = poa.servant _to reference(servant)
open("./test-server.ior", "wW').wite(orb.object to string(ref))

poa.t he POAManager. acti vate()
orb. run()

B.3. The Client Page 47 of 48

B.3. The Client

i mport CORBA
i mport sys

CORBA. load_idl ("test-suite.idl")

orb = CORBA.CRB_init((), CORBA. ORB_ID

ior = open("./test-server.ior").readline()

0 = orb.string_to_object(ior)

print o._ repo_id

try:
o.add_fruitEFruit.Propertiesgnane
o.add_fruit(Fruit.Properties(nane
o.add_fruit(Fruit.Properties(nane
o.add_fruit(Fruit.Properties(nane

except: pass

"orange", color = Fruit.orangggg
"banana", color = Fruit.yello
"appl e", color = Fruit.red))
“litme", color = Fruit.green))

for fruit in o.fruit_list: _
print "% is %" % (fruit.nane, Fruit.Color[fruit.color])

i = o.get_instance(o.fruit _list[0])
print "I’ve an instance of an", i.fruit.nane
I . bite(50)
try: i.bite(60)
except Fruit.lnstance.BigBite, exd:
try: i.bite(60 - exd.too_mnuch_by)
except Fruit.lnstance. All Eaten
print "I’mdone eating ny %; throwing it out" %i.fruit.nane
I.throw out ()

print "Pi is", Fruit.Factory.p
r = o.get_randomfruit()
print "Randomfruit of the day: % (at index %l)" % (r[1].nane, r[0])

union = o.test_union(Fruit.orange))
print "Testing union: discrimnate:", union.d,
print "Testing any:", o.test_any()

—-— value:", union.v

C. Benchmark Information

C. Benchmark Information

System Configuration

Page 48 of 48

Client Server

Local test

AMD K6/233 64MB, Linux | AMD K6/233 64MB, Linux
2.2.14, glibc 2.1.3 2.2.14, glibc 2.1.3

Remote test

P5/133, 45MB, Linux 2.2.14, | AMD K6/233 64MB, Linux

glibc 2.1.3 2.2.14, glibc 2.1.3
Product Version

OmniORBpy 2.8.0
ORBiIt 0.5.1
Fnorb 101
ORBit-Python 0.1.0

Blackdown Pre-release

Java IDL 2.0with JT and native

threads

