
Part1^
Essentials

CHAPTER 1
Windows NT: An Inside Look

CHAPTER 2
Writing Windows NT Device Drivers

CHAPTER 3
Win32 Implementations: A Comparative Look

CHAPTER 4
Memory Management

CHAPTER 5
Reverse Engineering Techniques



Chapter 1

Windows NT: An Inside
Look

IN THIS CHAPTER

+ Evaluating Windows NT - ^^^^
+ Delving into the Windows NT architecture ^^ ^

THIS BOOK IS AN EXPLORATION of the internals of the Windows NT operating system.
Before entering the jungle of Windows NT internals, an overview of the topic is
necessary. In this chapter, we explain the overall structure of the Windows NT op-
erating system.

Evaluating Windows NT
The qualities of an operating system are the result of the way in which the operat-
ing system is designed and implemented. For an operating system to be portable,
extensible, and compatible with previous releases, the basic architecture has to
be well designed. In the following sections, we evaluate Windows NT in light of
these issues.

Portability
As you know, Windows NT is available on several platforms, namely, Intel, MIPS,
Power PC, and DEC Alpha. Many factors contribute to Windows NT's portability.
Probably the most important factor of all is the language used for implementation.
Windows NT is mostly coded in C, with some parts coded in C++. Assembly lan-
guage, which is platform specific, is used only where necessary. The Windows NT
team also isolated the hardware-dependent sections of the operating system in
HAL.DLL. As a result, the hardware-independent portions of Windows NT can be
coded in a high-level language, such as C, and easily ported across platforms.

3



Part 1: Essentials

Extensibility
Windows NT is highly extensible, but because of a lack of documentation, its ex-
tensibility features are rarely explored. The list of undocumented features starts
with the subsystems. The subsystems provide multiple operating system interfaces
in one operating system. You can extend Windows NT to have a new operating sys-
tem interface simply by adding a new subsystem program. Windows NT provides
Win32, OS/2, POSIX, Winl6, and DOS interfaces using the subsystems concept, but
Microsoft keeps mum when it comes to documenting the procedure to add a new
subsystem.

The Windows NT kernel is highly extensible because of dynamically loadable
kernel modules that are loaded as device drivers. In Windows NT, Microsoft pro-
vides enough documentation for you to write hardware device drivers-that is,
hard disk device drivers, network card device drivers, tape drive device drivers, and
so on. In Windows NT, you can write device drivers that do not control any hard-
ware device. Even file systems are loaded as device drivers under Windows NT.

Another example of Windows NT's extensibility is its implementation of the sys-
tem call interface. Developers commonly modify operating system behavior by
hooking or adding system calls. The Windows NT development team designed the
system call interface to facilitate easy hooking and adding of system calls, but
again Microsoft has not documented these mechanisms.

Compatibility
Downward compatibility has been a long-standing characteristic of Intel's micro-
processors and Microsoft's operating systems, and a key to the success of these two
giants. Windows NT had to allow programs for DOS, Win 16, and OS/2 to run unal-
tered. Compatibility is another reason the NT development team went for the sub-
system concept. Apart from binary compatibility, where the executable has to be
allowed to run unaltered, Windows NT also provides source compatibility for
POSIX-compliant applications. In another attempt to increase compatibility,
Windows NT supports other file systems, such as the file allocation table (FAT) file
system from DOS and the High Performance File System (HPFS) from OS/2, in
addition to the native NT file system (NTFS).

Maintainability
Windows NT is a big piece of code, and maintaining it is a big job. The NT devel-
opment team has achieved maintainability through an object-oriented design. Also,
the breakup of the operating system functionality into various layers improves
maintainability. The topmost layer, which is the one that is seen by the users of the
operating system, is the subsystems layer. The subsystems use the system call inter-
face to provide the application programming interface (API) to the outside world.
Below the system call interface layer lies the NT executive, which in turn rests on



Chapter 1: Windows NT: An Inside Look

the kernel, which ultimately relies on the hardware abstraction layer (HAL) that
talks directly with the hardware.

The NT development team's choice of programming language also contributes to
Windows NT's maintainability. As we stated previously, the entire operating system
has been coded in C and C++, except for a few portions where the use of assembly
language was inevitable.

Plus Points over Windows 95/98
Microsoft has come up with two 32-bit operating systems: Windows 95/98 and
Windows NT. Windows NT is a high-end operating system that offers additional fea-
tures separate from those provided by conventional PC or desktop operating systems,
such as process management, memory management, and storage management.

Security
Windows NT is a secure operating system based on the following characteristic: A
user needs to log in to the system before he or she can access it. The resources in
the system are treated as objects, and every object has a security descriptor associ-
ated with it. A security descriptor has access control lists attached to it that dictate
which users can access the object.

All this being said, a secure operating system cannot be complete without a se-
cure file system, and the FAT file system from the days of DOS does not have any
provision for security. DOS, being a single-user operating system, did not care
about security.

In response to this shortcoming, the Windows NT team came up with a new file
system based on the HPFS, which is the native file system for OS/2. This new native
file system for Windows NT, known as NTFS, has support for access control. A user
can specify the access rights for a file or directory being created under NTFS, and
NTFS allows only the processes with proper access rights to access that file or
directory.

Keep in mind that no system is 100 percent secure. Windows NT, although
remarkably secure, is not DoD compliant. (For the latest news on DoD com-
pliance, check out h t t p : / / w w w . f c w . c o m / p u b s / f c w / 1 9 9 8 / 0 7 2 7 /
f c w - n e w s d o d s e c - 7 - 2 7 - 9 8 . htm.)

Multiprocessing
Windows NT supports symmetric multiprocessing, the workstation version of
Windows NT can support two processors, and the server version of Windows NT can
support up to four processors. The operating system needs special synchronization



Parti: Essentials

constructs for supporting multiprocessing. On a single-processor system, critical
portions of code can be executed without interruption by disabling all the hardware
interrupts. This is required to maintain the integrity of the kernel data structures. In
a multiprocessor environment, it is not possible to disable the interrupts on all
processors. Windows NT uses spin locks to protect kernel data structures in a multi-
processor environment.

Multiprocessing can be classified as asymmetric and symmetric. In asymmet-
ric multiprocessing, a single processor acts as the master processor and the
other processors act as slaves. Only the master processor runs the kernel
code, while the slaves can run only the user threads. Whenever a thread run-
ning on a slave processor invokes a system service, the master processor
takes over the thread and executes the requested kernel service.The sched-
uler, being a kernel code, runs only on the master processor.Thus, the master
processor acts as the scheduler, dispatching user mode threads to the slave
processors. Naturally, the master processor is heavily loaded and the system
is not scalable. Compare this with symmetric multiprocessing, where any
processor can run the kernel code as well as the user code.

International Language Support
A significant portion of PC users today use languages other than English. The key
to reaching these users is to have the operating system support their languages.
Windows NT achieves this by adopting the Unicode standard for character sets. The
Unicode standard has 16-bit character set, while ASCII uses an 8-bit character set.
The first 256 characters in Unicode match the ASCII character set. This leaves
enough space for representing characters from non-Latin scripts and languages.
The Win32 API allows Unicode as well as ASCII character sets, but the Windows NT
kernel uses and understands only Unicode. Although the application programmer
can get away without knowing Unicode, device driver developers need to be famil-
iar with Unicode because the kernel interface functions accept only Unicode strings
and the driver entry points are supplied with Unicode strings.

Multiprogramming
Windows NT 3.51 and Windows NT 4.0 lack an important feature, namely, the sup-
port for remote login or Telnet of a server operating system. Both these versions
of Windows NT can operate as file servers because they support the common
Internet file system (CIFS) protocol. But they cannot act as CPU servers because
logging into a Windows NT machine over the network is not possible.
Consequently, only one user can access a Windows NT machine at a time. Windows



Chapter 1: Windows 1MT: An Inside Look

2000 plans to overcome this deficiency by providing a Telnet server along with the
operating system. This will enable multiple programmers to log in on the machine
at the same time, making Windows 2000 a true server operating system.

Third-party Telnet servers are available for Windows NT 3.51 and
Windows NT 4.0. However, Microsoft's own Telnet server comes
only with Windows 2000.

Delving into the Windows NT
Architecture
Windows NT borrows its core architecture from the MACH operating system, which
was developed at Carnegie Mellon University. The basic approach of the MACH op-
erating system is to reduce the kernel size to the minimum by pushing complex op-
erating system functionality outside the kernel onto user-level server processes.
This client-server architecture of the operating system serves yet another purpose:
It allows multiple APIs for the same operating system. This is achieved by imple-
menting the APIs through the server processes.

The MACH operating system kernel provides a very simple set of interface func-
tions. A server process implementing a particular API uses these interface functions
to provide a more complex set of interface functions. Windows NT borrows this
idea from the MACH operating system. The server processes in Windows NT are
called as the subsystems. NT's choice of the client-server architecture shows its
commitment to good software management principles such as modularity and
structured programming. Windows NT had the option to implement the required
APIs in the kernel. Also, the NT team could have added different layers on top of
the Windows NT kernel to implement different APIs. The NT team voted in favor of
the subsystem approach for purposes of maintainability and extensibility.

The Subsystems
There are two types of subsystems in Windows NT: integral subsystems and envi-
ronment subsystems. The integral subsystems, such as the security manager subsys-
tem, perform some essential operating system task. The environment subsystems
enable different types of APIs to be used on a Windows NT machine. Windows NT
comes with subsystems to support the following APIs:

+ Win32 Subsystem. The Win32 subsystem provides the Win32 API. The
applications conforming to the Win32 API are supposed to run unaltered
on all the 32-bit platforms provided by Microsoft - that is, Windows NT,
Windows 95, and Win32s. Unfortunately, as you will see later in this
book, this is not always the case.



Part 1: Essentials

+ WOW Subsystem. The Windows on Windows (WOW) subsystem provides
backward compatibility to 16-bit Windows applications, enabling Win 16
applications to run on Windows NT. These applications can run on
Windows NT unless they use some of the undocumented API functions
from Windows 3.1 that are not defined in Windows NT.

+ NTVDM Subsystem. The NT Virtual DOS Machine (NTVDM) provides a
text-based environment where DOS applications can run.

+ OS/2 Subsystem. The OS/2 subsystem enables OS/2 applications to run.
WOW, NTVDM, and OS/2 are available only on Intel platforms because
they provide binary compatibility to applications. One cannot run the
executable files or binary files created for one type of processor on another
type of processor because of the differences in machine code format.

+ POSIX Subsystem. The POSIX subsystem provides API compliance to the
POSIX 1003.1 standard.

The applications are unaware of the fact that the API calls invoked are processed
by the corresponding subsystem. This is hidden from the applications by the re-
spective client-side DLLs for each subsystem. This DLL translates the API call into a
local procedure call (LPC). LPC is similar to the remote procedure call (RFC) facility
available on networked Unix machines. Using RFC, a client application can invoke
a function residing in a server process running on another machine over the net-
work. LPC is optimized for the client and the server running on the same machine.

THE WIN32 SUBSYSTEM
The Win32 subsystem is the most important subsystem. Other subsystems such as
WOW and OS/2 are provided mainly for backward compatibility, while the POSIX
subsystem is very restrictive in functionality. (For example, POSIX applications do
not have access to any network that exists.) The Win32 subsystem is important be-
cause it controls access to the graphics device. In addition, the other subsystems are
actually Win32 applications that use the Win32 API to provide their own different
APIs. In essence, all the subsystems are based on the core Win32 subsystem.

The Win32 subsystem in Windows NT 3.51 contains the following components:

+ CSRSS.EXE. This is the user mode server process that serves the USER and
GDI calls.

Traditionally, Windows API calls are classified as user/gdi calls and kernel
calls.The majority of user/gdi functions are related to the graphical user in-
terface (GUI) and reside in USER.DLL under Windows 3.x. The kernel func-
tions are related to non-GUI O/S services — such as file system management
and process management — and reside in KERNEL.EXE under Windows 3.x.



Chapter 1: Windows NT: An Inside Look

+ KERNEL32.DLL. The KERNEL.EXE in Windows 3.1 has changed to
KERNEL32.DLL in Windows NT. This is more than a change in name. The
KERNEL.EXE contained all the kernel code for Windows 3.1, while
KERNEL32.DLL contains just the stub functions. These stub functions call
the corresponding NTDLL.DLL functions, which in turn invoke system call
code in the kernel. • <- ' ••

+ USER32.DLL. This is another client-side DLL for the Win32 subsystem.
The majority of the functions in USER32.DLL are stub functions that
convert the function call to an LPC for the server process.

+ GDI32.DLL. The functions calls related to the graphical device interface
are handled by another client-side DLL for the Win32 subsystem. The
functions in GDI32.DLL are similar to those in USER32.DLL in that they
are just stubs invoking LPCs for the server process.

Under Windows NT 4.0 and Windows 2000, the functionality of CSRSS is moved
into a kernel mode driver (WIN32K.SYS) and USER32 and GDI32 use the system
calls interface to call the services in WIN32K.SYS.

The Core
We have to resort to new terminology for explaining the kernel component of the
Windows NT operating system. Generally, the part of an operating system that runs
in privileged mode is called as the kernel. The Windows NT design team strove to
achieve a structured design for the operating system. The privileged-mode compo-
nent of Windows NT is also designed in a layered fashion. A layer uses only the func-
tions provided by the layer below itself. The main layers in the Windows NT core are
the HAL, the kernel, and the NT executive. Because one of the layers running in priv-
ileged mode is itself called as the kernel, we had to come up with a new term that
refers to all these layers together. We'll refer to it as the core of Windows NT.

Most modern microprocessors run in at least two modes: normal and privi-
leged. Some machine instructions can be executed only when the processor
is in privileged mode. Also, some memory area can be marked as "to be ac-
cessed in privileged mode only."The operating systems use this feature of
the processors to implement a secure operating environment for multitask-
ing.The user processes run in normal (nonprivileged) mode, and the operat-
ing system kernel runs in privileged mode. Thus, the operating system
ensures that user processes cannot harm the operating system.



10 Part 1: Essentials

This division of the Windows NT core into layers is logical. Physically, only the
HAL comes as a separate module. The kernel, NT executive, and the system call
layer are all packed in a single NTOSKRNL.EXE (or NTKRNLMP.EXE, for multi-
processor systems). Though they are considered part of the NT executive in this
chapter, the device drivers (including the file system drivers) are separate driver
modules and are loaded dynamically.

THE HAL ' '
The lowest of the aforementioned layers is the hardware abstraction layer, which
deals directly with the hardware of the machine. The HAL, as its name suggests,
hides hardware idiosyncrasies from the layers above it. As we mentioned previ-
ously, Windows NT is a highly portable operating system that runs on DEC Alpha,
MIPS, and Power-PC, in addition to Intel machines. Along with the processor, the
other aspects of a machine, such as the bus architecture, interrupt handling, and
DMA management also change. The HAL.DLL file contains the code that hides the
processor- and machine-specific details from other parts of the core. The kernel
component of the core and the device drivers use the HAL interface functions. Thus,
only the HAL code changes from platform to platform; the rest of the core code that
uses the HAL interface is highly portable.

THE KERNEL
The kernel of Windows NT offers very primitive but essential services such as mul-
tiprocessor synchronization, thread scheduling, interrupt dispatching, and so on.
The kernel is the only core component that cannot be preempted or paged out.
All the other components of the Windows NT core are preemptive. Hence, under
Windows NT, one can find more than one thread running in privileged
mode. Windows NT is one of the few operating systems in which the core is also
multithreaded.

A very natural question to ask is "Why is the kernel nonpreemptive and non-
pageable?" Actually, you can page out the kernel, but a problem arises when you
page in. The kernel is responsible for handling page faults and bringing in the re-
quired pages in memory from secondary storage. Hence, the kernel itself cannot be
paged out, or rather, it cannot be paged in if it is paged out. The same problem pre-
vents the disk drivers supporting the swap space from being pageable. As the ker-
nel and the device drivers use the HAL services, naturally, the HAL is also
nonpreemptive.

THE NT EXECUTIVE
The NT executive constitutes the majority of the Windows NT core. It sits on top of
the kernel and provides a complex interface to the outside world. The executive is
designed in an object-oriented manner. The NT executive forms the part of the
Windows NT core that is fully preemptive. Generally, the core components added by
developers form a part of the NT executive or rather the I/O Manager. Hence, driver
developers should always keep in mind that their code has to be fully preemptive.



Chapter 1: Windows MT: An Inside Look 11

The NT executive can further be subdivided into separate components that im-
plement different operating system functionality. The various components of the
executive are described in the following sections. *.-',,'

THE OBJECT MANAGER Windows NT is designed in an object-oriented fashion.
Windows, devices, drivers, files, mutexes, processes, and threads have one thing in
common: All of them are treated as objects. In simpler terms, an object is the data
bundled with the set of methods that operate on this data. The Object Manager
makes the task of handling objects much easier by implementing the common
functionality required to manage any type of object. The main tasks of the Object
Manager are as follows:

+ Memory allocation/deallocation for objects.

+ Object name space maintenance. The Windows NT object name space is
structured as a tree, just like a file system directory structure. An object

- name is composed of the entire directory path, starting from the root
directory. The Object Manager is responsible for maintaining this object

'. name space. Unrelated processes can access an object by getting a handle
to it using the object's name.

+ Handle maintenance. To use an object, a process opens the object and
gets back a handle. The process can use this handle to perform further
operations on the object. Each process has a handle table that is
maintained by the Object Manager. A handle table is nothing more than
an array of pointers to objects; a handle is just an index in this array.

- When a process refers to a handle, the Object Manager gets hold of the
actual object by indexing the handle in the handle table.

+ Reference count maintenance. The Object Manager maintains a reference
count for objects, and automatically deletes an object when the
corresponding reference count drops to zero. The user mode code accesses
objects via handles, while the kernel mode code uses pointers to directly
access objects. The Object Manager increments the object reference count
for every handle pointing to the particular object. The reference count is
decremented whenever a handle to the object is closed. Whenever the
kernel mode code references an object, the reference count for that object
is incremented. The reference count is decremented as soon as the kernel
mode code is finished accessing the object.

+ Object security. The Object Manager also checks whether a process is
allowed to perform a certain operation on an object. When a process
creates an object, it specifies the security descriptor for that object. When
another process tries to open the object, the Object Manager verifies
whether the process is allowed to open the object in the specified mode.
The Object Manager returns a handle to the object if the open request
succeeds. As described earlier, a handle is simply an index in a per-process



12 Parti: Essentials

table that has pointers to actual objects. The mode in which the open
request on an object is granted is stored in the handle table along with the
object pointers. Later, when the process tries to access the object using the
handle, the Object Manager ensures that proper access rights are associated
with the handle.

THE 1/0 MANAGER The I/O Manager controls everything related to input and out-
put. It provides a framework that all the I/0-related modules (device drivers, file
systems, Cache Manager, and network drivers) must adhere to.

+ Device Drivers. Windows NT supports a layered device driver model. The
I/O Manager defines a common interface that all the device drivers need
to provide. This ensures that the I/O Manager can treat all the devices in
the same manner. Also, device drivers can be layered, and a device driver
can expect the same interface from the driver sitting below it. A typical
example of layering is the device driver stack to access a hard disk. The
lowest-level driver can talk in terms of sectors, tracks, and sides. There
may be a second layer that can deal with hard disk partitions and provide
an interface for dealing with logical block numbers. The third layer can be
a volume manager driver that can club several partitions into volumes.
Finally, a file system driver that provides an interface to the outside world
can sit on top of the volume manager.

+ File Systems. File systems are also coded as loadable device drivers under
Windows NT. Consequently, a file system can be stacked on top of a disk
device driver. Also, multiple file systems can be layered in such a manner
that each layer adds to the functionality. For example, a replication file
system can be layered on top of a normal disk file system. The replication
file system need not implement the code for on-disk structure
modifications.

+ Cache Manager. In her book Inside Windows NT, Helen Custer considers
the Cache Manager part of the I/O Manager, though the Cache Manager
does not adhere to the device driver interface. The Cache Manager is
responsible for ensuring faster file read/write response. Though hard disk
speeds are increasing, reading/writing to a hard disk is much slower than
reading/writing to RAM. Hence, most operating systems cache the file
data in RAM to satisfy the read requests without needing to read the
actual disk block.

Also, a write request can be satisfied without actually writing to the disk.
The actual block write happens when system activity is low. This
technique is called as delayed write.

Another technique called as read ahead improves response time. In this



Chapter 1: Windows NT: An Inside Look 13

technique, the operating system guesses the disk blocks that will be read
in the future, depending on the access patterns. These blocks are read
even before they are requested. The Cache Manager uses the memory
mapping features of the Virtual Memory Manager to implement caching.

+ Network Drivers. The network drivers have an interface standard different
from regular device drivers. The network card drivers stick to the network
driver interface specification (NDIS) standard. The drivers providing
transport level interface are layered above the network card drivers and
provide transport driver interface (TDI).

THE SECURITY REFERENCE MONITOR The Security Reference Monitor is respon-
sible for validating a process's access permissions against the security descriptor of
an object. The Object Manager uses the services of the Security Reference Monitor
while validating a process's request to access any object.

THE VIRTUAL MEMORY MANAGER An operating system performs two essential
tasks:

1. It provides a virtual machine, which is easy to program, on top of raw
hardware, which is cumbersome to program. For example, an operating
system provides services to access and manipulate files. Maintaining data
in files is much easier than maintaining data on a raw hard disk.

2. It allows the applications to share the hardware in a transparent way. For
example, an operating system provides applications with a virtual view of
the CPU, where the CPU is exclusively allotted to the application. In
reality, the CPU is shared by various applications, and the operating
system acts as an arbitrator.

These two tasks are performed by the Virtual Memory Manager component of
the operating system when it comes to the hardware memory. Modern microproces-
sors need an intricate data structure setup (for example, the segment table setup or
the page table setup) for accessing the memory. The Virtual Memory Manager per-
forms this task for you, which makes life easier. Furthermore, the Virtual Memory
Manager enables the applications to share the physical memory transparently. It
presents each application with a virtual address space where the entire address
space is owned by the application.

The virtual memory concept is one of the key concepts in modern operating sys-
tems. The idea behind it is as follows. In case the operating system loads the entire
program in memory while executing it, the size of the program is severely con-
strained by the size of physical memory. A very straightforward solution to the
problem is not to load the entire program in memory at one time, but to load
portions of it as and when required. A fact that supports this solution is the local-
ity of reference phenomenon.



14 Parti: Essentials

A process accesses only a small number of adjacent memory locations, if one
considers a small time frame.This is even more pronounced because of the
presence of looping constructs. In other words, the access is localized to a
small number of memory pages, which is the reason it is called as locality of
reference.

The operating system needs to keep only the working set of a process in memory.
The rest of the address space of the process is supported by the swap space on the
secondary storage. The Virtual Memory Manager is responsible for bringing in the
pages from the secondary storage to the main memory in case the process accesses
a paged-out memory location. The Virtual Memory Manager is also responsible for
providing a separate address space for every process so that no process can hamper
the behavior of any other process. The Virtual Memory Manager is also responsible
for providing shared memory support and memory-mapped files. The Cache
Manager uses the memory-mapping interface of the Virtual Memory Manager.

A working set is the set of memory pages that needs to be in memory for a
process to execute without incurring too many page faults. A page fault is
the hardware exception received by the operating system when an attempt
is made to access a paged-out memory location.

THE PROCESS MANAGER The Process Manager is responsible for creating
processes and threads. Windows NT makes a very clear distinction between
processes and threads. A process is composed of the memory space along with var-
ious objects (such as files, mutexes, and others) opened by the process and the
threads running in the process. A thread is simply an execution context - that is,
the CPU state (especially the register contents). A process has one or more threads
running in it.

THE LOCAL PROCEDURE CALL FACILITY The local procedure call (LPC) facility is
specially designed for the subsystem communication. LPC is based on remote pro-
cedure call (RFC), which is the de facto Unix standard for communication between
processes running on two different machines. LPC has been optimized for commu-
nication between processes running on the same machine. As discussed earlier, the
LPC facility is used as the communication mechanism between the subsystems and
their client processes. A client thread invokes LPC when it needs some service from
the subsystem. The LPC mechanism passes on the parameters for the service invo-
cation to the server thread. The server thread executes the service and passes the re-
sults back to the client thread using the LPC facility.



Chapter 1: Windows NT: An Inside Look 15

WIN32K.SYS: A Core Architecture Modification
In Windows NT 3.51, the KERNEL32.DLL calls are translated to system calls via
NTDLLDLL, while the GDI and user calls are passed on to the Win32 subsystem
process. Windows NT 4.0 has maintained more or less the same architecture as
Version 3.51. However, there is a major modification in the core architecture (apart
from the completely revamped GUI).

In Windows NT 4.0, Microsoft moved the entire Win32 subsystem to the kernel space
in an attempt to improve performance. A new device driver, WIN32K.SYS, implements
the Win32 API, and API calls are translated as system calls instead of IPCs. These
system calls invoke the functions in the new WIN32K.SYS driver. Moving the services
out of the subsystem process avoids the context switches required to process a service
request. In Windows NT 3.51, each call to the Win32 subsystem involves two context
switches: one from the client thread to the subsystem thread, and the second from
the subsystem thread back to the client thread. Windows 2000 also continues with
the kernel implementation of the Win32 subsystem.

As you will see in Chapter 8, in Windows NT 3.51 the Win32 subsystem uses quick
LPC, which is supposed to be much faster than regular LPC. Still, two context switches
per GDI/user call is quite a bit of overhead. In Windows NT 4.0 and Windows 2000, the
GDI/user calls are processed by the kernel mode driver in the context of the calling
thread, thus avoiding the context switching overheads.

THE SYSTEM CALL INTERFACE The system call interface is a very thin layer
whose only job is to direct the system call requests from the user mode processes to
appropriate functions in the Windows NT core. Though the layer is quite thin, it is
a very important because it is the face of the core (kernel mode) component of
Windows NT that the outside user-mode world sees. The system call interface de-
fines the services offered by the core.

The key portion of the system call interface is to change the processor mode
from user mode to privileged mode. On Intel platforms, this can be achieved
through software interrupts. Windows NT uses the software interrupt 2Eh to im-
plement the system call interface. The handing routine for interrupt 2Eh passes
on the control to the appropriate routine in the core component, depending on
the requested system service ID. NTDLL.DLL is the user mode component of the
system call interface. The user mode programs call NTDLL.DLL functions (through
KERNEL32.DLL functions). The NTDLL.DLL functions are stub routines that set up
appropriate parameters and trigger interrupt 2Eh.. The stub functions in NT-
DLL.DLL also pass the system service ID to the interrupt 2Eh handler. The inter-
rupt handler indexes the service ID in the system call table to get to the core
function that fulfills the requested system service. The interrupt handler calls this



16 Part 1: Essentials

core function after copying the required parameters from the user mode stack to
the kernel mode stack.

Summary
In this chapter, we discussed the overall architecture of Windows NT. Windows NT
architecture is robust in the areas of portability, extensibility, compatibility, and
maintainability. Features such as security, symmetric multiprocessor support, and
international language support position the Windows NT operating system on the
high end of the scale compared to Windows 95.

The subsystems that run in user mode and the Windows NT core that runs in
kernel mode make up the operating system environment. The Win32 subsystem is
the most important of the environment subsystems. The Win32 subsystem com-
prises the client-side DLLs and the CSRSS process. The Win32 subsystem imple-
ments the Win32 API atop the native services provided by the Windows NT core.

The Windows NT core comprises the hardware abstraction layer (HAL), the ker-
nel, the Windows NT executive, and the system call interface. The NT executive,
which forms a major portion of the NT core, consists of the Object Manager, the I/O
Manager, the Security Reference Monitor, the Virtual Memory Manager, the Process
Manager, and the local procedure call (LPC) facility.

The chapters that follow cover the main components of the Windows NT operat-
ing system in detail.


